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Abstract

A vertex colouring of a graph G is nonrepetitive if G contains no path for which
the first half of the path is assigned the same sequence of colours as the second half.
Thue’s famous theorem says that every path is nonrepetitively 3-colourable. This
paper surveys results about nonrepetitive colourings of graphs. The goal is to give a
unified and comprehensive presentation of the major results and proof methods, as
well as to highlight numerous open problems.
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1 Introduction

In 1906, Thue [141] constructed arbitrarily long words w1w2 . . . on an alphabet of three
symbols with no repeated consecutive blocks; that is, there are no integers i, k ∈ N
such that wiwi+1 . . . wi+k−1 = wi+kwi+k+1 . . . wi+2k−1. Such a word is called square-free.
Thue’s Theorem is a foundational result in the combinatorics of words (see the surveys
[20–23, 37, 40, 103, 104]) and has also found applications in semi-group theory [31],
dynamics [110, 126], and most famously in the solution of the Burnside problem for groups
by Novikov and Adjan [116, 117, 118].

In 2002, Alon, Grytczuk, Hałuszczak, and Riordan [8] introduced a graph-theoretic
generalisation of square-free words. They defined a vertex colouring of a graph to be
nonrepetitive if there is no path for which the first half of the path is assigned the
same sequence of colours as the second half. Thue’s Theorem says that every path
is nonrepetitively 3-colourable. Nonrepetitive graph colouring is interesting for several
reasons:
• It is a natural marriage of two major areas of combinatorial mathematics, combina-

torics of words and graph colouring.
• Several advanced techniques have been used to obtain results in nonrepetitive graph

colouring, such as the Lovász Local Lemma, entropy compression, layered treewidth,
and product structure theorems. Indeed, in some cases, nonrepetitive graph colouring
has motivated the development of these general-purpose tools that have then been
applied to other areas.
• Nonrepetitive graph colouring is one of the most illustrative examples of the use
of the Lovász Local Lemma, since it requires the Lovász Local Lemma in its full
generality. I recommend teaching Proposition 3.13 in any course on the probabilistic
method.
• Nonrepetitive graph colouring turns out to be a central concept in graph sparsity.
Indeed, graph classes with bounded expansion can be characterised in terms of
nonrepetitive colorings (see Theorem 7.4).
• One of the most important recent developments in algorithmic graph theory has been
the constructive proof of the Lovász Local Lemma due to Moser and Tardos [111].
This led to what Terry Tao dubbed the ‘entropy compression’ method. Nonrepetitive
graph colouring was one of the first applications of this method that showed that
entropy compression can give better results than those obtained using the Lovász
Local Lemma [49, 75].
• Several recent papers have presented generalised Moser–Tardos frameworks improving

the original work in various ways [1, 79, 81, 82, 85]. Nonrepetitive graph colouring has
been a key test case here. One reason for this is that when modelling nonrepetitive
colouring using the Lovász Local Lemma the number of bad events (one for each
even path) grows exponentially with the size of the graph, which is an obstacle for
polynomial-time algorithms.

This paper surveys results about nonrepetitive colourings of graphs. The goal is to give
a unified and comprehensive presentation of the major results and proof methods from
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the literature, to highlight numerous open problems, and to present a couple of original
theorems. For previous surveys, see [6, 34, 68, 69, 71, 137].

1.1 Path-Nonrepetitive Colourings

We consider finite undirected graphs with no loops or parallel edges. A colouring of a
graph G is a function φ that assigns a ‘colour’ to each vertex of G. A colouring φ of G is a
k-colouring if |{φ(v) : v ∈ V (G)}| 6 k. A colouring φ of G is proper if φ(v) 6= φ(w) for each
edge vw ∈ E(G). The chromatic number χ(G) is the minimum integer k for which there
exists a proper k-colouring of G. If φ is a colouring of G, then a sequence (v1, v2, . . . , v2t)
of vertices in G is φ-repetitive if φ(vi) = φ(vt+i) for each i ∈ {1, . . . , t}. A φ-repetitive
sequence is also said to be repetitively coloured by φ. A walk in a graph G is a sequence
(v1, v2, . . . , vt) of vertices in G such that vivi+1 ∈ E(G) for each i ∈ {1, . . . , t− 1}. A path
in a graph G is a walk (v1, v2, . . . , vt) in G such that vi 6= vj for all distinct i, j ∈ {1, . . . , t}.

