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Abstract

There are many interesting applications of Ramsey theory, these include results
in number theory, algebra, geometry, topology, set theory, logic, ergodic theory,
information theory and theoretical computer science. Relations of Ramsey-type
theorems to various fields in mathematics are well documented in published books
and monographs. The main objective of this survey is to list applications mostly in
theoretical computer science of the last two decades not contained in these.

1 Introduction

Ramsey-type theorems have roots in different branches of mathematics and the theory
developed from them influenced such diverse areas as number theory, set theory, geometry,
ergodic theory and theoretical computer science. Ramsey [224, 137] stated his fundamen-
tal theorem in a general setting and applied it to formal logic. The finite version says: for
all t, n, k ∈ N there exists R ∈ N so that, for m ≥ R, if the k-tuples of a set M of cardinal-
ity m are t-colored, then there exists M ′ ⊆ M of cardinality n with all the k-tuples of M ′

having the same color. The infinite version is similar. Ramsey-type theorems are showing
that if a large enough system is partitioned arbitrarily into finitely many subsystems, at
least one subsystem has a particular property, and thus total disorder is impossible.

Earlier Schur [239] and van der Waerden [265] obtained similar results in number the-
ory. Dilworth’s classical theorem [89] for partially ordered sets is another typical example.
Ramsey’s theorem was rediscovered and applied to geometry by Erdős and Szekeres [95].
They also defined the Ramsey numbers and gave some upper and lower bounds for them.
For the graphs G1, G2, . . . , Gt, the graph Ramsey number r(G1, G2, . . . , Gt) is the smallest
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integer R with the property that any complete graph of at least R vertices whose edges
are partitioned into t color classes contains a monochromatic subgraph isomorphic to Gi

in the i-th color for some i, 1 ≤ i ≤ t. We talk about classical Ramsey numbers or
simply Ramsey numbers when all Gi graphs are complete graphs, this corresponds to the
original definition, later extended to any graph [66]. The probabilistic proof technique,
introduced by Erdős [97] to establish a lower bound of r(Kn, Kn), has been generalized
and applied to combinatorics, to computer science and to various other fields. For more on
Ramsey theory in general we refer to the book of Graham, Rothschild and Spencer [137],
to the collection edited by Nešetřil and Rödl [202] and to the more recent survey article
of Nešetřil [200]. The book of Furstenberg [124] gave ergodic theoretical and topological
dynamics reformulations.

In this survey, we are concentrating on applications not contained in the above books.
In the last few years, significant improvements were made in almost all areas of Ramsey
theory and these improvements or previous results had been applied in many different
subjects. By the early eighties, Ramsey-type theorems scattered around in different fields
were put together to form Ramsey theory. Capitalizing on the maturity of the subject,
theoretical computer science started to make use of it, that was perhaps initiated by the
influential papers of Ajtai, Komlós, Szemerédi [3, 4, 5] and Yao [269]. Since then Ramsey
theory has been applied in many different ways in theoretical computer science and these
have not been documented together so far. Most of these applications are using existing
theorems, but there are also papers mostly by Alon [7, 8, 9] where new Ramsey-type
theorems are proved at the same time as application problems are solved.

Our original intention was to mention applications of Ramsey theory to theoretical
computer science only. However, it appears to be hard to separate these from relations
to mathematics. The diversity of mathematical formulations of Ramsey-type theorems
provides us with possibilities for various applications in computer science. Depending
on the particular problem to solve, different aspects or versions have been applied. For
example to obtain lower bounds for parallel sorting, the Erdős-Rado [103] theorem was
often applied. In information theory, to obtain a lower bound on the capacity of unions of
channels, constructive lower bounds of Ramsey numbers were used, while density results
in number theory are essential in harmonic analysis applications.

This paper is organized by grouping results according to the field of application. The
second section lists new results in number theory, related to Schur’s, van der Waerden’s
and Szemerédi’s theorem. In Section 3, we describe how the new proof by Gowers of
the Szemerédi theorem influenced results on basic questions in harmonic analysis, and we
mention some applications to metric spaces. Section 4 surveys developments in computa-
tional geometry and in the geometry of polytopes, that are related to the Erdős-Szekeres
theorem [95]. In Section 5 some examples are listed where the probabilistic method has
been used, and the best constructions for the same problems are given. Information the-
ory applications of Ramsey theory mostly involve finding maximal independent sets for
various graphs, which correspond to information channels. This is the subject of Section
6. The next section shows applications of the finite Ramsey theorem to order invariant
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algorithms. The Erdős-Rado theorem has been applied in lower bound arguments for par-
allel random-access machines. Section 9 mentions lower bounds for the Boolean function
computation complexity with a Ramsey theoretical lemma developed for these. Some ex-
amples of Ramsey-type theorems using automated theorem proving are listed in Section
10, where optimization techniques are often applied. Section 11 mentions approximation
algorithms developed for NP-hard problems, that are related to Ramsey theory results for
graphs with large independent sets. In the last section, we refer to applications of the the-
orems of Ramsey, van der Waerden, Hales-Jewett and Hindman in logic, complexity and
games, and we mention the role of graph Ramsey theorems to obtain natural examples
for classes in higher levels of the polynomial hierarchy in complexity theory.

The list of mentioned results in this survey is far from being exhaustive. Our first
objective here is to show that there are many different ways Ramsey theory can be ap-
plied and related to other fields, in particular, to computer science. A regularly updated
dynamic survey is perhaps a good format to make this collection as complete as possible
over time.

2 Number theory

One of the earliest Ramsey-type results is Schur’s theorem (1916) [239] in number theory:
if N is partitioned into a finite number of classes, at least one partition class contains
a solution to the equation x + y = z. There are a number of interesting results proved
during the last few years concerning Schur’s theorem and generalizations.

A triple x, y, z of natural numbers is called a Schur triple if x 6= y and x + y =
z. We denote by S(N) the minimum number of monochromatic Schur triples in any
2-coloring of [N ] = {1, 2, . . . , N}. Graham, Rödl and Ruciński [136] found the lower
bound S(N) ≥ (1/38)N2 +O(N). They used the Ramsey multiplicity result of Goodman
[129, 73], which says that in every 2-coloring of the edges of a complete graph on N vertices
there are at least N3/24 + O(N2) monochromatic triangles. Answering a question raised
in [136], Robertson and Zeilberger [229], and independently Schoen [238] showed that
S(N) = (1/22)N2 + O(N). Robertson and Zeilberger found a 2-coloring with N2/22
monochromatic Schur triples and formulated a conjecture on the minimum number of
triples through computational experiments with Maple. This was part of their project
on automatic theorem proving (see also Section 10 on this subject). Schoen showed that
every extremal coloring looks like the Robertson-Zeilberger construction and he used this
result to find the exact number S(N) = (1/22)N2 − (7/22)N . His method is general
enough to be applied to arbitrary linear equations a1x1 + . . . + akxk = b.

Another way to look at Schur’s theorem is in terms of sum-free sets. A set A ⊂ N

is called sum-free if x, y ∈ A implies x + y /∈ A. The Schur function st is defined as
the maximum m ∈ N such that {1, 2, . . . , m} can be partitioned into t sum-free sets.
Chung and Grinstead [80, 78] showed that there is strong relation between K3-free t-
coloring and sum-free sets, namely for t ≥ l, r(K3, K3, . . . , K3) − 2 ≥ st ≥ c(2sl + 1)t/l
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for some constant c. Using the result s5 ≥ 160 of Exoo [108], this gives a lower bound
on the multicolor Ramsey number r(K3, K3, . . . , K3) ≥ c(321)t/5. On the other hand,
if n ≥ r(K3, K3, . . . , K3) − 1 then any t-coloring of [n] contains a monochromatic triple
x, y, x + y = z [137], and therefore Schur’s theorem itself is a consequence of Ramsey’s
theorem.

The following generalizations of Schur’s theorem for sum-sets follows from Rado’s
theorem and it was proved by Folkman and Sanders independently [137, 221, 235]. This
Folkman-Rado-Sanders theorem states : if N is finitely colored, there exists arbitrarily
large finite set A ⊂ N such that the sum-set of A, P(A) = {Σa∈B a : B ⊆ A, 1 ≤ |B| < ∞}
is monochromatic. In Schur’s theorem |A| = 2, and Hindman’s theorem [151] gives the
same result when A is an infinite set. Pudlák (2003) [219] considered a complexity theory
question, the communication complexity of the problem to determine if a word w is of
the form w0a1w1a2 . . . wk−1akwk for fixed letters a1, . . . , ak. He proved that for k = 4 and
5, the communication complexity of the problem increases with the length of the word w,
using the set-theoretical version of Hindman’s theorem. Milliken [191] proved a theorem
that generalizes both the infinite version of Ramsey’s theorem and Hindman’s theorem
and using this he proved a series of results in set theory.

Sum-free sets also can be defined more generally [183], namely a set A ⊂ N is sum-free if
A∩P ′(A) = ∅, where P ′(A) = {Σa∈B a : B ⊆ A, 2 ≤ |B| < ∞}. Luczak and Schoen [183]
recently proved a maximal density result for sum-free sets: if A ⊂ N is sum-free, then for
each n0 there exists n ≥ n0 such that the density A(n) = |A∩{1, 2, . . . , n}| ≤ 403

√
n log n,

improving earlier results of Erdős [87, 98]. They also show that this is close to the best
possible. To obtain the maximal density result, they first prove that if A is a set of
natural numbers with A(n) > 402

√
n log n for n large enough, then there exists d such

that {d, 2d, 3d, . . .} ⊆ P(A).

We mention here two very influential results from additive number theory using yet
another sumset definition: A + A = {x + y : x, y ∈ A}. Balog and Szemerédi (1994) [24]
proved that “if A is a set of n integers and for some c > 0 there are cn numbers that
have at least cn representations of the form x, y, x + y ∈ A, then there is a subset A′ ⊂ A
such that |A′| ≥ c′n and |A′ + A′| ≤ c′′n, where c′, c′′ are positive constants depending
only on c.” This is a basic result with many possible applications. Related to this is
Freiman’s famous theorem (1973) [122]. A set of the form P = P (q1, . . . , qd; l1, . . . , ld; a) =
{a + x1q1 + . . . + xdqd|0 ≤ xi < li, i = 1, . . . , d} is called a d-dimensional generalized
arithmetic progression. For every α there exist constants C = C(α) and d = d(α) such
that if A is any finite set of integers and |A+A| ≤ α|A| then A is contained in a generalized
arithmetic progression of dimension at most d and cardinality at most C|A|. Ruzsa (1994)
[234] gave an elegant, simplified, new proof for Freiman’s theorem with good bounds on d
and C. In most applications it is important to know the quantitative dependence of the
constants d(α), C(α) on α. A new improved bound on the Freiman-Ruzsa theorem is due
to Chang [76], who shows that d(α) ≤ [α − 1] and log(|P |/|A|) < Kα2(log α)3.

