
The Graph Crossing Number and
its Variants: A Survey

Marcus Schaefer
School of Computing
DePaul University

Chicago, Illinois 60604, U.S.A.

mschaefer@cdm.depaul.edu

Submitted: Dec 20, 2011; Accepted: Apr 4, 2013
First Edition: Apr 17, 2013

Second Edition: May 15, 2014
Third Edition: Dec 22, 2017
Fourth Edition: Feb 14, 2020
Fifth Edition: Sep 4, 2020
Sixth Edition: May 21, 2021
Seventh Edition: Apr 8, 2022

Mathematics Subject Classifications: 05C62, 68R10

Abstract

The crossing number is a popular tool in graph drawing and visualization, but
there is not really just one crossing number; there is a large family of crossing number
notions of which the crossing number is the best known. We survey the rich variety
of crossing number variants that have been introduced in the literature for purposes
that range from studying the theoretical underpinnings of the crossing number to
crossing minimization for visualization problems.

1 So, Which Crossing Number is it?

The crossing number, cr(G), of a graph G is the smallest number of crossings required
in any drawing of G. Or is it? According to a popular introductory textbook on combi-
natorics [676, page 40] the crossing number of a graph is “the minimum number of pairs
of crossing edges in a depiction of G”. So, which one is it? Is there even a difference?1

To start with the second question, the easy answer is: yes, obviously there is a differ-
ence, the difference between counting all crossings and counting pairs of edges that cross.
But maybe these different ways of counting don’t make a difference and always come out
the same? That is a harder question to answer. Pach and Tóth in their paper “Which

1For a recent story of confusion on this issue, see [468].
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Crossing Number is it Anyway?” [556] coined the term pair crossing number, pcr, for the
crossing number in the second definition. One of the big open problems in the theory of
crossing numbers is whether pcr(G) = cr(G) for all graphs G. If we don’t know whether
they are the same, why do we see both notions called crossing number in the literature?

One potential source for the confusion between pcr and cr may be the famous crossing
number inequality which states that for any graph G on n vertices and m edges we have
cr(G) > c · m3/n2 for m > 4n and some constant c. The original proofs of this result
are due independently to Ajtai, Chvátal, Newborn, Szemerédi [24] and Leighton [477].
Leighton defines cr as pcr; since pcr(G) 6 cr(G), he is making a stronger claim; his proof is
analyzed in the section on crossing lemma variants below. The importance and influence of
Leighton’s paper may explain why some later papers using the crossing number inequality
work with the pair crossing number [32, 668]. The danger, of course, is that the two notions
get confused; for example, Leighton [478, Theorem 1] proves that cr(G)+n > Ω(bw(G)2),
where bw(G) is the bisection width of G (and G has bounded degree); his construction is
fine for the standard crossing number, but does not work for pcr, the definition of crossing
number he chose.2

Another influential crossing number result is Garey and Johnson’s proof that the
crossing number problem is NP-complete [315]; Garey and Johnson first mentioned the
problem as an open problem in their book on NP-completeness, where they write: “Open
problems for other generalizations of planarity include ‘Does G have crossing number K
or less, i.e. can G be embedded in the plane with K or fewer pairs of edges crossing
one another?’ ” [314, OPEN3]. Clearly, they are defining what we now call the pair
crossing number; in their later NP-completeness paper they write that K is the least
integer so that “G can be embedded in the plane so that there are no more than K pair-
wise intersections of curves representing edges (not counting the required intersections
at common endpoints)” [315]. This is already somewhat ambiguous: does “pair-wise”
mean that they only count the pairs, or that crossings count for each pair they belong
to (which is relevant if more than two edges cross in a crossing). When they show that
the crossing number problem lies in NP, it becomes clear that they mean the standard
crossing number and not the pair crossing number (for which membership in NP is not
trivial [616]).

This last example suggests another possible explanation for confusion among crossing
numbers: when trying to make precise what it means to count crossings, it is natural
to speak of pairwise crossings (to avoid problems with three edges crossing in the same
point), and from there it is a short step to “pairs of edges crossing”.

However, the main reason for confusion is most likely one identified by Székely [658]
in his discussion of drawing conventions. In a drawing D of G minimizing cr(G) we have
cr(D) = pcr(D) since every pair of edges crosses at most once. This does not imply that
pcr(G) = cr(G) but it may have mistakenly suggested it; the subtle confusion is between a
cr-minimal drawing, in which every pair of edges crosses at most once, and a pcr-minimal

2Kolman and Matoušek [453] show that Leighton’s result can be extended to pcr, but with slightly
weaker bounds.
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drawing, for which we do not know whether this is true.3 This confusion may have been
exacerbated by the fact that cr(G) as defined above from the beginning coexisted with
what we now call the rectilinear crossing number, cr(G), in which drawings of G are
restricted to straight-line drawings.4 In a straight-line drawing D of G we again have
cr(D) = pcr(D) since every pair of edges can cross at most once, so it is natural to define
the crossing number for straight-line drawings as the number of pairs of edges that cross
in a straight-line drawing (e.g. [698]); later authors may have dropped the straight-line
requirement without changing the way crossings are counted.5

Remark 1. As far as we know there are currently only three crossing number variants for
which it is known that counting pairs of crossings as opposed to all crossings decreases
the value of the crossing number: the constrained crossing number [527], the local cross-
ing number (see that entry), and the geodesic crossing number (on a pseudosurface, see
Footnote 96). �

Adjacent Crossings

There is some independent corroboration to Székely’s thesis that cr-minimal drawings
are at the root of the confusion between different crossing number notions; cr-minimal
drawings also have the property that adjacent edges do not cross, and sure enough there
are several instances in which researchers have ignored (sometimes at their peril) crossings
between adjacent edges. Tutte, in a slightly different context, famously remarked that
“adjacent crossings are trivial and easily got rid of” [680].

To show that adjacent edges do not cross in a cr-minimal drawing, one typically refers
to two pictures, like the left and middle pictures of Figure 1.

While this works fine for the standard crossing number (though even there one needs
an additional argument that shows how to remove self-crossings that can be introduced
when swapping arcs), this need not be the case for other crossing number notions. For
example, consider the pair crossing number in the scenario depicted in the right picture of
Figure 1; swapping the arcs, or even just rerouting one of the arcs along the adjacent edge
will lead to an increase in the pair crossing number, so the simple local redrawing moves
common for cr do not seem to work. It is open whether a pcr-minimal drawing may have
crossings between adjacent edges (this question is equivalent to whether pcr < pcr+, see
the entry on pair crossing number in Section 3).

Even for the standard crossing number this is not the end of the story for adjacent
crossings. Here is a quote from a paper on Albertson’s conjecture: if G has chromatic
number at least r, then cr(G) > cr(Kr).

3Székely [658] writes: “How is it possible that decades in research of crossing numbers passed by
and no major confusion resulted from these foundational problems? The answer is the following: the
conjectured optimal drawings are usually normal and nice and the lower bounds (. . . ) usually also apply
for all kinds of crossing numbers.

4The first paper to define crossing number for arbitrary graphs also defined rectilinear crossing num-
ber [354].

5Recent examples defining crossing number as pcr include textbooks in combinatorics [668, 676, 691],
and books in algorithms and complexity [58, 62, 66, 398].
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Figure 1: (left) adjacent crossing, (middle) removing adjacent crossing, (right) adjacent
crossing that’s hard to remove by local redrawing.

“A crossing of two edges e and f is trivial if e and f are adjacent or equal,
and it is non-trivial otherwise. A drawing is good if it has no trivial crossings.
The following is a well-known easy lemma.

Lemma 1.1. A drawing of a graph can be modified to eliminate all of
its trivial crossings, with the number of non-trivial crossings remaining the
same.” [536]

The independent crossing number, cr−(G), only counts crossings occurring between
independent edges. If Lemma 1.1 were true, it would imply that cr− = cr, a question
that’s open to the best of our knowledge.6 Fortunately, the use of Lemma 1.1 could be
eliminated in this case [535], but wouldn’t it be nice if we could establish cr− = cr and not
have to worry about adjacent crossings anymore? The left and middle picture of Figure 1
explain why Lemma 1.1 looks so convincing: crossings between adjacent edges can easily
be removed by local redrawing, but the right picture shows that this can create crossings
between non-adjacent pairs of edges. A proof of a result like Lemma 1.1 will require a
more global approach.

Question 1. Here are two simple-looking problems that illustrate our lack of understand-
ing of adjacent crossings. (i) Can subdividing an edge change cr− of a graph? (ii) Suppose
a graph can be drawn on a surface so that all crossings in the drawing are between ad-
jacent edges. Can the graph be embedded in that surface? An answer to the second
question is known for the plane and the projective plane by virtue of the Hanani-Tutte
theorems for those surfaces [561], but not for any other surface.7 The first question is

6Start with a cr−-minimal drawing. By the lemma, all trivial crossings can be eliminated, only leaving
“non-trivial” crossings, that is, crossings that count towards cr, so cr of the resulting drawing is at most
cr−. In the other direction, cr− 6 cr follows from the definition.

7The Hanani-Tutte theorem for a surface Σ is true if every graph which can be drawn on Σ so that
no two independent edges cross an odd number of times is embeddable in Σ. The Hanani-Tutte theorem
is known to be true for the plane (sphere) [185, 680] and the projective plane [561]. It is not known to be
true for any other surface, and it has been announced that it fails for surfaces of genus 4 and higher [304].
In terms of crossing numbers, the Hanani-Tutte condition can be expressed as saying that iocrΣ(G) = 0
implies that crΣ(G) = 0 for all graphs G.
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open.

While not nearly as common as the pcr versus cr problem, cr is occasionally defined as
the smallest number of independent crossings; this may again be due to the fact that for
straight-line drawings, adjacent edges do not cross. For example, Moon [518] in one of the
earliest papers on crossing numbers defines what amounts to the independent (geodesic)
spherical crossing number which equals the geodesic spherical crossing number, since
geodesics representing adjacent edges do not cross on the sphere. Nahas [528] defines
the crossing number of Km,n as cr−(Km,n). Papers on crossing minimization via linear
programming also often ignore variables that encode crossings between adjacent edges.
This is fine, of course, if the resulting program enforces that adjacent edges do not cross;
otherwise, they compute cr−.
Remark 2. As far as we know there are only two crossing number notions for which
the independent variant is known to differ from the regular variant, namely the odd
and the algebraic crossing number: there are graphs G for which iocr(G) < ocr(G) and
iacr(G) < acr(G) [306]. The same paper also shows that prohibiting crossings between
adjacent edges in monotone drawings can lead to an increase in the monotone odd crossing
number. The same is true for the local crossing number, see Footnotes 112 and 114, and
the simultaneous crossing number, see Footnote 149. For directed graphs, the bimodal
crossing number may require crossings between adjacent edges in an optimal drawing. �

Crossing Lemma Variants

The crossing lemma, or crossing number inequality, established independently by Ajtai,
Chvátal, Newborn, Szemerédi [24] and Leighton [477], is one of the most celebrated (and
famous) results on crossing numbers.8 In its original form, it shows that cr(G) > c·m3/n2,
where n = |V |, and m = |E|. How does it fare for other crossing number variants, and
pair and odd crossing number in particular? Crossing lemmas for other variants are listed
in the compendium below.

The usual probabilistic proof of the crossing lemma for a crossing number γ proceeds
in three steps: first, we observe that if γ(G) = 0, then G is planar, so Euler’s formula
applies, and m 6 3n − 6, where n = |V (G)|, m = |E(G)|. In a second step, we argue
that we can remove at most γ(G) edges from G to reduce γ to 0, so m− γ(G) 6 3n− 6,
and, hence, γ(G) > m − 3n. In a third step, we consider a random subgraph G′ of
G, keeping each vertex with probability p. The expected number of vertices and edges
in G′ = (V ′, E ′) are E(|V ′|) = pn and E(|E ′|) = p2m. Fix a γ-minimal drawing D of
G. Assuming each crossing in D which contributes to γ is caused by two independent
edges, a crossing is associated with four endpoints. For the crossing to survive in D′, the
induced drawing of G′, all four endpoints have to be kept, so E(γ(G′)) 6 p4γ(G). Now
G′ fulfills γ(G′) > |E ′| − 3|V ′| (by the second step), so, taking expected values, we get
p4γ(G) > p2m − pn, or γ(G) > mp−2 − np−3 (assuming p > 0). Choosing p = 4n/m
implies that γ(G) > 1/64 m3/n2, as long as m > 4n (which we need so p 6 1).

8For a very readable introduction, see Terence Tao’s blog entry [667], which also discusses applications
to incidence geometry and sum-product estimates.
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For γ = cr, this proof works just fine, and it’s been claimed in the literature (e.g. [543])
that this proof also works for pair and odd crossing numbers. But there are two subtle
problems. Consider the case γ = pcr, the case claimed by Leighton [477]: in the second
step, the pcr-minimal drawing D may contain crossings between adjacent edges, and those
contribute to pcr. Since we do not know how to remove adjacent crossings in general
without increasing pcr(D), we have to take adjacent crossings into account; since those
survive with probability p3, we would get a substantially worse bound than Ω(m3/n2)
on pcr(G). Alon [32], and Tao and Vu in their book on additive combinatorics [668]
circumvent this problem by working with pcr−, the independent pair crossing number, in
which only the number of crossings of independent pairs of edges are counted. However,
for that crossing number the second step is no longer obvious: if we have a drawing D
with k independent pairs of edges crossing, then removing k edges yields a drawing in
which all remaining crossings are between adjacent edges. Is that graph planar? The
answer is yes, but it requires the Hanani-Tutte theorem (see Footnote 7) to prove so (at
least we are not aware of a direct proof).

Pach and Tóth [556] work with γ = ocr, the odd crossing number, which only counts
pairs of edges crossing an odd number of times. They use Hanani-Tutte in the first and
second steps, but in the third step again assume that a crossing is associated with four
endpoints, which may not be the case for ocr. However, their proof is essentially correct
if read for γ = iocr, the independent odd crossing number, which counts the number
of independent pairs of edges crossing an odd number of times. For iocr, the Hanani-
Tutte theorem guarantees that we can remove iocr(G) edges from G to make G planar,
ensuring the correctness of the first and second steps. And since iocr by definition only
counts independent pairs, the argument in the third step also works. We conclude that
iocr(G) > 1/64 m3/n2, as long as m > 4n. Since ocr, pcr, and pcr− (as well as acr
and iacr) are all bounded below by iocr, this immediately proves the crossing lemma
for all these variants. The constant c = 1/64 in these cases is weaker than what is
currently known for cr, but seems hard to improve [543, Remark 4.2], though it was
shown c = 1/34.2 will work for pcr+ [16].

Remark 3 (Crossing Lemma on Surfaces). For the standard crossing number, extensions of
the crossing lemma to arbitrary surfaces are known [635]. Does this imply crossing lemmas
for pcr, pcr−, or iocr on higher-order surfaces? Since iocr lower-bounds pcr and pcr− (on
any surface), we can focus on iocrΣ. Since we do have a Hanani-Tutte theorem for the
projective plane, N1, the proof of the crossing lemma sketched can be completed for the
projective plane, and we obtain a crossing lemma for iocrN1 and the other crossing numbers
on the projective plane. Since we do not yet know whether the Hanani-Tutte theorem
(or even the weaker version suggested in Question 1 (ii), which would be sufficient) holds
for the torus, we appear to be stuck. And, since Fulek and Kynčl [304] showed that
the Hanani-Tutte theorem fails for surfaces of genus 4 and higher, this approach will not
extend to arbitrary surfaces. There is a solution which works for arbitrary surfaces, but
has one issue, it relies on a major unpublished folklore result.9 Assuming the folklore

9This idea is outlined in an answer to a mathoverflow question given by Kynčl [468].
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result to be true, one can show that for every surface Σ, there is a surface Σ′ so that
iocrΣ(G) = 0 implies that crΣ′(G) = 0 for every graph G [305]. Applying the crossing
lemma for crΣ′ , then yields a crossing lemma for iocrΣ, for any surface Σ.10 �

Conclusion

We are forewarned that there is some subtlety to defining the crossing number, but rather
than seeing this as an issue, this gives us an opportunity. János Pach once said, in
effect, “we don’t need more crossing numbers, we need fewer crossing numbers”. As a
look at the compendium will show it may be too late for that. Some crossing number
variants may have arisen by mistake, but most were defined with a specific purpose in
mind. This purpose may be theoretical, aimed at developing a theory of crossing number
(as Tutte [680] did with his crossing chains and iacr) or it may be practical, aimed at
improving the layout of graphs (as in the Metro-line crossing minimization problem).
The recent growth of graph drawing research and crossing minimization problems for
very specific visualization tasks is important evidence for that. Some variants, such as
the local crossing number or the maximum rectilinear crossing number, are so fundamental
that they have been rediscovered over and over again under various names.

This survey of crossing number variants follows two main goals: to collect as many
different types of crossing number variants from the literature as possible (unifying pre-
sentations and names), and to attempt a systematic description of what makes a crossing
number. The results of this second step are presented first, in Section 2. The results of
the first step are collected in the Compendium in Section 3. There also is an index for
crossing numbers after the bibliography. Originally, the paper was to contain a section
on the history of the crossing number, but Beineke and Wilson’s “Early History of the
Brick Factory problem” [93] and Székely’s “Turán’s brick factory problem: the status of
the conjectures of Zarankiewicz and Hill” make this part mostly superfluous.

Remark 4 (Forerunners of Crossing Minimization in Sociology). David Eppstein [261]
discovered the earliest known references to (general) crossing minimization.11 They come
from sociology, more specifically the area of sociometry which is concerned with measuring
(and depicting) social relationships: in discussing sociograms (essentially graphs), Bron-
fenbrenner [133] in 1945 writes that “The arrangement of subjects on the diagram, while
haphazard in part, is determined largely by trial and error with the aim of minimizing
the number of intersecting lines”. Sociograms were introduced in J.L. Moreno’s “Who
Shall Survive” [519] in 1934, however, the first edition of that book, while containing
many interesting graph visualizations, does not seem to discuss crossing minimization. In
the later, 1953, edition [520], there is an interesting paragraph which reads: “A readable
sociogram is a good sociogram. To be readable, the number of lines crossing must be
minimized.” This mantra occurs repeatedly in the literature on sociograms, and at least

10Since this approach requires graph minor machinery, one should not expect explicit bounds on the
crossing lemma constant, even for a fixed surface such as the torus.

11There are earlier references to crossing minimization when it comes to specific families of graphs [188,
448, 651], but none that are as general as these.
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once in an earlier paper by Borgatta [124] who writes: “A readable diagram is a good
diagram. To be readable, the number of lines crossing must be minimized. This may be
taken as a primary principle in the construction of inter-action diagrams; the fewer the
number of lines crossing, the better the diagram. The problem, then, is to find the pro-
cedure which best minimizes the number of lines that cross in a diagram.” Borgatta then
outlines a multi-stage heuristic for crossing minimization (start with a small number of
high-degree vertices, drawn far apart, add vertices by decreasing degree, redraw diagram
to improve drawings of subgroups), and illustrates his method by working out an example
on 26 vertices and 43 edges, shown in Figure 2; his final drawing uses two crossings (which
is optimal, since his graph contains two disjoint copies of K5).

(a) (b)

Figure 2: Maybe the first published instance of a crossing minimization, reducing 16
crossings in (a) to the optimal 2 crossings in (b). Taken (with permission) from a 1951
article in the journal “Group Psychotherapy” by Edgar F. Borgatta [124].

The earliest reference (found so far) on crossing minimization seems to be a 1940
paper by Northway [533] in which she suggests the use of radial layouts; vertices (school
children) are placed at various distances from a center based on some quantity (their
scores); directed edges between them are drawn as straight-line arrows. She writes that
“it has been convenient to use counters [. . . ]. These are moved in the circles to which
their score belongs and arranged to get the best “fit” among the individuals, i.e., to
have as few long lines and crossing lines as possible.” She also suggests that grouping
vertices by some characteristic (in her example, sex), simplifies this task. These quotes
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are quite remarkable, and one wonders whether there is more early material on crossing
minimization that is unknown in the mathematical literature. �

Remark 5 (A Forerunner of Crossing Minimization in Circuit Design). Electronic circuit
design has long been a motivating source for crossing number studies, with Leighton’s
thesis [477] being one of the most famous examples connecting the two areas. Crossing
minimization by practitioners is older, though, and the paper “Formulation and Solution
of Circuit Card Design Problems through Use of Graph Methods” [452] from 1962 by
Uno R. Kodres anticipates several later developments in the mathematical literature.
This paper would be fifth on Vřťo’s (chronological) list of crossing number papers, being
published just before the paper by Harary and Hill [354]. Kodres describes and implements
a heuristic process for reducing crossings in biplanar (and k-planar) drawings using linear
integer programming. His paper contains several other interesting ideas such as placing
the vertices in a drawing at their barycentric coordinates (a year before Tutte’s famous
paper [678]), a discussion of bend-minimization when embedding a graph at prescribed
vertex locations, a criterion for recognizing a minimal set of edges whose removal makes
the graph bipartite, and a proof that K7,7 is not biplanar. It seems unfortunate that this
paper did not come to the attention of the growing graph theory community at the time.
�

One aspect that remains to be studied, is the history of knot crossing numbers and
their influence (or not) on graph crossing numbers. When it comes to methods of counting
crossings, it seems that knot crossing numbers led the way; e.g. Tutte’s theory of cross-
ing numbers is based on counting crossings algebraically, as one would for the algebraic
crossing number in knot theory, and as Gauß would have done hundreds of years ago [319,
page 271–279].

Remark 6 (Axioms). What makes a crossing number a crossing number? We have chosen
a descriptive/extensional approach for this survey, however, the material collected here
may at some point make a basis for a prescriptive/intensional approach. As far as we know
there has never been an attempt to axiomatize the notion of crossing number, either as
the standard crossing number or as the family of crossing number variants. Although not
plentiful, there are some candidate axioms based on common crossing number properties.

Embeddability Crossing numbers are generally considered to be “measures of non-
planarity” or non-embeddability. It seems natural then to require that if γΣ(G) = 0
for some crossing number γ in surface Σ, then G is embeddable in Σ. Let us call
this the embeddability axiom. For the standard crossing number this is true by def-
inition (on any surface). For the independent odd crossing number it amounts to
the Hanani-Tutte theorem (which is only known for the plane and the projective
plane, see Footnote 7). For the confluent crossing number, the string crossing num-
ber and the quasi-crossing number, the embeddability axiom fails (complete graphs
have confluent embeddings, there are non-planar string graphs, and K10 has a quasi-
planar drawing). A stronger, quantitative version of this axiom would require that
the removal of at most γ(G) edges from G makes G planar. The intuition behind
this strengthened version is that each crossing is caused by two edges, so a crossing
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can be eliminated by removing one of the participating edges. This axiom holds
for the standard crossing number by definition (on any surface), and for the pair
crossing number. It also holds for the independent odd crossing number in the plane
and the projective plane, by the Hanani-Tutte theorem (Footnote 7), but, by [304]
it fails on surfaces of genus 4 and higher. It also fails for the degenerate crossing
number, in which more than two edges can cross in a crossing, and for any of the
crossing numbers based on maximization.

Embedding By the same “measure of non-planarity” argument, a graph G that can be
embedded in a surface Σ should have crossing number γΣ(G) = 0. Let us call this
the embedding axiom. This axiom is trivially true for most crossing number variants,
although there are some notable exceptions including crossing numbers defined via
maximization (maximum crossing number, maximum rectilinear crossing number)
and crossing numbers that require certain drawing conventions (e.g. bimodal, bipar-
tite, convex, and orchard crossing numbers). For the rectilinear crossing number,
the axiom amounts to Fary’s (Steinitz’s, Koebe’s, Wagner’s, or Stein’s) theorem. It
appears to be an open problem whether the axiom holds for the geodesic crossing
number on other surfaces.12

Subgraph Monotonicity The subgraph monotonicity axiom requires that if G is a sub-
graph of H, then γ(G) 6 γ(H). This is true (and trivial) for nearly all crossing
number variants. We are aware of only two provable exceptions, the triple crossing
number, for which triple-cr(K5,3) =∞ while triple-cr(K6,3) = 2 [666], and the con-
fluent crossing number (all complete graphs have confluent crossing number 0). For
the maximum crossing number, monotonicity is a well-known open problem even
if G is required to be an induced subgraph of H [591]. A stronger requirement
is topological minor monotonicity: if G is a subdivision of a subgraph of H, then
γ(G) 6 γ(H). This is still true for a large number of crossing numbers, but is not
known to hold for any of the independent crossing number variants, like cr−, and
typically fails for alternative representations (like the confluent crossing number).
In contrast, most crossing numbers do not satisfy minor-monotonicity which has led
to the definition of the minor (or minor-monotone) and the genus crossing numbers.

Surface Monotonicity The surface monotonicity axiom requires that if surface Σ has
smaller genus than surface Γ, then γΣ > γΓ. We are not aware of any crossing
number that does not fulfill this axiom. One could imagine sharper quantitative
versions of this axiom, for example if Σ has smaller genus than Γ, then γΣ(G) >
γΓ(G) unless γΣ(G) = 0.

One can imagine further axioms, for example based on what could be called the spectrum
of the crossing number of a graph G: {γ(D) : D is a (simple) drawing of G}. This notion
has occasionally been studied for the crossing number [142, 143, 199, 335, 367, 570], the
rectilinear crossing number [142, 307, 652], the convex crossing number [142], and the edge

12Results in this direction seem to work with metrics of non-positive curvature [203, 410, 510].
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crossing number [369]. Harborth [366] showed that the spectrum of K14 under cr is not a
subset of the spectrum of K14 under the 2-page crossing number bkcr2, and conjectured
that K14 is the smallest complete graph for which the spectra of cr and bkcr2 differ.13

It is probably unreasonable to expect an axiomatization of the (standard) crossing
number; however, it may be reasonable to attempt to axiomatize sufficiently many stan-
dard properties of the crossing number that would show why many of them allow a crossing
lemma. Or why many of them can be bounded within each other. �

2 A Systematic Approach

In this section we want to take a systematic approach to crossing number variants. The
discussion is based on the crossing number notions collected from the literature and pre-
sented in Section 3, and the reader is asked to look for definitions there if they are not
given in this section. Before reviewing crossing numbers, we begin with a discussion of
crossings themselves.

What is a crossing? Typically, a crossing is defined to be a common interior point of
two edges; hence, a shared endpoint (of two adjacent edges) is not considered a crossing.
This distinguishes a crossing from an intersection of two edges.14

The definition as given also distinguishes a crossing from the point in the plane at
which the crossing occurs (and this is good). The definition does, however, include points
in which two curves touch; this is of no consequence for the standard crossing number since
in crossing-minimal drawings no touching points occur, but for other variants, e.g. the
odd crossing number, counting touching points as crossings would trivialize the notion.
For Kleitman [444] a crossing requires that the two edges involve actually cross. This
requirement leads to other issues if not handled carefully: take a drawing of K5 with a
single crossing and replace the crossing with a short line segment (so the two edges involved
in the crossing run parallel for a short stretch). According to Kleitman’s definition this
drawing is free of crossings (even though it has an infinite number of intersection points).
This suggests the importance of restricting drawings to drawings with a finite number of
intersection points (which is what we will do) which causes a slight inconvenience when
dealing with confluent drawings: in confluent drawings of graphs edges seem to overlap
heavily. We resolve this by looking at confluent drawings not as drawings of the edges
and vertices of the graph, but as a drawing of branches and switches that represent the
underlying graph.

We return to a more formal definition of crossing in Section 2.2.1 after discussing basic
drawing conventions.
Remark 7 (Drawing Crossings). How do we draw a crossing? The most common way is
to simply let the curves representing the edges cross, preferably at a large angle (RAC
drawings require right angles); alternatively one can draw crossings as bridges or by using

13Harborth mentions an unpublished paper that seems to establish significant parts of this conjecture.
14One subtlety already: it excludes from the notion of crossing any intersection occurring when an

edge passes through a vertex, as opposed to ending there. Such intersections are typically prohibited, but
what happens if we allow them?
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Figure 3: Drawing of K8 from de la Vera Cruz’ Recognitio Summularum with ribbons
crossing through each other. The image is taken from the online (public domain) version of
the book available through Primeros Libros at http://www.primeroslibros.org. Page
36 contains the drawing of K8, page 57 contains a drawing of K4,4 − e.

edge casing; see “Edges and switches, tunnels and bridges” by Eppstein, van Kreveld,
Mumford and Speckmann [265]. There may be more options in alternative styles; for
example, if vertices are represented by disks and edges as ribbons with boundary, then
crossings can be visualized by ribbons passing above or below each other, see for example
the 16th century drawing of K12 in [467, Figure 6] which has both vertex and edge labels
(illustrating a modal square of opposition). Alonso de la Vera Cruz uses an interesting
twist to visualize K8 (in his 1554 Recognitio Summularum, again for a square of oppo-
sition). He not only has ribbons passing above and below each other, but also through
each other, see Figure 3; for background on the book, see [141]. �

For a survey of graph layout in the presence of crossings, see [402, Chapter 11].
Most of the research on crossing numbers seems to have been done in English, but

there are terms for crossings and crossing numbers in other languages. In German there is
Kreuzung, Schnitt and Doppelpunkt for crossing and Kreuzungszahl for crossing number.15

In French, we have points d’intersection [683] and croisement for crossings16 and nombres
de croisement for crossing number. In Italian there is incrocio for crossing and numero
d’incrocio for crossing number.

15Steinitz [652] uses the term Doppelpunkt; it stems from the algebraic tradition and is now used for
crossings in knots. Schnittzahl typically means intersection number from algebraic geometry rather than
crossing number.

16Leclerc and Monjardet [474] use points non signifiants (as opposed to the points representing ver-
tices).
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2.1 A General Notion of Crossing Number

There are (at least) three main dimensions which influence the specific notion of cross-
ing number one ends up with: the drawing style, the method of counting, and the mode
of representation. Within each dimension multiple decisions can be made, both global
and local. Global decisions in the drawing style include: underlying surface, straight-line
edges, monotone edges, centrally symmetric drawing; local decisions include: no three
edges sharing the same interior point, no edge passing through a vertex; for method of
counting, again we have global decisions such as: do we count crossings between adjacent
edges or edges that cross evenly and local decisions: each crossing counts 1 or ±1 (de-
pending on orientation), etc.; mode of representation is typically global; in the standard
mode a curve carries exactly one edge, but there are alternative models like confluent
graph drawing and simultaneous graph drawing in which a curve can carry more than one
edge.

Many of these decisions have rarely been made explicitly; they were either assumed
implicitly or not considered at all. Even as one surveys the surprisingly large collection
of different crossing number variants that exist, one often finds that they differ from the
standard crossing number in at most one of the three dimensions (although there are some
exceptions such as the local toroidal crossing number, the book edge crossing number, or
the monotone independent odd crossing number).

Within this framework we can attempt a general definition of a crossing number ψ:
given a graph G consider a particular drawing D representing G (via some mode of
representation). Assign to each crossing in D a value (typically 1, but could be −1, e.g.
for algebraic crossing number; values in Q, C or some group may be interesting). Now
calculate the crossing number ψ(e, f) for each pair of edges.17 This is typically done as the
sum (or absolute sum) of the values of the crossings shared by e and f .18 Finally, ψ(D)
is calculated by combining all the values of ψ(e, f), typically by summing them up (over
all unordered pairs). Then ψ(G) is the minimum (sometimes maximum) over all ψ(D)
where D is an admissible drawing (depending on the drawing style) that represents G.
This generic definition of crossing number describes nearly all crossing number variants
reviewed in this paper. In any case, we are trying to be descriptive, not prescriptive.

Example 1. Let us check some of the crossing number variants to test the bounds of our
general crossing number notion. For definitions, see the compendium.

Natural fits. The degenerate crossing number fits the general definition above: a cross-
ing shared by k edges is weighted as 1/

(
k
2

)
. Independent crossing numbers can be

captured by assigning values of 0 to crossings between adjacent edges. The Rule
+ variants introduced by Pach and Tóth [555] are captured in the drawing style:
adjacent edges are not allowed to cross (alternatively, we could assign a value of ∞

17One can also define the crossing number by counting crossings along each edge (and dividing the
total by 2) but pairwise counting is the standard. This would seem to exclude some variants, like the
local crossing number or the triple crossing number, but see the discussion in Example 1. It does exclude
the quasi-crossing number, which requires counting triples of edges.

18One could consider multiplication or maximization instead of addition.
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to each adjacent crossing). The triple crossing number (in which all crossings have
to be triple crossings) can be captured by pairwise counts (each triple crossings gives
three double crossings; since only triple crossings are allowed we can divide by 3 to
get the triple crossing number). The pair crossing number maximizes (rather than
adds) the number of crossings along each pair of edges.

Acceptable fits. The local crossing number would be a more natural fit for counting
crossings edge-wise (as opposed to pairwise), but it can be made to fit the general
definition. It is expressible as maxe∈E

∑
f∈E cr(e, f).

Forced fits. The minor crossing number can be made to fit the general description of
crossing number above, albeit with some force: say a drawing D represents G if D
is a drawing of a graph containing G as a minor. One could question whether this
is a natural interpretation, but we decided to include this notion. The degenerate
and bundled crossing numbers can also be made to fit the definition by defining an
intermediate notion of drawing.

Not a fit. The skewness of a graph, the smallest number of edges that need to be removed
from a graph to make it planar, does not fit the general definition of crossing number
given above. One can debate whether skewness is a crossing number variant, but we
decided to include it.19 It is easy to abbreviate the standard definition of crossing
number to the point where it incorrectly defines a notion similar to skewness, e.g. “Is
the crossing number of G 6 K? i.e. can G be embedded in the plane in such a way
that no more than K edges cross?” [379], see the edge crossing number. Another
notion that is not covered by the general description is the nodal crossing number
which is similar to the local crossing number, but looks at the total number of
crossings with any edge incident to a vertex, and then maximizes over all vertices.
One could think of it as a local crossing number for hypergraphs. Even though it
does not fit our general model, we decided to include it because of its ties to the
local crossing number.

Let us next review some of the options available for creating a crossing number within
the three dimensions we identified; we start with a discussion of drawing styles, followed
by methods of counting, and modes of representation.

2.2 Drawing Styles

In this section we discuss different drawing styles; we make a rather rough distinction
between basic drawing properties that are often taken to be part of the very definition
of a drawing, sometimes called a good drawing and what may more properly be called a
style of drawing (Section 2.2.2). We treat drawing surfaces separately in Section 2.2.3.