A colouring φ of a graph G is path-nonrepetitive, or simply nonrepetitive, if no path
of G is φ-repetitive. The (path-)nonrepetitive chromatic number π(G) is the minimum
integer k such that G admits a nonrepetitive k-colouring. Note that π(G) is also called the
Thue chromatic number or square-free chromatic number of G. Thue’s theorem mentioned
above says that paths are nonrepetitively 3-colourable. Every path-nonrepetitive colouring
is proper, as otherwise adjacent vertices assigned the same colour would form a repetitively
coloured path on 2 vertices. Moreover, every nonrepetitive colouring has no 2-coloured
P4 (a path on four vertices). A proper colouring with no 2-coloured P4 is called a star
colouring since each bichromatic subgraph is a star forest; see [3, 27, 60, 67, 112, 149].
The star chromatic number χs(G) is the minimum number of colours in a proper colouring
of G with no 2-coloured P4. Thus

χ(G) 6 χs(G) 6 π(G). (1)

Starting with the seminal work of Alon et al. [8], nonrepetitive colourings of graphs
have now been widely studied, including for the following graph classes: cycles [39], trees
[29, 61, 99], outerplanar graphs [15, 99], graphs with bounded treewidth [15, 99], graphs
with bounded degree [8, 49, 69, 80–82, 131], graphs excluding a fixed immersion [148],
planar graphs [14, 28, 47, 48, 86, 88, 88, 124, 125, 133], graphs embeddable on a fixed
surface [47, 52], graphs excluding a fixed minor [47, 52], graphs excluding a fixed topological
minor [47, 52], and graph subdivisions [17, 49, 69, 76, 106, 114, 122]. Table 1 summarises
many of these results.

1.2 Walk-Nonrepetitive Colourings

While path-nonrepetitive colourings are the focus of this survey, we also present results
about colourings of graphs that are nonrepetitive on walks, previously studied in [13, 16, 17].
A walk (v1, . . . , v2t) in a graph is boring if vi = vt+i for each i ∈ {1, . . . , t}. Every
colouring of a boring walk is repetitive. So Barát and Wood [17] defined a colouring
to be walk-nonrepetitive if every repetitively coloured walk is boring. For a graph G,
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Table 1: Lower and upper bounds on π and σ for various graph classes.
graph class π σ reference
paths 3 4 §3.1
cycles 3 . . . 4 4 . . . 5 §3.2
pathwidth k k + 1 . . . 2k2 + 6k + 1 (2k2 + 6k + 1)(k∆ + 1) §4.2
trees 4 ∆ + 1 . . . 4∆ §4.1
outerplanar 7 . . . 12 Θ(∆) §4.4
treewidth k

(
k+2

2

)
. . . 4k O(min{4kk∆, k2∆2}) §4.2,4.3

planar 11 . . . 768 Θ(∆) §5.1
Euler genus g Ω(g3/5/ log1/5 g) . . . O(g) O(g∆) §5.2
excluded minor Θ(1) Θ(∆) §5.3
excluded topo. minor Θ(1) Θ(∆) §5.3
max degree ∆ Ω(∆2/ log ∆) . . . (1 + o(1))∆2 ? §3.3

the walk-nonrepetitive chromatic number σ(G) is the minimum number of colours in a
walk-nonrepetitive colouring of G. Bounds on σ for various classes are presented in Table 1.

1.3 Stroll-Nonrepetitive Colourings

The following notion sits between paths and walks, and is important for many proofs
that follow. A stroll in a graph G is a walk (v1, . . . , v2t) such that vi 6= vt+i for each
i ∈ {1, . . . , t}. A colouring of G is stroll-nonrepetitive if no stroll is repetitively coloured.
For a graph G, the stroll-nonrepetitive chromatic number ρ(G) is the minimum number
of colours in a stroll-nonrepetitive colouring of G. Every walk-nonrepetitive colouring is
stroll-nonrepetitive and every stroll-nonrepetitive colouring is path-nonrepetitive. Thus
every graph G satisfies

π(G) 6 ρ(G) 6 σ(G).

At first glance the definition of stroll-nonreptitive may seem arbitrary. However, stroll-
nonreptitive colourings play a central role. First, they appear in the characterisation of
walk-nonrepetitive colourings (Lemma 2.6). Second, several results for path-nonrepetitive
colourings can be strengthened for stroll-nonrepetitive colourings, and this strengthening
is sometimes needed in the proof. This includes the breakthrough result for planar graphs
(Theorem 5.1 using Lemma 2.16). Despite the importance of stroll-nonreptitive colourings,
the following fundamental questions remain unsolved.