Another early Ramsey-type theorem in number theory was originally conjectured by
Baudet and Schur independently (see [247, 248, 249]) and it became known as the van
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der Waerden theorem (1927) [265, 137]. It states that if the positive integers are colored
with t colors, then at least one color class contains an arithmetic sequence of arbitrary
length. More precisely, for every pair of positive integers k and t, there exists a constant
M = M(k, t) such that if {1, . . . , M} is colored with t colors then some color class contains
an arithmetic progression of length k. The constants M(k, t) are called van der Waerden
numbers. No formula for M(k, t) is known. The original proof of van der Waerden
bounds M above by an Ackermann-type function in k. Much later, in 1988, substantially
improved bound expressed as primitive recursive function was given by Shelah [243]. The
real behavior of the growth of M(k, t) remains unknown and the gap between Shelah’s
upper bound and the best known lower bound is still enormous. Van der Waerden numbers
computation has been lately associated with propositional satisfiability by Dransfield et
al. [90]. They show that this computational problem can be represented by propositional
theories in such a way that decisions concerning their satisfiability determine the numbers.
In addition to obtaining some new lower bounds for small van der Waerden numbers,
Dransfield et al. used the propositional theories that arise in this research in development,
testing and benchmarking of SAT solvers.

Erdős and Turán (1936) [96] conjectured that more must be true: if a set of positive
integers has positive upper density, then it contains an arithmetic sequence of arbitrary
length k. Stated differently, for every c > 0 and every k positive integer there exists a
positive integer n = n(k, c) such that any subset S of the set {1, 2, . . . , n} of cardinality at
least cn contains an arithmetic progression of length k.

Roth in 1952 [231, 232] proved the conjecture for k = 3 using functional analysis. Bour-
gain (1999) [59] has sharpened Roth’s theorem by giving the best bounds. He showed that
a subset S of the set {1, 2, . . . , n} of cardinality at least cn(log log n/ log n)1/2 contains an
arithmetic progression of length 3. One of the most celebrated results in combinatorics
is Szemerédi’s theorem (1975)[256, 257], which proves the Erdős-Turán conjecture using
van der Waerden’s theorem and combinatorial arguments. Furstenberg (1977)[123] gave
a different proof using techniques in ergodic theory. A polynomial extension of the Sze-
merédi theorem and of the van der Waerden theorem was established by Bergelson and
Leibman, and a related quantitative result by Green [40, 138]. rk(n) denotes the largest
cardinality of a subset of [n] with no arithmetic sequence of length k. The lower bound
of Behrend (1946)[38, 137], ne−c

√
log n < r3(n), has been applied to fast multiplication of

matrices by Coppersmith and Winograd [82].

Recently, Gowers (1998, 2001) [130, 133] published a new proof of Szemerédi’s theorem
generalizing Roth’s original method and giving new estimates for n which are substantially
smaller than earlier ones. Furstenberg didn’t give any bound and Szemerédi’s is extremely
large. Gowers main result is the following: for every positive integer k there is a constant
c = c(k) > 0 such that every subset of {1, 2, . . . , n} of size at least n(log log n)−c contains
an arithmetic progression of length k. Moreover, c can be taken to be 2−2k+9

. This implies
an estimate for n(k, c) which is doubly exponential in 1/c and quintuply exponential in k,
that is significant improvement to the previous bounds, even for the van der Waerden’s
theorem. Gowers avoids using van der Waerden’s theorem and Szemerédi’s regularity
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lemma, both well known for extremely large constants and bounds. Instead he uses
exponential sums like Roth, showing that Roth’s proof for k = 3 can be generalized. In
carrying out the generalization Gowers faced serious difficulties, so his strategy was to use
the relevant additive number theory results of Freiman [122] and Balog-Szemerédi [24].
Ruzsa’s method [234] to prove Freiman’s theorem had very strong influence on this new
proof, as acknowledged by Gowers.

Furstenberg and Katznelson [125] proved a multidimensional analogue to Szemerédi’s
theorem: for any real number δ > 0 and positive integers K, d there is a natural number
N0 = N0(δ, K, d) such that for N > N0 every subset of [N ]d of size at least δNd contains
a homothetic copy of [K]d. In 1991 [126] they also proved that the Hales-Jewett theorem
[146], which extends van der Waerden’s result to a more combinatorial context, has a
density version as conjectured by Graham. This result has only ergodic theoretic proof in
general. Solymosi [252] gave a simple combinatorial proof for the generalization of Roth’s
theorem, showing that: for sufficiently large N , every subset of [N ]2 of size at least δN2

contains three points of the form {(a, b), (a + d, b), (a, b + d)} . He [253] also solved a
related problem of Erdős and Graham by showing that: for sufficiently large N , every
subset of [N ]2 of size at least δN2 contains a square, i.e. four points with coordinates
{(a, b), (a + d, b), (a, b + d), (a + d, b + d)}. The more general theorem of Furstenberg and
Katznelson [125] also implies these statements, but does not give bound on N , as it uses
ergodic theory. After getting good bounds on the Szemerédi theorem, Gowers asked for
quantitative proof for these theorems as well.

Bourgain [56, 57] extended the theorems of Roth and Szemerédi for sets of positive
density in R

d. He proved that for any set A ⊆ R
d with positive upper metric density and

any set V of d points in R
d spanning a nondegenerate (d− 1)-dimensional simplex, there

exists a number λ0 = λ0(A, V ) such that A contains an isometric image of λV for any
λ > λ0. In the same paper he also gives a result on double integrals over compact abelian
groups from which Roth’s theorem follows.

3 Harmonic analysis, metric spaces, ergodic theory

Roth’s theorem and Gower’s new proof of Szemerédi’s theorem strongly influenced recently
the study of the Kakeya conjecture. In 1917, Besicovitch [45, 46] gave a counter-example
to some basic problem on Riemann integration, by constructing a compact set of plane
Lebesgue measure zero containing a line segment in every direction. At the same time
as Besicovitch, Kakeya [157] independently raised the problem of finding sets of smallest
measure inside which it is possible to rotate a segment of unit length. A Kakeya set
is a compact set E ⊆ R

d containing a line segment in every direction. The Kakeya
conjecture is that a Kakeya set in R

d must have Hausdorff dimension d. For d = 2 the
conjecture was proved by Davies (1971) [85] and for d > 2 the Hausdorff dimension is at
least (d + 2)/2, as established by Wolff in 1995 [267]. The motivation for studying the
Kakeya conjecture comes from harmonic analysis, PDE and analytic number theory. The
techniques used to solve partial results are geometrical, combinatorial and lately using
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additive number theory. There are many variants of this problem. A subset of R
d is

called a (d, k)-Besicovitch set if it is of d-dimensional Lebesgue measure zero but contains
a translate of every k-dimensional subspace of R

d. Falconer [110] proved that (d, k)-
Besicovitch sets cannot exist if 2 ≤ k ≤ d− 1. The original construction of Besicovitch is
a (2, 1)-Besicovitch set, and for any d the Cartesian product of such a set with R

d−2 is a
(d, 1)-Besicovitch set. Much of the work on Hausdorff measures and on geometric measure
theory forming the base of the geometry of fractals is due to Besicovitch. Moreover
Besicovitch in 1964 [47] found a fundamental relationship between Besicovitch sets and
geometric measure theory. The Kakeya set has been used lately to provide counter-
examples to some major conjectures in harmonic analysis. For more on the history of the
Kakeya and Besicovitch sets and relations to harmonic analysis see Falconer’s book on
the geometry of fractals [111].

In 1999, Bourgain [58] approached the Kakeya problem in surprisingly new ways, influ-
enced by Gower’s new proof for Szemerédi’s theorem. He converted the properties of the
Besicovitch set into statements about sums and differences of sets and applied additive
combinatorics. He used his new bound related to Roth’s theorem and Gowers new simple
proof of the Balog-Szemerédi theorem to obtain a better lower bound than Wolff did for
high dimension: (13d + 12)/25. Katz and Tao [167, 168] made further improvements.
Following Bourgain’s ideas and converting more properties into the additive combinato-
rial setting Katz, Laba and Tao [166] could prove important partial results of the Kakeya
conjecture in R3 by improving slightly Wolff’s bound. The relation of the Kakeya con-
jecture to a number of open basic questions in harmonic analysis showed its importance
for this field, see for example [131, 268] for more details. There are other connections to
combinatorics [268] among others to the Zarankiewicz problem [137] and to the theorem
of Szemerédi-Trotter [258]. Bourgain, Katz and Tao (2004) [62] extended to finite fields
some of these theorems obtaining new combinatorial and harmonic analysis results at the
same time. This is a good example of the recent trend in some areas of harmonic analy-
sis that uses influential combinatorial and additive number theoretical results of Elekes,
Ruzsa, Balog and Szemerédi, Solymosi, Tardos and Trotter.

Various methods of constructing Besicovitch sets exist, for example such a set can be
obtained by joining the points of a Cantor set in the x-axis to the points of a parallel
Cantor-like set, as suggested by Kahane [111]. Laczkovich (2002) [178] proved the follow-
ing Ramsey theorem for measurable sets: if X is a nonempty perfect Polish space and
[X]2 = P0 ∪ . . . ∪ Pk−1 is a partition with universally measurable pieces, then there is a
Cantor set C ⊂ X with [C]2 ⊂ Pi for some i. Earlier F. Galvin (1968) showed the same
if the partition has pieces having the Blaire property.

In the geometry of Banach spaces there are several well-known Ramsey-type state-
ments. The most influential one is Dvoretzky’s Ramsey-type theorem [92, 93] proving
that all symmetric convex bodies of sufficiently large dimension have a d-dimensional
central cross-section which is almost ellipsoidal. Several other proofs appeared since,
see [192, 193, 194]. Bourgain, Figiel and Milman [61] show an analogue of Dvoretzky’s
theorem for finite metric spaces. In theoretical computer science there is an extended
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literature on similar metric Ramsey-type theorems. These state that a given metric
space contains a large subset which can be embedded with small distortion in some well-
structured family of metric spaces. See for example the paper of Bartal, Linial, Mendel
and Naor [28], or an application to online problems by Bartal, Bollobás and Mendel [27].
Gowers [134] proves a Ramsey-theoretic result that implies: a separable Hilbert space is
the only infinite-dimensional Banach space, up to isomorphism, which is isomorphic to
every infinite-dimensional closed subspace of itself. This solves a problem of Banach from
his famous 1932 book. Bagaria and Abad [23] obtained the same result. See more on
Ramsey-type results for metric spaces in [61] and for Banach spaces in [135].