19This is a change in version 7 of the survey.
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2.2.1 The Basics

A drawing stripped of any mystic ballast is just a mapping of a graph (vertices and edges)
to a surface. With this generous definition of drawing, the whole graph could map to a
single point, losing all structure. There has not been much discussion of what assumptions
to make on a drawing, Eggleton’s thesis [252] is one of the rare places in which some of
these issues are brought up. We first discuss issues related to drawing vertices and
edges.

An edge is represented by a curve. But what type of curves do we allow? Do we
want a curve to be connected? In the work on odd and algebraic crossing num-
bers edges are often split into multiple components temporarily. Becker, Eick and
Wilks [89] suggested “line shortening” for geometric drawings: only the ends of edges
are drawn (without further restrictions this removes all crossings, see [134] for a re-
cent paper). If we require the curve to be connected (but not path-connected), we
can get some anomalies, for example Kratochvíl [464] notes that every graph is a
string graph if strings are allowed to be arbitrary connected curves (string graphs
are intersection graphs of simple curves in the plane). So we should require edges to
be simple plane curves, which are homeomorphic images of the unit interval. This
is the typical choice when defining a drawing. However, it does preclude edges from
crossing themselves which may be desirable in some contexts. We discuss the issue
of self-intersections below. For practical reasons, it may make sense to “fatten up”
edges, we discuss this possibility below together with vertex representations.

Vertices are endpoints of the edge. Often edges are defined as open arcs at which
point one has to specify that the points representing the vertices of the edge occur
at (opposite) ends of the arc. One could easily imagine a drawing of K5 with the 5
endpoints as isolated points and 10 parallel arcs representing the edges (maybe with
the ends of the arcs labeled by the names of the vertices). One could also consider
this a special case of allowing a vertex to be represented by multiple points (see
below).

Vertices are represented by points. Suppose we represent vertices by disks and only
require edges to attach at the boundary of the disk. This idea was (ab)used by
Dudeney in his original solution to the Gas, Water, Electricity problem [234, Prob-
lem 251] which essentially asks for a crossing-free drawing of K3,3: Dudeney has the
final path—which would cause a crossing—pass through one of the houses (vertices)
which he drew as rectangles. Suppose we do allow edges to pass through vertices.
If we allow such crossings for free (as Dudeney suggests) we trivialize the notion of
crossing number: every graph can be represented so that a vertex is a disk, edges
end on the boundary of the disk representing their endpoint, edges are allowed to
pass through the disk, and no two edges cross. However, we could consider allowing
edges to pass through vertices for a cost. As far as we know no such notion has
been investigated, although there are crossing numbers which count crossings other
than edge crossings (e.g. the spine crossing number).
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One reason to relax the requirement that vertices be points may be that the ver-
tices represent objects with internal structure that has to be captured. Eades and
Lai [249, 469] called these practical graphs, and suggested a two-step approach: first
use a general layout algorithm for the abstract graph, and then, in a second step,
lay out the graph with vertices having various shapes; the goal of the second step is
to avoid or remove overlap between vertices and vertices with edges. Kodres [452]
studied a similar problem in the context of electronic circuit design allowing multiple
planes. Waddle [689] discusses port diagrams (in which vertices are rectangles, and
edges attach at a port) to visualize data structures; his goal is to find drawings that
avoid crossings within vertices, also see [442, 623]. Duncan, Efrat, Kobourov and
Wenk [240] investigated planar drawings with “fat edges”, where vertices are disks
and edges have thickness.20 Van Kreveld [466] suggested the notion of bold drawings
in which vertices are disks and edges are rectangles. In computational biology, such
drawings have been suggested for visualizing chromosomes [290]. Medieval schol-
ars used a similar style (vertices as disks, edges as ribbons) to visualize squares of
opposition (in logic) as we saw in Figure 3. Other choices for representing vertices
include curves—the string crossing number is based on that idea—and graphs: If
we minimize the crossing number by allowing vertices to be replaced by arbitrary
connected graphs, we obtain the minor crossing number.

Each vertex is represented by a single point. One can easily imagine a vertex be-
ing represented by multiple points. For example, how would the standard crossing
number be affected if every vertex could be represented by two points (which to-
gether are incident to all the edges incident to the original vertex), we could call
this the duplicate crossing number.21 This seems nearly the same (is it?) as asking
for the crossing number of the graph on an n-spindle, the pseudosurface resulting
from a sphere by pinching (identifying) n pairs of distinct points. If n = |V (G)|,
then the duplicate crossing number of G is at most the crossing number of G on the
n-spindle, since we can simply pinch every vertex with its duplicate. The duplicate
crossing number also resembles the biplanar crossing number: here too every vertex
is represented by two points, but the duplicate points live on a different sphere, so
there cannot be an edge between the original and the duplicate vertices. There is re-
search on whether graphs can be planarized by multiplying vertices, following ideas
of Fellows and Negami from the 1980s on planar emulators and covers, see [174] for
a more recent overview. Eades and Mondança looked at the splitting number, the
smallest number of vertex splits required to make a graph planar, and its relation
to graph layout [247]. Unfortunately, the splitting number is NP-complete [272].
Finally, one can turn a cyclic layout into a linear layout by repeating one of the
layers (for example, turning a cyclic level crossing number problem into a k-layer

20The discussion of edges with width and points with extension is much older in “practical geometry”;
Hjlemslev [381, 382] attempted an axiomatization, which earned him the scorn of Wittgenstein [704,
Gesichtsraum, p.59].

21Bertin [102, Figure 19, p.270] suggests using diagrams in which every vertex is duplicated.
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crossing number problem).22

Different vertices are mapped to different locations. This is generally assumed for
graph drawings though there are some exceptions. For example, when speaking of
realizing a linkage one does not care about vertex overlap, and the definition of a
Euclidean graph similarly allows multiple vertices at the same location. For cross-
ing numbers, this has not been a major issue; the only crossing number that allows
vertex overlap is the diagonal crossing number introduced by Negami (though one
could argue that the simultaneous crossing number also is an instance). For visual-
ization purposes one could imagine a model in which different vertices are allowed at
the same location as long as edges adjacent to a particular vertex are consecutive in
the rotation. Buchheim, Jünger, Menze, Percan [138] suggest the notion of bimodal
crossing number which has some similarity.

Edges are not allowed to pass through vertices. Again this restriction is naturally
violated by linkages and Euclidean graphs. For example, a triangle with side-lengths
1, 1 and 2 can only be realized if we allow the edge of length 2 to pass through the
vertex it is not incident on. Edges may also pass through vertices while redrawing
the graph, e.g. see [567, Theorem 4.6]. We are not aware of any crossing number
variant that allows edges to pass through vertices (although it would probably lead
to a non-trivial notion if we do not allow edges to make sharp turns while passing
through a vertex), unless one interprets the minor crossing number or Metro-line
crossing number in this way.23 Passing through a vertex may be more palatable
if vertices are represented not by points but by disks (or disk-homeomorphs), as
discussed earlier.

We next turn to issues regarding intersections between edges.

Edges are not allowed to touch. Without becoming too technical, let us agree that a
touching point is a common point of two edges so that at least locally (close to the
point), the two edges can be separated by a line. Allowing touching points leads
to undesirable effects. For example, we already mentioned that allowing touching
points would trivialize odd crossing number: take any drawing of a graph, if two
edges cross oddly, then add a touching point between them close to one of the
crossings, so all pairs of edges cross evenly (since a touching point would count as a
crossing), showing that every graph has odd crossing number 0 if touching points are
allowed. Another variant that would be affected is the maximum crossing number;
if we allow touching points, C4 can be drawn with 2 “crossings”, but it is known
that C4 is not thrackleable, so its maximum crossing number (under the standard
definition) is 1.

22This is beautifully illustrated by an example from Bertin [102, Figure 4, p.109].
23We should mention a paper[19], that repeatedly uses the term m+ cr to denote the total number of

crossings in a geometric drawing including m crossings of edges through vertices.
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The real reason touching points are undesirable, however, is that they lead to am-
biguous drawings. While a drawing is defined as a mapping, we only see the result
of the mapping, which is a subset of the plane (or some surface). Even if we assume
that we know where the vertices are located we may not be able to distinguish a
crossing point from a touching point just by looking at the drawing: imagine four
curves entering a point, two from the left and two from the right, all with one
common tangent. Then the drawing does not tell us whether we are looking at a
crossing or touching point. The problem remains even if the curves don’t meet at
a common tangent: when we see an intersection looking like an x we automatically
assume that it’s a crossing, however, if touching points are allowed that need not be
the case since we generally do not assume that the curves used to represent edges
are smooth (polygonal arcs are common in representing edges, so a restriction to
smooth curves would exclude a popular way of drawing edges).

No self-intersections. Do we allow edges to intersect themselves (either crossing or
touching)? This issue is rarely discussed (if one thinks of an edge as adjacent
to itself then a prohibition on adjacent crossings will automatically exclude self-
intersections). The presence or absence of self-intersection is the difference between
Pach and Tóth’s degenerate crossing number, dcr(G), and Mohar’s genus crossing
number [512], gcr(G). Mohar conjectures that dcr(G) = gcr(G), but this seems far
from obvious. Similarly, it is not clear whether allowing self-intersections reduces
acr+, one of the algebraic crossing numbers. Since edges are equipped with directions
for algebraic crossing numbers, the standard trick for removing self-intersections
does not work, see [306].24

The number of intersections in the drawing is finite. We do not allow two edges
to overlap in more than a finite number of points. If some drawing style (like con-
fluent drawings) seems to require this, we introduce an intermediate representation
(train tracks consisting of branches and switches in confluent drawings), and define
the crossing numbers for that representation instead of for the underlying graph.

So even at this basic level there is reasonable room for disagreement on what makes
a drawing. Different crossing numbers have different demands, and a single definition
will not do all of them justice, but let us try. We will generally understand a drawing
to fulfill the following requirements: each vertex will be represented by a unique point.
An edge e in a drawing is a homeomorphic mapping from [0, 1] to the topological space
of the drawing so that e(0) and e(1) are the endpoints of the edge, and e(0, 1) does not
contain any vertices. An intersection of two edges e and f is a point (s, t) ∈ [0, 1]2 so that
e(s) = f(t); two edges are not allowed to touch. If (s, t) ∈ (0, 1)2 we call the intersection
a crossing. By definition, any intersection that is not a crossing must be a common
endpoint. We require that the total number of intersections in a graph is finite.

24Quite possibly the first description of how to remove a self-intersection from a (closed) curve can be
found in Clifford’s “Common Sense of the Exact Sciences” [201, Chapter III(12)]; he calls closed curves
“tangles”, and crossings “knots”.
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This notion of drawing will work for most crossing numbers we will see below. There
are two conditions we will occasionally relax: we will allow edges to touch for some
variants, and an edge will sometimes just be a continuous mapping from [0, 1] to allow
self-intersections. A self-intersection of an edge e is 0 6 s < t 6 1 so that e(s) = e(t), it
is a self-crossing if 0 < s < t < 1. The only self-intersection which is not a self-crossing is
an endpoint of a loop (in multigraphs).

At the next level we consider additional assumptions that are sometimes made on
drawings. Drawings with these additional properties are typically called normal or good.
It is often the case that crossing number optimal drawings, that is, drawings which min-
imize the value of a crossing number for a given graph have all of these properties, so
sometimes they are assumed automatically. This assumption is fair for the standard
crossing number,25 but it does fail for some other variants (e.g. in a constrained crossing
number optimal drawing two edges may have to cross more than once [527]). So we will
not generally require these additional properties. They have been discussed in detail by
Székely [658], but also by Winterbach [703].

Every two edges cross at most once. Drawings in which every two edges cross at
most once are often called simple, but this term has at least three identifiable mean-
ings. The original definition may go back to Ringel [594] who used simple to mean
that every two edges intersect at most once (so adjacent edges cannot cross). This is
more restrictive than only requiring that every two edges cross at most once. If we
want to make this distinction, we will use intersection-simple (for Ringel’s notion)
versus crossing-simple or just simple (since this usage is more common these days).
The third meaning of simple is to only allow each edge to cross at most one other
edge. We will avoid using simple with this third meaning (unfortunately, the simple
crossing number is named for this stricter notion of simplicity). We follow tradi-
tion in denoting crossing number variants that assume their drawings are simple by
placing a ∗ in the super-index; requiring drawings to be simple does not affect most
crossing numbers, e.g. cr∗ = cr = pcr∗ = ocr∗ = acr∗ and ecr = ecr∗.26 There are
some exceptions, however. A drawing realizing the constrained crossing number,
the degenerate crossing number or the local crossing number of a graph may require
non-simple crossings.

Adjacent edges do not cross each other. This rule was called Rule + by Pach and
Tóth [555]; the similar-looking Rule − is not a drawing rule but affects the counting
of crossings: crossings of adjacent edges are allowed, but they do not count. For
the standard crossing number, cr = cr+, but no similar results are known for other
crossing numbers. The only separations we are aware of are for the monotone odd
crossing number, mon-ocr, here mon-ocr(G) < mon-ocr+(G) for some graph G [306],
and the local crossing number, where lcr(G) < lcr∗(G) is possible. The odd crossing

25As was realized early on, e.g. in [424, 594].
26cr∗ should not be confused with the simple crossing number which is based on a stronger requirement:

each edge is allowed to cross at most one other edge.
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number is sensitive to the effects of Rule −: iocr(G) < ocr(G) for some graph
G [306].

Finally, there is one more restriction which is often made:

At most two edges cross in any point. Depending on how we count, this require-
ment is not strictly speaking necessary: a crossing is a common interior point of two
edges. If k edges cross in the same point, then there are

(
k
2

)
crossings by definition

of crossing. To make this point clear, the literature often refers to pairwise crossing
in the definition of crossing number.27 A crossing shared by k (distinct) edges can
be replaced by k (double-) crossings by perturbing the edges.28 This assumes that
we do not allow touching points, that is, every two edges actually cross at the cross-
ing point (otherwise perturbations may introduce more than k crossings which may,
or may not, be reducible based on other drawing conventions). Crossing numbers
which allow multiple crossings include degenerate and genus crossing number.

2.2.2 Style of Drawing

Once we get beyond the basics of what constitutes a drawing there are various choices to be
made that influence the appearance of the drawing, vertices and edges, as a whole; we are
calling this the style of the drawing, an admittedly vague term. There seems to have been
very little systematic work on this with the exception of Bertin’s “Semiology of Graphics”
(originally published in 1967). Bertin’s book contains a valuable section on networks [102,
Part II] which could form the basis of a modern treatment from the perspective of graph
drawing. Bertin identifies, among others, linear drawings (book drawings in two pages),
circular (that is, convex) drawings, hierarchical drawings, and perspective drawings. For
example, about convex drawings he writes “By arranging the elements [. . . ] on a a circle,
any relationship can be transcribed by a straight line. This is the construction which
produces the least confusing images, whatever the number of intersections stemming from
the raw data.” [102, p. 271]. This seems like good common sense, and sociologists had
used this technique for years [133, 519, 520], but there has been little experimental work
on this. Purchase [578, 579] has started investigating metrics based on common aesthetic
criteria (including crossing minimization, bend minimization, and angle resolution), and
there has also been work on angle resolution in particular [406, 409], and how different
drawing aesthetics combine [405, 407].

If we look at what drawings researchers have used in practice, two dominant styles
emerge, both focussed on edges. Edges are either drawn as curves (or polygonal arcs for
computational purposes) or as straight-line segments (or geodesics in metric surfaces).29

27While this clarified the method of counting, assuming the reader understood that that was the
intention, it may have been a small step in the confusion of the crossing number with the pair crossing
number.

28Tait [663] in 1877 describes this as follows: “By infinitesimal changes of position of the branches
intersecting in it, a triple point is decomposable into 3 double points, a quadruple point into 6, and
generally an x-ple point into x(x−1)

1·2 double points”. Tait is taking about closed plane curves.
29Eppstein [260] has given us a detailed summary and history of various curve drawing styles. Many

of those have not been explored in the context of crossing minimization.
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Not surprisingly, the traditional crossing number, cr, and the rectilinear crossing number,
cr, have remained the main crossing number variants, and many other crossing numbers
are wedged between cr and cr since they are obtained by restricting cr or relaxing cr.
Some variants have been based on restricting common parameters for these drawings;
e.g. the t-polygonal crossing number allows at most t− 1 bends in each edge. One could
imagine restricting the number of available slopes (t-polygonal, k-slope crossing number)
or the set of available slopes (e.g. orthogonal drawings, in which all edge segments are axis-
parallel), but, as far as we know, this has only been studied for embeddings, not drawings;
the crossing minimization problem for port diagrams, which often employ orthogonal
drawings, has been studied [442, 623, 689], but no crossing number notion has been
explicitly defined. Finally, one can control the angles at which edges meet; the angular
resolution of a drawing is the smallest angle between any two edges at a common endpoint;
more recently, the crossing resolution of a drawing has been introduced as the smallest
angle between any two edges at a crossing [221]; in RAC (right-angle crossing) drawings
all crossings have to be at right-angles [225]. Recent progress on the rectilinear crossing
number has been based on relaxing the rectilinear drawing requirement to pseudolinear
drawings, leading to the pseudolinear crossing number, c̃r. It seems to capture both the
combinatorial and geometric nature of the rectilinear crossing number well enough to
have led to the conjecture that c̃r(Kn) = cr(Kn) [77], but so far this crossing number
has not been investigated for other graphs (with the exception of [380]). Further relaxing
pseudolinearity to x-monotonicity leads to a whole group of crossing numbers (monotone
crossing numbers). Analogously to relaxing rectilinear to pseudolinear drawings, one
could relax spherical to pseudospherical drawings to study the spherical crossing number;
this has only been done for complete graphs so far [56], without formally introducing a
pseudospherical crossing number.

A couple of other drawing styles have been added to the graph drawing toolbox re-
cently; there are Lombardi drawings [241], partially drawn lines [89, 134], drawings with
fat edges [240], and bold drawings [466], though we are not aware of any crossing number
variants based on them. However, reviewing the compendium of crossing number variants
suggests that style decisions are typically not made for purely aesthetic reasons, but to
reflect some structural characteristics of the graph. For example, the vertices of the graph
may be ordered, in x or y-direction (or both) and a drawing has to represent this ordering
(or both orderings), or the graph may be bipartite or k-partite, suggesting drawings in
which vertices in the same partition are grouped together. There is not always a need
to create a new name or symbol for a crossing number that is created in this way; for
example, if we weight the edges of the graph, it is quite natural to interpret cr(e, f) as
w(e) · w(f) and we can continue to write cr(G) for the weighted crossing number of G,
or cr(G,w) is we want to emphasize that G is equipped with a special structure. The
following list collects style choices made based on structural features of the graph.

Orderings of the vertices. If the vertices of the graph are equipped with a total or
partial order, it seems natural to arrange the vertices along a line (or a circle), but
then additional restrictions on drawing the edges are necessary to get new variants.
For the line, this is done by the fixed linear (total order) and the anchored (partial
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order) crossing numbers. If one interprets the ordering as ordering the x-coordinates
of the vertices and one requires edges to be drawn as straight-line segments (or x-
monotone curves), one gets variants of the monotone or leveled crossing numbers.
If one interprets the ordering as ordering the vertices by distance from the origin,
one gets the radial crossing number. If one interprets the ordering as an angular
ordering around the origin, one gets the cyclic level crossing number.

One could also imagine vertices being ordered with respect to both x- and y-
coordinates (corresponding to directions NW, NE, SE, SW). Eades, Lai, Misue,
and Sugiyama [250, 504] called this an orthogonal ordering and studied it as a way
to preserve the mental map of a graph in a redrawing. In crossing number terms,
this suggests the (so far) uninvestigated bi-monotone crossing number.

Partite Graphs. For bipartite or k-partite graphs it is natural to require that all vertices
in a particular partition are somehow grouped together; for example, they may lie
on a common straight line. For k = 2 this gives the bipartite crossing number. For
larger k there is the convex k-partite crossing number which requires the vertices
to lie on the boundary of a disk so that vertices in the same partition are consec-
utive. Partitions can also be placed on concentric circles (radial crossing number),
or parallel lines. If the partitions are ordered (and the vertices are assigned to fixed
partitions), we are back in the “Orderings of vertices case” with radial and leveled
crossing number. So far, there hasn’t been an attempt at a free radial or a free
leveled crossing number.

Ordering of edges at vertices. If we prescribe, at each vertex, the cyclic ordering of
the ends of edges at that vertex, the rotation, we are looking at crossing numbers
with rotation system. There may also be restrictions on the rotation system based
on other structural properties. For example, in a directed graph we may want all
the incoming and all the outgoing edges to be consecutive, giving us the bimodal
crossing number. Another way in which the rotation at a vertex can be constrained
is by identifying its neighbors with leaves of a tree and restricting the ordering of
the leaves to an ordering corresponding to an embedding of the tree. This is related
to the idea of tanglegrams in computational biology, and has been studied for the
bipartite crossing number, and the k-layer crossing number.

Directed edges. A directed acyclic graph can be understood as a graph with a partial
ordering of the vertices, leading to hierarchical drawings (upward crossing number),
recurrent hierarchical drawings (the uninvestigated clockwise crossing number) or,
less restrictive, bimodal drawings (bimodal crossing number).

Disconnected graph. There is not much to say about disconnected graphs in the plane,
components are typically moved apart and drawn separately. Interesting problems
start appearing when a disconnected graph is drawn on a higher-genus surface.

Pairs of Graphs. Pairs (or tuples) of graphs are no different from disconnected graphs,
unless there is some type of interaction between the graphs, for example, a shared
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vertex set. At that point, there are drawing styles to model different types of
interaction, e.g. simultaneous crossing number (shared vertices and edges), red/blue
crossing number and joint crossing numbers (shared canvas).

Edge-coloring. If a graph has multiple edges, we can think of the graph as a union of
multiple graphs on the same vertex set and apply ideas from “Pairs of Graphs”. We
could also assign different weights to crossings depending on the colors of the edges
that cross (weighted crossing number); one particular example would be to only
count crossings between edges of the same color (simultaneous crossing number) or
different color (red/blue crossing number). On the other hand, some visualizations,
such as metro-line drawings, are naturally done using edge colorings.

Edge-weights. Simple edge weights can be modeled using the weighted crossing number.

Labelings. There are various algorithms and heuristics for labeling graphs, see [431] for
a survey. Labels can be drawn within the object to which they apply, leading to
styles in which edges and vertices are thickened up as in [240, 466] or the medieval
drawings mentioned in Remark 7. We are not aware of any crossing number variants
taking the presence of labels into account.

Vertex-coloring. If the vertex coloring is proper, we are back in the case of partite
graphs. If it is not, different colors may denote different types of vertices. E.g. the
color of a vertex may encode which boundary component (of a surface with holes)
a vertex lies on.

Partially embedded graphs. One may want to minimize the number of crossings in
the drawing of a graph G which has been partially embedded, this leads to the
constrained crossing number. Interesting, but as far as we know, uninvestigated,
special cases occur if the locations of some (or all) of the vertices are fixed and the
number of bends along each edge is restricted.30 One may also consider the variant
that instead of an embedding one is given a simple drawing, and wants to extend
to a crossing-minimal simple drawing [310, 349].

Clusters. There has been much research on clustered drawings in which vertices are
grouped into hierarchically nested regions. There are various types of crossings
(edge-edge, edge-region, region-region). Typically, all of these crossings are pro-
hibited, and there is significant research on c-planarity (clustered planarity) whose
complexity it still open. Recently a first step was taken into allowing some of these
types of crossings [41], but a formal notion of a clustered crossing number has not
yet been introduced. In the visualization of large data sets, one can imagine vertices
being located in given geometric clusters, for example the tiles of a 2-dimensional
grid, and counting the crossings between edges and tile boundaries [156].

30A potential application is described in [111]; the paper studies the number of crossings in electric
transmission networks; vertex locations are fixed, and there are several graphs (corresponding to different
voltages) connecting the vertices; the paper considers straight-line realizations, so we get what could be
called the simultaneous geometric crossing number with fixed vertex locations.
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Symmetry. If a graph is symmetric, that is, has some non-trivial automorphism π, one
can ask whether there are drawings of the graph which show π. For example, one
can ask for π to be induced by an isometry of the plane, and minimize crossings
under that constraint [137].

2.2.3 Drawing Surface

It’s natural to think of a crossing as happening in the plane, so it’s hardly surprising
that crossing numbers are typically defined for the plane or for locally planar manifolds:
surfaces, in other words.31

We need to decide on which surface we draw the graph; typically, this is the plane or
the two-dimensional sphere S2 (which can make a difference if metric conditions are in
place, as in the geodesic crossing number). Crossing numbers on other surfaces, orientable,
Sg, and non-orientable, Ng, were investigated in the earliest papers, including the toroidal
crossing number [347] and crossing numbers on the Klein bottle [457]. Often special
notations were introduced for surface drawings; we’ll follow the convention to write the
surface in the index; so crN1 is the projective plane crossing number and pcrS1

is the
toroidal pair crossing number (which has not been investigated as far as we know).

The surface may have holes, in which case some vertices may be forced to lie in
certain boundary components (for two holes: radial crossing number with two levels),
maybe with their order specified (map crossing number, anchored crossing number). We
may also allow disconnected surfaces, for example multiple planes (as in the k-planar and
the geometric k-planar crossing numbers).

If we drop the restriction that a manifold be locally planar, we can explore pinched
surfaces (such as the spindle) or branched surfaces. Neither of these choices is well-
investigated, with the exception of books. Book crossing numbers are typically defined
by disallowing edges to cross the spine, so crossings cannot occur on the spine (where the
manifold is not locally planar). On the other hand, one may decide to allow edges crossing
the spine and try to minimize the number of spine crossings (spine crossing number). For
pinched surfaces it is not immediately clear what constitutes a proper drawing (are vertices
allowed to lie in pinches, how many edges can pass through a pinched point, may an edge
pass through a pinched point without crossing to the other part of the surface, how do
we count the crossings, what if we have triple pinches, etc.).

Finally, we can consider drawing the graph in other manifolds, 3-dimensional space, for
example. There is the grid crossing number, in which graphs are drawn on d-dimensional
grids of limited size, and the space crossing number, which has the flavor of a stabbing
number.32

31Graph embeddings and graph genus are already defined in Sainte-Laguë’s 1926 “Les Reseaux” [607,
p.6], sometimes called the zeroth book of graph theory, see [325] for a translation. A definition of planar
graphs—called spherical—occurs in Sainte-Laguë’s earlier thesis, which formed the basis of the book.

32There also is a notion of crossing number for geometric hypergraphs, in which hyperedges are rep-
resented as simplices, see [45, 46].
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2.3 Methods of Counting

In German a crossing of curves is called a “Doppelpunkt” [217, 652], a double point. This
term stems from the algebraic tradition and survives in knot theory, but even in graph
drawing pairwise counting of crossings is the preferred method, that is, k edges passing
through the same point count for

(
k
2

)
crossings. One can imagine counting a k-wise

crossing just once (degenerate crossing number, genus crossing number) or k times.33 As
we saw in the short historical section, the algebraic way of counting crossings may precede
this way of counting crossings; edges are oriented, and for an ordered pair (e, f) of edges
we can assign a crossing a +1 or −1 depending on whether f crosses e from left to right
or from right to left. For weighted graphs, it is natural to assign weights to crossings,
typically using the product of the weights of the edges involved (as far as we know, real
weights or weights from other algebraic structures have not been studied). Continuing
the philosophy of pairwise counting, the weighted crossing number allows one to assign
weights to pairs of edges.

When computing the number of crossings between two edges, ψ(e, f), most crossing
numbers ψ add up the counts of the pairwise crossings of e and f . There are some
exceptions: the pair crossing number takes the maximum (so each pair contributes at
most once, namely if it crosses), the odd crossing number adds up crossings modulo 2,
and the algebraic crossing number takes the absolute value of the sum.

To calculate the crossing number of a drawing, most crossing numbers simply add up
the pairwise crossings. As we saw earlier, the local crossing number takes the maximum
per edge: maxe∈E

∑
f∈E cr(e, f). Independent crossing number variants do not include

pairs of adjacent edges in the count (independent crossing number, independent odd
crossing number, etc.).

Finally, to determine the crossing number of a graph we typically minimize the crossing
number over all drawings, although there is the family of maximum crossing numbers
(maximum crossing number, maximum rectilinear crossing number, maximum orchard
crossing number).

Some crossing numbers count crossings other than edge crossings, e.g. the spine, or-
chard, edge and space crossing numbers. One could imagine a fan crossing number, based
on Kaufmann and Ueckerdt’s notion of fan-planarity [438]: instead of counting how many
edges a given edge crosses, we count how many fans (stars) it crosses.34

Remark 8 (Crossing vs Crossings). Most crossing number variants count the number of
crossings in some type of drawing, but there are variants that do not: The independent
crossing number ignores some of the crossings (adjacent crossings), and the local crossing
number counts crossings along edges, not all crossings. In such cases, we can study
the crossing number of drawings that are restricted by that second crossing number.

33The later variant seems not to have been studied; some subtleties immediately arise (as they do for
the degenerate crossing number): do we allow an edge to pass through the same point multiple times?
Do edges have to cross when passing through the point or may they touch? Do we count every crossing,
or do we just count the number of edges involved?

34To make this precise, one would probably count the crossings of an edge as the size of the largest
matching it crosses.
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We could ask, for example, what is the smallest number of crossings in a graph with
independent crossing number at most k? This type of question has only been approached
very occasionally, but there have been some exceptions, including the study of the number
of crossings in drawings with bounded local crossing number and various other beyond-
planar drawing styles [103, 181], bounded rectilinear local crossing number [539, Corollary
2], bounded odd crossing number [563], bounded pair crossing number [618]. In the
reverse direction, we can ask whether a bounded crossing number implies that we can
bound some more constrained crossing number variant. Famously, the answer is no for
rectilinear drawings [107], but there is a polynomial bound if we allow a single bend along
each edge [107].

2.4 Modes of Representation

This leaves us with modes of representation of graphs; there is not much to be said
here; the standard mode of representation where a curve between two points is taken to
represent the edge connecting the vertices corresponding to the points is predominant. The
only alternative model we have seen in the context of crossing numbers is that of confluent
drawings introduced by Dickerson, Eppstein, Goodrich, and Meng [223]. A graph is drawn
like a train track (with branches and switches), vertices correspond to stations, and an
edge to a legal train route (trains cannot make sharp turns at switches).35 If we allow
bridges, points at which one track crosses over another track, then the confluent crossing
number is the smallest number of bridges necessary to realize the train track. Using the
confluent drawing style (rather than its semantics) as an inspiration, we could allow edges
in a drawing to run in parallel temporarily and then separate again (without changing
order), just like in a confluent drawing but without the connotation for connectivity. Now
let us say we count the crossing of two such bundles of edges as a single crossing (as
opposed to weighing it by the number of edges in the bundle), do we get an interesting
notion of crossing number? Should we require that every bundle contains each edge at
most once? These questions, suggested in an earlier version of this survey, led to the
introduced of the bundled crossing number. In an actual drawing we may decide to keep
the edges in a bundle slightly separate, maybe by using color for the intervening spaces.
This idea has been studied in the context of the Metro-line crossing number under the
name “block crossing” [294].

There is one other model of representation that has not been explored yet in the
context of crossing numbers: representing graphs as intersection graphs. String graphs
will serve as an example. We know that every planar graph is the intersection graph of
strings (curves), indeed at this point we know that we can assume that each pair of strings
crosses at most once [158], and that the strings are straight-line segments [157] (we do not
yet know whether they can be chosen in at most 4 directions, this would imply the 4-color
theorem). So in the string representation every vertex becomes a curve (or straight-line
segment) and an edge corresponds to a (single) crossing of the curves. One could imagine
extending this model by distinguishing two types of crossings: crossings representing

35Roger Penrose uses a similar idea in his, or his father’s, railway mazes [218].
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edges and crossings that count towards a string crossing number. In a drawing the later
crossings could be represented by overpasses (as for knots). We are not aware that this
approach has been investigated. (The existing string crossing number realizes a slightly
different idea.)

3 A Compendium of Crossing Numbers

For the compendium (and indeed for the rest of the paper), I have always tried to go back
to the sources; any result reported at second hand is identified as such. (This does not
mean that I guarantee the correctness of all results.) I also made heavy use of other tools
such as Vrťo’s online bibliography of crossing numbers [688], MathSciNet, zbMATH Open
(formerly Zentralblatt), and Google Scholar. In turn, the work on this survey led to my
writing the book “Crossing Numbers of Graphs” [612], which presents some of the major
results in the area. There is an emerging area of graph drawing called “beyond planar
graphs” which, while less focussed on crossing numbers, is all about non-planar graphs,
see, for example [226, 402].

I have tried to be exhaustive, but decided to exclude certain areas altogether rather
than covering them badly; this includes crossing numbers for objects other than graphs,
most notably knots, braids, hypergraphs [173, 220], permutations [104], tropical curves [153,
154], and tanglegrams [37, 210, 288].36

For some crossing numbers we had to introduce new notation to avoid conflicts—of
which there are many. As the table in Section 3.1 shows, nearly every crossing number
variant with a parameter k has been called νk or crk at some point; we tried to minimize
the proliferation of notation. E.g. instead of creating new symbols for the toroidal crossing
number or the Klein bottle crossing number, we simply modify the notation for the
standard crossing number to include the surface: crΣ denotes the crossing number on
surface Σ. Similarly, if the underlying graph has structure (rotation, ordering, layering)
we don’t create a new crossing number notation. For example the fixed linear crossing
number is simply the book crossing number, bkcrk restricted to drawings which respect
the linear ordering of the vertices, so we use bkcrk for both variants, writing bkcrk(G, π) to
distinguish the fixed linear crossing number from the book crossing number if necessary.
This approach leads to some overloading of notation, but hopefully no confusion.

Many crossing numbers exist under multiple names reflecting various acts of rediscov-
ery; in these cases I’ve generally decided to go with the older or more established name. In
every case, I have tried to document all variant names and symbolism I have encountered.

For each crossing number there is an entry for “relationships”; this entry is restricted
to relationships between crossing number variants and only the most basic parameters:
n = |V | and m = |E| (so, in particular, we list all crossing lemmas we are aware of
in this rubric). We make no attempt to try capturing relationships with other graph
parameters such as the girth, bisection width, cut width, etc. or the emerging links between

36There are also some stabbing number variants called crossing numbers, but the spirit is different;
we do not document these variants here.
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crossing number and chromatic number in the study of Albertson’s conjecture [27]. A
comprehensive survey on some of these results is by Shahrokhi, Sýkora, Székely, and
Vrťo [630].