Open Problem 1.1. Is there a function f such that ρ(G) 6 f(π(G)) for every graph G?
It is even possible that ρ(G) 6 π(G) + 1 for every graph G. (Note that ρ(P ) = π(P ) + 1
for sufficiently large paths P ; see Proposition 3.3.)
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1.4 List Colourings

Some results about nonrepetitive colouring hold in the stronger setting of list colourings,
which we now introduce. Let G be a graph. A list-assignment of G is a function L that
assigns each vertex v of G a set L(v), whose elements are called colours. If |L(v)| > k
for each vertex v of G, then L is a k-list-assignment . An L-colouring of G is a function
φ such that φ(v) ∈ L(v) for each vertex v of G. For k ∈ N, G is k-choosable if G has a
proper L-colouring for every k-list-assignment L of G. The choice-number χch(G) (also
called choosability or list chromatic number of G) is the minimum k ∈ N such that G is
k-choosable. Choice-number is widely studied in the literature. These notions naturally
extend to nonrepetitive colourings. For k ∈ N, G is nonrepetitively k-choosable if G has
a nonrepetitive L-colouring for every k-list-assignment L of G. The (path-)nonrepetitive
choice-number πch(G) is the minimum integer k such that G has a nonrepetitive L-colouring
for every k-list-assignment L of G.

1.5 Structure

This survey is structured as follows. Section 2 presents definitions and tools that will
be used for the main results that follow. Section 3 contains results about nonrepetitive
colourings of graphs with bounded degree. Most of the material here is based on the
Lovász Local Lemma and related methods. Section 4 begins our study of nonrepetitive
colourings of structured graph classes by looking at trees and graphs of bounded treewidth.
This study continues in Section 5, where we consider planar graphs and other minor-closed
classes. Section 6 considers nonrepetitive colourings of graph subdivisions. This material
is important for Section 7 which looks at connections between nonrepetitive colourings
and graph expansion.

This survey aims to present most of the main results about nonrepetitive graph
colouring. Nevertheless, several relevant areas have been omitted, including game-theoretic
generalisations [72, 74, 77, 120], anagram-free colouring [18, 32, 33, 42, 89, 90, 123, 146, 147],
geometric variants [57, 73, 144], k-power-free colourings [7, 97], the Thue sequence of
a graph [93], and computational complexity issues [105, 106] (testing whether a given
colouring of a graph is nonrepetitive is co-NP-complete, even for 4-colourings [106]).

2 Tools

2.1 Definitions

We use standard graph-theoretic terminology and notation [44].
Let distG(u, v) be the distance between vertices u and v in a graph G. For a vertex v

in a graph G and r ∈ N, let N r
G(v) be the set of vertices of G at distance exactly r from v,

and let N r
G[v] be the set of vertices at distance at most r from v. The set N r

G[v] is called
an r-ball .

The cartesian product of graphs A and B, denoted by A�B, is the graph with vertex
set V (A) × V (B), where distinct vertices (v, x), (w, y) ∈ V (A) × V (B) are adjacent if:
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v = w and xy ∈ E(B); or x = y and vw ∈ E(A). The direct product of A and B,
denoted by A × B, is the graph with vertex set V (A) × V (B), where distinct vertices
(v, x), (w, y) ∈ V (A) × V (B) are adjacent if vw ∈ E(A) and xy ∈ E(B). The strong
product of A and B, denoted by A � B, is the union of A � B and A × B. If X is a
subgraph of some product A ∗ B, then the projection of X into A is the set of vertices
v ∈ V (A) such that (v, w) ∈ V (X) for some w ∈ V (B).

A subdivision of a graph G is a graph G′ obtained from G by replacing each edge vw
of G by a path Pvw with endpoints v and w, where the Pvw are pairwise internally disjoint.
If each path Pvw has exactly d internal vertices, then G′ is the d-subdivision of G, denoted
by G(d). If each path Pvw has at least d internal vertices, then G′ is a (> d)-subdivision. If
each path Pvw has at most d internal vertices, then G′ is a (6 d)-subdivision.

A graph H is a minor of a graph G if a graph isomorphic to H can be obtained from
a subgraph of G by contracting edges. A graph class G is minor-closed if for every graph
G ∈ G, every minor of G is in G. A graph H is a topological minor of G if some subgraph
of G is isomorphic to a subdivision of H.

A graph parameter is a function λ such that λ(G) is a non-negative real number for
every graph G, and λ(G1) = λ(G2) for all isomorphic graphs G1 and G2. Examples include
the chromatic number χ, the nonrepetitive chromatic number π, etc. If λ and µ are graph
parameters, then λ is bounded by µ if for some function f , we have λ(G) 6 f(µ(G)) for
every graph G. Parameters λ and µ are tied if λ is bounded by µ and µ is bounded by λ.