The study of Furstenberg’s book on recurrence in ergodic theory and combinatorial
number theory [124] could be the first step to understand why these seemingly different
fields interact with Ramsey theory. In this book, Furstenberg describes the evolution of
ergodic theory and topological dynamics from classical dynamical systems. He defines
a dynamical system as a space X together with a group of transformations of X. If
additionally X is a topological space and the transformations are homeomorphisms of X
then X is a topological dynamical system. As another possibility, X is assumed to be
a measure space and the transformations preserve the given measure, to give a measure
preserving system. Ergodic theory is the theory of measure preserving transformations.
Birkhoff’s (1927) recurrence theorem states: “if X is a compact metric space and T is
a continuous map of X into itself, there exists some point x0 ∈ X and some sequence
nk → ∞ with T nkx0 → x0.” Furstenberg shows how van der Waerden’s theorem follows
from a multiple recurrence version of Birkhoff’s theorem. The book contains the proofs
of other well known Ramsey-type theorems, like Schur’s, Hindman’s, Rado’s, Gallai’s
and Hilbert’s, as consequences of similar general topological dynamical theorems. It
is also shown that van der Waerden’s theorem can be used as a tool in diophantine
approximation, and that certain diophantine approximation theorems fit well into the
framework of dynamical systems. A stronger recurrence theorem of Poincaré states: “let
T be a measure preserving transformation of a measure space (X,B, µ) and assume that
the total measure of X is finite: µ(X) < ∞. If B ∈ B is an arbitrary measurable set in X
with positive measure, µ(B) > 0, then there is some point x ∈ B and integer n ≥ 1 with
T nx ∈ B.” A multiple recurrence analogue is proved in [124], which was used to obtain as
a special case Szemerédi’s theorem. It was also applied by Furstenberg and Katznelson
[125] to obtain the earlier mentioned multidimensional analogue of Szemerédi’s theorem.

An extended exposition of related developments in ergodic Ramsey theory, and their
connection with other parts of mathematics up to 1994 appeared in a survey by Bergelson
[39]. More recently, Bourgain [60] has written on the mutual influence between harmonic
analysis and combinatorics. Wolff [268] also indicates the relation of some combinatorial
and computational geometry results to the Kakeya problem. Gowers wrote informal
papers on combinatorics and connections to other fields [131, 132]. Matoušek’s [185] book
on discrete geometry describes relations between convex polytopes, metric spaces, Banach
spaces, Dvoretzky’s theorem, low-distortion embedding and theoretical computer science.
The introduction of the papers of Chang, Green [76, 138] and Gowers [130, 133] are also
excellent readings on the relation between these subjects. Ramsey theory on the integers
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is the subject of the recent textbook of Landman and Robertson [179]. Jukna [156]
published a textbook on extremal combinatorics with applications in computer science
and has a special section on Ramsey theory with a few of its applications. Beck’s articles
on combinatorial games are applying most basic results in Ramsey theory. His book on
combinatorial games, announced to appear in 2005, will certainly be an interesting and
valuable addition to this list on Ramsey theory.

4 Convex and computational geometry

The Erdős-Szekeres (1935) [95] paper had great impact on the development of Ramsey
theory with the rediscovery of Ramsey’s theorem. It influenced convex and computational
geometry. Its key results have been improved, generalized and applied. There are two
excellent recent surveys on related theorems, proofs and open questions by Morris and
Soltan [197] and by Bárány and Károlyi [25]. Erdős and Szekeres proved that 2n−2 + 1 ≤
g(n) ≤ (

2n−4
n−2

)
+ 1, where g(n) denotes the smallest number such that any set of at least

g(n) points in general position in the plane contains n points in convex position. It was
conjectured that g(n) = 2n−2 + 1, which is true for n < 6. In 1997 three improvements
were made to the upper bound, see [79, 171, 261]. The best upper bound g(n) ≤ (

2n−5
n−2

)
+2

was obtained by Tóth and Valtr [261]. The Erdős-Szekeres theorem is the consequence of
the finite Ramsey theorem and the Morris-Soltan survey gives three Ramsey theoretical
proofs for it, indicating how these theorems are related.

Bárány and Valtr [26], later Pach and Solymosi [204, 250, 251], provided systematic
ways to find many convex polygons in a sufficiently large set of points in the plane. They
show that every n points set in the plane in general position has r pairwise disjoint subsets,
all with cardinality at least bcrnc, such that no matter how we pick a point from each
we obtain a set in convex position. The lower bound for the constant cr ≥ 2−16r2

was
obtained by Solymosi [204, 251]. The constant was improved lately by Pór and Valtr [217]
who also proved the following statement, answering a question of Gil Kalai. “For every
k ≥ 4 there are two constants c = c(k), c′ = c′(k) such that the following holds: if X is a
finite set of points in general position in the plane, then it has a subset X ′ of size at most
c′ such that X \X ′ can be partitioned into at most c convex k-clusterings.” A finite planar
point set X is called k-clustering if it is a disjoint union of k sets X1, . . . , Xk of equal
sizes such that x1x2 · · ·xk is a convex k-gon for each choice of x1 ∈ X1, . . . , xk ∈ Xk. The
proof gives reasonable estimates on c, c′, and it works also in higher dimensions. Károlyi
and Tóth [163] proved for n ≥ k ≥ 3 that (k−1)(n−1)

2
+2k/2−4 ≤ g(k, n) ≤ 2kn+28k, where

g(k, n) is the smallest number of points in general position in the plane that contains
n points whose convex hull has at least k vertices. The Erdős-Szekeres theorem was
generalized for families of convex bodies by Bisztriczky and Fejes Tóth [48]. Pach and
Tóth [206, 207] study Erdős-Szekeres type problems in which the points are replaced by
convex sets. For additional connection to basic theorems in discrete geometry see also the
survey by Bárány and Károlyi [25].

Grünbaum’s classical book on convex polytopes (1967) [142] mentions several early
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generalizations of the Erdős-Szekeres theorem. For example Danzer, Grünbaum and Klee
[84, 142] (p.22) showed that any set of d + 3 points in general position in R

d contains
a subset of d + 2 points in convex position. This is a generalization of E. Klein result
for d = 2 which was the starting point of the Erdős-Szekeres theorems [95]. Perles [142]
(p.120) proved that any set of d + 3 points in general position in R

d contains a subset
of d + 2 points which are the vertices of a polytope combinatorially equivalent to the
cyclic polytope C(d + 2, d). Grünbaum [142] (p.126) has similar results for neighborly
d-polytopes. For d ≥ 2, Nd(n) denotes the smallest integer with the property that every
set of this many points in R

d in general position contains n vertices of a cyclic d-polytope.
Oriented matroid methods together with Ramsey’s theorem were used by Cordovil and
Duchet [83] to prove its existence, but its order of magnitude is still not known; see also
the book on oriented matroids by Björner et al. [49]. Morris and Soltan [197] state a
general Erdős-Szekeres type theorem in another abstract geometry framework, in general
convexity. This also follows from the finite Ramsey theorem.

Grünbaum [142, 143] (p.22) introduced f(n, d), an analogue of g(n) for R
d, and proved

its existence using Ramsey’s theorem. For n > d ≥ 2, f(n, d) is the smallest integer such
that any set of at least f(n, d) points in general position in R

d contains a convex set of
size n. Károlyi and Valtr [164] gave a lower bound on f(n, d) that is conjectured to be
asymptotically tight. Károlyi [158] gives the upper bound f(n, d) ≤ (

2n−2d−1
n−d

)
+ d. From

his proof he also obtains a stronger Erdős-Szekeres theorem: if d ≥ 3 and n is large enough,
then any set of kn points in general position in R

d can be partitioned into n convex subsets
of size k. In the planar case this is not true even if k = 4. He gave an O(n log n) time
algorithm which decides if a given set of 4n points in general position in the plane can be
partitioned into convex quadrilaterals. This answers a computational geometry question of
Mitchell aimed at possible applications for quadrangular mesh generations. The Ramsey-
remainder rr(k) was defined by Erdős, Tuza and Valtr [106] as the smallest integer such
that a large enough point set in general position in the plane can be partitioned into
vertex disjoint convex sets, at least k ≥ 3 points each, and the remaining set has at most
rr(k) points. The following problem is still open: is rr(k) = 2k−2 − k + 1? In higher
dimensions the Ramsey-remainder is 0, see [158].

Erdős asked for the smallest number of points in the plane, no three collinear, such
that a convex n-gon always exists without any point in its interior. For n ≤ 5, Harborth
[148] determined this number and Horton [152] constructed arbitrarily large sets of points
which have no empty 7-gon. The remaining intriguing open question is whether a large
enough set of points in the plane in general position contains the vertex set of an empty
convex hexagon. Solymosi [250] relates this to a Ramsey-type problem for geometric
graphs: is there an empty monochromatic triangle in any 2-coloring of the edges of a
large enough complete geometric graph? (A geometric graph is drawn in the plane, the
vertices represent points in general position and the edges are straight line segments.) The
following generalization is by Valtr [264]: let h(d) denote the maximum number h such
that any sufficiently large set of points A in general position in R

d contains an h-hole, i.e.
h points that are vertices of a convex polytope containing no other point of A. For d ≥ 2,
2d + 1 ≤ h(d) ≤ 2d−1[P (d − 1) + 1], where P (d − 1) is the product of the smallest d − 1
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prime numbers. Valtr uses the Erdős-Szekeres theorem in his proof.

In VSLI designs or in pattern recognition it is important to find crossingfree subgraphs
of geometric graphs. Deciding the existence of a crossingfree spanning tree is NP-complete
[153]. There are some results for topological layouts where the edges are not restricted
to be straight lines. The computational complexity of problems connected to topological
layouts was studied by Kratochvil, Lubiw and Nešetřil [175]. Among the results obtained
are: (1) deciding the existence of a crossingfree path between two given vertices, or of
a crossingfree cycle, in a given topological layout of a 3-regular graph, are both NP-
complete; (2) deciding the existence of a crossingfree k-factor in a topological layout of
a (k + 1)-regular graph is NP-complete, for 2 ≤ k ≤ 5. For k = 1, the question is
NP-complete in layouts of 3-regular graphs, while it is polynomial solvable for layouts
of graphs with maximum degree too. It is easier to find crossingfree monochromatic
subgraphs in 2-colorings of edges of complete geometric graphs. In [160] it is shown that
if the line segments of any n points in general position in the Euclidean plane are colored
by 2 colors, then at least one of the color classes contains a spanning tree without any pair
of crossing edges. Károlyi et al. also proved that there exist b(n + 1)/3c monochromatic
pairwise-disjoint edges, as conjectured by Biaslostocki and Dierker, and they can be found
in O(nlog log n+2) time [159, 160]. Károlyi, Pach, Tóth and Valtr [161] gave lower and upper
bounds for geometric Ramsey numbers of noncrossing paths and cycles, together with an
O(n2) time algorithm for finding these in any 2-coloring of the complete geometric graph
of n vertices. For more on geometric Ramsey-type theorems, see [162, 149].