Finally, we include exact (and some asymptotic) crossing number results for major
graph families such as the complete, Kn, and complete bipartite graphs, Km,n, under the
rubric “values”; for lesser-known crossing number variants we tend to include more detail;
we use the usual symbols for graph families, such as Pn for the path on n vertices, Cn for
cycles of length n, Qn = �ni=1K2 for the n-dimensional hypercube graph, where � is the
Cartesian product of two graphs (sometimes written as ×), Wn for the wheel graph (on
n+ 1 vertices), and GP(n, k)) for the generalized Petersen graph (on 2n vertices).

Remark 9 (Parameters and Derived Notions). For a crossing number γk parameterized
by some parameter k, we can define a new parameter µγ(G) as the smallest k for which
γk(G) = 0 if such a k exists. For the (surface) crossing numbers, this gives us (Euler, non-
orientable, orientable) genus, for the book (or k-page) crossing number, this gives us the
notion of pagenumber (or book thickness), for the k-planar crossing number, the thickness
of a graph, and for the geometric k-planar crossing number, its geometric thickness; for
the (surface) independent odd crossing number we get a homological notion of genus [303–
305, 617]. The grid crossing number has two parameters (dimension and volume) which
could be used to define area/volume of a graph. We will mention some of these derived
parameters below, but without attempting to survey results concerning them. �

3.1 Notation for Crossing Numbers

The following table lists the crossing numbers with the symbol we use in the current paper
(if any) and other notations found in the literature with references; the alternative nota-
tions are listed chronologically (at least with respect to the first occurrences we found).
The crossing numbers are listed alphabetically by name. There are several crossing num-
ber variants for which symbols have never been introduced, including annulus, bimodal,
confluent, map, Metro-line, radial, red/blue and spine crossing numbers, these (and some
others) are not listed below.

Table 1: Crossing number variants with symbols used in the text and in the literature.

Name (alternative
names)

Symbol Symbol (literature)

abstract topological
graph

cr(G,R) crat [464]

algebraic acr acr [565], acr [674],
ALG-CR [675]

algebraic + acr+ acr+ [306]
anchored bkcrk(G,A, π) acr [147]
average no symbol acr [575]
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Name (alternative
names)

Symbol Symbol (literature)

bipartite bcr ν2 [358], ν∗ [494], ν2 [495],
bcr [589, 634]

bipartite cylindrical cr 2 cr} [13]
book (k-page) bkcrk νk [632, 703]
book edge (k-page edge) no symbol crek [82]
bundled bc bc [25]
centrally symmetric crcs no symbol
centrally symmetric
rectilinear

crcs crcs [5]

constrained no symbol pd-cr(G,H) [25]
convex bundled bc◦ bc◦ [25]
convex (outerplanar,
circular, 1-page)

bkcr1 ν1 [632], cr∗ [628], χ [87],
µ+ [135]

convex maximum
rectilinear

max- cr◦ obf◦ [687], CRc [142]

convex k-partite (circular
k-partite)

no symbol cprk [601]

(minimum, minimal,
planar, graph, edge,
topological)

cr c [354], C [345], c+
0 [457],

ν [339], ν∗ [334], ν [495],
κ [220], cr [555], crR2 [311],
CR [658], νR2 [703],
NR2 [255]

(joint) cr(G1, G2) cr(G1, G2) [529],
cr(G1, G2) [48],
Cr(G1, G2) [708]

cylindrical cr} cr2◦ [243]
degenerate dcr CR [551]
diagonal cr∆ cr∆ [529]
edge ecr no symbol
fixed convex bundled bc◦(G, π) bc◦(G, π) [25]
fixed linear bkcrk(G, π) νπ [491] (for k = 2), νL [194]

(for k = 2), νL,k [196],
µ [716] (for k = 1)

genus gcr GCR [512]
genus g (surface) crSg c+

g [457], crg [421], cr∗g [456],
cr2 [602]
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Name (alternative
names)

Symbol Symbol (literature)

genus g local (local g) lcrSg λg [429]
(d-dimensional volume
N) grid

cr#(G,N, d) cr [235]

geometric k-planar
(rectilinear k-colored)

crk gcrk [547], crk [21]

independent cr− cr− [555]
independent algebraic iacr s [680], iacr [674],

IALG-CR [675], acr− [306]
independent odd iocr odd-cr− [555],

CR-IODD [658], ν(i) [703],
iocr [566], cr -iodd [525]

independent pair pcr− pair-cr− [555], pcr− [306]
k-layer no symbol K [696]
k-planar crk Crk [540], CRk [661],

ν
(B)
k [703], crk [633],

crk [547]
k-planar no symbol crk - pl [181]
Klein bottle crN2 cr2 [457], cr 2 [598],

crK [311]
leveled mon-cr�(G) mon− cr(G, `) [306]
linear (2-page) bkcr2 µ [135]
local (crossing
parameter)

lcr λ0 [429], lcn [195], crs [329],
c [649], ξ [330], ϕ [695]

local convex (local
outerplanar)

no symbol locr(G) [428]

local k-page (local book) no symbol lcrk [647]
local k-planar lcrk lcrk [60]
local pair lpcr lpcr [16]
local toroidal lcrS1 `1 [348], λ1 [429]
major (major-monotone) Mcr Mcr [122]
maximum (maximal) max-cr ν∗ [334], νM [591], crM [570],

CR [374], crM [47], CR [142]
maximum bipartite max- bcr no symbol
maximum edge max- ecr no symbol
maximum local max- lcr E [360]
maximum orchard no symbol MOCN [279]
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Name (alternative
names)

Symbol Symbol (literature)

maximum rectilinear
(maximal rectilinear,
obfuscation complexity)

max- cr ν∗ [334], M [307], ν+ [351],
ν ′M [591], CR [34],
obf [687],CR [142]

maximum rectilinear
edge

max- ecr no symbol

minor (minor-monotone) mcr mcr [122]
monotone mon-cr mon-cr [306], mon-cr [553]
monotone independent
odd

mon-iocr mon-iocr [306],
mon-ocr− [75]

monotone odd mon-ocr mon-ocr [306]
monotone odd +
(monotone semisimple
odd)

mon-ocr+ mon-ocr+ [75]

monotone odd ±
(monotone weakly
semisimple odd)

mon-ocr± mon-ocr± [75]

monotone pair mon-pcr pair-crmon [685]
nodal ncr no symbol
nodal toroidal ncrS1 n1 [348]
non-orientable genus g crNg cg [457], c̃rg [425], crg [456]
odd ocr odd-cr [556], crodd [383],

CR-ODD [658], ν(o) [703],
ocr [566], cr -odd [525]

odd + ocr+ odd-cr+ [555]
odd ± (weakly
semisimple odd)

ocr± ocr± [306]

orchard orchard-cr OCN [279]
oriented (joint) −→cr cr+ [529]
pair (pairwise) pcr pair-cr [556], crpair [383],

pcr [453], pair-cr [685],
CR-PAIR [658], ν(p) [703],
cr -pair [525]

pair + pcr+ pair-cr+ [555], pcr+ [306]
projective plane crN1 cr1 [457], crP [311],

crp [485], NP [255]
pseudolinear c̃r c̃r [77]
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Name (alternative
names)

Symbol Symbol (literature)

quasi quasi-cr no symbol
rectilinear (straight-line,
linear, geometric)

cr c [354], cr [417], ν [339],
ν∗ [334], cr, R [307],
ν ′ [591], cr1 [108], κ [702],
lin-cr [646],
CR-LIN [658], rcr [415],
cr1 [135], cr -lin [525]

rectilinear edge ecr no symbol
rectilinear k-planar crk crk [633], rcrk [547]
rectilinear local lcr cr1 [471], lcr [9]
rectilinear space space-cr lin-cr4 [140]
simple cr× scr [173], crs [136]
simple degenerate dcr∗ CR∗ [551], cr∗ [15]
simple local lcr∗ no symbol
simple quasi quasi-cr∗ cr3 [576]
simultaneous scr scr [180], simcr [173]
simultaneous geometric scr no symbol
simultaneously planar no symbol crsp [321]
skewness sk s [343], µ0 [421], µ [422],

κ [289], sk [168], skew [182]
space space-cr cr4 [140]
spherical (spherical
geodesic)

crS2 c̆r [690], crS2 [78], NS [255]

stable no symbol crk [425], crγ(G)−k [430]
string str-cr scr [121]
t-circle crt◦ crt◦ [243]
t-partite circle cr t cr t [151]
t-polygonal crt crt [106]
tile tile-cr tcr [575]
toroidal (torus) crS1 cr1 [347], NT [255]
triple triple-cr tcr [666]
upward mon-cr�(G) no symbol
weighted cr(G,w) crw [615], wcr [509]
weighted cr(G,w) no symbol
x-monotone mon-cr�(G) mon-cr [306]

3.2 Crossing Numbers

1-page crossing number. See convex crossing number, book crossing number.
2-page crossing number. See book crossing number.
abstract topological graph crossing number. See crossing number of abstract topo-
logical graph.
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Algebraic crossing number
Definition: Order and orient all edges of G and assign a crossing between edges e < f

a +1 or −1 depending on whether f crosses e from right to left or from left to
right at that point. We let acr(e, f) be the sum of the values of all crossings of f
with e (which can be negative). For a given drawing D (and a given orientation) of
G we let acr(D) =

∑
e<f∈E(G) | acr(e, f)|, where < is the ordering of E(G).37 The

algebraic crossing number of G, acr(G), is the minimum algebraic crossing number
of any drawing of G. The Rule + variant of acr is acr+(G), the smallest algebraic
crossing number of any drawing of G in which adjacent edges are forbidden to cross.
One can define an intermediate variant in which we require acr(e, f) = 0 for every
pair of adjacent edges e and f ; denote this variant by acr±

Reference: Pelsmajer, Schaefer, Štefankovič [565], also Tutte [680], Winterbach [703].
Comments: One could argue that this crossing number is implicit in Tutte [680]; cer-

tainly, the idea of counting crossings algebraically is; however, Tutte insists on not
counting adjacent crossings by setting acr(e, f) = 0 for adjacent edges e and f ; he
writes: “We are taking the view that crossings of adjacent edges are trivial, and eas-
ily got rid of.” If we read this as a claim that acr(G) = iacr(G), then we now know
that this claim is wrong. So Tutte did define iacr, but acr seems to have first been
isolated as a separate notion in [565].38 There it was asked whether acr(G) = cr(G),
a question answered by Tóth in the negative [675].

Complexity: NP-complete.39

Relationships: iacr(G) 6 acr(G) 6 acr± 6 acr+(G) for all G (from definition). There
are graphs G for which iacr(G) < acr(G) [306]. Tóth showed that there are graphs
G with acr(G) 6 0.855 pcr(G) = cr(G) answering the question from [565].

Open Questions: What is the relationship between acr and pcr?
Also see: Odd crossing number, independent algebraic crossing number, monotone cross-

ing number (for monotone variants).

Anchored crossing number. See fixed linear crossing number.
Annulus crossing number. See map crossing number.

Bimodal crossing number
Definition: The bimodal crossing number of a directed graph G, is the smallest number

of crossings in any bimodal drawing of G. A drawing is bimodal if at every vertex
all in-coming edges (and thus, all out-going edges) are consecutive.

37The value of acr(D) does not depend on the order or orientation of the edges, so acr(D) is well-
defined.

38Winterbach [703] defines the Tutte crossing number; unlike Tutte, he does not set acr(e, f) = 0 for
adjacent edges, but he does order edges by endpoints (to avoid counting both acr(e, f) and acr(f, e). As
a result he counts some adjacent crossings, e.g. v1v2 with v2v3 but not others, e.g. v1v2 with v1v3.

39NP-hardness is obtained as in Pach and Tóth’s proof that ocr is NP-hard. The question lies in NP,
since it can be phrased as an integer linear program (this is one way of looking at Tutte’s characterization
of planarity [680]).
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Reference: Buchheim, Jünger, Menze, Percan [138].
Comments: Buchheim, Jünger, Menze, and Percan [138] introduce bimodal drawings

as a relaxation of hierarchical drawings with the goal of reducing the number of
crossings.

Complexity: NP-complete [138]. The embeddability problem is in P (easy reduction
to planarity).

Relationships: The upward crossing number is an upper bound on the bimodal crossing
number (and they differ, because the upward crossing number is infinite for directed
cycles).

Also see: Upward crossing number.

Bipartite confluent crossing number. See confluent crossing number.

Bipartite crossing number
Definition: A 2-layer (or bipartite) drawing of a graph G is a straight-line drawing in

which the vertices of G lie on two parallel lines with the vertices in the same partition
lying on the same line. The bipartite crossing number, bcr(G), of a bipartite graph
G is the smallest number of crossings in a 2-layer drawing of G. The maximum
bipartite crossing number, max- bcr(G), of a bipartite graph G is the largest number
of crossings in a 2-layer drawing of G.

Reference: Harary [350]; Watkins [698]; Harary, Schwenk [357, 358]. Also [188]. The
maximum bipartite crossing number is implicit in Chimani, Felsner, Kobourov,
Ueckerdt, Valtr, Wolff [175].

Comments: Harary develops this crossing number notion without naming it. Watkins
called it the special crossing number; Harary and Schwenk coined bipartite crossing
number and wrote ν2(G), May and Mennecke [493, 494], in two papers on circuit
layout, call it the inner crossing number ν∗. None of these names seem to have stuck;
the corresponding optimization problem is now known as the 2-sided (or 2-layer)
crossing minimization problem (e.g. [719]). In the 1-sided crossing minimization
problem the order of vertices on one of the two lines is fixed.40 If the ordering
in both layers is determined, the crossing number can be determined in quadratic
time [242]. Hotz [404, Section 3.6.3] discusses an application to circuit layout in
which the permutations on either side are restricted by the nature of the circuit. As
an extremal question, the bipartite crossing number is even older. In a textbook on
algebra from 1889, Chrystal [188, p.34] asks to verify the bipartite crossing number
of Km,n (his value is off by a factor of 2). Also, see Singmaster [642, 5.Q.1]. Kircher,
in his 1669 “Ars Magna Sciendi” includes several convex, straight-line drawings of
a K9,9 [441, p.18, 196], and, unbelievably, a K18,18 [441, p.170]. The name bipartite
crossing number has also been used for cr(Km,n), Zarankiewicz’s problem. Arguably,
crossing minimization of storyline visualizations [462] could be considered a variant

40The crossing minimization problem for tanglegrams [37, 288, 707] has a similar flavor; in a tangle-
gram, the ordering of the vertices in each layer is constrained by a rooted tree.
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of the bipartite crossing number (in which edges are relaxed to be monotone, but
there are conditions on edges having to touch or cross). May and Szkatuła [495]
define a generalization, the p-partite crossing number, for p-partite graphs, see the
comments on the k-layer crossing number.

Complexity: NP-complete.41 Can be approximated in polynomial time to within a
factor of O(log2 n) [634]. It’s trivial for bipartite permutation graphs [131]. The
embedding problem is easy, Harary and Schwenk [357] give a complete character-
ization of graphs with bcr(G) = 0. The 1-sided crossing minimization problem is
NP-complete [246, 251, 522], but fixed-parameter tractable [238, 451].

Relationships: bcr(G) > cr(G) for all bipartite graphs G, and the inequality can
be strict (e.g. K2,2). bcr(G) > m − n + 1 [494]. If G is a 2-connected, bi-
partite graph, then bcr(G) > (m − 1)/3, where m = |E(G)| [450]. There is a
crossing lemma [42, Corollary 1], and a lower bound on the local crossing num-
ber [42, Corollary 2].42 bcr(G) + max- bcr(G) = θ(G) [175, Lemma 2], where
θ(G) =

(
m(m+ 1)−

∑
v∈V deg2(v)

)
/2, with m = |E|.

Values: bcr(C2n) = n − 1 [357]. bcr(Km,n) =
(
m
2

)(
n
2

)
[188, 698]. bcr(M2,n) = n − 1,

bcr(M3,n) = 5n − 6, bcr(Mm,n) = Θ(m2n) where Mm,n = Pm � Pn is the m × n
mesh, and bcr(Qn) = Θ(4n) [631].

Open Questions: Is bcr(G) + max- cr(G) = θ(G) for bipartite graphs G [175]?
Also see: Radial crossing number, cylindrical crossing number, tile crossing number, bi-

partite confluent crossing number (under confluent crossing number), upward cross-
ing number. Generalizations include convex k-partite crossing number and leveled
crossing number (under monotone crossing numbers).

Biplanar convex crossing number. See 2-page crossing number (under book crossing
number), convex crossing number.
Biplanar crossing number. See k-planar crossing number.

Book crossing number
Definition: A book with k pages is a branched surface consisting of k half-planes whose

boundary lines have been identified (forming the spine). The book crossing number
for a book with k pages, or k-page crossing number, bkcrk(G), of a graph G, is
the smallest number of crossings in a drawing of G in a book with k pages so that
all vertices lie on the spine of the book and every edge lies in a single page. The

41Shahrokhi and Vrťo [637] write “the NP-hardness of the problem was proved for multigraphs, but it
is widely assumed that it is also NP-hard for simple graphs”. The multigraph proof is due to Garey and
Johnson [315]. The problem remainsNP-complete for simple graphs as well (thanks to Daniel Štefankovič
for help with this proof): by a result of Even and Shiloah [269] the optimum linear arrangement problem
is NP-hard for bipartite graphs; take a bipartite graph G and make each of its vertices the center of a
sufficiently large star; in a crossing-minimal bipartite drawing of the resulting graph, the leaves of the
star can be assumed to be consecutive; this bipartite drawing encodes a solution to the optimum linear
arrangement problem of the original graph G, just as in the original proof by Garey and Johnson.

42The authors phrase the result slightly differently, and they do not introduce a local bipartite crossing
number.
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smallest k for which bkcrk(G) = 0 is the pagenumber of G. The local k-page crossing
number is the smallest local crossing number of any k-page drawing of the graph.

Reference: Blažek, Koman [112] (for bkcrk(Kn)); Nicholson [532]; Leclerc and Mon-
jardet [474] (for bkcr2). Shahrokhi, Sýkora, Székely, Vrťo [632] (for bkcrk). Sripi-
monwan [647] for the local k-page crossing number.

Comments: The book crossing number for a single page is the same as the convex cross-
ing number. There are two types of book drawings, combinatorial, in which edges
are not allowed to cross the spine, and topological in which edges are allowed to cross
the spine [703, p. 3.1.3.1]. The book crossing number is restricted to combinatorial
drawings, and there is good reason for that, since a topological book crossing num-
ber would not add anything new: for a single page, the spine cannot be crossed, so
we again get the convex crossing number and for two pages, k = 2, we would get
the standard crossing number as was observed (and proved) by Nicholson [532, Ap-
pendix].43 Even before Nicholson, Blažek and Koman [112], in their paper showing
that cr(Kn) 6 Z(n), using 2-page (combinatorial) drawings, asked for the value of
bkcrk(Kn), and gave an upper bound for k = 3. Every graph can be embedded in 3
pages if we allow a topological embedding.44 The spine crossing number is a variant
that does allow topological drawings (but counts crossings differently).

Combinatorial drawings in two pages have been called circular [703] or cycle [366]
drawings, so the name circular or cycle crossing number for the crossing number
bkcr2 would not be surprising. More typically, though, bkcr2 is known as the 2-page
crossing number or sometimes the (free) linear crossing number, e.g. [491], or the
biplanar convex crossing number [132, pg. 393].

There are two degrees of freedom in finding a combinatorial book-drawing: finding
the best order of vertices along the spine and determining which page each edge is
drawn in. We get interesting variants, if we restrict either of these. If one fixes the
order of the vertices along the spine, one obtains the fixed linear crossing number,
discussed in a separate entry. If one assigns each edge to a specific page, one gets
what could be called the partitioned book crossing number; we treat it as a special
case of the convex simultaneous crossing number (see entry for simultaneous crossing
number).

If instead of counting crossings, we count edges involved in crossings, we get the
book edge crossing number introduced by Bannister, Eppstein, and Simons [82], see
the entry on edge crossing number. The local crossing number of book drawings
has been investigated for one page, see the local convex crossing number (under
convex crossing number), for two pages [110], and even for k pages [482]. The local

43One has to keep in mind that Nicholson proved this result very early in the history of the crossing
number; his primary goal is an aesthetic layout (he restricts edge segments on each page to be drawn like
semicircles) which minimizes the number of crossings via a heuristic that modifies the permutation along
the spine.

44This result is due to Atneosen [63]. White [700, page 59] gives a very simple proof he attributes to
Babai in 1974 (essentially the same proof found later by Bernhart and Kainen [101]).
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book crossing number, or more precisely, the local k-page crossing number was first
formally introduced by Sripimonwan [647] using the name k-page book local crossing
number.

Complexity: The problem is interesting even for the special case of embeddings, that
is, bkcrk(G) = 0. Graphs of pagenumber 1 are the outerplanar graphs which can
be recognized in linear time. Graphs of pagenumber 2 are the planar subgraphs of
Hamiltonian graphs which implies that testing bkcr2(G) = 0 isNP-complete [189].45

Testing bkcrk(G) = 0 for fixed k > 4 is also NP-complete, since it is for a given
ordering of the vertices on the spine (one can easily construct a gadget that forces
a given ordering in a book-embedding); see the entry on the fixed linear crossing
number, which is the variant of the book crossing number in which the order of
the vertices is given (for an alternative proof, see [243]). As far as we know, the
complexity of testing bkcr3(G) = 0 is open. The only general complexity result
about the crossing number version we are aware of is the special case of the convex
crossing number, k = 1: testing bkcr1(G) 6 m is NP-complete [490], but fixed-
parameter tractable in m [81]. The computation of bkcr2(G) is fixed-parameter
tractable (with the sum of bkcr2 and the treewidth of G as the parameter) [81].

Relationships: bkcrk(G) 6 bkcrk−1(G) (by definition). bkcrk(G) 6 bkcr1(G)/k [632],
mon-cr(G) 6 bkcr2(G) (from definition) and so bkcr2k(G) > crk(G) (see k-planar
crossing number), also bkcr1(G) > cr(G) (obvious, since bkcr1 is the convex crossing
number). bkcr4(G) = 0 for all planar graphs G, and the upper bound is sharp [97,
712, 713, 715].46 If G is planar with maximum degree four, then bkcr2(G) = 0 [96].47

A crossing lemma is known: bkcrk(G) > m3/(37k2n2) − 27kn/37 for n = |V |,
m = |E| [636].

Values: For bkcr1, see the entry on convex crossing number. bkcr2(Kn) = Z(n) [2, 3]48, 49

(for earlier results, see [139, 215]) and bkcr2(Km,n) 6 Z(m,n) [215], with Z(n) =
X(n)X(n − 2)/4 and Z(m,n) = X(m)X(n), where X(n) = bn/2cb(n − 1)/2c.
Buchheim and Zheng [139] calculate bkcr2 for several small graphs. Asymptotic
results include limn→∞ bkcr2(Km,n)/Z(m,n) = 1 for 7 6 m 6 8 [215]. Faria, de
Figueiredo, Richter and Vrťo [273] give upper bounds on bkcr2(Qn) (improving work
by Madej [486]). Satsangi, Srivastava, Srivastava [608] show (computationally) that
bkcr2(K1,4,n) = n(n − 2) for 2 6 n 6 15. For values of bkcrk(Kn) for k > 3 and
small values of n as well as asymptotic bounds, see [6, 216]. If 2 < n/k 6 3, then

45The characterization of pagenumber 2 graphs is due to Bernhart and Kainen [101], but also see [144]
on the pre-history of that observation.

46The question whether bkcr3(G) = 0 may be true for all planar graph was a long-standing open
question, mentioned, for example, by Kainen [426]. Yannakakis [712, 713] proved that every planar graph
has pagenumber at most 4, but his example of a planar graph that needs 4 pages announced in [713]
was not included in [712], but was finally published in [715], roughly at the same time that [97]—by a
different set of authors—was published.

47For a survey on graphs with pagenumber 2, see [239].
48There are also results for bkcr2(Kn) if the number of edges on each page is restricted [12].
49An early thesis [574] effectively shows how to express the calculation of bkcr2(Kn) as a linear integer

program.
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bkcrk(Kn) = 1/2(n − 3)(n − 2k) [6]. For values of bkcrk(Kk+1,n) for 3 6 k 6 6,
asymptotic results for bkcrk(Kk+1,n), and upper bounds on bkcrk(Km,n) see [445].
See [647, Table 4.1, 4.3] for values and bounds for the local 2-page crossing numbers
of some small complete bipartite graphs.50

Open Questions: De Klerk, Pasechnik, and Salazar [216] introduce a function Zk(n) for
which they show that bkcrk(Kn) 6 Zk(n); they conjecture that equality holds (as we
saw, the case k = 2 is known to be true [2, 3]). De Klerk and Pasechnik [215] conjec-
ture bkcr2(Km,n) = Z(m,n). H DeKlerk, Pasechnik, and Salazar [445] ask whether
γ(k) := limm,n→∞ cr2k(Km,n)/ bkcrk(Km,n) goes to 1 as k goes to infinity? H Faria,
de Figueiredo, Richter and Vrťo [273] ask whether bkcr2(Qn) 6 cr(Qn); this is not
true for all graphs: as they point out, a non-Hamiltonian planar triangulation G
satisfies bkcr2(G) > 0 = cr(G). H Satsangi, Srivastava, Srivastava [608] conjecture
that bkcr2(K1,4,n) = n(n− 2) for all n; they also make some conjectures on the pa-
genumber of certain graph families, based on computational evidence. H Shahrokhi
asked whether bkcr2(G) = O(cr(G) +

∑
v∈V (G) deg(v)2) [132, Problem 9.4.9]. H

He, Sălăgean, Mäkinen, and Vřťo [378] show that bkcr2(Cm � Cn) 6 (m − 2)n for
n > m > 3, as is true for the standard crossing number, and supply computational
evidence that equality may hold; this would be implied by the stronger conjecture
by Harary, Kainen and Schwenk [356] that cr(Cm�Cn) = (m− 2)n for n > m > 3.

Also see: Convex crossing number, fixed linear crossing number, convex simultaneous
crossing number (under simultaneous crossing number), spine crossing number, an-
chored crossing number, book edge crossing number (under edge crossing number).

Book edge crossing number. See edge crossing number.

Bundled crossing number
Definition: A bundled crossing in a drawing of a graph is a pseudodisk in which every

edge in some edge-set E1 crosses every edge in another edge-set E2, and so that
there are no other crossings inside the pseudodisk. The bundled crossing number,
bc(D) of a drawing of G is the smallest number of disjoint bundled crossings that
cover all crossings of D. The bundled crossing number, bc(G), of G is the smallest
bundled crossing number of any intersection-simple drawing of G. Let bc′(G) denote
the variant of bc(G) in which we allow self-crossings and multiple crossings of edges.
If we require the drawing to be convex, that is, all vertices lie on the outer face, we
get the convex (circular, outerplanar) bundled crossing number, bc◦(G); we write
bc◦(G, π) for the fixed convex bundled crossing number, for which the order of vertices
along the outer face is determined by permutation π.

Reference: Fink, Hershberger, Suri, Verbeek [292]; Alam, Fink, Pupyrev [25].
Comments: Bundling edges was introduced in [400]. An earlier version of this survey

suggested studying the crossing number of drawings with bundled crossings based
on the related notion of confluent drawings and crossings in confluent drawings. The

50Comment on Table 4.1: The local 2-page crossing number of K4,5 is 2, since lcr(K4,5) = 2 [211].
The first open case appears to be the local 2-page crossing number of K3,6.
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bundled crossing number of a drawing was introduced by Fink, Hershberger, Suri,
and Verbeek [292]. Alam, Fink, Pupyrev [25] defined the bundled crossing number
of a graph.

Complexity: Determining the bundled crossing number of a given drawing is NP-
complete [292], as is computing bc(G) for a given G [160]. For sufficiently dense
graphs, bc(G) can be approximated in polynomial time [25]. bc◦(G, π) can be ap-
proximated to within a factor of 16 in polynomial time [25].51 Both bc◦ and bc◦

′

are fixed-parameter tractable [160].
Relationships: cr(G) 6 bc(G) (every crossing can be viewed as a bundled crossing).

bc(G) > bc′(G) = γ(G), where γ(G) is the (orientable) genus of G, and the inequal-
ity can be strict [25], and bc(G) 6 6 bc′(G) [619]. bc(G) > (m − (3n − 6))/6, and
bc◦(G) > (m− (2n− 3))/6.

Open Questions: What are bc(Kn), bc(Km,n), and bc(Qn)?
Also see: Degenerate crossing number, confluent crossing number, Metro-line crossing

number.

Centrally symmetric crossing number
Definition: A drawing of a graph is centrally symmetric if it invariant under a rotation

around the origin by 180 degrees. The centrally symmetric crossing number crcs(G)
is the smallest number of crossings in a centrally symmetric drawing of G. The cen-
trally symmetric rectilinear (or geometric) crossing number, crcs(G) is the smallest
number of crossings in a centrally symmetric, rectilinear drawing of G. For crcs we
allow the drawings to be degenerate (more than two edges may cross in a point,
each pair of edges crossing in the point counts separately). Both crcs and crcs may
be infinite.

Reference: Based on Ábrego, Dandurand, Fernández-Merchant [5].
Comments: Ábrego, Dandurand, and Fernández-Merchant [5] determine crcs(K2n) with-

out naming the crossing number, but introducing the notation. For rectilinear draw-
ings multiple crossings have to be allowed (otherwise very few graphs would have
finite crcs). Non-bipartite graphs must have one vertex in the origin in a centrally
symmetric drawing; this vertex blocks straight-line edges between symmetric ver-
tices, so it may be of interest to consider at geodesic drawings on the sphere. Perl-
stein and Pinchasi [569] proved that a graph has a centrally symmetric embedding
on the sphere if and only if it is a generalized thrackle (also see [613, Theorem 3.11].

Complexity: NP-complete for crcs and ∃R-complete for crcs.52 Complexity of the em-
bedding problem is open.

Relationships: cr(G) 6 crcs(G), cr(G) 6 crcs(G) (by definition). crcs(G) 6 crcs(G).53

Both crcs and crcs violate what we called the embedding axiom: crcs(K3) = crcs(K3) =

51If the drawing is fixed, an 8-approximation is known [53].
52Using crcs(G+G) = 2 cr(G) and crcs(G+G) = 2 cr(G).
53Multiple crossings in the rectilinear drawing can be removed by perturbing edges.
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∞. crcs(G) = 0 implies crcs(G) = 0.54

Values: crcs(K2n) = 2
(
n
4

)
+
(
n
2

)2 [5].
Open Questions: Which graphs G satisfy crcs(G) = 0 or crcs(G) = 0? H Which

graphs have finite centrally symmetric (rectilinear) crossing number? H What are
crcs(Km,n) and crcs(Km,n)? H crcs(M4n) = 1, where Mk is the Möbius ladder on k
vertices. What about crcs(M4n+2)? H Can crcs(G) be bounded in crcs(G)?

Also see: Monotone crossing numbers.

Centrally symmetric rectilinear crossing number. See centrally symmetric crossing
number.
Circular bundled crossing number. See bundled crossing number.
Circular crossing number. See convex crossing number.
Circular k-partite crossing number. See convex crossing number.
Clockwise crossing number. See cyclic level crossing number.

Confluent crossing number
Definition: A confluent drawing (sometimes known as a train track) consists of branches

(simple curves with two connection points) and switches (homeomorphs of the sym-
bol ≺, so three connection points), and nodes. Each of the three connection points
of a switch is incident to a node, or to the connection point of exactly one branch
or one switch. Each connection point of a branch is incident to a connection point
of a switch or a node. The drawing is smooth at connection points and the only
crossings allowed are crossings between branches. A confluent drawing represents
a graph G = (V,E) as follows: V is the set of nodes of the drawing, and an edge
in E corresponds to a smooth curve connecting its endpoints (such a curve cannot
make a sharp turn between the upward and the downward branch of the ≺) without
turning around. Note that a single branch or switch can carry many edges. The
confluent crossing number of a graph G is the smallest number of crossings required
in a confluent drawing of G.

Reference: Based on Eppstein, Goodrich, Meng [263], also Newberry [531].
Comments: Confluent drawings were introduced by Dickerson, Eppstein, Goodrich, and

Meng [223] to reduce the number of crossings (which they do dramatically) while
emphasizing the connectivity structure visually. A confluent drawing looks like a
train track and track crossing number would be a good alternative name. Epp-
stein, Goodrich, and Meng [263] define this crossing number implicitly as a crossing
minimization problem. They restrict themselves to the special case of two-layered
drawings where G is bipartite (each partition being a layer) and distinguish between
various levels of depth. So, in effect, they consider a bipartite confluent crossing
number. One could consider variants in which switches are also counted as crossings
(see Metro-line crossing number). Newberry [531] earlier introduced the technique

54The Tutte embedding [678] of a plane graph is symmetric if one starts with a symmetric arrangements
of vertices on the outer face.
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of edge clustering for layered drawings of directed graphs with the same goal of re-
ducing the total number of crossings. Edges that share the same sources and targets
can be bundled (or concentrated) into edge concentration nodes (which require new
levels).

Complexity: Open, even the special case of testing whether a graph has a confluent
embedding (no crossings) is not known to be NP-hard (although it is known to lie
in NP [411]).

Values: Complete and complete bipartite graphs have confluent crossing number 0, see
the crossing-free confluent drawing of K5 in the margin.

Also see: Metro-line crossing number.

Constrained crossing number
Definition: A partially drawn graph is a graph G = (V,E) with a subgraph H ⊆ G and

a drawing H of H in the plane. The constrained crossing number of G given H is
the smallest number of crossings in any drawing of G that contains H minus the
number of existing crossings in H.

Reference: Mutzel, Ziegler [526, 527] and Hamm, Hliněný [349].
Comments: Mutzel, Ziegler defined a more restricted variant: they required H to be a

connected graph with vertex set V and H to be an embedding. In that case, H
can be described completely by its rotation system. Hamm and Hliněný allowed
partial drawings and named the resulting variant partially predrawn crossing num-
ber, written pd-cr(G,H).55 This version had earlier been introduced as a crossing
minimization problem [310]. If H is not an embedding, then the drawing of G may
not be simple, as the Figure in the margin shows, where E(G)−E(H) is the dashed
edge, and the outer face is empty. The notion of a simple constrained crossing num-
ber is implicit in [349].56 It is known to be NP-complete to test whether there is a
simple drawing of G extending a plane H, even if E(G)−E(H) = e [54]. Hamm and
Hliněný also introduce the partially predrawn c-planar crossing number in which the
drawing of G must have local crossing number at most c.

Complexity: NP-complete (since crossing number is a special case); the restricted case
defined by Mutzel and Ziegler is alsoNP-complete since fixed linear crossing number
is a special case. Testing whether there is an embedding of G containing H is in
linear time [43]. The constrained crossing number is fixed parameter tractable [349,
Theorem 1.1], and this remains true if the resulting drawing of G has to have
bounded local crossing number [349, Theorem 1.3].

Open Questions: Is the constrained crossing number fixed-parameter tractable for pa-
rameter k = |E(G)| − |E(H)|?

55Earlier versions of the survey restricted the constrained crossing number to partial embeddings, but
partial drawings are a natural generalization.

56If simplicity of G does not matter, then one can planarize H by introducing dummy vertices for
crossings.
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Also see: Fixed linear crossing number, crossing number of graphs with rotation, map
crossing number, wire crossing number.

Convex crossing number
Definition: The convex crossing number of a graph G, bkcr1(G), is the smallest number

of crossings in a drawing of G in which all vertices of G lie on the boundary of a
convex set and edges have to lie within the convex set (a convex drawing of G).
If G is a k-partite graph we can require that all vertices belonging to a particular
partition occur consecutively on the boundary. Call this variant the convex k-partite
crossing number of G.

Reference: Melihov, Kurĕıčik, Seljankin, Tiščenko [500], Mäkinen [487], Kainen [428],
Riskin [601].

Comments: The convex crossing number is the same as bkcr1, the 1-page book crossing
number; other names include outerplanar crossing number [632] and circular crossing
number [643]. Extremal problems that, in effect, ask for the calculation of the convex
crossing number for certain graphs are even older: In 1839, Gräfe asks for bkcr1(Kn),
and derives a rather complicated (but correct) formula to compute it [327, p.200]57;
a brief note in the “Archiv für Mathematik und Physik” by a high-school student
proves bkcr1(Kn) =

(
n
4

)
inductively (Englert [257]); a follow-up communication by

a better-known mathematician includes another counting argument, as well as the
now common argument counting K4-subgraphs (Saalschütz [604])58; in 1889 the
problem appears as an exercise in an algebra textbook (Chrystal [188, p.34]). A
convex straight-line drawing of a K9 can be found in an early, illustrated edition of
Ramon Llull’s “Ars Magna” [483] from 1517. Athanasius Kircher includes the same
drawing in his 1669 “Ars Magna Sciendi” [441, p.8]. See Singmaster [642, 5.Q.1] for
related puzzles. The variant bkcr1(G, π) in which the order of the vertices along the
boundary is prescribed is a special case of the fixed linear crossing number. Accord-
ing to the reviews on zbMATH and MathSciNet, the paper by Melihov, Kurĕıčik,
Seljankin, Tiščenko [500] studies the convex crossing number for fixed and changing
orderings of the vertices. Mäkinen [487] mentions the possibility of minimizing edge
crossings in convex drawings, but immediately dismisses it, preferring circular dila-
tion to optimize drawings. Kainen [428] introduced the local outerplanar crossing
number, which he abbreviated as locr(G), and which we would call the local convex
crossing number), in which we try to minimize the largest number of crossings along
any edge; drawings with local convex crossing number at most 1 have been called

57The second edition of the book, which is available online, does not contain the general formula, it
only computes the values for K6 and K9 [328, p.193].

58Gräfe, Englert and Saalschütz phrase the problem as counting the number of (inner) crossings of
diagonals in a convex n-gon; Gräfe intriguingly suggests that the number does not just depend on n,
e.g. when multiple crossings are counted as one (the way the degenerate crossing number counts), as
well as when the drawing is not convex; he follows up a bit on the first suggestion, but not the second.
Saalschütz asks the reader to determine the number of regions in the convex drawing of Kn.
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outer 1-planar [64, 253], also see [110].59, 60 The local k-page crossing number (see
book crossing number) generalizes this notion to more than one page. Riskin [601]
introduced the convex k-partite crossing number as the circular k-partite crossing
number.61 For k = 2 it equals the bipartite crossing number, for k = |V | it reverts
to the convex crossing number. For a version maximizing the number of crossings,
see the convex maximum rectilinear crossing number (under maximum rectilinear
crossing number). One could also imagine allowing multiple nested layers of points
in convex position; for the special case of rectilinear drawings of the complete graph,
this has been studied in [484]; that approach could also be viewed as a refinement
of the rectilinear crossing number. Allowing multiple, superimposed, layers, we can
define the biplanar convex crossing number as the smallest number of crossings be-
tween edges of the same color in any two-coloring of the edges of G in a convex
drawing of G. This is the same as the 2-page crossing number (see under book
crossing number). Kainen [423] introduced the average outerplanar crossing num-
ber ν̂1(G), as the average of bkcr1(G, π) over all π, but strictly speaking we would
not consider it a crossing number.

Complexity: NP-complete [490]. bkcr1(G, π) can be computed in time O(n2) [242].
Testing whether the local convex crossing number is at most 1 is in linear time [64].

Relationships: bkcr1(G) > cr(G) for all graphs G (from definition). There is a cross-
ing lemma, bkcr1(G) > m3/(27n2) [629], an improved lower bound has been an-
nounced in [8]. bkcr1(G) = O((cr(G) +

∑
v∈V (G) deg(v)2) log n) [628]. bkcr1(G) 6

(m+ 1)3/(3(n− 2)2 [8]. Graphs with local convex crossing number at most k have
minimum degree at most (4k + 1)1/2 + 1 [162].

Values: Obviously, bkcr1(Kn) =
(
n
4

)
[257, 604]. bkcr1(Km,n) = 12n(m − 1)(2mn −

3m− n), if m|n [599]. For results on the convex k-partite crossing number of Km,n

see [600], for results on Kn,n,...,n, see [302]. Let Mm,n = Pm � Pn denote the m× n
mesh. bkcr1(M3,n) = 2n−3 if n even and 2n−4 otherwise, n > 3 [302], bkcr1(M4,n) =
4(n−2) for n > 2 [377]. Asymptotically, bkcr1(Mn,n) = Ω(n2 log n) [629]. For Halin
graphs, see [302], for circulant graphs see [377], and for the cone graph Cn ∗ K2

see [426].
Open Questions: Ábrego and Fernández-Merchant conjecture that the convex midrange

crossing constant exists and equals 1/3; that is, if we define bkcr1(n,m) as the mini-
mum of bkcr1(G) over all graphs G with n vertices andm edges, they conjecture that
the limit of bkcr1(n,m)n2/m3 as n goes to infinity and n� m� n2 equals 1/3. H
What is bkcr1(Cm�Cn)? Kainen [423] showed that bkcr1(Cm�Cn) 6 (m3 +3n2)/2
for even m and n.

59Eggleton [253] introduced a degenerate version of outer 1-planarity, see the discussion under the
entry for local crossing number.

60We avoid this term, since there is a conflicting notion of outer k-planarity.
61There really is no reason to restrict this crossing number to k-partite graphs, it also makes sense if

we allow crossings within each partition. Arguably, this is exactly the crossing number variant discussed
by Bronfenbrenner [133] in a 1945 sociology paper unearthed by David Eppstein [261].
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Also see: Fixed linear crossing number, bipartite crossing number, tile crossing number,
disk crossing number (under map crossing numbers), convex simultaneous crossing
number, biplanar crossing number, book crossing number.

Convex k-partite crossing number. See convex crossing number.
Convex maximum rectilinear crossing number. See maximum rectilinear crossing
number.
Convex simultaneous crossing number. See simultaneous crossing number.
Cross index. See local crossing number.
Crossing edge number. See edge crossing number.

Crossing number
Definition: The crossing number of G, cr(G), is the smallest number of crossings in any

drawing of G. We write crΣ(G) for the crossing number of G on surface Σ; crSg is also
known as the genus g crossing number, crS1 is the toroidal crossing number, crN1 is
the projective plane crossing number and crN2 is the Klein bottle crossing number. If
the graph is equipped with a rotation (embedding) scheme ρ, we write crΣ(G, ρ) for
the crossing number of the graph with the prescribed rotation (embedding) scheme
ρ.

Reference: Turán [677], Harary and Hill [354], also Harary [352, 353].
Comments: For a detailed account of the early history of the crossing number, see

Beineke and Wilson’s “The Early History of the Brick Factory problem” [93], but
also see Remark 4. Influenced by Turan’s problem [677], research during the ini-
tial phase (1950s) focussed on the crossing number of the complete bipartite graph
(Zarankiewicz [717], Urbanik [683]) and in the 1960s expanded to include investiga-
tion of complete graphs (e.g. Guy [338], who credits Anthony Hill and C.A. Rogers,
and writes that Erdős claimed to have been thinking about the problem for 20 years;
also Saaty [606], Goodman [326]). As far as we can tell, the first paper defining the
crossing number for arbitrary graphs is due to Harary and Hill in 1963 [354], and
one of the first papers in which the crossing number of an infinite family of graphs
was determined is by Guy and Harary [345] showing that Möbius ladders have cross-
ing number 1. The toroidal crossing number was introduced in [347, 457], and the
Klein bottle crossing number together with general surface crossing numbers in [457]
(also [421]).

Complexity: NP-complete [315], remains NP-complete for almost planar graphs [147],
even if there are only a small number of high-degree vertices [386], the graphs are
cubic [384] and if the drawing of the graph is restricted by a given rotation (embed-
ding) system ρ [564]. There is a constant c > 0 so that approximating the crossing
number to within a factor of c (even for cubic graphs) is NP-complete [145, 577],
but it can be approximated to within a polynomial bound for graphs of bounded
degree [164, 190, 191], and a subpolynomial approximation algorithm has been an-
nounced [192]. The embedding problem crΣ(G) = 0 can be solved in linear time
for any (compact orientable or non-orientable) surface Σ [508]. The surface crossing
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number problem, crΣ(G), remains NP-complete for all surfaces Σ (via an easy re-
duction from the planar case). Testing cr(G) 6 k can be decided in time O(f(k)n),
that is, the problem is fixed-parameter tractable [332, 440].

Relationships: cr(G) > 1/29 m3/n2 for m > 7n, a result known as the crossing
lemma [14].62 The lower bound can be refined for graphs with an imbalanced degree
sequence [300, 544], and it can be improved for sufficiently dense graphs [516]. There
are crossing lemmas for multigraphs, cr(G) = Ω(m3/(kn2)), where k is an upper
bound on the edge multiplicity, and m > 5nk [660]. This result is tight in general,
but the dependence on the multiplicity can be removed if additional assumptions
are made [298, 437, 548, 549]. The limit of cr(G)n2/m3 as n goes to infinity, and
n� m� n2, exists and is denoted as γ, and known as the midrange crossing con-
stant [206, 207, 266, 543, 545, 552]. For Σ ∈ {Sg, Ng} we have crΣ(G) = Ω(m3/n2)
if 0 6 g < n2/m and crΣ(G) = Ω(m2/g) if n2/m 6 g 6 m/64 [635]. Asymptotically,
cr(G) = O(g(crSg(G) + n)) for graphs of bounded degree as long as g = o(n) [232].
If crΣ(G) = 0, then cr(G) 6 cΣ∆n, where ∆ is the maximum degree of G [125],
for an algorithmic view of this result, see [179]. The behavior of the sequence
crS0(G), crS1(G), crS2(G), . . . (and similarly for non-orientable surfaces) has been
studied by Širáň and others, see [496] for a recent survey and results.

Values: See [197] for a comprehensive survey of bounds and values of the crossing
number.63 The planar crossing number of the complete graph Kn is at most
Z(n) = X(n)X(n − 2)/4, where X(n) = bn/2cb(n − 1)/2c [112, 338].64 Guy’s, or
Harary and Hill’s, or Hill’s conjecture states that cr(Kn) = Z(n) [93, 354]; the con-
jecture is known to be true for n 6 12 [559], and cr(K13) ∈ {219, 221, 223, 225} [498].
(For a computer-free proof that cr(K9) = 36, see [499].) For a strengthened version
of the conjecture, see [75]. It is known that cr(Kn) > 0.985 Z(n) [78].65 The cross-
ing number of the complete 2-partite graph Km,n is conjectured to be given by
Zarankiewicz’s function Z(m,n) = X(m)X(n), which counts the number of cross-
ings in Zarankiewicz’s drawing ofKm,n. This is now known as Zarankiewicz’s conjec-
ture.66 As in the case for complete graphs, the upper bound cr(Km,n) 6 Z(m,n) is
easy, but the lower bound is hard. The conjecture is known to be true for n 6 6 [444]
and n 6 8,m 6 10 [705]. cr(K7,n) > 2.203n2 − 4.5n > 0.979 Z(7, n) [233], build-
ing on [214]. cr(Km,n) > 0.8594 Z(m,n) for m > 9 and n sufficiently large [446].
For every m there is an N(m) so that if cr(Km,n) = Z(m,n) for all n 6 N(m),

62The original versions of the crossing lemma (with smaller constants), but m > 4n, are due to
Ajtai,Chvátal, Newborn, Szemerédi [24] and Leighton [477]. The previous best bound was cr(G) >
1024/31827 m3/n2 for m > 103/16 n [543].

63The official journal version is [198], but the authors promise to keep updating the arXiv version [197].
64It should be pointed out that verifying the upper bound is a tedious exercise in counting. Mohar [511]

discovered a geodesic embedding of Kn for which the bound can be verified much more easily.
65This improves a lower bound of cr(Kn) > 0.8594 Z(n) for sufficiently large n which follows by

combining a lower bound on cr(Km,n) from [446] with the main theorem from [589] discussed below.
66Zarankiewicz [717] claimed equality, but his proof (like Urbanik’s [683]), contained a subtle error

which was later found by Kainen and Ringel (as described by Guy [341]), and by Blažek, as mentioned
in [454].
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then cr(Km,n) = Z(m,n) for all n [186].67 If bm/2cbn/2c divides cr(Km,n) for all
m, n, then Zarankiewicz’s conjecture is true (and a similar result holds for Hill’s
conjecture) [295]. The conjectures for complete and complete bipartite graphs are
related: the truth of Zarankiewicz’s conjecture implies that limn→∞ cr(Kn)/Z(n) =
1 [424]; in fact, limn→∞ cr(Kn)/Z(n) > limn→∞ cr(Kn,n)/Z(n, n) [589], so asymp-
totic improvements on cr(Kn,n) lead to corresponding improvements on cr(Kn).68

For complete 3-partite graphs we know that cr(K1,3,n) = Z(4, n) + bn/2c and
cr(K2,3,n) = Z(5, n) + n [57], cr(K1,4,n) = n(n − 1) [392, 408]. It is known that
cr(K1,m,n) = Z(m+1, n+1)−bm/2cbn/2c if Zarankiewicz’s conjecture is true [392,
709, 710]. cr(K2,4,n) = Z(6, n) + 2n [394]. cr(K3,3,n) > Z(6, n) + n + 1 [323],69

and cr(K3,3,n) = Z(6, n) + 2n + 2bn/2c + 1 if Zarankiewicz’s conjecture is true for
m = 7, and the cases up to n = 2− are true [391]. For complete 4-partite
graphs we have cr(K1,1,1,n) = X(n) [368], cr(K1,1,4,n) = Z(6, n) + 2n+ 2bn/2c [654],
cr(K1,2,2,n) = Z(5, n) + b3n

2
c [389], cr(K2,2,2,n) = Z(6, n) + 3n [393]. For complete

5-partite graphs cr(K1,1,1,1,n) = Z(4, n) + n [703], also [389], and cr(K1,1,1,2,n) =
Z(5, n) + 2n [389]. For complete k-partite graphs Harborth [368] found a func-
tion Z(n1, . . . , nk) for which cr(Kn1,...,nk

) 6 Z(n1, . . . , Znk
), and he conjectures

this upper bound to be the correct value (Harborth’s conjecture).70 It is known
that 0.666 Z(n1, n2, n3) 6 cr(Kn1,n2,n3) 6 Z(n1, n2, n3) [322].71, 72 For the projec-
tive plane, crN1(Kn) is known up to n 6 10 and there are asymptotic bounds:
(41/273)

(
n
4

)
6 crN1(Kn) 6 cN1

(
n
4

)
for sufficiently large n and cN1 < 3/π2 [55, 255,

457].73 It is known that crN1(K4,n) = dn/3e(2n−3(1+dn/3e)) [395]. Also, crN1(C3�
Cn) = n−1 for n > 5 and crN1(C3�C4) = 2 [603]. For other graphs in the projective
plane, see [167, 396, 485, 692, 693]. For the torus, crS1(Kn) is known for n 6 10
and crS1(Km,n) for m,n 6 6 [348]. Asymptotically, (23/210)

(
n
4

)
6 crS1(Kn) 6

(22/81)
(
n
4

)
[255, 348]74 and 1/15

(
m
2

)(
n
2

)
6 crS1(Km,n) 6 1/6

(
m−1

2

)(
n−1

2

)
[347]. Also,

crS1(K3,n) = d(n − 3)2/12e [347] and crS1(K4,n) = bn/4c(2n − 4(1 + bn/4c)) [390,
67For a partial extension to arbitrary surfaces, see [586].
68Apparently Székely phrases this as “If Zarankiewicz’s conjecture is asymptotically X% true, then the

Harary-Hill conjecture is also asymptotically X% true”, thanks to one of the referees for supplying that
quote. Székely’s survey [662] contains more details on the current status of the Zarankiewicz conjecture.

69The paper also derives an upper bound which agrees with the general upper bound found by Har-
borth [368].

70Harborth calls his function S. He mentions a paper by Blažek and Kolman [113] which contains a
similar expression, without proof; a proof may be contained in the hard-to-locate [114].

71The authors of [322] use a different expression A(n1, n2, n3) which equals Z(n1, n2, n3) in values.
Their drawings differ from Harborth’s [368] in that they are rectilinear, leading them to conjecture that
cr(Kn1,n2,n3

) = cr(Kn1,n2,n3
) = Z(n1, n2, n3).

72There are many further results for (planar) crossing numbers of complete k-partite graphs, hyper-
cubes, Cartesian (and Kronecker) products of cycles, paths, and stars and other families of graphs; for a
survey on these results, see [197].

73Koman’s upper bound of (3/16)Z(n) stood for nearly 50 years, until Elkies [255] showed that a
randomized construction a la Moon [518] gives a better bound of 3/π2. Arroyo, McQuillan, Richter,
Salazar, and Sullivan then showed that Elkies construction is not asymptotically optimal.

74Elkies [255] bound of 22/81 improves a much older result by Guy, Jenkyns and Schaer [348] using a
randomized construction.
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397]. There are asymptotic bounds for crS1(Km,n) [347]. crS1(C3
n) = 0 for n > 7,

and crS1(C4
n) = n for n > 9 [355], where Gk is the k-th power of G.75 For the

crossed toroidal grid graph Xm,n, which is embeddable on the Klein bottle, it is
known that crS1(X3,n) = 1 and crS1(X4,n) = 2 for n > 4 and there is an up-
per bound for crS1(Xm,n) conjectured to be tight [597]. For the Klein bottle,
crN2(Kn) is known for n 6 9 [457] and there are asymptotic bounds: (1/14)

(
n
4

)
6

crN2(Kn) < (59/216)
(
n−1

4

)
for n > 16 [456]. crN2(Km,n) is known for 3 6 m 6 6

and n 6 N(m) with N(3) = 12, N(4) = 8, N(5) = N(6) = 6; for these ranges
crN2(Km,n) = crS1(Km,n) [455]. crN2(Cm � Cn) is known for m 6 6 [598] and for
sufficiently large m and n [418].76 For the double torus, crS2(K9) = 4 [602].77 For
the triple and quadruple torus it has been announced that crS3(K10) = 3, and
crS4(K11) = 4 [476].

Exact values of crΣ(K3,n) are known for all surfaces Σ [388, 587]. Lower and upper
bounds on crΣ(Kn), crΣ(Km,n), and crΣ(Qn) are surveyed in [627, 635]. Gross [333]
showed that crSg(Op) = p(p − 1)/2, where p ≡ 1 mod 4 is a prime power, g =
(p− 1)(p− 4)/4, and Op = K2p − pK2, the octahedral graph.

Open Questions: There is a well-known conjecture by Harary, Kainen and Schwenk
[356] that cr(Cm�Cn) = n(m−2) for n > m > 3; the conjecture is known to be true
for 3 6 m 6 7 [17, 92, 447, 584, 592], and for n > m(m+1), m > 3 [324]; for surveys
predating the more recent developments (6 6 m 6 7, and n > m(m+ 1)), see [590,
630]. It is also known that for every m there is a cm > 0 so that cr(Cm � Cn) =
n(m − 2) − cm for n > 3 [575]. A weaker version of the conjecture, suggested
by computational evidence in [378], would be that bkcr2(Cm � Cn) = n(m − 2).
H Erdős and Guy [266] conjectured a value for cr(Qn) which was disproved after
nearly fifty years by Yang, Wang, Wang and Zhou [711].78 The first open value is
cr(Q7) 6 1744. H Chia and Lee [169] conjecture that cr(Kn−e) = Z(n)−

(b(n−1)/2c
2

)
(true for n 6 12), and cr(Km,n − e) = Z(m,n) − b(m − 1)/2cb(n − 1)/2c (true
for m ∈ {3, 4}). H Czabarka, Singgih, Székely, and Wang [207] ask whether the
midrange crossing constant (defined above) γ = 8/(9π2) (in that case, it would
equal the rectilinear midrange crossing constant). H DeVos, Mohar, and Šámal
asked whether it is true that in any cr-minimal drawing of the disjoint union of two
graphs G1 and G2 on a surface Σ, the drawings of G1 and G2 are disjoint? Trivially
true for plane, and also known for projective plane [219] and the Klein bottle [88],
also see [148]. H Böröczky, Pach, and Tóth [125] ask whether cr(G) = O(g∆n),
where g is the genus of G, and ∆ its maximum degree (this is known to be true of
the torus [550]). H Shahrokhi, Székely, and Sýkora [635] conjecture that crΣ(Kn) =
O(n4/g), where Σ ∈ {Sg, Ng}. H Richter asked whether cr(G) > cr(Kn) implies
that cr(G + v) > cr(Kn+1), where + denotes the join of two graphs; the answer

75Gk, the k-th power of G, is a graph on V (G) with edge uv if G contains a path of length at most k
between u and v.

76See Riskin’s MathSciNet review MR1974148 of that paper.
77This refuted Conjecture 3.3 in [421].
78Also see discussion in [197, Section 6.1.1].
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turns out to be no, but it is open how small the gap between cr(G + v) and cr(G)
can be. For multigraphs, the gap is cr(G)1/2 [29]; the exact gap is also known for
graphs with cr(G) 6 7 [29, 229]. H How hard it is to decide whether G is 4-colorable
for graphs G with cr(G) 6 1 [317].79 H Does every graph with crossing number at
least 2 contain a subgraph with crossing number 2? [115, 581, 582].80 HMohar [511]
shows that for Kn −M , where M is a (not necessarily perfect) matching, we have
cr(Kn −M) 6 Z(n)− |M |/2 (bn/2c − 1)(bn/2c − 2) and conjectures that equality
holds. H Ho [397] conjectures that the crossing number of K4,n on a surface Σ of
Euler genus eg = eg(Σ) is b n

eg +2
c(2n−(eg +2)(1+b n

eg +2
c)) (which is known to be an

upper bound).81 H Sequence A110507 in OEIS [412] is defined as a(n), the smallest
order of a cubic graph with crossing number n. The first open value is a(12) [199,
699]. H For two conjectures by Eric W. Weisstein, see [413] on cr(Kn,n−M), where
M is a perfect matching in Kn,n, and [413] on cr(nP2). H Is it true that the number
of good drawings of a 3-connected graph G is O(f(cr(G))n2) [686]?82 H If G is a
4-connected graph with cr(G) 6 3, is G Hamiltonian? This is true for cr(G) 6 2
and false for cr(G) 6 6, see [541].

Also see: Stable crossing number.

Crossing number of abstract topological graph
Definition: A graph G with a symmetric relation R over E(G) is called an abstract

topological graph or AT-graph. A drawing D is a weak realization of (G,R) if every
pair of edges (e, f) that cross in D belongs to R. The crossing number of (G,R),
cr(G,R), is the smallest number of crossings in a weak realization of (G,R). If there
is no weak realization of (G,R) we let cr(G,R) =∞.

Reference: Kratochvíl [463].
Comments: Kratochvíl introduced the crossing number crat(G,R) of an abstract topo-

logical graph (G,R) in his study of string graphs. Intersection graph theory studies
graphs (G,R) which have weak realizations for restricted R. Trivially, if R contains
no edges, then G has a linear number of edges (since it is planar). Graphs G which
are weakly realizable with an R excluding the complete graph Kk are known as
k-quasi-planar. Linear bounds on |E(G)| are also known if R excludes a complete
bipartite [542] or tripartite [669] graph. The study of twisted graphs [10, 369] falls
into this category. This crossing number can be viewed as a special case of the
weighted crossing number (weights being restricted to 1 and ∞).

79Oporowski and Zhao [536] showed that such graphs are always 5-colorable, and 3-colorability is
NP-complete, since it is for planar graphs [313].

80This was claimed to be true in [115], a paper on crossing numbers in linguistics (keyword: eo-
dermdromes); Richter established the conjecture for several special cases of graphs, including cubic
graphs [581]. The conjecture does not extend to crossing number 3, since K3,5 has crossing number
4, but all its subgraphs have crossing number at most 2.

81It appears from [390] that an earlier version of [397] contained an attempted proof of this result for
the Klein bottle, i.e. eg = 2, but there were missing cases.

82This could be a first step towards understanding whether graph isomorphism is fixed-parameter
tractable for graphs with bounded crossing number.
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Complexity: NP-complete [615].
Relationships: cr(G) 6 cr(G,R) (by definition). There are abstract topological graphs

(G,R) for which cr(G,R) > 2cn for some c > 0 [463, 465], where n = |V (G)|. If
cr(G,R) <∞, then cr(G,R) 6 m2n [615], where m = |E(G)| and n = |V (G)|.

Open Questions: Kratochvíl [463] conjectured that in any crossing minimal weak re-
alization of (G,R) any edge which is involved in crossings is crossed by some edge
exactly once.

Also see: Weighted crossing number, quasi crossing number.

Crossing parameter. See local crossing number.

Cyclic level crossing number
Definition: A cyclic k-level graph G = (V,E, `) is a directed graph (V,E) with a leveling

`, a mapping from V to {1, . . . , k} which assigns a level `(u) to each vertex u. Fix
k rays, all starting at the origin, and number them 1 through k in clockwise order.
A cyclic drawing of a cyclic k-level graph is a drawing in which a vertex u is placed
on ray `(u), and a directed edge (u, v) is drawn in the clockwise wedge between rays
`(u) and `(v) so that the edge crosses all rays starting at the origin (not just the
k rays we chose) at most once. The cyclic level crossing number of a cyclic k-level
graph is the smallest number of crossings in a cyclic drawing of the graph.

Reference: Based on Bachmaier, Brandenburg, Brunner, Hübner [69].
Comments: The idea of realizing a leveled graph in a cyclic drawing can be found in a pa-

per by Sugiyama, Tagawa and Toda [656], where cyclic k-level graphs are introduced
in an appendix under the name recurrent hierarchies. The crossing minimization
problem for cyclic k-level graphs is studied by Bachmaier, Brandenburg, Brunner,
Hübner [69], without introducing a name for the corresponding crossing number.
The authors also refer to a 2009 master’s thesis by Hübner, which is entitled “A
global approach on crossing minimization in hierarchical and cyclic layouts of lev-
eled graphs”. A cyclic layout could be visualized in a non-cyclic way by repeating
one of the layers at the beginning and end; this is what Bertin [102, Figure 4, p.109]
does in his visualization of a tripartite perfect matching in which the order of ver-
tices is fixed in each partition; he uses the number of crossings between two layers
as a measure of similarity: “The nearer the order between the columns, the less
numerous are the intersections.”.

One could also consider a clockwise crossing number, in which a directed graph
G = (V,E) is given, and the problem is to find a leveling ` that minimizes the cyclic
level crossing number of (V,E, `). This clockwise crossing number is to the cyclic
level crossing number what the upward crossing number is to the leveled crossing
number.

Complexity: NP-complete, since the bipartite crossing number is a special case. The
embedding problem can be solved in quadratic time [68].
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Cylindrical crossing number
Definition: A cylindrical drawing of a graph G is a drawing in which all vertices of G

lie on two concentric circles, and no edge crosses a circle. The cylindrical crossing
number of G, cr}(G), is the smallest number of crossings in a cylindrical drawing
of G. For a bipartite G a bipartite cylindrical drawing is a drawing in which the
vertices in the same part of the partition lie on the same circle, and the inner face
of the small circle, and the outer face of the large circle are empty. For a bipartite
graph G, the bipartite cylindrical crossing number, cr 2 (G), is the smallest number
of crossings in a bipartite cylindrical drawing of G.

Reference: Ábrego, Aichholzer, Fernández-Merchant, Ramos, and Salazar [2], based
on earlier suggestion by Richter and Thomassen [589]. The bipartite cylindrical
crossing number was introduced by Ábrego, Fernández-Merchant, and Sparks [13],
there written as cr}.

Comments: Bipartite cylindrical drawings were introduced in Richter and Thomassen [589]
as a stepping stone to constructing cylindrical drawings of Kn, which is a class of
drawings realizing the conjectured minimal crossing number Z(n) of Kn, where
Z(n) = X(n)X(n− 2)/4, and X(n) = bn/2cb(n− 1)/2c.83 If in addition to requir-
ing the inner and outer face to be empty, we fix the cyclic order of the vertices on the
concentric circles, we obtain the annulus crossing number. The cylindrical crossing
number for general (non-bipartite) graphs was introduced in [2]. One way to gen-
eralize the cylindrical crossing number is to allow t circles (arbitrarily located, but
disjoint), on which all vertices have to lie; this leads to the t-circle crossing number
and the t-partite circle crossing number introduced in [243].

Complexity: Testing whether cr}(G) = 0 is NP-complete [243]. Testing whether
cr 2 (G) 6 k is NP-complete for bipartite graphs G, an easy reduction from the
bipartite crossing number, while cr 2 (G) = 0 can be decided in linear time (it is the
same as radial level planarity for two levels).

Values: cr}(Kn) = Z(n) [2]. cr 2 (Kn,n) = n
(
n
3

)
and cr 2 (Km,n) is known for all m,n [13,

589].
Also see: Radial crossing number, annulus crossing number (under map crossing num-

ber), t-circle crossing number.

Degenerate crossing number
Definition: The degenerate crossing number of a drawing D of a graph G is the number

of points in which edges cross each other (that is, we count each point at which
crossings occur only once, not

(
k
2

)
times for k edges passing through it); recall that

edges are not allowed to touch, and may not cross themselves. The degenerate
crossing number of a graph G, dcr(G), is the smallest number of crossing points in a
drawing of G. If we minimize over simple drawings only (each pair of edges crosses
at most once), we obtain the simple degenerate crossing number, dcr∗(G).

83Can one obtain constructions of crossing-minimal drawings of Kn if one starts with three, instead
of two circles? Section 4 in [151] suggests that the answer is no.
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Reference: Pach, Tóth [551]. Also see Harborth [359, 362].
Comments: Harborth [359, 362] studies multiple crossings in drawings of the complete

graph, but does not consider the problem of minimizing the number of multiple
crossings.84 Pach and Tóth [551] credit Günter Rote and M. Sharir with asking
“what happens if multiple crossings are counted only once”. If we allow self-crossings
we get the genus crossing number. Some papers use the term degenerate crossing
number for dcr∗ [15]. The definition of dcr∗ is ambiguous. It is not clear whether
the definition by Pach and Tóth [551] is aiming for crossing-simple or intersection-
simple. There is a difference between the two, for example the graph shown in the
margin has crossing-simple degenerate crossing number 1, but it requires at least
two crossings, if adjacent edges are not allowed to cross.

Complexity: The degenerate crossing number is NP-complete even for cubic graphs
[619].

Relationships: gcr(G) 6 dcr(G) 6 dcr∗(G) 6 cr(G) by definition. There are examples
with dcr(G) < dcr∗(G) [551]. dcr(G) 6 3 gcr(G), and gcr(G) = dcr(G) for dcr(G) 6
3 [619]. There is an asymptotically optimal crossing lemma for the simple version,
dcr∗(G) > c ·m3/n2 for m > 4n [15], while, on the other hand, dcr(G) < m, where
m = |E(G)|, n = |V (G)| [551].

Values: Pach and Tóth [551] claim that dcr(K5,5) 6 15, comparing it to cr(K5,5) = 16.
Also see: Genus crossing number, bundled crossing number, triple crossing number.

Degenerate local crossing number. See local crossing number.
Diagonal crossing number. See joint crossing numbers.
Directed crossing number. See upward crossing number.
Disk crossing number. See map crossing number.

Edge crossing number
Definition: The edge crossing number of a drawing D of a graph G is the number of

edges involved in crossings in D. The edge crossing number of G, ecr(G), is the
smallest edge crossing number of any drawing of G. The rectilinear edge crossing
number of G, ecr(G), is the smallest edge crossing number of any rectilinear drawing
of G. We can also define maximum variants (requiring drawings to be simple). The
book edge crossing number of G is the smallest edge crossing number of any k-page
book drawing of G.

Reference: Based on Ringel [594], Harborth and Mengersen [370, 371], Harborth and
Thürmann [373], Ishiguro [414], Gange, Stuckey, Marriott [309], Bannister, Epp-
stein, Simons [82].