There are a number of Ramsey-type results in computational geometry related to in-
tersection graphs arising from a system of simple continuous curves in the plane, where
a vertex is assigned to each curve and two vertices are adjacent if and only if the corre-
sponding curves intersect. Pach and Solymosi [205, 251] proved several statements for the
intersection graph of segments, for example: any system of n segments in the plane with

at least cn2 crossings (c > 0) has two disjoint subsystems of cardinality at least (2c)A

660
n

each and every segments between them cross. Similar result is stated for non-crossing
segments. These results, combined with Szemerédi’s regularity lemma, were used to es-
tablish a fairly strong structure theorem for intersection graphs of segments. Kratochvil
and Nešetřil [176] investigated the computational complexity of the independent set and
the clique problems when restricted to certain intersection graphs of straight line segments
in the plane. Finding a maximum independent set is NP-complete except for some very
restricted cases. On the other hand a maximum clique can be found in polynomial time
for intersection graphs of segments lying in at most k directions in the plane, for any fixed
positive integer k, if the representation has a suitable description.

Dilworth’s well known theorem [89] states that in any partially ordered set of size
(p−1)(q−1)+1 there is either a chain of size p or an antichain of size q. It follows that
the comparability graph of any partially ordered set of n elements contains either a clique
or an independent set of size

√
n. Dumitrescu and Tóth [91] showed several statements

on the unions of comparability graphs such as: the union of two comparability graphs on
the same vertex set contains either a clique or an independent set of size at least n1/3.
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They also showed that there exist union of comparability graphs not containing clique or
independent set larger than n0.4118. Dilworth’s theorem has been used lately to establish
upper bounds for Ramsey numbers of noncrossing paths and cycles in geometric graphs
[161, 162].

The monotone subsequence theorem of Erdős and Szekeres [95] states that any se-
quence of at least n2 + 1 real numbers contains a monotonic subsequence of at least n + 1
terms. It has been applied in computational geometry for visibility questions by Alt,
Goude and Whitesides [20] and Bose et al. [55]. Visibility results have been used in graph
drawing and in VSLI wire routing, see also [88]. Szabó and Tardos [255] generalized the
monotone subsequence theorem, stated as a Ramsey theorem. Let H0, . . . , Hd be a list of
d + 1 linear orderings of a finite set V . A 2d-coloring of the edges of the complete graph
on the vertex set V is defined by coloring an edge uv with the color (c1, . . . , cd) ∈ {0, 1}d,
where ci = 0 if Hi agrees with H0 on {u, v}, and ci = 1 otherwise. For d = 1 and |V | = n,
the monotone subsequence theorem implies that there exists a monochromatic clique of
size d√ne, and this result is best possible. For d > 1 determining the size of the largest
monochromatic subset can be solved with repeated applications of the monotone subse-
quence theorem. Instead, Szabó and Tardos considered the more challenging problem of
finding the size of the largest subset that misses at least one of the 2d colors. This problem
has connection to a question of Preiss in analysis as to whether any compact set of positive
Lebesgue measure in d-space admits a contraction onto a ball. There are several other
ways to generalize the monotone subsequence theorem to higher dimensions, depending
on the definition of monotonicity, when the real numbers in a sequence are replaced by
d dimensional vectors in R

d. For more details on these generalizations, see the paper of
Kruskal [177], the survey by Steele [254] and the article of Odlyzko, Shearer and Siders
[203].

5 Probabilistic method versus constructions

The first probabilistic proof is attributed to Erdős [97] who used it to find lower bounds
for the classical Ramsey numbers. The idea is simple, but it became famous as it could be
applied in many different situations. Let the edges of a complete graph on n vertices be

colored by two colors, each with probability 1/2. It is easy to see, that if
(

n
k

)
21−(k

2) < 1,
then there is a coloring with no monochromatic complete subgraph of k vertices. This
reasoning gave the lower bound r(Kk, Kk) > ck2k/2. The Lovász local lemma [100] is a
generalization of the idea of Erdős’s proof and it is among the most applied techniques
in combinatorics and computer science. For more on this subject see the books by Alon,
Erdős and Spencer [18, 19, 105]. The probabilistic method has been applied extensively in
computer science to design and analyze randomized algorithms, see for example the book
of Motwani and Raghavan [198]. Also, Milman’s [193] probabilistic proof to Dvoretzky’s
Ramsey-type theorem [92, 93] in the geometry of Banach spaces is considered revolution-
ary by Gowers [132], as it showed that the idea of measure concentration can be exploited
in many different fields.
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Although it is usually possible to get better bounds with probabilistic method than
with constructions, explicit constructions are often preferable in applications. The con-
structive lower bound for r(Kk, Kk) given by Frankl and Wilson [120] has important ap-
plications in information theory, for example. Recently Grolmusz [139, 140, 141] proved
equivalent lower bounds with a method generalizable to explicit Ramsey-colorings with
more than two colors. He found a relation between the ranks of codiagonal matrices,
matrices with 0’s in their diagonal and non zeroes elsewhere, and explicit Ramsey-graph
constructions.

Probabilistic method has been used to prove the existence of some family of expanding
graphs [77, 214]. Let G = (I, O) be a bipartite graph, where I can be considered as the
set of inputs and O as the set of outputs with |I| = |O| = n. If every set of at least a
inputs is joined by edges to at least b different outputs, where 0 < a ≤ b ≤ n, then we
call the graph G (n, a, b)-expanding. A superconcentrator is an expanding graph with the
additional properties of being directed, acyclic and from any set of r inputs to any set of
r outputs there are r vertex disjoint paths. Expander graphs were used by Ajtai, Komlós
and Szemerédi (1983)[5] to establish an O(log n) upper bound for the complexity of parallel
sorting networks. Superconcentrators or expanding graphs with small number of edges
are also important in the construction of graphs with special connectivity properties [77]
or in the study of lower bounds [263] among other applications [215].

The explicit constructions of highly expanding graphs with small number of edges
are more difficult, however for some applications these properties are essential. Alon
and Milman [14, 15, 6] and independently Tanner [259] showed the relation between an
expanding graph, or a regular bipartite graph G(I, O) in general, and λ2 the second
eigenvalue of AAT , where A is the adjacency matrix of the graph. Let the degree(x) = k
if x ∈ I and the degree(y) = s if y ∈ O. The main result of Tanner says that for X ⊂ I,

|N(X)|, the number of neighbors of X, is at least k2|X|
(ks−λ2)|X|/n+λ2

. Alon [7] used this result

to get the constructive lower bound c1n
4/3 < r(C4, Kn). He also showed, using the result

of Tanner, that the points-hyperplanes incidence graph of a finite geometry of dimension
d is an (n, x, n−n1+1/d/x)-expanding graph for all 0 < x < n. This geometric expander is
highly expanding (b(n)/a(n) → ∞), with close to the smallest possible number of edges,
and it is also used to obtain results for parallel sorting in rounds.

In 1980, Ajtai, Komlós and Szemerédi [3] proved that r(K3, Km) ≤ O(m2/ log m).
This result has been applied in the construction of algorithms to find large independent
sets, (see also the section on approximation algorithms). Kim (1994) [170] showed that
this upper bound is tight up to a constant factor. His argument is probabilistic. The
best constructive lower bound is due to Alon [8] (1994). His constructions are based on
the properties of some dual error-correcting codes and Cayley graphs. The constructions
give triangle-free graphs Gn on n vertices satisfying α(Gn) ≤ θ(Gn) = Θ(n2/3), where
α(Gn) denotes the independence number and θ(Gn) is the Lovász θ-function [182]. It also
settles a geometric problem of Lovász, by proving that the maximum possible value of the
Euclidean norm ‖Σn

i=1ui‖ of the sum of n unit vectors u1, . . . , un in R
n, so that among

any three of them some two are orthogonal, is Θ(n2/3).
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6 Information theory, dual source codes

Ramsey theorems have been applied to information theory several times in various ways.
The 1984 survey on applications of Ramsey theory by Roberts [226] explains in detail how
one Ramsey-type theorem can be applied to communication channels. We mention some
newer results based mostly on Alon’s work and follow his definitions and notations. Let
G = (V, E) be a graph corresponding to an information (noisy) channel [9] where V rep-
resents the input set, i.e. all possible letters the channel can transmit in one use. In each
channel use, a sender transmits an input and a receiver receives an output. The vertices
corresponding to two letters are adjacent if and only if both can result in the same output
and thus they could be confused. We could choose an independent set as an unambigu-
ous code alphabet for sending messages. The maximum number of letters that can be
transmitted in a single use without error is then the maximum size of an independent set,
denoted by α(G). To obtain larger unambiguous code alphabet it is suggested [226] to
introduce noisy channels whose graph is the product of graphs. Let Gn denote the graph
whose vertex set is V n and two vertices (u1, u2, . . . , un) and (v1, v2, . . . , vn) are adjacent if
and only if for all i, 1 ≤ i ≤ n, either ui = vi or uivi ∈ E. α(Gn) is the maximum number
of messages that can be transmitted in n uses of the channel without confusion. Hedrĺın
[150, 226] proved: if G and H are any graphs, then α(G ·H) ≤ r(α(G)+1, α(H)+1)−1.
This gives an upper bound on the size of an unambiguous code alphabet if the graph
of the noisy channel is G2. Gn can be used to get larger and larger unambiguous code
alphabets, but with a cost to efficiency by using longer strings. To compensate, Shannon
considered the number (α(Gn))1/n as a measure for the capacity of the channel with an
unambiguous code alphabet of strings of length n. The Shannon capacity [240] is defined
as c(G) = limn→∞(α(Gn))1/n, it represents the number of distinct messages per use the
channel can communicate with no error while used many times.

The disjoint union of two graphs G and H , denoted by G+H , is defined as the graph
whose vertex set is the disjoint union of the vertex sets of G and H and its edge set is the
disjoint union of the edge sets of G and H . If G and H are graphs of channels, then the
union of the channels corresponds to the situation that either one can be used. Shannon
(1956) [240] proved that c(G + H) ≥ c(G) + c(H), and equality holds if the vertex set of
one of the graphs can be covered by α(G) cliques. He conjectured that equality always
holds. Alon [9] disproved this conjecture in a strong sense, proving that for every k there

is a graph G so that c(G) ≤ k, c(G) ≤ k, while c(G + G) ≥ k(1+o(1)) logk
8loglogk , and the

o(1)-term tends to zero as k tends to infinity. For his proof he used a modified version of
Frankl and Wilson’s [120] well-known explicit 2-coloring that gives the constructive lower

bound k(1+o(1)) logk
4loglogk < r(Kk, Kk). Alon extended to g > 2 colors the modification of

the Frankl-Wilson construction to obtain: for every fixed integer g ≥ 2 and k > k0(g),

k
(1+o(1))(logk)g−1

gg(loglogk)g−1 < r(Kk, Kk, . . . , Kk). This construction with more than 2 colors can give
an example for unions of more than 2 channels with large capacities.