84Harborth’s goal is the opposite: he tries to maximise the number of multiple crossings of the largest
number of edges; in particular, he shows thatK2m can be drawn with twom-fold crossings. He conjectures
that there cannot be drawings with threem-fold crossings (and verifies that form = 3 if crossings between
adjacent edges are not allowed).
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Comments: Crossing edge number may be a better name to avoid confusion with the
standard crossing number (which is sometimes called edge crossing number). How-
ever, the term crossing edge number has also been used for skewness [320] with
which ecr is easily confused. The skewness of G, sk(G), is the smallest number of
edges whose removal make a graph planar, while ecr(G) minimizes the number of
edges involved in crossings. By definition, sk(G) 6 ecr(G) and it is easy to con-
struct graphs G for which sk(G) = 1 and ecr(G) is arbitrarily large.85 Ringel [594]
showed that every drawing of a Kn has at most 2n− 2 crossing-free edges, in other
words, he studied |E(G)| − ecr(G) for G = Kn.86 Harborth and Mengersen [361,
370, 371, 503] studied parameters hs and Hs, the minimum and maximum num-
ber of edges with at most s crossings in an intersection-simple drawing of complete
multipartite graphs. Extending their notation to arbitrary graphs, one could write
ecr(G) +H0(G) = |E(G)|, and max- ecr(G) + h0(G) = |E(G)|. Harborth and Thür-
mann [373] introduce the parameters rs(n) and Rs(n) which they define as the
minimum and maximum number of edges with at most s crossings in a straight-
line drawing of Kn. If again we extend this notation to arbitrary graphs, we have
ecr(G) +R0(G) = |E(G)| and max- ecr(G) + r0(G) = |E(G)|. Gange, Stuckey, Mar-
riott [309], in passing, mention the possibility of minimizing the number of edges
involved in crossings. Ishiguro [414] defines a notion he calls minimum non-crossing
edge number, nce(G), which, in our terminology, is |E(G)|−max- ecr(G), or r0(G) in
the notation of Harborth and Thürmann [373]. Bannister, Eppstein, and Simons [82]
define edge crossing numbers for 1-page and 2-page embeddings, denoting them as
cre1(G) and cre2(G). The edge crossing number, unlike the skewness of a graph,
can be made to fit our general notion of crossing number:

∑
e∈E maxf∈E pcr(e, f),

where pcr(e, f) = 1 if and only if e and f cross at least once. Eggleton [253] uses
“edge crossing number” to denote what we would call the simple degenerate local
crossing number (see entry for local crossing number).

Complexity: Open. Bannister, Eppstein, and Simons [82] show that the 1-page and
2-page variants are fixed-parameter tractable for k-almost trees (with k being the
parameter).

Relationships: ecr(G) 6 ecr(G) (by definition). ecr(G) 6 2 cr(G), ecr(G) 6 2 cr(G)
and inequality can be strict (since ecr(G) and ecr(G) are bounded by |E|).

Values: ecr(Kn) =
(
n
2

)
− (2n− 2) [594]. ecr(Kn1,...,nk

) is known [503]. ecr(Kn) =
(
n
2

)
−

(2n−2) [373]. max- ecr(Kn) =
(
n
2

)
for n > 8, and values of max- ecr(Kn) are known

for n < 8 [371]. max- ecr(Kn) =
(
n
2

)
− 5 for n > 8, and values for n < 8 are

85Albertson [26] defined the crossing cover number, ρ(G), which is the smallest number of vertices so
that in some drawing of G every crossing lies on an edge incident to one of the vertices. Analogously we
could define the edge crossing cover number, ρ′(G), to be the smallest number k of edges for which there
is a drawing of G, called a skewness-k drawing in [226], in which every crossing lies on one of the k edges.
Then ρ′(G) = sk(G).

86There is one subtlety here: Ringel, and later Harborth, require drawings to be (intersection)-simple,
but it is immediate that an ecr-minimal drawing is simple, so this does not lead to an inconsistency in
this case.
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known [373].87

Also see: Skewness.

Faithful crossing number. See string crossing number.
Fixed convex bundled crossing number. See bundled crossing number.

Fixed linear crossing number
Definition: The fixed linear crossing number, bkcrk(G, π) of an ordered graph (G, π) in

a book with k pages, is the smallest number of crossings in a drawing of G in a book
with k pages so that all vertices lie on the spine of the book in the order prescribed
by π and each edge lies on a single page. If π orders only a subset A ⊆ V (G) of
the vertices (the anchors) and the remaining vertices are not required to lie on the
spine, we obtain the anchored crossing number, bkcrk(G,A, π).

Reference: Melihov, Kurĕıčik, Seljankin, Tiščenko [500] for bkcr1(G, π) and bkcr2(G, π).
Masuda, Nakajima, Kashiwabara, Fujisawa [491] for bkcr2(G, π). Cabello, Mo-
har [147] for bkcr1(G,A, π).

Comments: According to the reviews on zbMATH and MathSciNet, Melihov, Kurĕıčik,
Seljankin, Tiščenko [500] study the fixed linear crossing number for one and two
pages. A close variant of the book crossing number, it could also be called the fixed
book crossing number; bkcr1(G, π) has been called the chordal crossing number [716].
Cabello and Mohar defined the special case of anchors lying on the boundary of a
disk and the drawing lying within the disk, which is equivalent to bkcr1(G,A, π).

Complexity: bkcr1(G, π) can be computed inO(n2) [242]. bkcr2(G, π) isNP-complete [491]
(even if each connected component is a single edge). This implies that bkcrk(G, π)
is NP-complete for k > 2.88 As in the case of the book crossing number, the
embedding problem is of special interest here. The problem of deciding whether
bkcrk(G, π) = 0 on input (G, π) and k was shown NP-complete by Garey, Johnson,
Miller, and Papadimitriou [312], but they left open the question of what happens for
fixed k. Unger claims that bkcr3(G, π) = 0 can be tested in time O(n log n) [682],
while testing bkcrk(G, π) = 0 is NP-complete for any fixed k > 4 [681].89, 90

Cimikowski [194] has studied various heuristics for computing bkcr2(G, π). For
87This result is also announced in the later [414], without proof. The author also claims that nce(G) 6

min{χ(G), 5} unless G is K1,7 or K7.
88To add a page, surround each vertex by many nested edges. Then all these added edges have to lie

in a separate page. This simple construction fails, of course, if the ordering cannot be specified.
89Unger expresses the embedding results for colorings of circle graphs, but the reduction is easy: given

a graph G with an ordering π, add a Hamiltonian cycle to G extending that ordering, yielding G′. Then
every non-cycle edge is a chord of the graph, and the endpoints of two chords alternate along the cycle
if and only if the chords have to go into different pages in a book embedding of G. Let G′′ be the circle
(chord intersection) graph of G. Then k-colorability of G′′ is equivalent to G being embeddable in k pages
with the given ordering. This is sufficient to show that testing bkcrk(G, π) is NP-complete for k > 4:
Given a circle graph one can use Spinrad’s algorithm to construct a circle model G′ for it, from which
one can get a graph G with an ordering of vertices π, so that the circle graph is k-colorable, if and only
if (G, π) has a k-page embedding respecting π, that is bkcrk(G, π) = 0.

90Both papers have been criticized for lack of details, see [239, Footnotes 104-105] and [262].
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the anchored version, Cabello and Mohar [147] showed that bkcr1(G,A, π) is NP-
complete even if G consists of two vertex disjoint planar graphs.91

Relationships: bkcr2(G, π) 6 bkcr1(G, π)/2−(bkcr1(G, π)/8+1/64)1/2+1/8 [29, Corol-
lary 6], mon-cr(G, π) 6 bkcr2(G, π) for ordered graphs (G, π) (from definition).

Also see: Book crossing number, convex crossing number.

Fixed monotone crossing number. See monotone crossing numbers.
Fractional crossing number. See weighted crossing number.

Genus crossing number
Definition: The genus crossing number of a drawing D of a graph G is the number of

points in which edges cross each other (that is, we count this point only once, not(
k
2

)
times for k edges passing through it); we do not allow edges to touch in the

shared point, but we do allow self-crossings of an edge (so an edge can pass through
the same crossing point multiple times at no additional cost). The genus crossing
number of a graph G, gcr(G), is the smallest number of crossing points in a drawing
of G.

Reference: Mohar [512].
Comments: Mohar proves that the genus crossing number equals the non-orientable

genus of a graph. He conjectures that gcr(G) = dcr(G) [512].
Complexity: NP-complete [512] (since Carsten Thomassen showed that determining

the non-orientable genus of a graph is NP-complete [514]).
Relationships: gcr(G) 6 mcr(G) since gcr is minor-monotone. There are graphs for

which gcr(G) < mcr(G) [512]. Also, gcr(G) 6 dcr(G) by definition.
Values: Exact results for the non-orientable genus ofKm andKm,n were given by Ringel,

see [256] for a discussion.
Also see: Degenerate crossing number.

Geodesic crossing number
Definition: The geodesic crossing number, crΣ(G), on a metric surface Σ, is the smallest

number of crossings in a drawing of G on Σ where each edge is represented by a
geodesic (with respect to the metric) in Σ.92 Special cases include the rectilinear
crossing number, where Σ is the plane with the Euclidean metric (in which case we
write cr), the spherical (geodesic) crossing number [472, 518, 690], where Σ is the
unit ball S2 in three-dimensional Euclidean space, and the toroidal geodesic crossing
number, where Σ is a (geometric) torus in three-dimensional Euclidean space.

Reference: Guy, Jenkyns, Schaer [348], also Harary, Hill [354].
91This was the main intermediate step in their proof that computing the crossing number of an almost

planar graph is NP-complete.
92Intuitively, geodesics are locally shortest arcs. A geodesic is not necessarily a shortest arc between

two points on a surface, and it need not be unique, as the example of antipodal points on the sphere
shows.
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Comments: The spherical geodesic crossing number of complete graphs is discussed by
Harary and Hill [354]. Moon [517, 518], also see [28, 511], studies the number of
crossings in a random geodesic drawing of Kn on the sphere (vertices are picked
at random, edges are shortest arcs). Both spherical and toroidal geodesic crossing
numbers are introduced and studied explicitly in [348]. It is not clear from the
paper whether the authors believe that the toroidal geodesic crossing number is in-
dependent of the actual geometric shape of the torus; they concentrate on a single
model (the unit square with opposite sides identified). They explicitly equate the
rectilinear crossing number with the geodesic crossing number, even though Harary
and Hill [354] had earlier realized that K8 has a geodesic drawing on the sphere
with at most 18 crossings, whereas cr(K8) = 19 was unproven, but expected to be
true at the time. Guy [339, 340] later realized that the spherical crossing number
of Kn is at most Z(n) = X(n)X(n − 2)/4, where X(n) = bn/2cb(n − 1)/2c; this
again shows that the spherical crossing number of K8 is at most 18. Since he could
also show that cr(K8) = 19 (also Barton [84] and Singer [641]), this separates rec-
tilinear and spherical crossing number. It is not clear whether all papers discussing
geodesic crossing numbers distinguish between shortest arcs and geodesics (excep-
tions are [518, 690] which explicitly define the geodesic crossing number in terms of
shortest arcs rather than geodesics). This question is studied in [410], which uses the
term shortest path crossing number. Elkies [255] extends Moon’s work by studying
random geodesic drawings on the projective plane and the torus. For a connection
between the spherical geodesic crossing number and counting regular triangulations
of higher-dimensional pointsets, see [287].

Complexity: Open, but likely to be ∃R-hard (and in ∃R assuming the metric is natu-
ral), see [611] for ∃R.

Relationships: crS2(G) 6 cr(G) (a sufficiently small drawing of G will realize this).
Values: crS2(Kn) 6 Z(n), where Z(n) = X(n)X(n − 2)/4, with X(n) = bn/2cb(n −

1)/2c, is Zarankiewicz’s function, the conjectured upper bound on cr(Kn) [339, 511,
589, 690].93 It is known that for the unit sphere, crS2(Kn) > 0.996 Z(n) [78].
Extending Moon’s work on randomized geodesic constructions, Elkies showed that
crN1(Kn) 6 (3/π2)

(
n
4

)
for n > 15, and crS1(Kn) 6 (22/81)

(
n
4

)
[255] for natural

geometric models of N1 and S1. Let s(r, n) be the expected number of crossings
in a random geodesic drawing of a complete, balanced r-partite graph Kr

n. Then
limn→∞ s(r, n)/max-cr(Kr

n) = ζ(r), where ζ(r) := 3(r2−r)
8(r2+r−3)

, see [322].
Open Questions: Is there a Fary theorem for metric surfaces? That is, is it true that

crΣ(G) = 0 implies that crΣ(G) = 0 for a surface Σ equipped with a “natural”
metric? 94 There are Fary-theorems for metrics of non-positive curvature [203,

93This result is claimed by Guy in [339] without any details. One can use the cylindrical drawings
of Richter and Thomassen [589] to see that the inequality is true. Wagner [690] obtains this result as
an application of Gale duality. Mohar [511] gives a novel, simple construction, which sheds new light on
Moon’s original paper.

94Thomassen [670] points out that it is likely that one can construct metrics for which this fails, but
what about standard metrics?
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410]. H Does it matter whether the geodesic crossing number is defined in terms
of geodesics or shortest arcs?95 Shortest arcs can cross more than once (without
overlapping) in some surfaces; are there examples of graphs for which every optimal
geodesic (or shortest arc) drawing requires some edges to cross more than once?.96

Also see: Rectilinear crossing number.

Geometric k-planar crossing number. See k-planar crossing number.

Grid crossing number
Definition: A d-dimensional grid drawing of a graph G is a geometric (straight-line)

embedding of G into Nd, that is, vertices are assigned to points in Nd, edges are
straight-line segments between their endpoints, and we require that no vertex lies
on an edge, unless it is an endpoint of that edge. The volume of a d-dimensional grid
drawing of G is the volume of a smallest axis-parallel box containing all points of the
grid drawing. The d-dimensional volume N grid crossing number of G, cr#(G,N, d)
is the smallest number of crossings in a d-dimensional grid drawing of G of volume
at most N .

Reference: Based on Dujmović, Morin, Sheffer [235], Swamy [657, Q5] for name.
Comments: Dujmović, Morin, Sheffer [235] introduce the crossing number of a grid

graph (what we called a grid drawing), which they write cr(G), G being a grid
graph/drawing, and then study the crossing number of that, in particular, the pa-
rameter crd(N,m) = min{cr(G) : G is a d-dimensional grid drawing of a graph with
m edges and volume at most N}, which is quite natural, since their main goal is a
crossing lemma result for grid graphs. They point to several previous papers that
have studied grid embeddings, that is, grid drawings without crossings (also called
non-crossing grid graphs in the literature), but theirs seems to be the first paper
to study the crossing number notion. The 2-dimensional grid crossing number is a
refinement of the rectilinear crossing number. It is well-known that cr(G) can be
realized on a grid of double exponential size and that grids of that size are necessary
for some graphs (Bienstock [106]). It is in this context that Swamy [657] coined the
term grid crossing number.

Complexity: NP-complete for d = 2.97

95It is known that there are graphs for which the geodesic crossing number differs from the shortest
arc crossing number on the Klein bottle [410], but the situation on orientable surfaces with a Euclidean
metric seems to be open. By [410, Theorem 1] there is a metric for the torus (with zero curvature) for
which all geodesic embeddings are shortest-arc embeddings.

96The answer is yes for pseudosurfaces: take a sphere and two tori and attach each torus to the sphere
at a single point (using two distinct points). Take two copies of a graph whose planar crossing number is
large but which can be embedded on the torus. Connect the two graphs by two edges whose endpoints
are adjacent in the toroidal graphs. Then the graph has a geodesic drawing in which only the two edges
cross, namely in the points of attachment. In particular, the geodesic pair crossing number differs from
the geodesic crossing number for this pseudosurface.

97Bienstock [106] showed that for every G there is a G′ with cr(G) = cr(G′), where G′ is ob-
tained from G by subdividing each edge at most cn2 times (for some fixed c > 0). We claim
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Relationships: cr(G) 6 cr#(G,N, 2) (by definition), and cr(G) = cr#(G,N, 2) for N =

22cn for some c > 098 and there are graphs for which cr(G) < cr#(G,N, 2) ifN = 22dn

for some 0 < d [106]. cr#(G,N, 2) = Θ(m3/N2) for m > 4N (follows from [24] as
observed in [235]), cr#(G,N, 3) = Ω(m2/N log log(m/N)) for m > 2(2d − 1)N ,
cr#(G,N, 3) = Ω(m2/N log(m/N)), and cr#(G,N, d) = Ω(m2/N) [235].

Values: cr(G, (n − 2)2, 2) = 0 for planar graphs G [622]. cr(G,O(n), 3) = 0 for pla-
nar graphs [694]. For complete graphs, it is known that cr(Kn, 4n

3, 3) = 0, and
cr(Kn, o(n

3), 3) > 0 [202].
Open Questions: What is the complexity of computing cr(G,N, d) for dimensions d >

2?
Also see: Space crossing number, rectilinear crossing number.

Independent algebraic crossing number
Definition: The independent algebraic crossing number of G, iacr(G), is defined like

acr(G) except that we do not count acr(e, f) for adjacent edges e and f .
Reference: Tutte [680].
Comments: Tutte’s paper “Toward a Theory of Crossing Numbers” is often cited claim-

ing it (implicitly) contains all kinds of crossing number definitions. A look at the
text shows that Tutte defines two crossing numbers: the standard crossing number
(which he calls c(G)) and what we now call the independent algebraic crossing num-
ber; his crossing chains count crossings algebraically, that is, over Z, not modulo 2
as the odd crossing numbers do; moreover, he sets the coefficients of pairs of adja-
cent edges to 0 so they don’t count. The crossing number he defines based on that,
s(G), is iacr(G). Tutte writes: “It is clear that c(G) > s(G). Does equality always
hold?” This question was answered in the negative by Tóth [675] who constructed
a graph G with iacr(G) = acr(G) < cr(G).

Complexity: In NP (similar to algebraic crossing number). It is possible that NP-
hardness can be achieved along similar lines as in [564].

Relationships: iacr(G) 6 acr(G) and iocr(G) 6 iacr(G) (by definition). It follows from
results in [565] that there are graphs G for which iocr(G) < iacr(G).

Also see: Algebraic crossing number, independent odd crossing number.

that cr(G) = cr#(G′, cn2, 2) which implies that computing cr#(G,N, 2) is NP-hard. To see that
cr(G′) = cr#(G′, cn2, 2), take a cr-optimal drawing of G′. Replace each crossing with a (very small)
C4 close to that crossing, so that the corners of C4 become the endpoints of the four half-edges meeting
at the crossing. Triangulate the drawing, keeping the C4-faces empty; the resulting graph is 3-connected,
so by a result from [187], it has an embedding on the (n− 2)× (n− 2) grid in which all faces are convex.
In particular, we can replace each C4 by two diagonal edges, and remove all triangulation edges to obtain
a grid drawing of G′.

98Folklore result; true, because cr(G) 6 k can be expressed in the existential theory of the reals,
see [611], for example.
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Independent crossing number
Definition: The independent crossing number of G, cr−(G), is the smallest number of

crossings between pairs of independent edges in any drawing of G.
Reference: Pach, Tóth [555].
Comments: The first explicit definition of the independent crossing number seems to be

in Pach, Tóth [555]. Not counting crossings between adjacent edges is implicit in
many early papers, and, for straight-line or geodesic drawings, entirely justified [518].

Complexity: NP-complete.
Relationships: pcr−(G) 6 cr−(G) 6 cr(G) (from definition). The spectrum of cr− has

been studied for K5, K3,3, and K6 in [149].99

Open Questions: It is not known whether cr−(G) < cr(G) is possible. This would
follow from a separation of the corresponding monotone crossing numbers [306].

Independent odd crossing number
Definition: The independent odd crossing number of G, iocr(G), is the smallest number

of independent pairs of edges crossing an odd number of times in any drawing of G.
Reference: Székely [658].
Comments: This variant seems to have been introduced and named by Székely. He at-

tributes it to Tutte [680], but Tutte really defined the independent algebraic crossing
number.100

Complexity: NP-complete [564] even if restricted to cubic graphs.
Relationships: iocr(G) 6 ocr(G) for all graphs G (by definition). iocr(G) = ocr(G) =

cr(G) for iocr(G) 6 2 [568], generalizing the Hanani-Tutte theorem (Footnote 7).
There are graphs G for which iocr(G) < ocr(G) [306]. cr(G) 6

(
2 iocr(G)

2

)
[568]; this

implies that ocr, acr, pcr, cr and all their + and − variants are within a square
of each other. There is a crossing lemma: iocr(G) > 1/64 m3/n2.101 There are
algebraic sufficiency criteria for iocr(G) = cr(G) [659]. iocr(G) > sk(G).102 For
surfaces other than the sphere, the only known result is that iocrN1(G) = 0 implies
crN1(G) = 0 [561]. A smallest counterexample to iocrΣ(G) = 0 implying crΣ(G) = 0
must be 2-connected [617]. There is a graph G with iocrΣ(G) = 0 and crΣ(G) > 0
for any surface Σ of genus at least four [304]. See Remark 3 for a discussion of
crossing lemmas for iocrΣ.

Values: iocr(GP(12, 4)) = 4, where GP(12, 4) is the generalized Petersen graph [296].103

99Here, the spectrum of a graph G is the set of all values cr−(D) of drawings D of G in which pairs
of independent edges cross at most once.

100Parity is only mentioned in one short passage in Tutte’s paper [680], and that occurs when he
observes that for two edges e and f , acr(e, f) ≡ cr(e, f) mod 2.

101For a proof, see the section on crossing lemma variants in Section 1.
102Not claimed anywhere, but easy: If iocr(G) = k, we can remove at most k edges, so that iocr(G) = 0,

implying cr(G) = 0, and the graph is planar.
103As so far the only non-trivial result for iocr, this deserves some comment. The article [296] actually

shows (though it doesn’t claim so) that sk(GP(12, 4)) > 4. Since iocr is lower-bounded by sk, and there is
a drawing of GP(12, 4) with four crossings, the result follows. The same paper determines cr(GP(3k, k))
for all k, but the inductive step seems to use cr in an essential way.
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Open Questions: Are there interesting graphs G for which cr(G) = sk(G)? For each
such G we have iocr(G) = cr(G) (settling all intermediate crossing numbers, such
as pcr and cr− as well).

Also see: Odd crossing number, independent algebraic crossing number (under alge-
braic crossing number), monotone crossing number (for monotone version).

Independent pair crossing number. See pair crossing number.
Independent string crossing number. See string crossing number.
Inner crossing number. See bipartite crossing number.

Joint crossing numbers
Definition: Suppose G1 and G2 are graphs embedded in the same surface Σ; a joint

embedding of G1 and G2 is a simultaneous embedding of homeomorphic copies of
G1 and G2 in which the only shared points between G1 and G2 are (transversal)
crossings of an edge of G1 with an edge of G2; if we restrict the homeomorphisms to
be orientation-preserving, we speak of a joint orientation-preserving embedding. If
we restrict the homeomorphisms so that all vertices of G1 lie in a face of G2 and vice
versa, we call the joint embedding single-faced. The (joint) (homeomorphic) cross-
ing number of G1 and G2, cr(G1, G2), is the smallest number of crossings in any joint
embedding of G1 and G2 in Σ, the oriented crossing number, −→cr(G1, G2) of G1 and
G2, is the smallest number of crossings in any joint orientation-preserving embed-
ding of G1 and G2. The single-faced crossing number, crsf (G1, G2), is the smallest
number of crossings in any single-faced joint embedding of G1 and G2. Similarly,
−→cr sf (G1, G2), is the single-faced oriented crossing number. We can relax the notion of
joint embedding to a diagonal embedding by allowing vertices of G1 to coincide with
vertices of G2 and edges of G1 to coincide with edges of G2. The smallest number of
crossings in a diagonal embedding is the diagonal crossing number, cr∆(G1, G2). If
we want to emphasize the underlying surface, we write cr(G1, G2; Σ), for example.
If instead of embedded graphs G1, G2 we have abstract topological graphs that are
embeddable in Σ, we can still define the (joint) crossing number and the diagonal
crossing number of G1 and G2 by additionally minimizing over all embeddings of
G1 and G2. Richter and Salazar [585] suggest the notation cr(φ1(G1), φ2(G2)) for
the embedded graph variant (φi(Gi) is a class of homeomorphic embeddings of Gi),
Hliněný and Salazar [386] suggested the name joint homeomorphic crossing number
for this case to distinguish it from the topological case; we will rely on context.

Reference: Negami [529, 530]. Also, Archdeacon, Bonnington [48], and Richter, Salazar
[585].

Comments: Joint crossing numbers, that is crossings numbers of pairs of (embedded)
graphs were first introduced by Negami [529, 530]. Archdeacon and Bonnington [48]
restrict joint embeddings to orientation-preserving homeomorphisms, so their joint
crossing number is what Negami called the oriented crossing number. Negami sim-
ply uses crossing number for the joint crossing number. Richter and Salazar [585]
explicitly define the single-faced crossing number which is implicit in Archdeacon,

the electronic journal of combinatorics (2022), #DS21 59



Bonnington [48]. As examples for values of joint crossing numbers, Negami gives
cr(K5, K3,3;S1) = 2 and cr∆(K5, K3,3;S1) = 0. Since G1 and G2 are both required
to be embeddable on Σ, the crossing number of pairs is always 0 for the plane.

Complexity: Joint crossing number (both homeomorphic and topological version), and
joint oriented crossing number are NP-complete, for any orientable surface of genus
at least 6, even for simple, 3-connected graphs [386]. As [386] point out, an ear-
lier result by Archdeacon and Bonnington [48, Theorem 2.2] implies that the joint
homeomorphic crossing number of two graphs on the projective plane can be solved
in polynomial time.

Relationships: cr∆(G1, G2) 6 cr(G1, G2) (from definition). If γ(Σ) is the (orientable
or non-orientable) genus of Σ, then −→cr(G1, G2; Σ) 6 4γ(Σ)|E(G1)| · |E(G2)|, and
−→cr(G1, G2;S1) 6 2/3|E(G1)| · |E(G2)| [48, 301, 529].104

Values: cr(G1, G2;Sn) = 2n if both G1 and G2 are 2-cell embedded on Sn so that each
embedding has a single face [708].

Open Questions: Negami [529] conjectures that cr(G1, G2) 6 c|E(G1)| · |E(G2)| for
some constant c independent of Σ; Archdeacon and Bonnington [48] believe this
conjecture to be false. They conjectured that −→cr(G1, G2) 6 cΣ ·−→cr sf (G1, G2) for em-
bedded graphs G1 and G2 which was shown to be false by Richter and Salazar [585]
(who suggest a revised conjecture).

Also see: Simultaneous crossing number. Red/blue crossing number.

k-layer crossing number
Definition: A leveling of a graph G = (V,E) is a mapping from V to {1, . . . , k}, assign-

ing each vertex a level. The leveling is proper if all edges of G are between vertices at
adjacent levels. A layered drawing of a properly leveled (layered) graph is a drawing
in which the vertices are placed on k parallel lines, with vertices in layer i assigned
to the ith line, and edges are drawn as straight-line segments. The k-layer crossing
number of a layered graph is the smallest number of crossings in a k-layer drawing
of the graph.

Reference: Warfield [696], Sugiyama, Tagawa, Toda [656], Shahrokhi, Vrťo [637].
Comments: Shahrokhi and Vrťo [637] introduced (and named) the 3-layer crossing num-

ber, but as a crossing minimization problem the k-layer crossing number is already
present in papers by Warfield [696] and Sugiyama, Tagawa, and Toda [656]; these
earlier papers write K(M) for the layered crossing number of a leveled graph rep-
resented by a matrix M . The 2-layer crossing number is just the bipartite crossing
number. May and Szkatuła [495] defined the p-partite crossing number, νp for p-
partite graphs: the vertices of each part are drawn on one of p parallel lines, and a
subdivision vertex is added whenever an edge crosses a line, so this corresponds to
the k-layer crossing number of a properly leveled graph. Layered crossing numbers
are similar to leveled crossing numbers, except that for the layered crossing numbers

104The argument for Theorem 1 in [529] contains a gap which is fixed in [301].
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edges have to be realized as straight-line segments (rather than just being mono-
tone); if the leveling is proper, the leveled and layered crossing numbers coincide.
Leveling a graph imposes a linear structure on the graph. One could also imagine
allowing other structures, for example trees [572], or cycles as in the cyclic level
crossing number. Wotzlaw, Speckenmeyer and Porschen [707] consider the case in
which the ordering of the vertices in each layer is restricted by a tree (a generaliza-
tion of the tanglegram problem, also see the comment in the entry on the bipartite
crossing number).

Complexity: NP-complete [315], even for trees [375].105 Can be approximated to within
a factor of O(log n) in polynomial time [637]. The embeddability problem can be
decided in polynomial time and this remains true if the ordering of vertices in each
layer is constrained by trees [707].

Relationships: The k-layer crossing number of G is at most cr(G) and it can be strictly
less than cr(G). The leveled crossing number is a lower bound on the k-layer crossing
number.

Open Questions: If a graph has leveled crossing number zero, that is, if it has a mono-
tone leveled embedding, it has an embedding in which all edges are straight-line
segments [248, 554], though the area of the graph may increase exponentially [480].
Are there leveled graphs for which the k-layer crossing number is strictly larger than
the leveled crossing number?

Also see: Bipartite crossing number, leveled crossing number (under monotone crossing
number), cyclic level crossing number.

k-page crossing number. See book crossing number.

k-planar crossing number
Definition: The k-planar crossing number, crk(G), of G = (V,E) is the minimum of∑k

i=1 cr(Gi), where the minimum is taken over all Gi = (V,Ei) with
⋃k
i=1Ei = E.

The special case cr2 is also known as the biplanar crossing number. If we restrict
the drawings to be rectilinear, we get crk, the rectilinear k-planar crossing number.
Given a rectilinear drawing D of G, the geometric k-planar crossing number, crk(D),
is the minimum of

∑k
i=1 cr(Di), where the minimum is taken over all Gi = (V,Ei)

with
⋃k
i=1Ei = E, and Di is D restricted to Gi. The geometric k-planar crossing

number, crk(G), is the minimum of crk(D) over all rectilinear drawings D of G.106

The thickness, Θ(G), is the smallest k such that crk(G) = 0; similarly, the geometric
thickness, Θ(G), is the smallest k such that crk(G) = 0. The local k-planar crossing
number, lcrk(G), is the minimum of maxki=1 lcr(Gi), where the minimum is taken
over all Gi = (V,Ei) with

⋃k
i=1Ei = E.

105The reduction by Garey and Johnson [315] is to bipartite multigraphs. The middle layer can be used
to replace multiple edges by parallel paths.

106Equivalently, the geometric k-planar crossing number is the smallest number of crossings between
edges of the same color in any k-coloring of the edges of G in any rectilinear drawing of G.
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Reference: Kodres [452], Owens [540], Shahrokhi, Sýkora, Székely, Vrťo [633], Pach,
Székely, Tóth, Tóth [547]. The local, k-planar crossing number was introduced by
Asplund, Do, Hamm, Jain [60].

Comments: Kodres [452] overlooked paper (see Remark 5) discusses (and implements)
crossing minimization for biplanar and k-planar drawings of graphs (based on elec-
tronic circuits); the paper shows that K7,7 is not biplanar and conjectures that
cr2(K7,7) = 4 (the correct value is 1 [208]). Owens [540] introduced the k-planar
crossing number for arbitrary k, but focussed on the biplanar case, Shahrokhi,
Sýkora, Székely, Vrťo introduced the rectilinear version. The k-planar crossing num-
bers have also been called the multiplanar crossing numbers [445]. The k-planar
crossing number should not be confused with the crossing number of a k-planar
drawing which has only been studied for k = 1, where it is called the simple cross-
ing number. The geometric variant was introduced by Pach, Székely, Tóth, Csaba,
Tóth [547], refining Kainen’s notion of geometric thickness [429]. In [21] the geo-
metric variant is called the rectilinear k-colored crossing number. If the geometric
drawings were restricted to be convex, then one would get the k-page crossing num-
ber. The study of the k-planar crossing number is often motivated by linking it
to questions of VLSI design. Interestingly, there is a book from 1896 on electrical
wiring which includes two diagrams illustrating how to draw connections without
any crossings in two layers (“die Verbindungen [können] in zwei übereinander liegen-
den Ebenen ohne Kreuzung gelegt werden”) [52, Figures 51, 52].

Complexity: The k-planar crossing number is NP-complete, since the embedding prob-
lem crk(G) = 0 is equivalent to the thickness of G being at most k and even for
k = 2 this problem is NP-complete [488]. The rectilinear and geometric k-planar
crossing numbers are ∃R-complete, since they coincide with cr for k = 1, but the
case k > 2 is open, though likely to be ∃R-complete as well.

Relationships: crk 6 crk 6 crk 6 bkcrk (by definition). cr1 = cr and cr1 = cr1 = cr
(by definition). cr2(G) 6 (3/8) cr(G) [209]. crk(G) 6 c cr(G) and crk(G) 6 c cr(G),
where c = (2/k2 − 1/k3) (and c > 1/k2 for some graphs G) [547]. It has been
announced that the upper bound is c = 1/k2(1 + o(1)) [59]. crk(G) 6 c cr(G) for
c = 1/k (and c > 1/k2 for some graphs G) [547]. crk(G) 6 bkcr2k(G).107 There is a
crossing lemma, crk(G) > 1/64 m3/(n2k2), where n = |V (G)| andm = |E(G)| [633].
On the other hand, crk(G) 6 1/(12k2)(1−1/(4k))m2 +O(m2/(kn)) [633]. lcrk(G) 6
(1/k + ε) lcr(G) for graphs G with sufficiently large lcr(G) [60], and the bound can
be lowered to O(1/k2) under additional assumptions; this bound would be tight, as
witnessed by the complete graph. It has been announced that 1-planar graphs have
geometric thickness at most 2, that is, lcr(G) 6 1 implies that cr2(G) = 0 [128].

Values: See [208] for a comprehensive survey of biplanar crossing numbers of complete
graphs, complete bipartite graphs and some other graph families, also [470, 600].

107Observed by Winterbach [703], follows from cr(G) 6 mon-cr(G) 6 bkcr2(G). Winterbach [703,
Question 8.2.5] asks whether there are graphs G for which crk(G) < bkcr2k(G). De Klerk, Pasechnik,
and Salazar give a positive answer in [445] for G = K2k+1,k2+2000k7/4 by showing that bkcr2k(G) > 0,
while crk(G) = 0 by a result of Beineke’s.
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For values of k-planar crossing numbers of complete and complete bipartite graphs,
see [244, 505, 633, 638]. For the biplanar crossing number, exact values are known
up to k = 10: cr2(K9) = 1108 and cr2(K10) = 2 [244]; we also know that 4 6
cr2(K11) 6 6 [244] and 6 6 cr2(K12) 6 12 [638]. For an improved upper bound on
cr2 of the hypercube Q8, see [200]. For random graphs, see [61, 645]. cr2(Kn) = 0
for n 6 8 and cr2(K9) = 2 > 1 = cr2(K9) [21], Upper and lower bounds on cr2(Kn)
can be found in [21].

Open Questions: Czabarka, Sýkora, Székely, and Vřťo [208] ask for the smallest c with
cr2(G) 6 c cr(G) for all G. They show that 8/119 6 c 6 3/8, where the lower bound
is witnessed by Kn. H Shavali and Zarrabi-Zadeh ask for the largest k for which
cr(G) 6 k implies that cr2(G) = 0; they can show that 10 6 k 6 35 [638].109

Also see: Simultaneous crossing number, red/blue crossing number, biplanar convex
crossing number (under convex crossing number).

Klein bottle crossing number. See crossing number.
Leveled crossing number. See monotone crossing numbers.
Linear crossing number. See book crossing number. Very rarely used as synonym for
rectilinear crossing number.
Local book crossing number. See book crossing number.
Local convex crossing number. See convex crossing number.

Local crossing number
Definition: The local crossing number of a drawingD of a graph G, lcr(D), is the largest

number of crossings on any edge of G. The local crossing number of G, lcr(G), is the
minimum of lcr(D) over all drawings of G. Define the simple local crossing number
lcr∗(G) as the minimum of lcr(D) over all intersection-simple drawingsD of G (every
two edges intersect at most once). For the local crossing number on a surface Σ, we
write lcrΣ. If we count multiple crossings only once, we get the (simple) degenerate
local crossing number. If we maximize lcr(D) over all intersection-simple drawings
D of G, we obtain max- lcr(G), the maximum local crossing number. If we restrict
drawings to be straight-line, we get the rectilinear local crossing number, lcr(G).

Reference: Kainen [429]. Also, Ringel [595], Guy, Jenkyns, Schaer [348]. For the simple
local crossing number, see Schumacher [625] and Pach, Tóth [552]. The simple
degenerate local crossing number was introduced by Eggleton [253]. The maximum
local crossing number is based on a paper by Harborth [360]. The rectilinear local
crossing number seems to have first been mentioned in an earlier version of this
survey.

Comments: The local crossing number was first introduced by Gerhard Ringel in lec-
tures and conversations in the 1960s [342, 420]. Guy, Jenkyns, and Schaer [348]

108The fact that K9 is not biplanar was first shown in [85, 679]. A much simper proof is now avail-
able [109].

109The authors ask a more general question, which is also of interest: find bounds for a function k(c)
so that cr(G) 6 k(c) implies that cr2(G) 6 c.
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define the local toroidal crossing number, the local crossing number on a torus, lcrS1 .
Kainen [429] introduces the local crossing number on arbitrary surfaces, and also
credits Ringel [595]. Ringel’s paper shows that a graph with at most one crossing
per edge can be 7-colored,110 but Ringel doesn’t name the local crossing number ex-
plicitly in this paper. Graphs that can be drawn with at most one crossing per edge
were later called 1-embeddable (Ringel [593]), 1-planar111 (Schumacher [626]) and
even simple, on occasion [136]; the drawn graph has been called 1-immersed [461].
Kainen [427] considered the local crossing number on arbitrary surfaces, he shows
that ΘΣ(G) 6 1 + lcrΣ(G), with ΘΣ(G) being the thickness of G on surface Σ.
Cimikowski [195] in his definition of local crossing number restricts drawings to be
cr-minimal. It is easy to see that this leads to a different notion of local crossing
number. Harary, Kainen, and Schwenk [356] gave as an example W5�K2 which has
crossing number 2 and local crossing number 1, but any drawing ofW5�K2 realizing
crossing number 2 has local crossing number at least 2. They conjecture that their
example is the smallest possible. Eggleton [253] introduces a degenerate version of
the local crossing number, that is, he counts multiple crossings as a single crossing
(he also restricts drawings to be intersection-simple); he calls this variant the “edge
crossing number”, not to be confused with the notion of edge crossing number we
introduce. Eggleton shows that every outerplanar drawing in which each edge has at
most one degenerate crossing is rectifiable (realizable by straight-line segments and
maintaining topological equivalence). Thomassen [671] calls lcr(D) the cross-index
of D and studies conditions under which drawings D with lcr(D) 6 1 are rectifi-
able (realizable by straight-line segments, maintaining topological equivalence); this
suggests the notion of geometric/straight-line 1-planarity [224, 401, 614], or, more
generally, a rectilinear local crossing number, lcr, called crossing index in [471]. Schu-
macher [625] uses the term n-embeddable for graphs G with lcr(G) 6 n, and claims
that if we take a drawingD of G with lcr(D) 6 n and a minimal number of crossings,
“none of G’s edges is crossing itself; two different edges with one vertex in common
do not cross either, and two different edges without a vertex in common cross once
at the most.” The claim about self-crossings is obviously true, but the remaining
two claims are false. See the graph in the margin for an example showing that ad-
jacent edges can be forced to cross.112 A slight modification of this example shows

110Borodin [126] shows that they can even be 6-colored, which is sharp, becauseK6 is 1-planar. Eppstein
and Huynh [264] point out that the chromatic number of graphs with local crossing number k is of order
Θ(
√
k).

111Not to be confused with the notion of k-planarity in the multi-planar crossing number.
112This was also observed, without detailed proof, in [543, Figure 1]. Some explanation of our example:

consider a drawing of the graph with lcr(D) 6 4 in which the outer face is empty, in particular, the edges
of the outer cycle are free of crossings. Then it is easy to argue that the two adjacent left/right edges
have to cross in D. Here is how we enforce that the outer face is empty: add a new vertex and connect
it to all vertices on the outer cycle. The vertices of this newly added star and the outer cycle form the
outer frame. For each edge uv in the outer frame, add 4|V (G)|+ 1 = 89 parallel paths P3 between u and
v; let the new graph be G′ and fix a drawing D′ with lcr(D′) 6 4 and minimizing cr(D′). We can assume
that no two adjacent edges cross in D′ (otherwise we’re done). Let uv be an edge of the outer frame, and
xy be another edge. Then uv and xy cannot cross oddly: pick a cycle C containing xy, but not uv (if
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that two edges can be forced to cross an arbitrary number of times in an lcr-optimal
drawing. One could ask for an upper bound on the minimum number of crossings
in a drawing D of a graph with lcr(D) 6 n. For n = 1 this yields the simple cross-
ing number. Pach and Tóth [552] study the parameter we called the simple local
crossing number without naming it. Bodlaender and Grigoriev [329] rediscovered
the local crossing number, calling it crossing parameter. In a later paper, Grigoriev,
Koutsonas, and Thilikios [330] use the term ξ-nearly planar for graphs with local
crossing number at most ξ, and give an equivalent structural characterization of
these graphs. For a convex (our outerplanar) version see the local convex crossing
number (under convex crossing number). Feng, Ye, and Xu [286] suggest studying
the minimal number of crossings along longest paths in a network (to model opti-
cal router networks); this has a similar flavor to the local crossing number, but is
not strictly speaking a crossing number in our sense. With a similar motivation,
Stallman and Gupta [648, 649] consider heuristics for the local crossing number of
layered graphs, which they call the bottleneck crossing number; to be precise, they
really define what amounts to the local pair crossing number in which we minimize
the largest number of edges crossing each edge (not the actual crossings), see the
entry for pair crossing number.113 Harborth [360] studies the largest number of
crossings along an edge in (intersection)-simple drawings of complete (multipartite)
graphs. Also see [402, Chapters 4-7].

Complexity: Deciding whether lcr(G) 6 1 is NP-complete, even if the graph is 3-
connected, and a rotation system is known [65, 146, 329, 461], and there are results
on its parameterized complexity [80]. It has been announced that testing lcr(G) 6
k is NP-complete, and remains NP-hard to approximate to within a factor of
2 − ε [684]. Maximal graphs with lcr(G) 6 1 (“optimal 1-planar graphs”) can be
recognized in linear time [127]. Known results imply that testing lcr 6 1 is NP-
complete [614], while testing lcr(G) 6 k is ∃R-complete, even for a fixed k [610].

Relationships: lcr(G) 6 lcr∗(G) 6 min{cr(G), E(G) − 1} and lcr∗(G) 6 lcr(G) 6
min{cr(G), E(G) − 1} by definition. lcr(G) = lcr∗(G) for lcr(G) 6 3,114 and there
are graphs G with 4 = lcr(G) < lcr∗(G) (Footnote 112). lcr∗(G) 6 f(lcr(G)) for an
exponential function f , with f(4) = 8 [399].115 lcr(G) > cr(G)/|E(G)| by definition.
There is a crossing lemma for the local crossing number of bipartite drawings of

xy also belongs to the outer frame, then the cycle can be completed with a P3). The cycle has length at
most |V (G)| = 22. Each of the 89 cycles of the form uv + P3 crosses C evenly, so if uv crosses xy oddly,
then each of the P3 must cross C oddly, so some edge in C has at least 89/22 > 4 crossings, contradicting
lcr(D′) 6 4. So uv crosses every edge evenly, so it crosses either one, or two edges. One can reduce the
number of crossings in all cases, so uv and thus all edges of the outer frame are free of crossings.

113The local pair crossing number differs from the local crossing number, using examples similar to the
ones presented above to separate local and simple local crossing numbers. The distinction was probably
not intended by the authors of [648, 649], since they also define the crossing number as pcr. For layered
drawings there is no difference between counting all local crossings or only counting local pair crossings.

114The fact that lcr∗(G) is finite if lcr(G) = 1 was observed by Ringel [595]; for lcr(G) 6 3, see [543,
Lemma 1.1].

115Answering an open question from a previous version of the survey.
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bipartite graphs [42, Corollary 2]. For graphs with fixed lcr(G),
∑

v∈V (G) deg(v)k 6
2(n − 1)k + o(n) [718]. For every surface Σ and every k there is a graph so that
lcrΣ(G) = 1 and crΣ(G) > k [356]. There is a graph G with cr(G) = 2 for which
any drawing D with lcr(D) 6 1 fulfills cr(D) > 3 [136, 356]. For infinitely many n
there is a graph G with cr(G) = 2 for which any drawing D with lcr(D) 6 1 fulfills
cr(D) > n − 2 (and there are such drawings); the result is tight [181].116 Since
cr(G) 6 m lcr∗(G)/2, edge-bounds for graphs with bounded lcr∗ imply crossing
number bounds. The parameter r(G) = minD lcr(D) cr(D)/(lcr(G) cr(G)) measures
how well cr and lcr can be minimized simultaneously; it is known that cn1/2 6
max r(G) 6 c′n, where the maximum is taken over all non-planar graphs of order
n [684]. Let m = |E(G)| and n = |V (G)|. Schumacher [624, 625] showed that
m 6 (lcr∗Σ(G) + 3)(n − χ), where χ is the Euler characteristic of the surface Σ as
long as lcr∗Σ(G) 6 2, and that these bounds are tight.117 Pach and Tóth showed
that m 6 (lcr∗(G) + 3)(n − 2) as long as lcr∗(G) 6 4, and that these bounds are
tight for lcr∗(G) 6 2 [552]. As it turns out, this is where the obvious pattern stops:
m 6 5.5(n − 2) for lcr∗(G) 6 3 [543], and m 6 6(n − 2) for lcr∗(G) 6 4 [14] and
both results are tight up to additive constants.118 There are also edge bounds for
multi-partite graphs G with lcr∗Σ(G) = 1 [435, 640]. For unbounded lcr∗(G), the best
current result is m 6 3.81 lcr∗(G)n [14], improving an earlier bound by [552]. Every
planar graph has a non-planar drawing D with lcr∗(D) 6 3 [460] and that bound
is tight [458, 459]. For the rectilinear local crossing number Didimo [224] showed
that lcr(G) 6 1 implies m 6 4n− 9 (and this bound is tight for infinitely many n).
lcrSg(G) = O(m log2 g

g
) [236], improving an earlier bound [329]. If lcrΣ(G) 6 k, then

tw(G) = O(
√

(eg +1)(k + 1)n), where tw(G) is the treewidth of G, and eg = eg(Σ)
is the Euler genus of Σ [236]. It has been announced that lcr(G) 6 1 implies
cr2(G) = 0, in other words, the geometric thickness of G is at most 2 [128].

Values: lcr(Kn) and lcr∗(Kn) are known for n 6 9; lcr(Km,n) and lcr∗(Km,n) are known
for various values of m,n (various sources, see [40, Table 1]119). The local crossing
number of several families of generalized Petersen graphs GP(n, k)) are known [83].120

lcrS1(Kn) is known for n 6 9, and there are asymptotic results for lcrS1(Kn) [348].
116Chimani, Kindermann, Montechhiani and Valtr [181] introduce the k-planar crossing number as the

smallest number of crossings in a drawing of G with local crossing number at most k, and they initiate
the study of crk - pl(G)/ cr(G); the naming of the crossing number clashes with that of the traditional
k-planar crossing number.

117The special case, m 6 4n− 8 for graphs with lcr∗(G) 6 1 on the sphere seems to go back to [119].
118Ackerman [14] uses his result to derive an improved constant for the crossing lemma for cr, following

the same approach as [543].
119The paper works with k-planar drawings which are, by definition, (intersection)-simple (why? good

question). So the results as stated in the table are for lcr∗, but, since lcr and lcr∗ are the same up to
value 3, and upper bounds carry over, this also yields results for lcr. The paper implements an algorithm
to efficiently generate all (intersection)-simple drawings of small complete and small complete bipartite
graphs. This could probably be used to determine other crossing number as well.

120Table 5.1 in [83] summarizes the values of lcr(GP(n, k)) for various small values of n and k. The
smallest open case is lcr(GP(16, 4)), which is either 1 or 2.
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It is known which complete multi-partite graphs G satisfy lcrΣ(G) = 1, where Σ
is an orientable surfaces [211] or the projective plane [639]. max- lcr(Kn) =

(
n−2

2

)
,

and max- lcr(Kn1,n2) = (n1 − 1)(n2 − 1), and, more generally, max- lcr(Kn1,...,nk
) =

n1 + n2 +
(
`
2

)
− 2` −

∑k
i=1

(
ni

2

)
, where ` =

∑k
i=1 ni, and n1 > n2 · · · > nk [360].

lcr(Kn) is known for all n [9]. For complete bipartite graphs, lcr(K3,n) = d(n−2)/4e,
lcr(K4,n) = d(n − 2)/2e and there are asymptotic upper and lower bounds [7]. For
Cartesian products of cycles with small graphs, as well as paths and cycles with
stars, see [523].

Open Questions: Is it true that m 6 (lcr∗Σ(G) + 3)(n− χ), where χ is the Euler char-
acteristic of Σ, even just for Σ being the sphere? H Has lcr(Kn) been studied? H Is
there a relationship between lcr(G) and the pagenumber of G, that is, the smallest
k for which bkcrk(G) = 0? (It is known that 1-planar graphs have pagenumber at
most 39 [94, 95].) H Dujmović, Eppstein, and Wood mention the conjecture that
lcrSg(G) = O( m

g+1
) [236]. H Brandenburg asks for an upper bound on the geometric

thickness of k-planar graphs [128].
Also see: Local convex crossing number (under convex crossing number), local book

crossing number (under book crossing number), nodal crossing number, simple cross-
ing number, local pair crossing number (under pair crossing number), local k-planar
crossing number (under k-planar crossing number).

Local k-page crossing number. See book crossing number.
Local outerplanar crossing number. See convex crossing number.
Local pair crossing number. See pair crossing number.
Local toroidal crossing number. See local crossing number.
Major Crossing number. See minor crossing number.

Map crossing number
Definition: A map is a graph G = (V,E) and a surface Σ with boundary ∂Σ so that

V ⊆ ∂Σ. In a drawing of G each edge is realized by a properly embedded arc (a
connected curve that intersects ∂Σ in its endpoints only). The crossing number of
the map is the smallest number of crossings in a drawing of the map. Similarly,
one can define odd, algebraic and pair crossing number for maps. We can introduce
special names based on the number of boundary components of Σ: disk crossing
number (one hole), annulus crossing number (two holes), pair of pants crossing
number (three holes), and so on.

Reference: Pelsmajer, Schaefer, Štefankovič [565].
Comments: The map crossing numbers were introduced in [565] to separate ocr from cr.

One can turn every boundary component into a single vertex with rotation; as long
as one is considering a crossing number variant in which adjacent crossings count
the same as independent crossings, the crossing number notion does not change, so
one can alternatively look at map crossing numbers as crossing numbers of graphs
with rotation system; map crossing numbers can also be considered a special case
of the constrained crossing number. If we allow vertices to arbitrarily move on
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their boundary component, the disk crossing number becomes the convex crossing
number, and the annulus crossing number turns into the radial crossing number on
two levels. (The general case does not seem to have been considered so far.)

Complexity: The disk crossing number can be computed in time Θ(m logm), where
m = |E|; the annulus (algebraic) crossing number can be computed in polynomial
time [564].121 The complexity of computing the pair-of-paints crossing number is
open. The general problem is NP-complete, since computation of the crossing
number of a graph with a given rotation is NP-complete [564].

Relationships: ocr(M) 6 pcr(M) 6 acr(M) = cr(M) for any map M ; there is a map
M for which 13 = ocr(M) < pcr(M) = 15; if Σ has n boundary components, then
cr(M) 6 ocr(M)

(
n+4

4

)
/5 [565].

Also see: Radial crossing number (on two levels), crossing number (with rotation sys-
tem), constrained crossing number, convex crossing number, cylindrical crossing
number, joint crossing numbers, wire crossing number.

Maximum bipartite crossing number. See bipartite crossing number.

Maximum crossing number
Definition: The maximum crossing number of a graph G, max-cr(G), is the largest

number of crossings in any drawing of G in which every pair of edges has at most one
point in common (including a shared endpoint; touching points are forbidden).122

The set of possible values {cr(D) : D is an intersection-simple drawing of G}, is the
spectrum of G for cr.

Reference: Ringel [594], Grünbaum [334].
Comments: In a 1972 paper, Grünbaum [334] expresses surprise that max-cr(Kn) and

max-cr(Km,n) have not been studied; he mentions max-cr(K4) = 1 and Saaty’s claim
that max-cr(Kn) =

(
n
4

)
[605] which he calls “probably true but unsubstantiated”.

Ringel had already settled this problem earlier [594]. This crossing number has
also been called maximal crossing number [334]. One can try to relax the simplic-
ity condition without allowing an infinite number of crossings. One model allows
independent edges to cross an arbitrary number of times, as long as they do not
form empty lenses (bigons consisting of two subarcs of the edges that do not en-
close a vertex). In this drawing model Kn has at most n! many crossings (and an
exponential number of crossings is possible) [285].123

Complexity: NP-complete [175].
Relationships: max- cr(G) 6 max-cr(G) for all graphs G. max-cr(G) 6 θ(G), where

θ(G) =
(
m(m+ 1)−

∑
v∈V deg2(v)

)
/2, with m = |E|, the thrackle bound [570], and

max-cr(G) 6 θ′(G) := θ(G)− c4 + k4, the sub-thrackle bound [591], where c4 is the
number of C4-subgraphs of G, and k4 the number of K4-subgraphs of G.

121Results in that paper are phrased for graphs with rotation systems.
122In other words: an intersection-simple drawing.
123There are graphs, however, that can be drawn with arbitrarily many crossings in this model, which

may explain why the authors did not introduce a new crossing number notion.
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Values: max-cr(Kn) =
(
n
4

)
[594]. max-cr(Kn1,...,nk

) =
(
n
4

)
−
∑k

i=1(
(
ni

4

)
+ (n − ni)

(
ni

3

)
),

where n =
∑k

i=1 ni and k > 2 [365]. For trees T , max-cr(T ) = θ(T ), with θ(T ) as
defined above [570]. max-cr(C4) = 1, and max-cr(Cn) = n(n− 3)/2, for n 6= 4 [335,
363, 706], see [142] for the spectrum of Cn. max-cr(Q3) = 34, where Q3 is the
3-dimensional hypercube graph [364]. Asymptotically, max-cr(Wn) is 5n2/4 [374].
Also, max-cr is known for all graphs on up to 6 vertices [374]. max-cr(GP(2, 5)) =
68 [367], where GP(2, 5) is the generalized Petersen graph; see [143] for the spectrum
of GP(2, 5)). max-cr(C3 � C3) = 78 [376].

Open Questions: Ringeisen, Stueckle, and Piazza [591] introduced the Subgraph Prob-
lem: is it true that max-cr(H) 6 max-cr(G) if H is a subgraph of G? Archdea-
con [47] conjectures that it is. The conjecture is unsettled even for induced sub-
graphs H of G. For the maximum rectilinear crossing number, it is easy to see
that max- cr(H) 6 max- cr(G) if H is a subgraph of G [591]. The same authors
also conjecture that max-cr(G) = θ(G) if and only if G contains at most one cycle
and that cycle is not C4, where θ(G) is as defined above. This conjecture is equiv-
alent to Conway’s thrackle conjecture, according to which every graph for which
max-cr(G) = θ(G) satisfies |E(G)| 6 |V (G)| [706].

Also see: Maximum rectilinear crossing number, maximum bipartite crossing number
(under bipartite crossing number).

Maximum edge crossing number. See edge crossing number.
Maximum local crossing number. See local crossing number.
Maximum orchard crossing number. See orchard crossing number.

Maximum rectilinear crossing number
Definition: The maximum rectilinear crossing number of a graph G, max- cr(G), is the

largest number of crossings in any simple straight-line drawing of G (by requiring
the graph to be simple we avoid edge overlap). If we restrict drawings to be convex
(all vertices on the boundary of a circle), we get the convex maximum rectilinear
crossing number, here denoted by max- cr◦(G). The set of possible values {cr(D) : D
is a simple straight-line drawing of G}, is the spectrum of G for cr.

Reference: Grünbaum [334]. Also, Furry, Kleitman [307].
Comments: Originally defined by Grünbaum who mentions several results, including the

calculation of max- cr(Cn) due to Steinitz [652].124 Other names for this crossing
number include maximal rectilinear crossing number [334] and obfuscation complex-
ity [687]. Verbitsky writes obf(G) for max- cr and obf◦ for max- cr◦. Thürmann [672]
considers a variant max- crh of max- cr parameterized by the number h of vertices
that lie on the boundary of the convex hull of all vertices (but only for complete
graphs).

124Steinitz’s result from 1923 was preceded by several incorrect or incomplete results, including a note
by Baltzer [79] who seems to have originated the problem in 1885; in turn, it was rediscovered multiple
times, e.g. in [307], for a (partial) survey see [336].

the electronic journal of combinatorics (2022), #DS21 69



Complexity: The maximum rectilinear crossing number isNP-hard [73], but not known
to lie in NP. Can be approximated efficiently to within a factor of 1/3 [73, 687]. For
triangulations this bound can be improved to 56/39 [432]. The convex maximum
rectilinear crossing number is NP-complete [73].

Relationships: max- cr(G) < 3|V (G)|2 [687]. max- cr(G) 6 max-cr(G) (by definition)
and the inequality can be strict (e.g. compare Steinitz’s result on max- cr(Cn) to
max-cr(Cn) when n is even). max- cr(G) 6 θ′(G), the sub-thrackle bound (see
maximum crossing number for θ′(G)), and there is a characterization of which graphs
achieve max- cr(G) = θ′(G) [653]. max- cr◦(G) 6 max- cr(G) 6 3 max- cr◦(G) [74,
687]. For extremal values of max- cr given order and size of G, see [117]; for given
order and degree, see [34, 72, 116]. max- cr◦(G) = max- crh(G) for h = |V (G)| (by
definition).

Values: max- cr(Kn1,...,nk
) =

(
n
4

)
−
∑k

i=1(
(
ni

4

)
+(n−ni)

(
ni

3

)
), where n =

∑k
i=1 ni and k > 2

(follows from [365], also see [36, 308]). max- cr(tK4) = 20
(
t
2

)
+t [33]; max- cr(2K5) =

60, max- cr(2K3 + 4K1) = 136, max- cr(2K3 + 2K3) = 357, max- cr(2K5 + 5K1) =
442 [72], where + is the join of two graphs. max- cr(Cn) = n(n − 3)/2 if n is odd
and max- cr(Cn) = n(n − 4)/2 + 1 if n is even [652].125 The spectrum of Cn for
cr was determined in [142, 307, 336, 652]. max- cr◦(Cn) = n(n − 3)/2 if n is odd,
and n(n − 4)/2 + 1 if n is even, and the spectrum of Cn is known [142]. There
is a closed formula for max- cr of 2-regular graphs (disjoint union of cycles) [116],
and its complement [72]. The value of max- crh(Kn) is known [372]. max- cr(Wn) =
(2n2 − 5n − 1)/2 if n is odd and n2 − 3n + 1 if n is even [276]; for generalized
wheel graphs Wm,n see [36]. max- cr(Q3) = 28, where Q3 is the 3-dimensional
hypercube graph [35]. max- cr(GP(2, 5)) = 49 [281], where GP(2, 5) is the Petersen
graph. max- cr(M(3, 3)) = 35 [282], and max- cr(M(2, n)) = (9n2−11n+4)/2 [284],
where M(m,n) = Pm � Pn is the m × n mesh. For more results on meshes and
other graphs based on tessellations and polyominos, see [280, 282–284]. For spiders,
see [99, 271], for trees of diameter at most 4, see [99]. Calculating max- cr(nP2),
the largest number of crossings of n line segments, is an old puzzle, as in Sam Loyd
Jr’s “When Drummers Meet”, see [642, 5.Q.1], in educational writing [227, 228],126

textbooks [327, p.70, 448, p.5, 3rd part], and, with variations, in [651].
Open Questions: Alpert, Feder and Harborth [34] asked if max- cr(G) = max- cr◦(G)

for every graphG; it is now known that this is not the case [175], but it is still possible
that equality holds for bipartite graphs. (Also, see [118].) H It is not known whether
max- cr lies in NP, the best known upper bound is ∃R. H Alpert, Feder, Harborth
and Klein [35] show that max- cr(Qn) > 2n−2[2n−1(n2−2n+3)−n2−1] and conjecture
that this lower bound is tight. H What is max- cr(Ck ∪ C`)? This question may be

125For more recent proofs in English, see [34, 307].
126Diesterweg’s books are in the (long) tradition of Pestalozzi’s “Formenlehre”, an educational approach

to shapes and figures in preparation for Euclid’s geometry; it discusses many questions we would now
classify as basic coincidence or combinatorial geometry. The first book [228] contains the exercises, the
second book [227] the solutions (instructions for teachers). Problem 13 in chapter 10 is the relevant
problem here, though there are variants as well (e.g. what happens if some lines are parallel).
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hard, since we do not even know the maximum number of intersections between two
polygons in all cases [155].127

Also see: Maximum crossing number, maximum (rectilinear) edge crossing number (un-
der edge crossing number), convex crossing number.

Maximum rectilinear edge crossing number. See edge crossing number.

Metro-line crossing number
Definition: Let G be a graph embedded in the plane, and L a set of paths (without

repeated vertices) in G called lines. A routing of the lines orders all lines passing
through an edge at each end of the edge. An edge crossing of two lines occurs if
the ordering of the two lines at the two ends of some edge have switched. A vertex
(station) is represented as a (convex) polygon with one side for each incident edge.
The routing determines the order at each side of the station. If the entry and exit
points of two lines alternate along the boundary of a station, a station crossing
occurs; that is, the two lines have to cross within the station. The Metro-line
crossing number of a particular routing of L in the embedding of G is the number
of edge and station crossings of lines in edges. The Metro-line crossing number of L
is the smallest Metro-line crossing number of any routing of L.128

Reference: Based on Benkert, Nöllenburg, Uno, Wolff [98], Argyriou, Bekos, Kauf-
mann, Symvonis [49].

Comments: The concept of metro-line crossing minimization was introduced in Benkert,
Nöllenburg, Uno, Wolff [98], a more general model was suggested by Argyriou,
Bekos, Kaufmann, Symvonis [49]. Both these papers consider the problem a crossing
minimization problem and study it in various variants (e.g. stations have to be 2-
sided or 4-sided or the end of lines may be forced to be in particular positions), so
the metro-line crossing number defined above is just one possible variant.

Complexity: Optimizing the Metro-line crossing number of a single edge in G can be
done in polynomial time [98] and there are NP-hard variants even if the underlying
graph is a path [49] or a caterpillar [293]. There are polynomial-time and fixed-
parameter tractable cases for some variants [534].

Also see: Confluent crossing number, wire crossing number.

Minimum non-crossing edge number. See edge crossing number.
127An arXiv paper [337] claiming to settle the missing case remains unpublished.
128One can distinguish between avoidable and unavoidable station crossings: two lines entering a station

through the same edge need not cross within the station, such a crossing can always be turned into an edge
crossing without increasing the Metro-line crossing number of the drawing. Since the unavoidable station
crossings can be computed in polynomial time, several papers restrict themselves to drawings without
avoidable station crossings, and then only count edge crossings. This also gives a more interesting variant
if one studies fixed-parameter tractability.
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Minor crossing number
Definition: The minor crossing number, mcr(G), of a graph G is the smallest crossing

number of any graph having G as a minor. The major crossing number, Mcr(G), of
a graph G is the largest crossing number of any minor of G. We write mcrΣ for the
minor crossing number on surface Σ.

Reference: Bokal, Fijavž, Mohar [122].
Comments: The definition of the minor crossing number was motivated by an attempt

to find a crossing number that works well with minors, indeed it is minor-monotone
by definition (the genus crossing number also addresses this issue), and is some-
times called the minor monotone crossing number. Robertson and Seymour iden-
tified the 41 forbidden minors of the set {G : mcr(G) 6 1} [122]. Chimani and
Gutwenger [176] introduce a variant mcrW (G), for W ⊆ V (G), in which only ver-
tices in W are allowed to be expanded in the minor relationship; this allows them
to draw connections to a hypergraph crossing number variant.

Complexity: NP-complete [384, 564].129 Testing mcr(G) 6 k is in polynomial time for
any fixed k, since the property is closed under minors. However, only for k = 1 is
the set of forbidden minors known [122].

Relationships: mcrΣ(H) 6 mcrΣ(G) if H is a minor of G (from definition), mcrΣ(G) 6
crΣ(G) 6 McrΣ(G) (from definition). crΣ(G) 6 b∆/2c2 mcrΣ(G) [122], where ∆ is
the maximum degree of G. mcrΣ(G) > (m− (3(n+ eg(Σ)) + 6))/2, where eg(Σ) is
the Euler genus of Σ and n = |V (G)|,m = |E(G)| [122]. There is a constant c(H)
for every graph H so that mcr(G) 6 c(H)|V (G)| for every G that does not contain
H as a minor [123].

Values: mcr(Kn) is known for n 6 8 [122]. There are asymptotic bounds for complete
graphs, complete bipartite graphs and hypercubes [121, 122].

Also see: Genus crossing number.

Minor-monotone crossing number. Alternative name for minor crossing number.
Monotone crossing number. See monotone crossing numbers.

Monotone crossing numbers
Definition: A drawing is monotone if every vertical line in the plane intersects each

edge at most once. The monotone crossing number of G, mon-cr(G), is the smallest
number of crossings in a monotone drawing of G. If G is equipped with a preorder
� (reflexive and transitive) of its vertices we restrict the drawings of G to drawings
which respect the preorder � in the sense that the total preorder created by the x-
coordinates of the vertices extends �. We write mon-cr�(G) for the resulting (fixed)
monotone crossing number. If there is no danger of confusion, we will drop � in the
notation. If � is the trivial preorder, then mon-cr� is simply the monotone crossing

129Neither of those sources shows that the problem lies in NP. For that one needs to observe that for
every G there is a graph H so that mcr(G) = cr(H) and G can be obtained from H using a polynomial
(in size of G) number of contractions and deletions.

the electronic journal of combinatorics (2022), #DS21 72



number mon-cr; if � is a total preorder we get the leveled crossing number130 of
which the bipartite crossing number and the k-layer crossing number are special
cases. If � is a total order (at most one vertex per level, by anti-symmetry), we get
the x-monotone crossing number. For a directed acyclic graph G with its induced
preorder � we get the upward crossing number as mon-cr�(G).

For any crossing number notion ψ one can introduce the corresponding monotone
version mon-ψ as above (with or without a given preorder), for example, one can talk
about the monotone pair crossing number, mon-pcr or the monotone odd crossing
number, mon-ocr.

Reference: Valtr [685], Fulek, Pelsmajer, Schaefer, Štefankovič [306].
Comments: The monotone crossing number was introduced by Valtr [685] who also

mentions monotone pair crossing number and monotone odd crossing number. The
preorder versions are introduced in [306], but many of these problems are implicit in
the crossing minimization problems studied in leveled (layered) graph drawing. The
preorder version mon-cr� suggested here is a general tool to unify many of these
notions. One could imagine a bi-monotone crossing number in which orderings are
prescribed both for the x and the y direction. Balko, Fulek, and Kynčl [75] intro-
duce the monotone odd + crossing number, mon-ocr+ (under the name monotone
semisimple odd crossing number), and the monotone odd ± crossing number, ocr±
(using the name monotone weakly semisimple odd crossing number).

Complexity: mon-cr(G) is NP-complete.131 With two levels, crossing minimization is
NP-complete (see bipartite crossing number for a discussion), even if the ordering
of one level is given (one-sided crossing minimization) [246, 251]. Testing whether
a directed graph has upward crossing number 0 is NP-complete [254].

Relationships: cr(G) 6 mon-cr(G) 6 cr(G) (definition). mon-cr(G) 6 4 mon-pcr(G)4/3

for all G [685]. mon-iocr(G) 6 mon-ocr(G) 6 mon-ocr±(G) 6 mon-ocr+(G) 6
mon-cr(G) (definition). mon-cr(G) 6

(
2 cr(G)

2

)
, and there are graphs G for which

mon-cr(G) > 7/6 cr(G)− 6 [553]. If there is a graph G with a linear order � of its
vertices so that mon-ψ�(G) < mon-φ�(G) for ψ, φ ∈ {ocr, iocr, acr, iacr, pcr+, pcr,
pcr−, cr, cr−}, then there is a graph G′ for which ψ(G′) < φ(G′); there is a graph
G with a linear order � of its vertices, so that mon-iocr�(G) < mon-ocr�(G) and
consequently, there is a graph G′ so that iocr(G) < ocr(G) [306].