Alon and Orlitsky [17] study the savings afforded by repeated use in zero-error com-
munication problems. They show that for some channels communicating one instance
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requires arbitrarily many bits, but communicating multiple instances requires roughly
one bit per instance. The largest number of bits a channel can communicate without
error in a single use is γ(1) = log α(G). If a set I is independent in G then I × . . . × I is
independent in Gn, and so α(Gn) ≥ (α(G))n. γ(n) = log α(Gn) is the largest number of
bits the channel can communicate without confusion in n uses, hence γ(n) ≥ nγ(1).
Some channels can communicate exponentially more bits in two uses than they can in
one. Let ρn(l) = max{α(Gn) : α(G) ≤ l}, and rn(l) = r(Kl+1, . . . , Kl+1) − 1, (the edges
are colored with n colors). Erdős, McEliece and Taylor [101] proved that ρn(l) = rn(l).
In [17] this is used, together with the well known upper and lower bounds for classical

Ramsey numbers, (i.e. 2l/2 ≤ r2(l) < 22l, [137]), to show, that 2γ(1)−1 ≤ γ(2) < 2γ(1)+1.
C(n) = γ(n)/n is the zero-error n-use capacity [240], its limit C(∞) is also known as Shan-
non’s zero-error capacity, the highest per-use number of bits the channel can transmit
without error. C(∞) ≥ C(2), and there are channels whose infinite-use capacity is expo-
nentially larger than their single-use capacity: C(∞) ≥ 2C(1)−2 . Moreover there is an
arbitrary gap between the single-use capacity and the infinite-use capacity if and only if
for some constant c, rn(2c) grows faster than any exponential in n. This is a generalization
of an open question of Erdős, who asked whether the Ramsey number rn(2) grows faster
than any exponential in n (see [137] page 146).

Alon and Orlitzky [17] examine dual-source codings, as well. A dual source S consists
of a finite set X, a set Y , and a support set S ⊆ X × Y . In a dual-source instance
a sender is given an x ∈ X and a receiver is given a y ∈ Y such that (x, y) is in the
support set S. What is the minimum number of bits the sender must transmit in the
worst case in order for the receiver to learn x without error? The characteristic graph G
of a dual source S has the vertex set X, and x, x′ ∈ X are connected iff there is a y jointly
possible with both, i.e. there is a y ∈ Y such that both (x, y) ∈ S and (x′, y) ∈ S. The
smallest number of possible messages the sender must transmit in the worst case for a
single instance of S is the chromatic number of G, χ(G), and the smallest number of bits
the sender must transmit in the worst case for a single instance of S is σ(1) = log χ(G).
In n instances of the dual source S, the sender knows x1, . . . , xn while the receiver knows
y1, . . . , yn such that each (xi, yi) ∈ S and the receiver wants to learn x1, . . . , xn. The
number of bits the sender must transmit in the worst case for n instances of S without
error is σ(n) = log χ(Gn). For every graph G of a dual source σ(2) ≤ 2σ(1), since if G can
be colored with χ colors then G2 can be colored with χ2 colors. For some dual sources
fewer bits are enough.

A graph is called self-complementary if it is isomorphic to its complement. A graph
is called Ramsey graph if both its independence number and clique number are polylog-
arithmic in the number of vertices. Let A be a finite Abelian group and a set K ⊆ A is
symmetric if −K = K. The Cayley graph over A with respect to a symmetric set K has
vertex set A and a, b ∈ A are connected iff a − b is in K. Alon and Orlitzky use proba-
bilistic constructions of self-complementary Ramsey graphs, that are also Cayley graphs,
to show that for every prime power v ≡ 1 mod 4 there is a v-vertex Cayley graph G with
independence number at most (1 + o(1))16 log2 v such that χ(G) ≥ v

(1+o(1))16 log2 v
, while
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χ(G2) ≤ v. This implies that for arbitrarily high values of σ(1) there are dual sources
where σ(2) ≤ σ(1) + 2 log σ(1) + 4 + o(1). These are sources where the number of bits
required for a single instance is comparable to the size of the source, but two instances
require only a logarithmic number of additional bits.

7 Order invariant algorithms

Yao [269] (1981), in his influential paper on searching tables, used Ramsey theory and
others inspired by it followed. Subsequently, Ramsey theory was applied by Frederickson
and Lynch on a problem in distributed computations [121], by Snir [246] to search on
sorted tables in different parallel computation models, by Maass [184] in lower bound
arguments for random-access machines, or by Moran, Snir and Manber to show properties
of order invariant decision trees [196]. Yao [269] examined the following problem: “Given
a set S of n distinct keys from a key space M = {1, 2, . . . , m}, a basic information retrieval
problem is to store S so that membership queries of the form “Is j in S” can be answered
quickly.” If the keys are stored in a sorted table, then dlog2(n + 1)e probes are sufficient
by using binary search. He first proves that, for sorted table, dlog2(n + 1)e probes are
needed with any search strategy, in the worst case, if m ≥ 2n− 1, n ≥ 2. Using the finite
Ramsey theorem Yao proves that, if m is sufficiently large then dlog2(n + 1)e is needed
in the worst case with any table structure. Sufficiently large here is actually extremely
large, the complete n-uniform hypergraph of m vertices is colored with n! colors, and m is
large enough so that there is a monochromatic complete n-uniform hypergraph of 2n− 1
vertices. (He remarks that this result is not too useful in practice.) It follows from Yao’s
result that for sufficiently large m, using a sorted table structure is the most efficient
method for information retrieval.

Moran, Snir and Manber [196] consider problems that are defined by simple inequalities
between inputs, called order invariant problems. The input domain Sn consists of the
n-tuples of elements of a totally ordered set S. Two tuples x = (x1, . . . , xn) and y =
(y1, . . . , yn) are said to be order equivalent, x ≡ y, if for all i, j = 1, . . . , n, xi < xj iff
yi < yj. The equivalence class of x is called the order type of x. A decision problem
P is a partition of all the n-tuples of Sn into classes P1, P2, . . . , Pq, and the problem is
to determine to which class an input belongs. P is said to be order invariant if order
equivalent tuples are always in the same class. A query, which is a predicate defined on
the set Sn, is considered order invariant if its outcome depends only on the relative order
of the inputs occurring in it. A deterministic decision tree is a labeled binary tree, where
each internal node v is labeled with a query Qv, and each internal node has two outgoing
edges labeled true or false. Each leaf of the decision tree is labeled by one of the partition
classes.

The evaluation of the tree T for x proceeds from the root. When a node v is reached
the predicate Qv is evaluated on x, and one of the outgoing edges is chosen according
to the outcome of the evaluation. A decision tree solves a decision problem if for each
input the computational path for that input reaches a leaf, labeled with the partition
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set this input belongs to. The decision tree is order invariant if each query occurring in
it is order invariant. A decision tree is k-bounded if each query depends on at most k
variables. Moran et al. prove, using Ramsey theory, that one can replace the queries
of any k-bounded decision tree that solves an order invariant problem over a sufficiently
large input domain with k-bounded order invariant queries. As a consequence, all existing
lower bounds for comparison-based algorithms are valid for general k-bounded decision
trees, where k is a constant.

Moran et al. consider that these applications and some others previously obtained
follow from the following observation. If the assertion “Algorithm A solves correctly an
order invariant problem P in t steps” can be formally expressed by a universal formula
of first-order predicate calculus using the predicates <, P1, . . . , Pk, then the following
formulation of Ramsey’s theorem, due to Ramsey [224] can be used. “For each j, k, m, n
there is a number N(j, k, m, n) such that the following holds: let F be a universal formula
of size j in first-order predicate calculus, with predicates P1, . . . , Pk, and n variables. If this
formula can be satisfied by a model of size N(j, k, m, n), then it can be satisfied by a model
of size m, where the predicates Pi are order invariant.” Ramsey’s theorem thus implies
that, if this formula is satisfied, with < interpreted as total order, on a large enough
domain, then it is satisfied on a domain of size m, where all Pi’s are order invariant.
Hence, lower bounds proved for algorithms represented by order invariant predicates have
to be valid with no restriction on the predicates. This method has been used only for
computations where each operation has a fixed number of outcomes. Another major
limitation of this type of applications is again that the input domain must be large enough
for Ramsey’s theorem to be applied.

Moran et al. also prove an Ω(n log n) lower bound for the element uniqueness problem
for any k-bounded decision tree, such that k = O(nc) and c < 1/2, and this result is
essentially tight. The element uniqueness problem is to decide, given n elements in S,
whether they are pairwise distinct. In proving this more specific result, they use Ramsey
theorem in a more direct way, so the result is valid for much smaller input domain than
needed for the general result, although it is still quite large.

A more recent example for similar applications of the finite Ramsey theorem is by
Naor and Stockmeyer (1995) [199], studying computations that can be done locally in
a distributed parallel computing network. The question is what can be computed when
algorithms must satisfy strong requirement of locality, namely, that the algorithm must
run in constant time independent of the size of the network. A network is modeled as an
undirected graph, where each vertex represents a processor, and edges represent direct
connections between processors. Each processor is connected directly to at most some
fixed number of others. The connections can be considered local, but there are some
computations where the values computed at different nodes must fit together in some
global way. Naor et al. are interested in computational problems of producing labeling of
the network, more specifically locally checkable labeling within some fixed radius from the
node. If an algorithm runs in constant time t, each processor v can collect information on
the structure of the network, like processor id, only in the region within radius t from v.
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Then the processor must choose an output based on this information. There are several
advantages, for example in improved fault tolerance, a failure at processor v can only
effect processors in some bounded region. Sometimes it is useful to restrict attention to
order invariant algorithms that do not use the actual values of the processor id’s, only
their relative order. Naor and Stockmeyer show, using the finite Ramsey theorem, that
when the algorithm is computed locally, in constant time, there is no loss of generality by
restricting the study to order invariant algorithms.