130More typically called the multi-level crossing minimization problem. A level is a set of vertices
that are equivalent in the sense that u � v and v � u. Levels realized as parallel lines in a drawing
are often called layers. In crossing minimization problems the first step typically consists in assigning
vertices to layers and then ordering the vertices within each layer. One can consider crossing number
variants in which orderings of some layers are already specified. E.g. in the well-known one-sided crossing
minimization problem the bipartite graph is drawn on two layers and the ordering of one layer is pre-
specified.

131NP-hardness follows from the hardness of crossing number [315], simply subdivide each edge suffi-
ciently often so each part can be drawn as a monotone edge. The problem lies in NP: guess an ordering
of the vertices and the ordering in which edges pass above and below each vertex. That is sufficient to
calculate the crossing number of the drawing.
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Values: mon-cr(Kn) = Z(n) [1, 2], where Z(n) = X(n)X(n − 2)/4 is Zarankiewicz’s
function, with X(n) = bn/2cb(n− 1)/2c.132 The same result was also found by [75]
who prove the stronger result mon-ocr±(Kn) = mon-ocr+(Kn) = Z(n).

Open Questions: Is mon-iocr(Kn) = Z(n) [75]? H We can define a maximum version
of the monotone crossing number (each pair of edges may cross at most once). What
is the maximum monotone crossing number of Cn? The interesting case here are
cycles of even length, for which Pach and Sterling showed that there can be at most
n(n−3)/2−1 crossings [546, Lemma], compared to a lower bound of n(n−4)/2+1
via max- cr(Cn).

Also see: Bipartite crossing number, radial crossing number, upward crossing number,
pseudolinear crossing number, local crossing number (bottleneck crossing minimiza-
tion).

Multiplanar crossing number. See k-planar crossing number.

Nodal crossing number
Definition: Let crD(e) be the number of crossings involving e in a drawing D. Let

crD(v) be the sum of crD(e) over all e incident to v (in the literature, crD(v) is
known as the responsibility of v in D). The nodal crossing number of a drawing D
of a graph G, ncr(D), is the largest crD(v) over all vertices of G. The nodal crossing
number of G, ncr(G), is the minimum of ncr(D) over all drawings of G. For the
nodal crossing number on a surface Σ, we write ncrΣ.

Reference: Guy, Jenkyns, Schaer [348].
Comments: The nodal toroidal crossing number, ncrS1 was introduced by Guy, Jenkyns,

Schaer [348]; Guy [267, p.364] also referred to it as the vertical crossing number.
Radermacher and Rutter consider a related parameter they call the co-crossing
number of a vertex [580]. One can imagine a related notion of “vertex-skewness” in
which we ask for the smallest number of vertices that can be removed to make a
graph planar. This notion was first mentioned by Harary [352], and called k-apex
graphs in [103], also see Footnote 150. In [650] the non-increasing sequence of vertex
responsibilities is called a crossing sequence.

Complexity: Open.
Relationships: lcr(G) 6 ncr(G) 6 cr(G) (by definition).
Values: ncrS1(Kn) is known for n 6 9, and there are asymptotic results for ncrS1(Kn)

[348].
Also see: Local crossing number, simple crossing number, vertex-skewness (under skew-

ness).

Non-crossing edge number. See edge crossing number.
132The result remains true if the edges in the drawing are only x-bounded, that is, each edge lies

(horizontally) entirely between its endpoints.
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Odd crossing number
Definition: The odd crossing number of G, ocr(G), is the smallest number of pairs of

edges crossing an odd number of times in any drawing of G. The Rule + variant
of ocr is ocr+(G), the smallest number of pairs of edges crossing an odd number of
times in any drawing of G in which adjacent edges are forbidden to cross (called
semisimple in [75]). One can define an intermediate variant in which adjacent edges
have to cross evenly (such drawings are called weakly semisimple in [75]); denote
this variant by ocr±.133

Reference: Pach, Tóth [556], also Levow [479].
Comments: First explicitly defined (and named) by Pach and Tóth [556], although

Levow [479] deserves some credit; he realized that Tutte’s algebraic theory of cross-
ing number could be developed over binary fields (Wu developed a theory parallel
to Tutte’s over binary fields, but he didn’t touch on the subject of crossing num-
bers); Levow defines a parameter that could be algebraic or odd crossing number
(or, indeed, an independent version). His definition is not precise enough to decide.

Complexity: NP-complete [556] and remains NP-complete if the graph is cubic or
rotation system is given [564]. The problem is fixed-parameter tractable [562].

Relationships: There is a crossing lemma, ocr(G) > 1/64 m3/n2 for m > 4n [556].134

iocr(G) 6 ocr(G) 6 ocr± 6 ocr+(G) for all graphs G (by definition). ocr(G) 6
acr(G) 6 cr(G) (by definition). ocr(G) = cr(G) if ocr(G) 6 3 [566]. There
are graphs for which ocr(G) < (

√
3/2 + o(1)) acr(G) = pcr(G) = cr(G)) [565].

ocrΣ(G) 6
(

2 crΣ(G)
2

)
for all surfaces Σ, and ocrΣ(G) = crΣ(G) if ocrΣ(G) 6 2 for all

surfaces Σ [567].
Also see: Independent odd crossing number, algebraic crossing number, monotone cross-

ing number (for monotone version).

Orchard crossing number
Definition: An orchard drawing of G is a straight-line drawing of G with vertices in

general position to which are added straight (infinite) lines through every pair of
vertices. The orchard crossing number, orchard-cr(D), of an orchard drawing D of
G is the total number of crossings between edges and lines (not counting the line
an edge lies on). The orchard crossing number of G, orchard-cr(G), is the smallest
orchard crossing number of any orchard drawing of G. The maximum orchard
crossing number of G is the largest orchard crossing number of any orchard drawing
of G.

Reference: Feder, Garber [279].
133The + rule for crossing numbers looks rather straightforward: we prohibit drawings in which adjacent

edges cross. One may ask, however, in what sense of the word cross? The standard interpretation is that
cr(e, f) = 0 for all pairs of adjacent edges e and f . But why not require that ψ(e, f) = 0 if we are
considering the crossing number ψ? For cr and pcr (and cr, of course), this makes no difference, but for
ocr and acr we get a new variant which we denote by ψ± [306]. By definition, ψ 6 ψ± 6 ψ+.

134See the section on crossing lemma variants in Section 1.
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Comments: One can also imagine a pseudoline version of the orchard crossing number.
Replacing lines with line segments in the definition of the orchard crossing number
leads to the airport crossing number [268]. For the airport crossing number, a non-
rectilinear version may be of interest as well.

Complexity: Open.
Relationships: cr(G) 6 orchard-cr(G)/2 [279] (since every edge crossing counts twice).

The drawing maximizing the orchard crossing number of Kn realizes cr(Kn) [279].
Values: orchard-cr(Kn) = 2

(
n
4

)
, and orchard-cr(K1,n) and orchard-cr(Wn) are known [279];

orchard-cr(Kn,n) = 4n
(
n
3

)
[278]. Further results are in [277]. The maximum orchard

crossing number of Km,n is known [279].
Also see: Rectilinear crossing number

Oriented crossing number. See joint crossing numbers.
Outerplanar crossing number. See convex crossing number.

Pair crossing number
Definition: The pair crossing number of G, pcr(G), is the smallest number of pairs

of edges crossing in any drawing of G. The independent pair crossing number of
G, pcr−(G), is the smallest number of pairs of independent edges crossing in any
drawing of G. The Rule + variant of pcr is pcr+(G), the smallest number of pairs
of edges crossing in any drawing of G in which adjacent edges are forbidden to
cross. The local pair crossing number of G, lpcr(G), is the smallest k so that G
has a drawing in which every edge crosses at most k other edges (possibly multiple
times).

Reference: Mohar (attributed in [453]), Pach, Tóth [555, 556], Ackerman, Schaefer [16]
for lpcr.

Comments: According to Kolman and Matoušek [453], the pair crossing number was first
explicitly introduced by Mohar who asked whether pcr = cr at an AMS Conference
on topological graph theory in 1995. The first mention in print seems to be by Pach
and Tóth [556] (as the pairwise crossing number), who pointed out that crossing
number is often defined as pair crossing number (whether intentionally or not),
see Section 1 for a discussion. The independent pair crossing number was also
defined by Pach and Tóth [555]; Alon [32] and Tao and Vu [668] discuss the crossing
lemma for the independent pair crossing number. The local pair crossing number
was explicitly introduced by Ackerman, Schaefer [16], though there had been earlier
implicit definitions of this notion [648, 649].

Complexity: The pair crossing number is NP-complete [556, 616] and remains NP-
complete if the graph is cubic or rotation system is given [564]. The independent pair
crossing number is also NP-complete. The pair crossing number is fixed-parameter
tractable [562].

Relationships: There is a crossing lemma for the independent pair crossing number,
pcr−(G) > 1/64 m3/n2 for m > 4n [32].135 For pcr+ a stronger lower bound

135See the section on crossing lemma variants in Section 1.

the electronic journal of combinatorics (2022), #DS21 76



is known, pcr+(G) > 1/32.4m3/n2 for m > 6.75n. ocr(G) 6 pcr(G) 6 cr(G),
pcr−(G) 6 pcr(G) 6 pcr+(G) for all G. If pcr−(G) = pcr(G), then pcr(G) =
pcr+(G).136 There are graphs G for which ocr(G) < pcr(G) [565], indeed ocr(G) =
acr(G) 6 0.855 pcr(G) is possible [675]. cr(G) = O(pcr(G)3/2 log pcr(G)), this fol-
lows from combining a result by Matoušek [492] (based on a proof by Tóth [673]),
who showed that cr(G) = O(pcr(G)3/2 log2 pcr(G)) with a stronger string graph sep-
arator [475], see [612, Corollary 9.23] and, independently, [434]. Earlier bounds on
cr in terms of pcr (using different techniques) are due to Valtr and Tóth [675, 685].
lpcr(G) 6 lcr(G) (by definition), and there are graphs G for which lpcr(G) < lcr(G)
(see Footnote 113), however, lpcr(G) = lcr(G) as long as lcr(G) 6 2 [16],137 or G is
sufficiently connected [436]. For a discussion of crossing lemmas for pcr and pcr−
on surfaces, see Remark 3.

Pair-of-pants crossing number. See map crossing number.
Pair string crossing number. See string crossing number.
Pairwise crossing number. See pair crossing number.
Projective plane crossing number. See crossing number.

Pseudolinear crossing number
Definition: A pseudoline is a simple closed curve in the projective plane that is non-

separating. A pseudoline arrangement is a set of pseudolines so that each pair of
pseudolines has exactly one point in common. A pseudolinear drawing of G is a
drawing of G in the projective plane so that each edge lies on a pseudoline in a
pseudoline arrangement. Edges are then called pseudosegments. The pseudolinear
crossing number of G, c̃r(G), is the smallest number of crossings between pseudoseg-
ments in a pseudolinear drawing of G.

Reference: Balogh, Leaños, Pan, Richter, and Salazar [77, 558].
Comments: The pseudolinear crossing number was introduced in Pan’s thesis [558].
Complexity: NP-complete [380]. It is ∃R-complete to test whether c̃r(G) = cr(G) [380].
Relationships: mon-cr(G) 6 c̃r(G) 6 cr(G) (since pseudolines can be realized as x-

monotone curves and because every rectilinear drawing can be extended to a pseu-
doline drawing). The pseudolinear crossing number differs from the standard cross-
ing number, even for complete graphs: 18 = cr(K8) < c̃r(K8) = cr(K8) = 19.
Hernández-Vélez, Leaños, Jesús and Salazar [380] show that the graphs Gm in-
troduced by Bienstock and Dean [107] separate cr from the pseudolinear crossing
number, since cr(Gm) = 4 and c̃r(Gm) = m. This also separates mon-cr from c̃r since
mon-cr 6

(
2 cr
2

)
[553]. For everym there is anHm so that c̃r(Hm) 6 cr(Hm)−m [380].

Values: c̃r(Kn) = cr(Kn) for n 6 27 [4]. c̃r(Kn) 6 0.380448
(
n
4

)
+ O(n3) [76]. c̃r(Kn) >

0.379972
(
n
4

)
− O(n3) [4]. Some of the best asymptotic lower bounds for cr(Kn) are

136Consider a pcr-minimal drawing of G. Since pcr−(G) = pcr(G), it does not have any crossings
between adjacent edges (otherwise it would witness pcr−(G) < pcr(G)). So the drawing shows that
pcr+(G) = pcr(G).

137A fact used in the proof of the crossing lemma for pcr+.
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achieved via c̃r(Kn). Since c̃r(Kn)/
(
n
4

)
is nondecreasing and bounded, the limit

ρ̃ = limn→∞ c̃r(Kn)/
(
n
4

)
exists and is known as the pseudolinear crossing constant;

for bounds on ρ̃, see [20]. The value of c̃r(K2n) is known for centrally symmetric
drawings [213].

Open Questions: Balogh, Leaños, Pan, Richter, and Salazar [77] conjecture that
c̃r(Kn) = cr(Kn). Supporting this conjecture is the fact that the convex hull of
both a c̃r-optimal and a cr-optimal drawing of Kn is a triangle [23, 77]; it is open
whether this is true for the second convex hull as well (an earlier paper on this topic
has been withdrawn [473]). H Aichholzer, Duque, Fabila-Monroy, García-Quintero,
and Hidalgo-Toscano [20] mention the question whether ρ̃ < ρ, where ρ is the rec-
tilinear crossing constant, as a “challenging open problem”. H Extending a question
by Pegg [560], we can ask whether cr(G) = c̃r(G) for cubic graphs G.

Also see: Rectilinear crossing number, monotone crossing number.

Quasi crossing number
Definition: A drawing of a graph is quasi-plane if it does not contain three pairwise-

crossing edges. The quasi(-plane) crossing number, quasi-cr(G), of G is the smallest
number of triples of edges crossing pairwise in any drawing of the graph. If we re-
strict the drawings to be intersection-simple, we get the simple quasi(-plane) crossing
number, quasi-cr∗(G).

Reference: Pitchanathan, Shannigrahi [576].
Comments: Pitchanathan and Shannigrahi [576] introduce the simple quasi crossing

number, and use the notation cr3 (which we use for the 3-planar crossing number);
we also distinguish the variant without the simplicity requirement. It’s natural
to extend both notions to the k-quasi(-plane) setting, yielding the k-quasi(-plane)
crossing number and its simple variant.

Complexity: Open.
Relationships: There is a crossing lemma, quasi-cr∗(G) > c m5/n4. If lcr∗(G) 6 k,

then quasi-cr∗k+1(G) = 0 [39].
Values: quasi-cr∗(K10) = 0 [129]. quasi-cr∗(K11) = 4 [576].
Open Questions: Is there a non-trivial upper bound on quasi-cr∗(Kn) [576]. H Is

quasi-cr(G) = quasi-cr∗(G), or can quasi-cr∗(G) be bounded in quasi-cr(G)? H Is
there a crossing lemma for quasi-cr? H One could consider quasi-cr, the quasi recti-
linear crossing number. Brandenburg [129] mentions in passing that quasi-cr(K10) >
0, attributing it to [22]. What is the exact value, and how does quasi-cr relate to
quasi-cr∗? H It is a long-standing open question (e.g. [132, Problem 1, Section
9.6]), whether quasi-cr∗k(G) = 0 implies that |E(G)| is linear, this is only known for
k 6 4 [299].

Also see: Crossing number of abstract topological graph.
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Radial crossing number
Definition: A leveling of a graph G = (V,E) is a mapping from V to {1, . . . , k}, as-

signing each vertex a level. A radial drawing of G is a drawing in which vertices of
level i are placed on the ith circle of k concentric circles; edges are required to be
monotone in the sense that they cross every circle that is concentric with the level
circles at most once. The radial crossing number of G is the smallest number of
crossings in a radial drawing of G.

Reference: Bachmaier [67]. Richter, Thomassen [589]. Also, Northway [533].
Comments: Bachmaier [67] introduced the general concept of radial crossing number. If

G is bipartite one can assign the vertices of each partition to one of two circles, result-
ing in the bipartite cylindrical drawings introduced by Richter and Thomassen [589]
to study the crossing number of Kn via bipartite cylindrical drawings of Kn,n; there
also is a concept of cylindrical crossing number for non-bipartite graphs. In a paper
from 1940, Northway [533], suggested radial layouts and used the number of crossing
lines as an aesthetic criterion.

Complexity: Radial level planarity can be tested in linear time [70]. For two levels,
the radial crossing number is NP-complete (this easily follows from NP-hardness
of the bipartite crossing number), as is the one-sided version (in which the ordering
of the vertices on one level is fixed) [67, 246, 251]. If orderings of vertices on both
sides are fixed, the problem is in polynomial time [564].138

Relationships: The leveled crossing number of G is an upper bound on its radial cross-
ing number. In particular, the bipartite crossing number, bcr, is an upper bound
on radial crossing number with two levels (the upper bound may be strict, e.g. for
K2,2).

Values: The radial crossing number of Kn,n on two levels is n
(
n
3

)
[589] (with each parti-

tion on a separate level). More recently, Sparks [644] showed that under the same
restrictions the radial crossing number of Km,n can be calculated.

Also see: Bipartite crossing number, leveled crossing number (under monotone cross-
ing numbers), annulus crossing number (under map crossing number), cylindrical
crossing number.

Rectilinear crossing number
Definition: The rectilinear crossing number of G, cr(G), is the smallest number of

crossings in a straight-line drawing of G.
Reference: Harary, Hill [354].
Comments: The rectilinear crossing number for arbitrary graphs was introduced by

Harary and Hill [354]. It is sometimes claimed that the rectilinear crossing number
138In this case, the radial crossing number turns into the annulus crossing number.

the electronic journal of combinatorics (2022), #DS21 79



is also known as the linear or geometric(al) crossing number, but published evidence
for that is slim.139

Complexity: ∃R-complete [106], see [611] for ∃R. Can be approximated to within
an additive error of o(|G|4) in polynomial time [297]. The crossing number of a
straight-line drawing of a graph can be computed in time O(n2 log n) [242].

Relationships: cr(G) 6 cr(G) for all graphs G, and inequality can be strict, e.g. 18 =
cr(K8) < cr(K8) = 19 [84, 641].140 cr(G) = cr(G) if cr(G) 6 3, but for every
k there is a G such that cr(G) = 4 and cr(G) > k [107].141 cr(G) = cr(G) for
maximal graphs of pathwidth 3 [105]. Also, cr(G) = O(∆ cr2(G)), where ∆ is the
maximum degree of G [108]; this was improved to cr(G) = O(∆ cr(G) log cr(G)) if
|E| > 4|V | [632]. Wilf [702] points out that cr(G) 6 ρM/3, where M is the number
of times 2K2 occurs as a subgraph in G, and ρ ≈ 0.38 is the rectilinear crossing
constant (definition under values).142 The rectilinear midrange crossing constant is
the limit of cr(G)n2/m3 as n goes to infinity and n� m� n2; this limit exists [545,
547], and is at least as large as the midrange crossing constant.

Values: The values of cr(Kn) are now known up to n = 27 and for n = 30 (see [11] for
a recent survey, also [18]). cr(Kn) > cr(Kn) for n = 8 and n > 10. 277/729

(
n
4

)
6

cr(Kn) 6 9363184/24609375
(
n
4

)
+ Θ(n3) (lower bound: [4], upper bound: [515];

current techniques are described in [11]). Since cr(Kn)/
(
n
4

)
is nondecreasing and

bounded, ρ = limn→∞ cr(Kn)/
(
n
4

)
—the rectilinear crossing constant [291]—exists,

and is, surprisingly, related to Sylvester’s Four Point Problem [621]; for bounds on
ρ, see [20]. The value of cr(K2n) is known for centrally symmetric drawings [213]. For
complete bipartite cr(Km,n) 6 Z(m,n), where Z(m,n) = X(m)X(n) and X(n) =
bn/2cb(n−1)/2c [717]. It has been conjectured that cr(Km,n) = cr(Km,n) [47]. This
conjecture is implied by Zarankiewicz’s conjecture as Guy observed [344]. For tripar-
tite complete graphs Kn1,n2,n3 there is a function A(n1, n2, n3) introduced in [322] for
which the authors conjecture cr(Kn1,n2,n3 = cr(Kn1,n2,n3) = A(n1, n2, n3); they can
show that 0.973A(n1, n2, n3) 6 cr(Kn1,n2,n3) 6 A(n1, n2, n3) (and a slighter weaker
lower bound for cr). cr(C3�Cn) = n [592], cr(C4�Cn) = 2n [92]. For complements
of cycles, see [346]. Faria, de Figueiredo, Richter and Vrťo [273] give upper bounds
on cr(Qn).

139If it is used at all, the term “linear crossing number” typically refers to the linear crossing number
introduced by Nicholson [532], the only exceptions I found are [47, 90]. The use of “geometric drawing”
for straight-line drawing is quite common, but there only seem to be a small number of papers using the
term geometric crossing number [5, 11, 47].

140Barton’s thesis [84] and Singer’s unpublished manuscript [641] also contain early upper bounds on
cr(Kn), Barton obtains cr(Kn) 6 11/648 n4 + O(n3) and Singer shows cr(Kn) 6 5/312n4 + O(n3); see
the section on values for current best bounds.

141Some more light is thrown on these separating examples in [380]
142The paper doesn’t supply an argument, but one imagines Wilf would have argued as follows: fix

a cr-optimal drawing of Kn, where n = |V (G)|. Randomly assign vertices in V (G) to vertices in the
drawing of Kn. Then the probability that four vertices of V (G) are in convex position, is ρ by definition
of ρ. The probability that two edges of G are mapped to the four endpoints so that the two edges cross,
is 1/3; hence, the expected number of crossings of G is at most ρM/3.
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Open Questions: Harary, Kainen, and Schwenk conjectured that cr(Cm�Cn) = n(m−
2) for n > m > 3; since there are straight-line drawings of Cm � Cn with n(m− 2)
crossings, a weaker conjecture would be: cr(Cm � Cn) = n(m − 2) for n > m > 3;
the conjecture is known to be true for the same cases as the original conjecture
which is discussed in the entry on the crossing number. H The separation of cr and
cr by Bienstock and Dean [107] implies that cr cannot be bounded in cr; however,
Hernández-Vélez, Leaños, and Salazar [380] conjecture that this can be done, that
is, cr(G) 6 f(cr(G)) for some function f , as long as G is 3-connected. HWhat is the
complexity of cr(G) 6 4 (in comparison: cr is fixed-parameter tractable; pseudo-
linear crossing number is also open)? H Pegg [560] asks whether cr(G) = cr(G) for
cubic graphs G.143

Also see: t-polygonal crossing number, pseudolinear crossing number, maximum rec-
tilinear crossing number, simultaneous geometric crossing number (under simul-
taneous crossing number), grid crossing number, rectilinear local crossing number
(under local crossing number), rectilinear weighted crossing number (under weighted
crossing number), centrally symmetric rectilinear crossing number (under centrally
symmetric crossing number).

Rectilinear edge crossing number. See edge crossing number.
Rectilinear k-planar crossing number. See k-planar crossing number.
Rectilinear local crossing number. See local crossing number.
Rectilinear space crossing number. See space crossing number.
Rectilinear weighted crossing number. See weighted crossing number.

Red/blue crossing number
Definition: Given graphs Gi = (Vi, Ei), and point-sets Pi in the Euclidean plane with

|Pi| = |Vi|, i ∈ {1, 2}, a red/blue drawing consists of straight-line embeddings of
Gi on vertex set Pi, i ∈ {1, 2} (each graph by itself is free of crossings). The
red/blue crossing number is the smallest number of crossings in a red/blue drawing
(necessarily between edges of G1, the red edges, and G2, the blue edges; in other
words, we count red/blue crossings). It is possible that the Gi have no red/blue
drawing on the Pi, in which case we say that the red/blue crossing number is infinite.

Reference: Based on Bereg, Jiang, Yang, Zhu [100].
Comments: Bereg, Jiang, Yang, Zhu [100] are interested in the smallest number of

crossings between any two crossing-free, geometric spanning trees on P1 and P2.
However, they do go on to study the special case where the Gi are paths.

Complexity: Testing whether the red/blue crossing number of two paths is 0 is NP-
complete [100]. (Finding red/blue spanning trees with the minimum number of
crossings can be solved in time O(n log n).)

Also see: Simultaneous crossing number, joint crossing numbers, geometric k-planar
crossing number.

143By a result of Bienstock and Dean [108], cr(G) = O(cr2(G)) in this case, so no unbounded separation
is possible in this case. Is K8 the graph of smallest degree for which we know that cr(G) > cr(G)?
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Right-angle crossing number
Definition: The right-angle crossing number of G is the smallest number of crossings in

a straight-line drawing ofG in which all pairs of crossing edges have to be orthogonal.
If no such drawing exists, the right-angle crossing number is infinite.

Reference: Based on Didimo, Eades, and Liotta [225].
Comments: Didimo, Eades, and Liotta [225] introduced the notion of RAC (Right Angle

Crossing) drawing based on the aesthetic heuristic that drawings are easier to read
if angles at crossings are large [409]. One can imagine a t-polygonal right-angle
crossing number, in which each edge is allowed to consist of t line segments. Didimo,
Eades, and Liotta [225] showed that every graph has finite 4-polygonal right-angle
crossing number. A more relaxed version may only require angles to be at least
some large α 6 90, see [221, 237], or edges to be drawn as circular arcs [161].

Complexity: It is ∃R-complete [609] to decide whether the right-angle crossing number
is finite (see [50] for earlier NP-hardness result). The problem remains hard even
if there are at most ten crossings per edge and in the fixed embedding setting.

Relationships: The right-angle crossing number of G is at least cr(G). If G has finite
right-angle crossing number, then m 6 4n− 10 assuming that n > 4 [225].144

Open Questions: What is the complexity of deciding whether the right-angle crossing
number is at most k for small values of k such as 1, 2, or 3 [609]?

Rotational crossing number. Crossing number of graph with rotation (or embedding)
system. See entry for crossing number.

Simple crossing number
Definition: The simple crossing number of G, cr×(G), is the smallest number of cross-

ings in any drawing of G in which every edge has at most one crossing.145 If there is
no such drawing, we let cr×(G) = ∞; the name “simple crossing number” conflicts
with the usual notion of a simple drawing (which only requires that every two edges
cross at most once).146 Kainen [427] called a drawing in which every edge has at
most one crossing nearly planar, Ringel [593] called it a 1-embedding; the graphs
with cr×(G) 6 1 are called 1-planar [626].

Reference: Buchheim, Ebner, Jünger, Klau, Mutzel, Weiskircher [136].
Comments: Buchheim, Ebner, Jünger, Klau, Mutzel, Weiskircher [136] introduce this

variant to simplify their integer linear program for crossing minimization; the use-
fulness of the simple crossing number lies in the fact that every graph G has a
subdivision G′ for which cr(G) = cr×(G′). 1-planar graphs can be 6-colored [126,
595] (in principle) and 7-colored in linear time [166].

144Linear edge bounds are also known for graphs with finite t-polygonal right-angle crossing number,
where t ∈ {2, 3} [51].

145Ringel [595] already observed that crossings between two adjacent edges can always be removed in
such a drawing.

146Another possible name, the 1-planar crossing number, clashes with the k-planar crossing number
introduced by Owens. This is doubly unfortunate, since that name suggests a nice generalization beyond
1-planarity.
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Complexity: Deciding whether cr×(G) <∞ is NP-complete [329]. Deciding cr×(G) 6
k for 1-planar graphs is also NP-complete, even if the graph is 3-connected, and a
rotation system is given [65].

Relationships: cr×(G) < ∞ is equivalent to lcr(G) 6 1. If cr×(G) < ∞, then m 6
4n − 8 and cr×(G) 6 n − 2 [119].147 All sufficiently large 3-connected, 2-crossing
critical graphs have simple crossing number 2 [120].

Also see: Local crossing number.

Simple degenerate crossing number. See degenerate crossing number. Simple de-
generate local crossing number. See local crossing number.
Simple local crossing number. See local crossing number.
Simple quasi crossing number. See quasi crossing number.

Simultaneous crossing number
Definition: A simultaneous drawing of a family of graphs G = (Gi)

k
i=1, with Gi =

(Vi, Ei), is a drawing of G = (V,E) with V =
⋃k
i=1 Vi and E =

⋃k
i=1. In other

words, vertices or edges that belong to more than one graph are drawn only once.
There are two different types of crossings in the drawing of G: a proper crossing is
a crossing between two edges e and f that belong to the same graph Gi for some
i, otherwise the crossing is a phantom crossing. The simultaneous crossing number
of G, scr(G), of a family of graphs G = (Gi)

k
i=1 is the smallest number of proper

crossings in any simultaneous drawing of G as defined above. A proper crossing
of two edges e and f counts once for each graph Gi in which it occurs. A family
of graphs is simultaneous planar if scr(G) = 0. If we restrict the drawings to be
straight-line drawings, we get the simultaneous geometric crossing number of G, scr.
If we restrict the drawings to be convex (all vertices on the boundary of a disk, all
edges inside the disk), we get the convex simultaneous crossing number.

Reference: Chimani, Jünger, Schulz [180], He, Sălăgean,and Mäkinen [377].
Comments: The crossing number scr(G) was introduced in Chimani, Jünger, Schulz

along with several minimization problems, including the minimization of phantom
crossings in an scr-minimal drawing. Geißer [321] studies the number of phantom
crossings in a simultaneous embedding of G (so no proper crossings are allowed).
This could be called the simultaneously planar crossing number. Chimani, Jünger,
Schulz also consider a weighted variant of scr(G) which is still restricted to counting
only proper crossings. One could consider a more general variant in which phantom
crossings are assigned weights. The restriction to drawings in which edges belonging
to more than one graph are drawn only once is typically known as the simultaneous
embedding with fixed edges (SEFE) style (an unfortunate name). When defining the
crossing number version, the fixed edges epithet was dropped. One could consider
defining a free version in which edges belonging to multiple graphs may be drawn
differently for each graph. Families of graphs on the same vertex set are known

147 The result that any 1-planar drawing of a graph G on n vertices has at most n − 2 crossings is
implicit in several papers, e.g. [119, 270], an explicit statement can be found in [212].
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as multiplex networks in information visualization, and there is research on layout
algorithms in that area [275]. The convex simultaneous crossing number is based on
an observation by He, Sălăgean,and Mäkinen [377] which implies that it corresponds
to a book drawing in which edges belonging to the same Gi are assigned to the same
page. It extends the partitioned book crossing number; it is more powerful, since in
an edge in a simultaneous drawing can belong to multiple graphs.

Complexity: NP-complete [180].148 Testing simultaneous planarity is NP-complete
for three graphs (the complexity of testing simultaneous planarity of two graphs is
open) [318]. The simultaneously planar crossing number is NP-complete [147, 159,
321]. The convex simultaneous crossing number generalizes the convex crossing
number and therefore is NP-complete. Testing convex simultaneous planarity is
NP-complete if the number of graphs k is not bounded [403]; it is open whether the
problem remains NP-complete for fixed k.

Relationships: scr(G) 6 k cr(G), where G = (V,E) with V =
⋃k
i=1 Vi and E =⋃k

i=1Ei [180]. The number of phantom crossings in an scr-minimal drawing can
be forced to be exponential [180], though it is not clear whether this is true for fixed
k; the case k = 2 would be particularly interesting. The top picture in the margin
shows that for k = 2 adjacent edges may have to cross in an embedding; a simple
modification shown just below shows that two independent edges may have to cross
at least twice.149

Also see: Red/blue crossing number, joint crossing numbers.

Simultaneous geometric crossing number. See simultaneous crossing number.
Single-faced crossing number. See joint crossing numbers.

Skewness
Definition: The skewness sk(G) of a graph G is the smallest number of edges whose

removal from G leaves a planar graph. We write skΣ(G) for the smallest number of
edges whose removal leaves a graph embeddable in the surface Σ.

Reference: Guy [343], also Harary [352].
Comments: As discussed in Example 1, skewness does not fit our definition of crossing

number, but it is included because of its close relationship with the crossing number
and the edge crossing number. Harary [352], in a 1965 paper, asks “how can one
find a set of c(G) edges whose removal results in a planar graph”, where c(G) is
the crossing number of G. In 1972, Guy [343] introduces skewness under a different
name, writing “J. Ch. Boland suggested, and Mrs. Sheehan named the idea of

148NP-hardness follows since for k = 1 scr is the same as cr. NP-membership is non-trivial for
k > 1 [615].

149In both examples, there are two graphs: green and red, and the black edges belong to both the green
and the red graph; the outer face is forced to be empty. These examples also show that not allowing
adjacent or multiple phantom crossings can increase the simultaneous crossing number. The obvious
generalizations of these examples, e.g. showing that two edges may be made to cross an arbitrary number
of times, are incorrect.
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the slimming number”, citing a 1967 Oberwolfach meeting for the planar version,
and a 1969 Oberwolfach meeting for the surface version, which he calls the generic
slimming number in the orientable case, and characteristic slimming number in the
non-orientable case. The use of “skew” for non-planar graphs probably traces back to
Kuratowski’s paper [91]. Guy [343] used a bound that was first explicitly stated and
proved by Kainen [421], namely that skΣ(G) > m− g/(g− 2) (n− 2 + 2γ), where g
is the girth of G and γ = γ(Σ) the genus of the surface Σ. This lower bound, and its
special form for the plane, have been rediscovered several times [170, 573]. A graph
with skewness at most k is sometimes called k-skew, though often the term is applied
to a specific drawing of the graph. 1-skew graphs are also often called almost planar.
Chia and Sim [163] call a graph π-skew if sk(G) = π(G) := bm− g/(g− 2) (n− 2)c,
where g is the girth of G. Kainen [423] introduces the outerplanar skewness of a
graph, which he writes µ1(G), to give a lower bound on bkcr1(Cm � Cn); the same
concept was called convex skewness in [30].

Skewness is often discussed in its equivalent form of finding a maximum planar
subgraph of a graph [150, 701]. Finding a maximum induced planar subgraph
corresponds to removing the smallest number of vertices from a graph making it
planar.150

Complexity: NP-complete [481],151 and remains NP-hard to approximate within some
constant factor, even for cubic graphs [274].152 Testing sk(G) 6 k can be done in
linear time for fixed k [440], though no practical algorithm seems to be known.

Relationships: sk(G) 6 cr(G), and for every k there are 1-skew graphs with crossing
number k [195]. More generally, skΣ(G) 6 crΣ(G). sk(G) > γ(G), where γ(G) is
the orientable genus of G (which equals the bundled crossing number bc′(G)), and
the toroidal grid shows that there are toroidal graphs with arbitrary large skewness.
sk(G) 6 ecr(G) (by definition), and a planar grid with an additional edge shows that
there are 1-skew graphs with arbitrarily large ecr. sk(G) > m − g/(g − 2) (n − 2),
where g is the girth of G, and, more generally, skΣ(G) > m − g/(g − 2) (n −
2 + 2γ(Σ)) [343, 421]. sk(G) = O((∆γ(G)n)1/2) [230, 231]. If G is 1-planar, then
sk(G) 6 n−2 [212] (also see Footnote 147). If G has a drawing with c crossings and
skewness k, then cr2k(G) 6 c [222]. Kainen [422] showed that χ(G) > r implies that
sk(G) > sk(Kr), an early precursor of Albertson’s conjecture; for generalizations of
this result, see [204, 205, 557].

Values: sk(Kn) =
(
n−3

2

)
, for n > 3 [343, 422]. sk(Km,n) = mn−2(m+n−2), for m,n >

2 [343]. The skewness of complete 3-partite and 4-partite graphs is known [163,
150 In the entry on nodal crossing number, we suggested the name vertex-skewness for this notion. The

idea is old, dating back to at least Harary [352], but there seems to be no standard name, though apex
number [439] and (non-planar) vertex-deletion number [501] have been used, and there is a notion of
generalized vertex-skewness [449].

151There also is a proof-sketch in [714], and a proof of a more general result in [697]; for a simple proof,
see [178].

152Cabello’s NP-completeness proof for cr [145] also works for skewness, also yielding the non-
approximability result for cubic graphs.
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170]. The complete k-partite graph K2,...,2 is π-skew, that is sk(K2,...,2) = 2(k −
1)(k−3) [170]. For the skewness of some other complete k-partite graphs, see [163].
sk(Qn) = 2n−1n = 2(2n − 2), for n > 3 [195, 343]. Grötsch’s graph has skewness
3 [573]. sk(Cm � Cn) = 2 for m = 3 and 3 6 n 6 4 and m otherwise, assuming
3 6 m 6 n [502]. For the skewness of a triangulated Cm�Cn and its dual, see [501].
If G is triangle-free and contains a Hamiltonian path, then C4 �G is π-skew [573].
sk(Cn) = (n2 − 9n + 12)/2 for n > 8, and sk(Cn) = 1 for n = 7, and sk(Cn) = 0
for 3 6 n 6 6 [537]. sk(Cm + Pn) = (m− 2)(n− 2) + 1, where + is the join of two
graphs; sk(Kn�T ) = (m−1)

(
n−2

2

)
+
(
n−3

2

)
, where m = |V (T )|, and T is a tree with

max-degree at most 2n− 4; sk(K1,m� Pn) = (m− 2)b(n− 1)/2c, for m > 2, n > 1;
sk(Wm � Pn) = (m− 2)b(n− 1)/2c+ bn/2c [538]. For the skewness of generalized
Petersen graphs, see [71, 168, 170–172], for a family of graphs generalizing the
Heawood graph, see [665]. Upper bounds for some network topologies can be found
in [193]. For the convex skewness of circulant graphs, see [31]. For a surface Σ
with Euler characteristic χ, we have skΣ(Kn) = n(n − 7)/2 + 3χ for sufficiently
large n.153 For an orientable surface Σ with genus γ = γ(Σ), we have skΣ(Km,n) =
(m− 2)(n− 2)− 4(2− 2γ) if m ≡ n ≡ 0 mod 2 for sufficiently large m and n, and
skΣ(Qn) = (n− 4)2n−1 + 4(2γ − 1)) for sufficiently large n [343].

Open Questions: What is skΣ(Km,n) for an orientable (or non-orientable) surface Σ?
For orientable Σ, Guy [343] conjectures skΣ(Km,n) = (m−2)(n−2)−4(2−2γ) for all
sufficiently large m and n. H Chia and Lee [171] conjectured that sk(GP(4k, k)) =
k + 2 for odd k > 3, where GP(n, k)) is the generalized Petersen graph. The
conjecture was mostly settled in [172], but cases k = 5 and k = 7 remain open.

Also see: Crossing number, edge crossing number.

Space crossing number
Definition: A spatial drawing of a graph G is a continuous embedding of G in R3, it is

rectilinear if edges are line segments. A spatial crossing is any (straight) line that
crosses four154 vertex-disjoint edges. The space crossing number of G, space-cr(G), is
the smallest number of spatial crossings in any spatial drawing of G. The rectilinear
space crossing number, space-cr(G), is the smallest number of spatial crossings in
any rectilinear spatial drawing of G.

Reference: Bukh, Hubard [140].
Comments: For a notion of crossing number for geometric hypergraphs, see [45, 46].
Complexity: Open.
Relationships: space-cr(G) 6

(
cr(G)

2

)
; for every k there is a graph G with space-cr(G) =

0 and cr(G) > k [140]. There is a crossing lemma, space-cr(G) > m6/(cn4 log2 n)
for c = 4179, and n = |V |, m = |E| as long as m > 441n [140].

153The lower bound is an application of Euler’s formula, as observed in [343]. The upper bound is harder,
it follows from a result by Jungerman and Ringel [419, Theorem 1.2] who show that for sufficiently large
n there is a triangulation of Σ with

(
n
2

)
−((n−3)(n−4)/2−6γ) edges, where γ = 1−χ/2 is the orientable

genus of Σ. For non-orientable surfaces the lower bound follows from [596].
154Bukh and Hubbard also, in passing, mention the possibility of counting lines that cross three edges.
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Open Questions: Bukh and Hubbard ask whether graphs with space-cr(G) = 0 are
minor-closed and whether space-cr(G) = 0 is equivalent to space-cr(G) = 0. They
conjecture negative answers in both cases.

Also see: Grid crossing number.

Spherical crossing number. See geodesic crossing number.

Spine crossing number
Definition: The spine crossing number155 of G in a book of k pages is the smallest num-

ber of crossings between edges and the spine in a k-page topological book embedding
of G. In a topological book embedding edges are allowed to cross the spine.

Reference: Based on Miyauchi [507].
Comments: Miyauchi gives an upper bound on the number of spine crossings for Kn in

a 3-page book (also see discussion in the entry on book crossing number).
Complexity: Open.
Relationships: Any graph G = (V,E) has a k + 1-page topological book embedding

in which each edge crosses the spine at most dlogk |V |e times, so the spine crossing
number of a graph G = (V,E) in a (k + 1)-page book is at most |E|dlogk |V |e [258,
506], and this bound is tight [259].

Also see: Book crossing number

Stable crossing number
Definition: The stable crossing number of G with parameter k is crΣ(G) where Σ =

Sγ(G)−k and γ(G) is the (orientable) genus of G.
Reference: Kainen [425].
Comments: Kainen’s motivation in introducing the stable crossing number seems to

have been to investigate infinite families of graphs in surfaces in which they are
nearly embeddable and show that this can lead to small constant (stable) crossing
numbers [425, Abstract].

Complexity: NP-complete even for k = 1, since determining the planar crossing num-
ber of a toroidal graph is NP-complete, e.g. by the result of Cabello, Mohar [147].

Values: 4k 6 crΣ(Qn) 6 8k for Σ = Sγ(Qn)−k and 0 6 k 6 γ(Qn) [425]. crΣ(Qn�K4,4) =
4k, where 0 6 k 6 2n, Σ = Sγ(Qn�K4,4)−k [430]; for a generalization of this result,
see [571, Theorem 9].

Open Questions: Kainen [425] conjectured crΣ(Qn) = 8k for Σ = Sγ(Qn)−k.

155This crossing parameter has never been named, the closest is the occasional use of the phrase cross-
ings over the spine. It has also been studied as a minimization problem for upward planar drawings [497].
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String crossing number
Definition: The string crossing number of G, str-cr(G), is the smallest number of cross-

ings in any string drawing of G minus |E(G)|. A string drawing of G is a set of
curves (cv)v∈V (G) so that cu and cv cross for every edge uv ∈ E(G).156

Reference: Bokal, Czabarka, Székely, Vrťo [121].
Comments: Bokal, Czabarka, Székely, Vrťo [121] also suggest the independent string

crossing number (they call it the faithful crossing number) and the pair string cross-
ing number. Richter, Thomassen [588] study a similar notion for closed curves in
their proof that cr(C5 � C5) = 15.

Complexity: Open.
Relationships: str-crΣ(G) 6 4 mcrΣ(G) [121].

Surface crossing number. See crossing number.

t-circle crossing number
Definition: A t-circle drawing of a graph G is a drawing in which the vertices of G lie on

t disjoint circles which are empty; that is, the face bounded by each circle contains
no part of G or any other circle. The t-circle crossing number, crt◦(G), of a graph
G is the smallest number of crossings in a t-circle drawing of G. For a t-partite
graph G with a fixed partition, a t-partite circle drawing is a t-circle drawing of G
in which the vertices of each part of G lie on the same, distinct circle. The t-partite
circle crossing number, cr t (G), is the smallest number of crossings in a t-partite
circle drawing of G (for a given partition). The 2-partite circle crossing number is
also known as the bipartite cylindrical crossing number.

Reference: Duque, González-Aguilar, Hernández-Vélez, Leaños, Medina [243]. The bi-
partite cylindrical crossing number was introduced by Ábrego, Fernández-Merchant,
and Sparks [13], there written as cr}; the tripartite circle crossing number was in-
troduced in [151].

Comments: The 1-circle crossing number is the same as the 2-page crossing number.
2-partite circle drawings are more commonly known as bipartite cylindrical draw-
ings [589], and this is where this family of crossing numbers originated. From there
the cylindrical crossing number, and then the t-circle crossing number developed.
The notation cr t for the t-partite circle crossing number was introduced in [151].
If we fix the cyclic order of the vertices on the circles, we obtain the map cross-
ing number. A practical crossing minimization studied in [655] can be viewed as a
variant of the 2-circle crossing number problem with constraints on lengths of edges.

Complexity: Testing whether crt◦(G) = 0 is NP-complete for any fixed t > 2, t 6=
3 [243].157 Testing cr t (G) 6 k is NP-complete for every fixed t > 2.158

156Crossings between cu and cv are allowed even if there is no edge uv; so a string drawing is not a
string representation in the strict sense in which a string graph is the intersection graph of a set of curves
in the plane. String graphs correspond to graphs of string crossing number 0.

157The reduction is from bkcrt(G) = 0, which is not known to be hard for t = 3. The problem remains
hard if = 0 is replaced with 6 k for any fixed k.

158Since the special case of t = 2, the bipartite cylindrical crossing number, is NP-complete.
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Relationships: cr1◦(G) = bkcr2(G), and cr2◦(G) = cr}(G) (by definition).
Values: cr}(Kn) = Z(n) [2]. cr 2 (Kn,n) = n

(
n
3

)
[589], and cr 2 (Km,n) is known [13].

cr 3 (K2,2,n) = 3dn2/2e − n − 3, and upper and lower bounds on cr 3 (Km,n,p) are
known [151, 152]

Open Questions: Can cr t (G) = 0 be decided in polynomial time, for fixed, or un-
bounded t?

Also see: Cylindrical crossing number, radial crossing number, map crossing number.

t-polygonal crossing number
Definition: The t-polygonal crossing number of G, crt(G), is the smallest number of

crossings in a straight-line drawing of G in which every edge is allowed to consist of
up to t line segments.

Reference: Bienstock [106].
Comments: Introduced by Bienstock [106] to bridge the gap between cr and cr. In

the area of graph drawing, t-polygonal drawings would also be called (t − 1)-bend
drawings (each edge having at most t− 1 bends).

Complexity: ∃R-complete [106] for t = 1, see [611] for ∃R. Open for t > 1.
Relationships: cr1(G) = cr(G) (by definition), cr2(G) 6 2 cr(G)2 [107]. Let t(k) be

the smallest t so that crt(G) = cr(G) for all G with cr(G) 6 k. Then t(k) =
Θ(k1/2) [106].

Also see: Rectilinear crossing number.

Tile crossing number
Definition: A tile T is a graph G = (V,E) together with two disjoint sequences L =

{u1, . . . , uk} and R = {v1, . . . , vk} of vertices in V . A tile drawing of T is a drawing
of T in the unit square with all vertices of L on the left boundary of the square in
order, that is, ui above ui+1, and all vertices of R on the right boundary with vi
above vi+1. The tile crossing number of T is the smallest number of crossings in a
tile drawing of T . T 2 is the tile obtained from T by placing two copies of T next to
each other and identifying vi of the left copy with ui of the right copy, for 1 6 i 6 k.
This defines tiles T n for arbitrary integer powers n. The average crossing number
of T is the limit of the tile crossing number of T n divided by n as n goes to infinity.

Reference: Pinontoan, Richter [575].
Comments: Pinontoan and Richter [575] do not require that |L| = |R|, but they mostly

study tiles they call self-compatible for which this is the case, since for those tiles the
average crossing number is defined. They can show that the average crossing number
of a tile always exists. The tile crossing number is rather specific to constructions of
crossing-critical graphs. It bears similarity to bipartite and convex crossing number,
but differs from them by allowing additional vertices within the square. In that
respect, it resembles the anchored crossing number most closely.
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Complexity: The tile crossing number is NP-complete,159 and remains NP-complete
for twisted planar tiles (tiles which become planar after twisting one of the bound-
aries) [385]. If L∪R = V , then the problem is in polynomial time. The complexity
of the average crossing number is open, but Dvořák and Mohar [245] show that it
can be approximated in exponential time in the absolute error.

Relationships: tile-cr(T n) 6 n tile-cr(T ) [575]. Let o(T n) be the graph constructed
from T n by identifying L and R of the tile T n (in order). Then the average crossing
number of T equals limn→∞ cr(o(T n))/n [575].

Open Questions: Pinotoan and Richter [575] conjecture that if the average crossing
number of T equals tile-cr(T ), then there is an N so that cr(o(T n))/n = tile-cr(T )
for all n > N . H Dvořák and Mohar [245] conjecture that the average crossing
number of a tile is always a rational number.

Also see: Anchored crossing number (under fixed linear crossing number), bipartite
crossing number, convex crossing number.

Toroidal crossing number. See crossing number.
Toroidal geodesic crossing number. See geodesic crossing number.

Triple crossing number
Definition: The triple crossing number of G, triple-cr(G), is the smallest number of

triple crossings (a point in which three edges cross) in a drawing in which there
are only triple crossings. We assume that there are no self-crossings, no crossings
between adjacent edges, and that independent edges cross at most once and do not
touch. The triple crossing number may be infinite.

Reference: Tanaka, Teragaito [666].
Comments: As the definition shows, Tanaka, Teragaito [666] introduce a very restrictive

version of a triple crossing number (which more accurately could be called the simple
triple crossing number). In this version, triple-cr(K5) = ∞, since crossings have
to occur between independent edges (forcing at least 6 endpoints in a non-planar
graph). However, it it easy to give a drawing of K5 with two triple crossings if
crossings between adjacent edges are allowed. Another condition that could be
relaxed is that independent edges cross at most once. Tanaka and Teragaito in
passing also introduce the n-fold crossing number. Harborth [359, 362] studied
multiple crossings (see Footnote 84).

Complexity: Open.
Relationships: cr(G) 6 3 triple-cr(G) (perturb triple crossings). The triple crossing

number is not monotone (for example, triple-cr(K4,4) = ∞, while triple-cr(K6,4) =
4 [666].

Values: Tanaka and Teragaito [666] determine the triple crossing number for all com-
plete k-partite graphs; in particular, they show that triple-cr(Kn) = ∞ for n >
5, and triple-cr(Km,n) = ∞ for non-planar Km,n with the following exceptions:
triple-cr(K3,3) = triple-cr(K3,4) = 1, triple-cr(K3,6) = 2, and triple-cr(K4,6) = 4.

159The regular crossing number is a special case for k = 0.
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Also see: Degenerate crossing number.

Tutte crossing number. See algebraic crossing number.

Upward crossing number
Definition: A drawing is monotone if every vertical line in the plane intersects each

edge at most once. The upward crossing number of a directed acyclic graph G is the
smallest number of crossings in a monotone drawing of G in which all edges point in
the same direction. We write mon-cr�(G), where � is the partial ordering induced
by the orientation of G. For mixed graphs, containing both directed and undirected
edges, the mixed upward crossing number is the smallest number of crossings in a
monotone drawing of G in which all directed edges point in the same direction.

Reference: Based on Eiglsperger, Kaufmann [254], also Chimani, Zeranski [183].
Comments: One of the monotone crossing numbers. The upward crossing number cor-

responds to the layer-free upward crossing minimization problem [177]. Eiglsperger
and Kaufmann define the notion of a crossing number for a (mixed) upward pla-
narization, calling it the (mixed) upward crossing minimal problem. Chimani and
Zeranski [183] then use term upward crossing number. The upward crossing number
could also be called the directed crossing number or the hierarchical crossing number;
the latter term has been used in the context of leveled graphs [524]. Generalizing to
recurrent hierarchies, one could define a clockwise crossing number (see cyclic level
crossing number).

Complexity: Even testing whether a graph is upward planar, that is, has upward cross-
ing number 0, is NP-complete [316]. See [184] for a survey on upward planarity
testing, and [183] for a survey on exact upward crossing minimization.

Relationships: mon-cr(G) 6 mon-cr�(G), where � is the partial ordering induced by
the orientation of G. The bimodal crossing number is a lower bound on mon-cr�(G).

Open Questions: Computing the upward crossing number remains NP-complete even
if we restrict the number of levels at which vertices can be placed: for two levels,
the NP-complete bipartite crossing number is a special case. Is upward planarity
fixed-parameter tractable if the parameter is the number of levels?

Also see: Monotone crossing numbers, bimodal crossing number, bipartite crossing
number, clockwise crossing number (under cyclic level crossing number).

Weighted crossing number
Definition: The weighted crossing number, cr(D,w) of a drawing D of a graph G =

(V,E) with weights w : E2 → R>0, is defined as
∑

e,f∈E w(e, f) · iD(e, f), where
iD(e, f) is the number of crossings between e and f in D. The weighted crossing
number, cr(G,w) is the minimum of cr(D,w) over all drawings of G. The weighted
rectilinear crossing number, cr(G,w) is the minimum of cr(D,w) over all straight-
line drawings D of G.
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Reference: Jackson, Ringel [416], Mohar [509], Schaefer, Sedgwick, Štefankovič [615].
Biedl, Chimani, Derka, Mutzel [105] for the rectilinear variant.

Comments: Assigning weights to edges (as opposed to edge pairs) is an old idea. Integer
weights are typically interpreted as parallel copies of simple edges; for many crossing
number variants, it is easy to show that k parallel edges correspond to a single edge
of weight k. This argument may have first occurred in a paper by Kainen [421] in
which he shows that crΣ(G) 6 k2 crΣ(G′) where G is a graph with at most k parallel
edges between every pair of vertices, and G′ is the underlying simple graph of G. If
G has exactly k parallel edges between every pair of vertices, then equality holds.
This shows, as Scheinerman and Ullman [620, Theorem 7.1.4] observed, that the
fractional crossing number equals the crossing number and thus is of no independent
interest. Jackson and Ringel explicitly introduce the problem for determining the
weighted crossing number of complete bipartite graphs. Some crossing number
variants, like independent crossing number and the crossing number of abstract
topological graphs, can be considered special cases of the weighted crossing number.
Mohar and Stephen [513] study the expected value of randomly weighted graphs
and derives a crossing lemma for this case. A special case based on partitioning
edges into three (but it could be more) classes is introduced in [38] as hierarchical
partial planarity.

Complexity: NP-complete [615].160 The problem remains NP-complete even if the
underlying graph is a K3,n [105]. The weighted rectilinear crossing number problem
is ∃R-complete (since cr is ∃R-complete).

Also see: Crossing number of abstract topological graph.

Wire crossing number
Definition: A layout is a partition of a rectangle (the chip area) into two types of smaller

rectangles: modules, where wires end, and regions, through which wires are routed.
Vertices are located on the boundary of modules. An edge between two vertices
has associated with it the netlist, the list of regions it passes through (in the given
order) to connect its endpoints. The wire crossing number is the smallest number
of crossings with which all the netlists can be realized.

Reference: Based on Groenveld [331]. Also, Chen and Lee [165].
Comments: The study of crossings numbers for VLSI layouts goes back to Leighton [477],161

but after a while more specialized models developed.162 The one described above
160This assumes w is considered part of the input (so weights can be large). NP-hardness follows from

Garey, Johnson [315] since the regular crossing number is a special case. NP-membership is harder.
161See Remark 5 on an early forerunner.
162We should mention that Hotz [404, Section 3.6] develops a notion of (hyperedge) crossing number

for circuit layout and poses at least one interesting special problem for the bipartite crossing number.
Unfortunately, he works over an abstract notion of circuits introduced using category theory, which makes
his text unnecessarily hard to read. His notation for the crossing number of a circuit computing a Boolean
function f is LV (f).
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is closest in spirit to Groenveld’s description [331] and Chen and Lee’s later ver-
sion [165]. The name wire crossing number was not used in those papers, but first
appears, as far as we know, in [433], a paper that describes a slightly different
model, and introduces the notion of hypercrossings, crossings of hyperedges (Groen-
veld [331] also considers hyperedges, multi-terminal nets in his terminology, but
deals with them differently). The wire crossing number as defined above is not par-
ticularly interesting as a graph crossing number, because the topology of the edges
does not change (with respect to the modules). Any two edges cross at most once,
and their isotopy class determines whether they have to cross or not. We decided to
include the wire crossing number, since it contains aspects of several other crossing
numbers: it is really a special case of the map crossing number or the constrained
crossing number in which the isotopy type of each edge is fixed. The idea of routing
along given tracks (the netlists) is also similar to the Metro-line crossing number.
Marek-Sadowska and Sarrafzadeh [489] also consider what Chen and Lee [165] call
the unconstrained crossing minimization problem in which the isotopy type of the
edges is not fixed. Both papers claim a polynomial time algorithm for the problem
in this case, which is unlikely, since the unconstrained version of the problem is
equivalent to computing a map crossing number, which is NP-complete [564].163

Complexity: Polynomial time [331].
Relationships: Map crossing number, constrained crossing number, Metro-line crossing

number.

x-monotone crossing number. See monotone crossing numbers.

4 Some New Questions on Crossing Numbers

Several open questions have already been embedded in the text above, we don’t want to
repeat these here. The following questions, as far as we know, are new.

Several authors have studied the parity of crossing numbers of complete graphs,
Guy [340], Kleitman [443, 444],164 Archdeacon, Richter, and others, but how hard is
it to compute?

Question 2. What is the complexity of determining cr(G) mod 2?

Hliněny and Thomassen [387] show that the problem is NP-complete under Turing
(Cook) reductions; it remains open whether the problems isNP-complete under many-one
(Karp) reductions.

It’s common knowledge that adjacent crossings don’t matter, so the following should
be easy:

163The two papers really show that one can efficiently find a drawing in which every pair of edges
crosses at most once. Such a drawing need not be crossing-minimal, of course.

164Kleitman’s parity argument was anticipated by Guy and Harary [345] who observed that the parity
of the crossing number of a drawing does not change if all vertices have even degree (they credit this
observation to Zeeman).
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Question 3. Is cr(Kn) = cr−(Kn)?

In reality, we do not even know whether there is a good bound on the total number of
crossings in a cr−-minimal drawing ofKn. There are many similar open questions for other
crossing numbers, for example, pcr(Kn) = cr(Kn) and ocr+(Kn) = ocr(Kn) = iocr(Kn).
For monotone crossing numbers some progress has been made [75].

We know that the cr problem is ∃R-complete so, as Bienstock realized, optimal draw-
ings can require exponential precision in the coordinates. What happens if we only have
polynomial precision available?

Question 4. Is there a function f so that G has a straight-line grid drawing on a O(n)×
O(n) grid (that is, vertices are grid points) with at most f(cr(G)) crossings?

We can broaden the question by using the grid crossing number: is there a function f
so that cr#(G, nk, 2) 6 f(cr(G)) for some k?

One can also consider games as the source of crossing number definitions; here is a
pen and paper crossing game based on an idea from [521]:

Question 5. Suppose we arrange 2n points on the boundary of a disk; players alter-
nate connecting pairs of points; crossing your own edge costs two points, crossing your
opponent’s edge costs one point. Who wins?

A recent computer game [86] suggests a concrete notion of a game crossing number:

Question 6. Two players alternate placing vertices of a graph (a Cn in the original
game) for a straight-line drawing of the graph in the plane. A vertex once placed cannot
be moved. The first player attempts to minimize the number of crossings, the second
player tries to maximize them. What is the largest number of crossings the second player
can force in the final drawing?

By Fary’s theorem, cr(G) = 0 implies that cr(G) = 0. Does Fary’s theorem generalize
to other crossing numbers? For most, it is either an immediate consequence (pair crossing
number, local crossing number) or irrelevant (bipartite and book crossing number, for
example). The answer is “no” for the simultaneous crossing number, since scr(T, P ) = 0
for any tree T and path P , and there are trees and paths for which scr(T, P ) > 0 [44].
What about metric surfaces other than the plane? To take the easiest open example:

Question 7. If a graph can be embedded in a torus, does it always have a geodesic
embedding in the torus?

We assume the torus is a standard geometric torus with the natural distance met-
ric inherited from 3-dimensional space. There are related results by de Verdière [203],
Mohar [510] and Hubard, Kaluža, de Mesmay and Tancer [410] for other metrics.

While it’s been conjectured that c̃r(Kn) = cr(Kn), we do not even know whether the
rectilinear crossing number can be bounded in the pseudolinear crossing number.

Question 8. Is there a function f so that cr(G) 6 f(c̃r(G)) for all graphs G?
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Remark 10 (More Open Questions). Lists of open questions can also be found in the book
by Brass, Moser, and Pach [132, Chapter 9] and articles by Pach and Tóth [555], Branden-
burg, Eppstein, Goodrich, Kobourov, Liotta, and Mutzel [130, Section 6.3], Richter and
Salazar [583], and Archdeacon [47]. For biplanar crossing numbers, see [208]. Warning:
Some of these questions are no longer open.
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rectilinear midrange c.c.

crossing cover number, 52
crossing edge number, 52
crossing index, 64
crossing number, 1, 3, 9–11, 19, 21, 29, 44,

44, 45, 57, 58, 62, 65, 73–77, 80, 81,
84, 86, 89, 90

crossing number of abstract topological graph,
48, 92

crossing parameter, 65
crossing-simple, 19, 51
crosswise crossing number, 22
cycle crossing number, 36
cyclic level crossing number, 16, 22, 49
cylindrical crossing number, 29, 50, 79

degenerate crossing number, 10, 13, 14, 18,
19, 25, 29, 42, 50, 54

degenerate local crossing number, 63
diagonal crossing number, 17, 29, 59, 60
directed crossing number, 91
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disk crossing number, 67, 68
double torus crossing number, 47
duplicate crossing number, 16

edge crossing cover number, 52
edge crossing number, 11, 14, 25, 29, 51, 64,

85
eodermdrome, 48

faithfull crossing number, 88
fan crossing number, 25
fixed book crossing number, 53
fixed convex bundled crossing number, 29,

38
fixed linear crossing number, 21, 29, 36, 37,

41, 42, 53
fixed monotone crossing number, 72
fractional crossing number, 92
free linear crossing number, 30, 36

game crossing number, 94
generic slimming number, 85
genus crossing number, 10, 18, 25, 29, 54
genus g crossing number, 29, 44
genus g local crossing number, 30
geodesic crossing number, 10, 24, 54, 94
geodesic pair crossing number, 56
geometric k-planar crossing number, 30, 61,

63, 66, 85
geometric(al) crossing number, 80
grid crossing number, 24, 30, 56, 94

hierarchical crossing number, 91
hypercrossing, 93
hypergraph crossing numbers, 14, 27, 72

independent algebraic crossing number, 30,
33, 57, 57, 58

independent crossing number, 4, 5, 10, 13,
25, 30, 58, 59, 92, 94

independent odd crossing number, 6, 9, 10,
30, 57, 58, 73, 75, 94

independent odd projective plane crossing
number, 58

independent pair crossing number, 6, 30, 58,
76, 76

independent spherical crossing number, 5
independent string crossing number, 88
inner crossing number, 34
intersection-simple, 19, 51, 63, 64, 68

joint crossing numbers, 23, 29, 59
joint homeomorphic crossing number, 59

k-layer crossing number, 17, 22, 30, 60, 73
k-page crossing number, 35
k-planar crossing number, 24, 30, 61, 82
k-planar crossing number, 30, 66
k-quasi crossing number, 78
k-quasi-planar, 48
k-quasi-plane, 78
Klein bottle crossing number, 24, 30, 44, 44,

47, 48

large angle crossing number, 82
leveled crossing number, 22, 30, 49, 60, 73,

79
linear crossing number, 30, 36, 80
local bipartite crossing number, 35
local book crossing number, 37
local convex crossing number, 30, 42, 43, 65
local crossing number, 5, 7, 13, 14, 19, 25,

30, 62, 63, 74, 83
local k-page crossing number, 30, 36, 37, 43
local k-planar crossing number, 30, 61
local outerplanar crossing number, 42
local pair crossing number, 30, 65, 76, 76
local toroidal crossing number, 13, 30, 64

major crossing number, 30, 72
map crossing number, 24, 67, 88, 93
maximal crossing number, 68
maximal rectilinear crossing number, 69
maximum bipartite crossing number, 30, 34
maximum crossing number, 10, 25, 30, 55,

68, 70
maximum edge crossing number, 30, 52
maximum local crossing number, 30, 63
maximum monotone crossing number, 74
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maximum orchard crossing number, 25, 30,
75

maximum rectilinear crossing number, 7, 10,
25, 68, 69

maximum rectilinear edge crossing number,
31, 52

Metro-line crossing number, 17, 26, 40, 71,
93

midrange crossing constant, 45, 80
minimum non-crossing edge number, 52
minor crossing number, 10, 14, 16, 17, 31,

54, 72, 88
mixed upward crossing number, 91
monotone crossing number, 21, 22, 31, 37,

54, 62, 73, 73, 77
monotone crossing numbers, 72, 73, 94
monotone independent odd crossing num-

ber, 13, 31, 73
monotone odd crossing number, 5, 19, 31,

73, 73, 81
monotone odd + crossing number, 31, 73
monotone odd ± crossing number, 31, 73
monotone pair crossing number, 31, 73, 73,

77
monotone semisimple odd crossing number,

73
monotone weakly semisimple odd crossing

number, 73
multiplanar crossing numbers, 62

n-fold crossing number, 90
nodal crossing number, 14, 31, 74
nodal toroidal crossing number, 31, 74
non-crossing edge number, 52
non-orientable genus g crossing number, 31

obfuscation complexity, 69
odd crossing number, 5, 6, 11, 17, 20, 25,

31, 58, 73, 75, 77, 94
odd + crossing number, 31, 75, 94
odd ± crossing number, 31, 75
orchard crossing number, 10, 25, 31, 75
oriented crossing number, 31, 59, 60
outer 1-planar, 43

outerplanar crossing number, 42
outerplanar skewness, 85

p-partite crossing number, 35, 60
pair crossing number, 2, 3, 6, 10, 14, 31, 33,

58, 59, 75, 76, 94
pair-of-pants crossing number, 67, 68
pair + crossing number, 31, 77
pairwise crossing number, 76
partially predrawn c-planar crossing num-

ber, 41
partially predrawn crossing number, 41
partitioned book crossing number, 36, 84
phantom crossing, 83
projective plane crossing number, 24, 31,

44, 46
pseudolinear crossing constant, 78, 78
pseudolinear crossing number, 21, 31, 77,

94
pseudospherical crossing number, 21

quasi crossing number, 9, 13, 32, 78
quasi rectilinear crossing number, 78
quasi-plane, 78

radial crossing number, 22, 24, 79
rectilinear crossing constant, 78, 80, 80
rectilinear crossing number, 3, 10, 21, 32,

35, 37, 43, 46, 52, 54–56, 61, 62, 65,
73, 76–78, 79, 89, 94

rectilinear edge crossing number, 32, 51, 52
rectilinear k-colored crossing number, 62
rectilinear k-planar crossing number, 32, 61
rectilinear local crossing number, 32, 63, 64
rectilinear midrange crossing constant, 47,

80
rectilinear space crossing number, 32, 86
red/blue crossing number, 23, 81
responsibility, 74
right-angle crossing number, 82
rotational crossing number, 22, 44, 67

shortest arc crossing number, 56
shortest path crossing number, 55
simple, 19
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simple constrained crossing number, 41
simple crossing number, 19, 32, 62, 65, 82
simple degenerate crossing number, 32, 50
simple degenerate local crossing number, 63
simple local crossing number, 32, 63
simple quasi crossing number, 32, 78
simultaneous crossing number, 5, 17, 23, 32,

83, 94
simultaneous geometric crossing number, 23,

32, 83
simultaneously planar crossing number, 32,

83, 84
single-faced crossing number, 59, 59, 60
single-faced oriented crossing number, 59
skewness, 14, 32, 52, 58, 59, 74, 84
slimming number, 85
space crossing number, 24, 25, 32, 86
spectrum, 10, 58, 68–70
spherical crossing number, 5, 21, 32, 54
spine crossing number, 15, 24, 25, 87
splitting number, 16
stable crossing number, 32, 87
standard crossing number, 11
storyline visualization, 34
string crossing number, 9, 16, 27, 32, 88
surface crossing number, 29, 44

t-circle crossing number, 32, 50, 88
t-partite circle crossing number, 32, 50, 88
t-polygonal crossing number, 21, 32, 89
t-polygonal k-slope crossing number, 21
t-polygonal right-angle crossing number, 82
tanglegram, 22, 34, 61
tile crossing number, 32, 89
toroidal crossing number, 24, 32, 44, 44, 46
toroidal geodesic crossing number, 54
toroidal pair crossing number, 24
triple crossing number, 10, 13, 14, 32, 90
tropical crossing number, 27
Tutte crossing number, 33

upward crossing number, 22, 32, 34, 49, 73,
73, 91

vertical crossing number, 74

weighted crossing number, 21, 23, 25, 32, 91
weighted rectilinear crossing number, 32, 91
wire crossing number, 92

x-monotone crossing number, 32, 73
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