A recent result of Fischer (2000) [117] studies property testing, introduced by Rubin-
feld and Sudan [233] motivated by its connection to program checking. Fischer considers
the minimum number of queries required for a randomized algorithm, called ε-test, to
distinguish between the case of a sequence of n integers satisfying a certain property,
and the case that it has to be modified in more than εn places to make it satisfy the
property. He uses the following corollary of the Ramsey theorem [50, 137]: “If F is any
finite family of functions with k variables from the positive integers to a finite range, then
there exists an infinite subset E of the positive integers, such that the restriction of the
members of F to E are all order based in their variables.” He shows that an ε-test for any
property defined in terms of the order relation cannot perform less queries in the worst
case than the best ε-test which uses only comparisons between the queried values. As a
consequence, he finds a tight lower bound of O(log n) for the number of queries required
to test whether the sequence is monotone nondecreasing or εn-far from it. Another ap-
plication of Ramsey-type theorems to property testing by Fischer and Newman [118] is
considering testing certain properties of binary matrices with a fixed dimension. They
also use a new restricted version of Szemerédi’s regularity lemma that does not require
tower like dependency on the parameters. Alon, Fischer, Krivelevich and Szegedy [10]
also proved a variant of Szemerédi’s regularity lemma to use in results related to testing
graph properties. For more on property testing and its relation to the application of the
regularity lemma, see the new survey of Fischer [116].

8 Lower bound arguments for PRAM

Valiant’s [262] parallel comparison decision tree model is considered useful for studying
parallel algorithms and lower bounds for order invariant problems, but this model does not
deal with the problem of communicating between processors that run in parallel. Parallel
random-access machine (PRAM) is perhaps a more realistic model, though the two models
are not comparable in general. Concurrent-read concurrent-write parallel random-access
machine (CRCW PRAM) consists of a set of processors that communicate via a shared
memory, and processors can read or write simultaneously at the same memory location.
There are several rules to solve writing conflicts. In the Priority rule, the value written
by the processor with the highest preassigned priority, like lowest index, is accepted. In
the Common rule for write conflict, all the processors writing to the cell at the same time
must write the same value. These are just two of the possible rules for conflict resolutions,
see [115] for a list of the other rules and their comparisons.
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Fish et al. in [113] gave the first tight Θ(log logn) bound for finding the maximum of n
integers, in the Priority PRAM model, generalizing Valiant’s result for parallel comparison
decision trees. The following Ramsey-type theorem [137] is used: “let f : W → D be any
function defined on an infinite domain W . Then there exists an infinite subset W ′ ⊂ W
such that f |W ′ is either constant or 1 − 1. In particular, if D is finite, then f |W ′ is
constant”. Ajtai, Komlós and Szemerédi (1983)[5] established an O(log n) upper bound for
the time complexity of parallel sorting of n integers. To obtain the lower bound Ω(

√
log n)

on sorting n integers in the Priority PRAM model, Meyer auf der Heide and Wigderson
(1987) [190] apply the “canonical” Ramsey theorem of Erdős and Rado [103, 102, 137, 50].
They also prove that the computation of any symmetric polynomial of n integers requires
exactly log2 n steps.

Boppana [53] studied the relative powers of the Priority and Common models of par-
allel random-access machines. He obtained tight upper and lower bound on the cost of
simulating a Priority machine by a Common machine. The motivation for studying these
problems is to understand the relationship between these two models, as algorithm design-
ers prefer the power of the Priority model, and for computer architects the Common model
is easier to implement in hardware. The element distinctness problem is solvable in con-
stant time on a Priority[n] machine (using n processors). Fish, Meyer auf der Heide and
Wigderson [114] showed, that a Common[n] machine (using n processors) solving element
distinctness[n] with n integers requires Ω(log log log n) time. Ragde, Steiger, Szemerédi
and Wigderson [223] improved the lower bound to Ω(

√
log n). Boppana improved fur-

ther these results to the best possible lower bound, to Θ(logn/ log log n). All these lower
bounds are obtained using similar Ramsey theoretical methods, developed by Ragde et al.
[223] and Meyer auf der Heide and Wigderson [190], based on the Erdős-Rado theorem.
More recently Breslauer, Czumaj, Dubhashi and Meyer auf der Heide (1995, 1997) [64, 65]
were again applying Ramsey theoretical methods based on the Erdős-Rado theorem, for
general transformations of lower bounds in Valiant’s comparison decision tree model to
lower bounds in a PRAM model. The disadvantage of some of these applications using
Ramsey theory is that they often require very large input domains, like for example the
results of Boppana. Edmonds [94] considers that removing Ramsey theory can help solv-
ing problems on small domains. He obtains the same lower bounds as Boppana, on much
smaller input domains, by better use of the partial information a processor learns about
an input, and by developing some set theoretic techniques to replace Ramsey theory.

9 Lower bounds for Boolean function computation

A Boolean function f , of n Boolean variables x1, . . . , xn, is a mapping from the set of 2n

possible (0, 1) input strings b = (b1, . . . , bn), to {0, 1}. A generalization of decision trees,
the branching program is a directed acyclic graph with a unique source S, some sinks
(terminals) labeled 0 or 1 and some other, non-sink (non-terminal) vertices labeled each
by an input variable. Each non-sink vertex has two outgoing edges labeled 0 or 1. Any
assignment of values bi to the input variables xi defines a unique computation path from S
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to a sink, leaving each vertex labeled xi through the edge labeled bi. The Boolean function
f is computed by the branching program if for any possible (b1, . . . , bn) the end vertex of
the path is labeled f(b1, . . . , bn). It is usually assumed that a vertex has a level, where the
level of S is 1, and edges go from each level only to the next one. The number of levels
is the length of the program, corresponding to the time of the computation. The width
of the program is the maximum number of vertices on a level, its logarithm corresponds
to the space of the computation. The size, or the complexity of the branching program is
the number of vertices. The complexity of the Boolean function f is the complexity of an
optimal branching program that computes f . A branching program is a sequential model
of computation and is called input oblivious if all non-sink vertices at each level have the
same label.

Most Boolean functions require exponential size branching programs. A barely nonlin-
ear lower bound for the size of the branching programs of the majority function was proved
using Ramsey theory by Pudlák [218]. For some other explicit Boolean functions nonlinear
lower bounds were found, but mostly restricted to bounded width branching programs.
The bounds are often for symmetric Boolean functions, where a function is symmetric if
it is invariant under permutations of the variables, i.e. f(b) depends only on the number
of 1’s among bi’s. The first nonlinear lower bound was obtained using Ramsey-type argu-
ment by Chandra, Furst and Lipton [75], for the length of any bounded width branching
program that computes the symmetric function of n Boolean variables x1, . . . , xn, whose
value is 1 iff Σn

i=1xi = n/2. It is barely nonlinear, Ω(nw(n)), where w(n) is the inverse of
the van der Waerden numbers. Better nonlinear bound, Ω(n log log n/ log log log n) was
found for threshold functions by Pudlák [218], using a different Ramsey argument. He also
obtains the same lower bound, for bounded branching programs, for all but a bounded
number of symmetric Boolean functions. Computing any member of a large class of sym-
metric Boolean functions, the Ω(n log n/ log log n) lower bound was obtained by Ajtai et
al. [2], for bounded width branching programs, but for this they could not use the help
of Ramsey-type methods. This bound was further improved to Ω(n log n) by Babai et al.
[22] and by Alon and Maass [12] independently, the later again using Ramsey-type meth-
ods. Cai and Lipton [74] obtains an n log log n lower bound for a permutation branching
program that computes the logical AND function of n Boolean variables by applying the
Erdős-Szekeres monotone subsequence theorem.

Alon and Maass [12, 13] have several other results with lower bounds for the length of
branching programs of various symmetric functions. They also present a new technique
to obtain lower bounds for the time versus space complexity of certain functions in a
general input oblivious sequential model of computation. They use the following Ramsey
theoretic lemma, stated and proved for these applications. Let X = (x1, x2, . . . , xm) be
a sequence of elements of N = {1, 2, . . . , n}, where the same a ∈ N may appear several
times. For an ordered pair (a, b) of distinct elements of N , vX(a, b), the order type vector
of (a, b) in X, is defined as the binary vector obtained from X by replacing each a with
0, each b by 1, and omitting all other elements of N in X. The lemma states that if each
a ∈ N appears exactly k times in X, and N = N1∪N2 is a partition of N into two disjoint
sets, then there are two subsets S ⊆ N1, T ⊆ N2, |S| ≥ |N1|/22k−1 and |T | ≥ |N2|/22k−1,
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such that all the order type vectors {vX(s, t) : s ∈ S, t ∈ T} are identical. This lemma is
not far from being best possible.

Alon and Maass introduce the concept of meanders to describe superconcentrator type
properties of sequences. A sequence M = x1x2 . . . xm of numbers xi ∈ {1, . . . , n} = N
is called a g(x)-bipartite-meander (over n numbers, of length m), if for any disjoint sets
S, T ⊆ N , |S| = |T | with S ⊆ {1, 2, . . . , n/2} and T ⊆ {n/2 + 1, . . . , n} there are in M at
least g(|S|) links between S and T . The interval xixi+1 . . . xi+j is a link between S and T if
xi+1, . . . , xi+j−1 6∈ S∪T and xi ∈ S, xi+j ∈ T or xi ∈ T , xi+j ∈ S. From the above Ramsey
theoretical lemma they prove lower bounds for the length of meanders. If M is a g(x)-
bipartite-meander over n numbers of length nf , then f ≥ 1/8g(n/28f+1). In particular,
every log x-meander has length Ω(n log n), and for every g(x) → ∞ the length of a g(x)-
meander is superlinear. As a corollary: If s(n) is an arbitrary function, M is a sequence
over {1, . . . , n}, and for any two sets S ⊆ {1, 2, . . . , n/2} and T ⊆ {n/2 + 1, . . . , n}
of size k, for some k ≤ n/2s(n), there are in M at least s(n) links between S and T ,
then |M | = Ω(ns(n)). These statements can be used to prove lower bounds for various
branching programs, like the Ω(n log n) lower bound for the length of bounded width
branching programs. Using these same statements they also prove several sharp results
for the length of R-way input oblivious branching programs, where the assigned value of
bi can be 0, 1, 2, . . . , R− 1. The Ramsey theory applications of Alon and Maass have the
advantage that the derived lower bounds are optimal or close to optimal and they do not
require large input numbers.

10 Automated theorem proving

The idea of automated theorem proving goes back to at least Hilbert’s decision problem.
He asked if there exists an algorithm to decide whether a statement in mathematics is
true or not, or an algorithm which would find a proof of any mathematical statement that
has a proof. Turing proved that there is no such algorithm in general. Ramsey’s theorem
was actually a lemma [224] to a theorem that shows that in a certain special class of first
order logic the statements are decidable. Interestingly, using an extension of the finite
Ramsey theorem, Paris and Harrington [208] gave the first natural statement unprovable
in finite set theory, or equivalently in Peano Arithmetic. Gödel’s incompleteness theorem
implies the existence of such statements. The proof is using techniques of mathematical
logic. A combinatorial proof was presented by Ketonen and Solovay [169], then another
shorter one by Loebl and Nešetřil [181]. See more on this and on some more recent related
results in [137, 180, 200].

In computer science automated proof theory is a growing field, see for example auto-
mated theorem proving in support of symbolic definite integration by Adams, Gottliebsen,
Linton and Martin [1]. There are also many mathematicians in different areas who are us-
ing computer to do part of proofs. For example ”A=B” of Petkovsek, Wilf and Zeilberger
[212] is about identities in general, with emphasis on computer methods of discovery and
proofs. Automatic theorem proving in plane geometry is related to realizability of ma-
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troids or oriented matroids. The interactive geometry software Cinderella of Kortenkamp
and Richter-Gebert [225] is a good illustration. More generally the computer has been
helpful, for example, in formulating conjectures, producing constructions used for lower
bounds or for counterexamples, in enumerations, solving recursive relations, or finding
Gröebner basis.

Robertson and Zielberger solve some Ramsey theory problems using computer. As
mentioned in the number theory section, they have found (asymptotically) the small-
est number of monochromatic Schur triples [229], by experimenting with Maple and by
using some optimization ideas. They reformulate the problem as a discrete calculus opti-
mization problem to find the minimal value, over the n-dimensional (discrete) unit cube
{(x1, . . . , xn)|xi = 0, 1}, of

F (x1, . . . , xn) :=
∑

1≤i<j≤n
i+j≤n

[ xixjxi+j + (1 − xi)(1 − xj)(1 − xi+j) ]. They determine

all local minima with respect to the Hamming metric, then determine the global minimum.
A computer program [228] was used to help determine the exact values of the generalized
Schur numbers, called also Issai numbers. Robertson [227] (1999) also wrote programs to
generate new lower bounds for classical multicolored small Ramsey numbers. He could
obtain previously known lower bounds for 2 colors and found new ones with 2 or more
colors.

Previously others have used computer to find Ramsey graphs. Often the methods
are heuristics finding local optimums for non-linear optimization problems or approxi-
mation heuristics for combinatorial optimization. Piwakowski (1996)[216] used an adap-
tation of some heuristic tabu search algorithm for finding Ramsey graphs. As a result,
seven new lower bounds for classical Ramsey numbers were established: r(K3, K13) ≥ 59,
r(K4, K10) ≥ 80, r(K4, K11) ≥ 96, r(K4, K12) ≥ 106, r(K4, K13) ≥ 118, r(K4, K14) ≥ 129,
and r(K5, K8) ≥ 95. Similarly Exoo (1998)[109] obtains several lower bounds for clas-
sical Ramsey numbers by using well known approximation heuristics for combinatorial
optimization problems, like simulated annealing, genetic algorithms, tabu search etc. But
he considers that the most important is to choose the right objective function. Brandt,
Brinkmann and Harmuth [63] determine the Ramsey numbers r(K3, G) for all 261080
connected graphs of order 9, and further Ramsey numbers of this type for some graphs
of order up to 12, based on a program for generating maximal triangle-free graphs.

McKay and Radziszowski [187, 188] also used optimization techniques to find the
classical Ramsey number r(K4, K5) = 25, and applied the same method to similar small
Ramsey number computations. They used large linear and integer programming, starting
with standard floating point LP codes, like LINDO, to find approximate solution, then
this is rounded to a rational solution, which is verified with a separate algorithm. This
approach seems to be useful to find integer optima, and the algorithms and methods
can be applied more generally in searches for other Ramsey graphs or for other difficult
combinatorial configurations. First they obtained the following new upper bounds for
some classical Ramsey numbers, namely r(K4, K5) ≤ 27, r(K5, K5) ≤ 52, and r(K4, K6) ≤
43. Then they could verify that r(K4, K5) = 25, r(K5, K5) ≤ 49, and r(K4, K6) ≤ 41, by
improving one of the algorithms. Isomorphism checking or other algebraic tools are also
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helpful. McKay [186] developed a program called Nauty, to determine the automorphism
group of a graph. This can be used as a tool to detect isomorphism amongst large
families of graphs. McKay and Radziszowski [189] consider for each vertex v of a graph
G the number of subgraphs of each isomorphism class that lie in the neighborhood or
complementary neighborhood of v. These numbers, summed over v, are shown to satisfy
a series of identities. Using these, it is proved that r(K5, K5) ≤ 49 and r(K4, K6) ≤ 41.
They also give some experimental evidence to support their conjecture that r(K5, K5) =
43. Using the previously mentioned techniques, Radziszowski and Tse [222] has computed
r(C4, K7) = 22, r(C4, K8) = 26 and related bounds. Hopefully the results obtained will
be helpful in solving one of the most interesting open questions in graph Ramsey theory,
the conjecture [51, 112]: r(Cm, Kn) = (m − 1)(n − 1) + 1 if m ≥ n, except m = n = 3.

Pikhurko [213] (2001) uses a new interesting formulation of size Ramsey numbers as the
minimum of mixed integer programs (MIP). He can solve these MIP for certain complete
bipartite graphs. The size Ramsey number r̂(G1, . . . , Gt) is the minimum number of edges
a graph G can have such that, for any t coloring of its edges there is a monochromatic
copy of Gi, in the i-th color for some 1 ≤ i ≤ t. He proves, among other results, a
conjecture of Faudree, Rousseau and Scheehan (1983)[242] that r̂(K2,n, K2,n) = 18n− 15,
and answers a question of Erdős, Faudree, Rousseau and Schelp [99] about the asymptotics
of r̂(Ks,n, Ks,n) for fixed s and large n. Pikhurko made a C program using a free linear
programming software, lp solve maintained by Berkelaar [42], that uses floating point
arithmetics. Avis rewrote Pikhurko’s program to be linked with his exact arithmetic LP
code, contained in the vertex enumeration package, lrslib [21]. One of the advantages of
using exact arithmetic computation is that it is much easier to prove the correctness of a
result. Pikhurko remarks that his MIP is not well suited to solve other non-trivial cases,
but he hopes that his method with some relaxation will give eventually good upper and
lower bounds.

11 Approximation algorithms

The problem of finding an independent set of maximum size or computing α(G), the
independence number of a graph G, is one of the earliest problem shown to be NP-hard.
Boppana and Halldórsson (1992)[52, 54], have a famous polynomial time approximation
algorithm, based on Ramsey theory, that finds an independent set of a guaranteed but not
necessarily optimal size. The well-known upperbound for off-diagonal Ramsey numbers,
stated in the classical Erdős-Szekeres paper [95], gets a new algorithmic proof in [52, 54]
and it forms the basis for the algorithm, called Ramsey.

The algorithm has the first non-trivial performance guarantee for this problem. The
performance guarantee is the largest ratio, over all inputs, of the size of the maximum
independent set to the size of the approximation found. For the independence number
problem they obtain the O(n/(log n)2) performance guarantee, where n is the number of
vertices in the graph. The same approximation algorithm can be applied for the equivalent
MaxClique problem, i.e. finding the maximum size clique. Applying the maximum inde-
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pendent set approximation algorithm, Halldórsson [147] gives an approximation algorithm
with O(n(log log n)2/(log n)3) performance guarantee for the related graph coloring prob-
lem, improving on the results of Johnson, Wigderson and Berger-Rompel [154, 266, 41].
The graph coloring problem is to find an assignment of as few colors as possible to the
vertices so that no adjacent vertices have the same color. Since the coloring induces a
partition of the graph into independent sets, these two problems are closely related. The
dual problem to graph coloring is finding a clique cover, which is a partition of the graphs
into disjoint cliques.

There are other approximation algorithms for finding large independent set, for in-
stance when there are no triangles, or the girth of the graph is large. In 1980-81 Ajtai,
Komlós and Szemerédi [3] proved that r(K3, Km) ≤ O(m2/ log m). They also provided
a polynomial algorithm [4], that finds an independent set of size at least α(G) > nlogd

100d

in a triangle free graph G of order n with average degree d. Later Denley (1994)[86],
improving on the lower bound of Monien and Speckenmeyer (1985) [195], showed that if
G is r-regular of order n and has odd girth 2k + 3, then α(G) ≥ n1−1/kr1/k, with similar
results for graphs which are not regular. These have been further simplified and improved
by Shearer (1995)[241]. Boppana and Halldórson use the technique of Ajtai, Komlós and
Szemerédi [3] to improve on the algorithm Ramsey. If k is fixed and the graph does not
contain odd cycles of length 2k+1 or less, then it is possible to find an independent set of
size Ω(nk/(k+1)(log n)1/(k+1)), in polynomial time. Other subgraph excluding algorithms
are presented, using graph Ramsey numbers of the type of r(G, Km), to improve the
algorithm Ramsey for graphs containing large independent set. They show that among
subgraph excluding algorithms the ones they present achieve the optimal asymptotic per-
formance guarantees.

Peinado [210, 209] adapted the Boppana-Halldórsson approximation algorithm to ran-
dom graphs. Finding maximal clique, or just large clique, seems to remain hard even
in random graphs. Karp [165] raised the question 20 years ago and since then many
attempts to find polynomial algorithm failed, therefore it is widely believed to be a hard
problem. It is conjectured that no polynomial-time algorithm exists which finds a clique
of size (1 + ε) log2 n with significant probability, for any constant ε > 0 [155]. One ap-
plication of the assumption of hardness of finding a maximal clique or a large clique in
random graphs could be in cryptography. The objective here is to find a large clique
hidden (placed randomly) in a random graph. If it is hard to find a clique, and it remains
hard to find a hidden clique, then it could be used in cryptography. Alon, Krivelevich and
Sudakov (1998)[11] study the hardness of finding a large hidden clique in a random graph.
They present an efficient (polynomial) algorithm to find almost surely, for all k > cn0.5,
for any fixed c > 0, a hidden fixed clique of size k in a random graph G(n, 1/2). Therefore
Juels and Peinado (1998)[155] are studying smaller hidden cliques which are more difficult
to find. The largest clique in a random graph is very likely to be of size about 2 log2 n.
They show that if the above conjecture is true, then when a clique of size (1 + 2ε) log2 n
is randomly inserted in a random graph, finding a clique of size (1 + ε) log2 n remains
hard. They say that it would be interesting to create a public key cryptosystem based on
cliques, but its practicality remains an open question.

the electronic journal of combinatorics (Dec 2004), #DS13 24



12 Complexity, logic and games

On the borderline of mathematical logic and theoretical computer science, connections
between Ramsey theory and complexity were established by several researchers. Various
extensions of first-order logic were studied from the perspective of relations to complexity
classes. It has been realized that finite structures are relevant for computer science and
so finite model theory became an active research area. First-order logic on finite struc-
tures lacks a recursive mechanism hence extended logics were introduced, augmented with
some generalized quantifiers that are meaningful in finite structures. Van der Waerden’s
theorem and the Folkman-Rado-Sanders theorem were used by Kolaitis and Väänänen
[173] to investigate the scope and limits of generalized quantifiers in finite model theory.
Rosen [230] looks at the computational complexity of definable classes of finite structures,
in his paper on existential fragment of second order logic, and uses a generalization of
Ramsey’s theorem, first proved by Nešetřil and Rödl [201], to prove various decidability
and satisfiability results.

The Extended Markup Language (XML) emerged as the likely standard for represent-
ing and exchanging data on the Web, in which data is represented as a labeled ordered
tree, not as a table. Major data processing is done by robust relational database systems
and there are tools offered for exporting relational data as XML, thus helping businesses
to share data with their partners over the web. The XML allows users to use types, tree
languages. Given a mapping of relational data into tree data, the typechecking problem
is to check automatically whether every database is mapped to a tree of a desired output
type, i.e. verifying whether the strings generated by the ordered sets of tuples satisfying
a sequence of logical formulas belong to some regular language. Techniques from finite-
model theory and combinatorics are applied. Typechecking is undecidable when arbitrary
first-order logic formulas are allowed in the mapping. The finite Ramsey theorem is used
by Alon et al. [16] to investigate whether the typechecking problem for XML queries
with data values is decidable. They also consider the complexity of typechecking in the
decidable cases.

Lately complexity theorists got interested in graph Ramsey theory as it gives nat-
ural examples for problems complete for a higher level of the polynomial hierarchy of
complexity classes, thus justifying their existence. One of the usual ways to formulate
Ramsey-type statements is by using arrowing notation. F → (G, H) means that every
edge coloring of F with red and blue, contains either a red G or a blue H . For the decision
problem Arrowing the inputs are the finite graphs F , G, and H , and the question is, does
F → (G, H)? F � (G, H) means that for every edge coloring of F with red and blue,
F contains either a red G or a blue H as an induced subgraph. For the decision problem
Strong Arrowing the inputs are the finite graphs F , G, and H and the question is, does
F � (G, H)? For example, Arrowing is in coNP for fixed G and H , in this case the input
is F . F 9 (G, H) means, that there is a coloring which does not contain a monochromatic
G or H . Then this coloring can be a certificate for the NO answer, as it can be checked in
polynomial time, for any fixed coloring of F , whether it contains or not a monochromatic
copy of the fixed subgraphs. F → (P2, Kn) decides whether F has a clique of size n and so
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it is known to be NP-hard. There are many complexity results related to Ramsey theory,
mostly by Burr. He showed that the problem of determining the value of r(G, H) for
arbitrary G or H is NP-hard [68]. He also proved [71, 128] that Arrowing for arbitrary
F with any fixed 3-connected graphs G and H , or when G and H are both triangles, is
coNP-complete. The proof requires the construction of particular graphs [68, 72]. If G
and H are not fixed, though his constructions remain effective, the output might become
exponential in the input size, and thus cannot terminate in polynomial time in the input.

A problem is in Πp
2 := coNP NP if there is a certificate for the NO answer that allows

a verification of the correctness of the NO answer in NP-oracle (subroutine) polynomial
time. Burr (1990) [71] proved that Arrowing lies in Πp

2 and it is coNP-hard. He conjectured
[70, 71] that it is Πp

2-complete and Schaefer [236] proved it in 2000. To avoid exponential
outputs, Schaefer restricted the graph G to be a fixed tree and H to be a complete
graph. He used a well known graph Ramsey theoretical result of Chvatal [81, 66, 137]
that states: r(T, Kn) = (n − 1)(k − 1) + 1 for every fixed tree T on k vertices. Schaefer
proved, that even with this restriction, deciding F → (T, Kn) is Πp

2-complete for any fixed
tree T of size at least two. Earlier Yannakakis [128] proved that finding induced paths
is NP-complete, or equivalently, F � (P2, Pn) is NP-complete. Schaefer [236] also got
results for Strong Arrowing: deciding F � (P3, Pn) is Πp

2-complete. These are natural
examples for problems complete for a higher level of the polynomial hierarchy. Though
in complexity theory this higher level was defined previously, there were not too many
natural examples. A complexity class is considered justified if it has natural complete
problems. For more on complexity results and open questions related to Ramsey Theory
see [68, 70, 71, 67, 69, 236, 237].

Hales and Jewett (1963) [146], in their paper on regularity and positional games,
applied Ramsey type arguments in game theory. Following the terminology of Rado [220],
they say that S, a collection of sets, is N-regular in the set X, if for any partition of X into
N parts, some part has as a subset a member of S. If S is n-regular in X for each integer
n then S is called regular in X. It is remarked that the main Ramsey-type theorems can
be stated using this terminology. Let X(m) denote the set of all m element subsets of
X. The finite Ramsey theorem states that, given integers k, m, n, there exists an integer
r such that, if A = {1, 2, . . . , r}, then {B(k) : B ∈ A(m)} is n-regular in A(k). Van der
Waerden’s theorem states that given integers m and n, there exists an integer p such that
the set of all arithmetic progressions of length m is n-regular in {1, 2, . . . , p}. Hales and
Jewett prove several fundamental general results on regularity, and they apply them to
the analysis of certain positional games. They mean by a positional game, a “game played
by n players on a “board” (finite set) X with which is associated a collection S of subsets
of X. The rules are that each player, in turn, claims as his own a previously unclaimed
“square” (element) of X. The game proceeds either until one player has claimed every
element of some S ∈ S, in which case he wins, or until every element has been claimed,
but no one has yet won, in which case the game is a tie.” In game theory it is known
that in a finite two-player perfect information game one player has a forced win or each
player can force a tie. Hales and Jewett prove for example, that in a positional game
involving 2 players, where S is 2-regular in X, the first player has a forced win. The
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kn-game is played like tick-tack-toe on a k×k×· · ·×k (n times) array points in n-space,
the winner being the player who first chooses k points in a straight line. They prove, that
if k ≥ 3n − 1 (k odd) or if k ≥ 2n+1 − 2 (k even), then the second player can force a tie,
and for each k there exists a number nk such that the first player can force a win in the
kn-game if n ≥ nk.

Erdős and Selfridge (1973) [104] studied combinatorial games. Let {Ak} be a family
of sets, they define a game in which two players alternately pick elements of S = ∪Ak, the
winner being the first to pick all elements of one of the Ak. m∗(n) is the least integer so that
there are m∗(n) sets of cardinality n and the first player has a winning strategy. Erdős and
Selfridge prove that m∗(n) = 2n−1 and show that for smaller collection the second player
can prevent the win. This improved Hales-Jewett’s result for the kn game, by showing
that the second player can force a draw if k > cn log n. There are combinatorial games
based on graph Ramsey theory, like the achievement game, where the players take turns
in coloring still uncolored edges of a fixed graph G, each player being assigned a distinct
color, choosing one edge per move, and the first player that completes a monochromatic
subgraph isomorphic to H wins. Erdős and Selfridge’s result also implies that the Ramsey
game, restricted to the case where both graphs G = Kn and H = Kk are complete, is a
draw if 2l >

(
n
k

)
, where l =

(
k
2

) − 1. Ramsey’s theorem implies a win for the first player
if k ≤ [log4 n].

Beck [34] defined positional games, as generalized tic-tac-toe-like games, for arbitrary
(finite) hypergraphs and studied the connection with Ramsey theory. He also considered
the Erdős-Selfridge theorem as a game-theoretic first moment method and developed a
game-theoretic second moment method. He mentions strong connections between the
games and the behavior of random graphs. Beck, in his papers on the foundations of
positional games [30, 31, 32], develops a new quasiprobabilistic theory for these games.
He considers that the algebraic methods of combinatorial game theory can be considered
as exact local theory and it can be complemented by an efficient global approach, such as
the quasiprobabilistic method, which evaluates loss probabilities. Even simple games are
too complicated to analyze completely, but to describe the typical behavior is possible
using probability theory. He also converts the probabilistic intuition to deterministic
greedy algorithms. In his paper on positional games and the second moment method
[35, 36] he studies the fair Maker-Breaker graph Ramsey game MB(n; q). The board is
Kn, the players alternately occupy one edge a move, and the Maker wants a clique Kq.
Beck shows that Maker has winning strategy if q = 2 log2 n−2 log2 log2 n+O(1), which is
exactly the clique number of the random graph on n vertices with edge-probability 1/2.
It follows from the Erdős-Selfridge theorem that this is best possible. Slany [245] studied
in general the complexity of graph Ramsey games and proved that the achievement game
and several variants are PSPACE-complete [245, 244], where PSPACE is the class of
problems that can be solved using memory space bounded by a polynomial in the size of
the problem description. These games are equivalent, from the complexity theory point
of view, to well-known games like GO. They are also as hard as stochastic scheduling, and
they could be used to study competitive situations. Other studies on winning strategies
can be found for example in [107, 145, 172, 174, 211, 29, 33, 37], see also the survey on

the electronic journal of combinatorics (Dec 2004), #DS13 27



combinatorial games in general by Guy [144], the books on games by Berlekamp, Conway
and Guy [43, 44] and the dynamic survey of Fraenkel [119].

Galvin and Scheepers investigate the relation of an infinite game and a Ramseyan
theorem [127]. Games are also appearing in logic, in model checking or satisfiability. To
verify whether a given propositional formula is true under a given valuation, the solution
can be formulated in terms of model-checking game between two players. To answer
satisfiability questions, satisfiability-checking games are considered. Chandra, Furst and
Lipton (1983) [75] introduced a model of multiparty communication complexity that also
uses game terminology. Let X = X1 × X2 × · · · × Xk, where the Xi’s are n-element
sets, and k players P1, . . . , Pk collaborate to compute a function f : X → {0, 1} on
every input x ∈ X. Each participant Pi knows the values of all inputs except xi. The
players exchange bits, by writing the bit 0 or 1 on a “board” according to a previously
agreed upon protocol. The protocol specifies whose turn is to write a bit and what this
bit should be according to a function of the communication history and the input the
player has access to. The communication complexity of a k-party game for f is the
minimal number of bits needed to communicate to compute f on the worst-case input.
Chandra et al. gave the first applications of Ramsey-type arguments to prove bounds on
the multiparty communication complexity, followed by Pudlak using Hindman’s theorem
[219] and Tesson [260] applying Hales-Jewett’s theorem [146].
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convex n-gon theorem. J. Reine Angew. Math. 395 (1989), 167–170.

[49] Björner, A., Las Vergnas, M., Sturmfels, B., White, N., and Ziegler,

G. M. Oriented Matroids, second ed., vol. 46 of Encyclopedia of Mathematics and
its Applications. Cambridge University Press, Cambridge, 1999.

[50] Bollobás, B. Extremal Graph Theory, vol. 11 of London Mathematical Society
Monographs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London,
1978.
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disjoint convex sets. Discrete Comput. Geom. 19, 3, Special Issue (1998), 437–445.
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