2.2 Naive Upper Bound

Consider the following naive upper bound, where α(G) is the size of the largest independent
set in G.

Lemma 2.1. For every graph G,

χs(G) 6 π(G) 6 ρ(G) 6 |V (G)| − α(G) + 1.

For every complete multipartite graph G,

χs(G) = π(G) = ρ(G) = |V (G)| − α(G) + 1.

Proof. Let X be an independent set in G with |X| = α(G). Assign each vertex in V (G)\X
a unique colour. Assign the vertices in X one further colour. Suppose that there is a
repetitively coloured stroll P = (v1, . . . , v2t) in G. Since X is an independent set, some
vertex vi is in V (G) \X. Without loss of generality, i ∈ {1, . . . , t}. Since vt+i is assigned
the same colour as vi and vi is the only vertex assigned its colour, vi = vt+i. Thus P
is not a stroll, and G is stroll-nonrepetitively coloured. Thus χs(G) 6 π(G) 6 ρ(G) 6
|V (G)| − α(G) + 1.

Now consider a complete multipartite graph G with colour classes X1, . . . , Xk with
α(G) = |X1| > . . . > |Xk|. Consider a star colouring of G. Distinct sets Xi and Xj are
assigned disjoint sets of colours. Say Xi is rainbow if Xi is assigned |Xi| colours. If distinct
sets Xi and Xj are both not rainbow, then two vertices in Xi are assigned the same colour,
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and two vertices in Xj are assigned the same colour, implying there is monochromatic
4-vertex path. Thus at least k−1 of X1, . . . , Xk are rainbow. The remaining set is assigned
at least one colour. Thus for some i ∈ {1, . . . , k}, the total number of colours is at least
1+
∑

j 6=i |Xj| > 1+n−|X1| = n−α(G)+1. Thus ρ(G) > π(G) > χs(G) > n−α(G)+1.

2.3 Extremal Questions

This section studies the maximum number of edges in a nonrepetitively coloured graph.
Barát and Wood [17] determined the answer precisely for path-nonrepetitive colouring.

Proposition 2.2 ([17]). For all integers n > c > 1 the maximum number of edges in an
n-vertex graph G with π(G) 6 c equals (c− 1)n−

(
c
2

)
.

Proof. Say G is an n-vertex graph with π(G) 6 c. Fix a path-nonrepetitive c-colouring of
G. Say there are ni vertices in the i-th colour class. Every cycle receives at least three
colours. Thus the subgraph induced by the vertices coloured i and j is a forest, and has at
most ni + nj − 1 edges. Hence the number of edges in G is at most∑

16i<j6c

(ni + nj − 1) =
∑

16i6c

(c− 1)ni −
(
c

2

)
= (c− 1)n−

(
c

2

)
.

This bound is attained by the graph consisting of a complete graph Kc−1 completely joined
to an independent set of n− (c− 1) vertices, which obviously has a path-nonrepetitive
c-colouring.

The same answer applies for stroll-nonrepetitive colourings.

Proposition 2.3. For all integers n > c > 1 the maximum number of edges in an n-vertex
graph G with ρ(G) 6 c equals (c− 1)n−

(
c
2

)
.

Proof. If ρ(G) 6 c then π(G) 6 c, implying E(G)| 6 (c−1)|V (G)|−
(
c
2

)
by Proposition 2.2.

This bound is tight since the example given in the proof of Proposition 2.2 obviously has
a stroll-nonrepetitive c-colouring.

Now consider the maximum number of edges in a walk-nonrepetitive coloured graph.
First note that the example in the proof of Proposition 2.2 is walk-repetitive. Since
σ(G) > ∆(G) + 1 and |E(G)| 6 1

2
∆(G)|V (G)|, we have the trivial upper bound,

|E(G)| 6 1
2
(σ(G)− 1)|V (G)|.

This bound is tight for σ = 2 (matchings) and σ = 3 (cycles), but is not known to be tight
for σ > 4.

We have the following lower bound.

Proposition 2.4 ([17]). For all p > 1, there are infinitely many graphs G with σ(G) 6 4p
and

|E(G)| > 1
8
(3σ(G)− 4)|V (G)| − 1

9
σ(G)2.
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Proof. Let G := Pn � K`. By Lemmas 3.2 and 2.18, σ(G) 6 4`. Note that |E(G)| =
1
2
(3` − 1)|V (G)| − `2. As a lower bound, σ(G) > ∆(G) + 1 = 3`. Thus |E(G)| >

1
2
(3σ(G)/4− 1)|V (G)| − (σ(G)/3)2.

Open Problem 2.5. What is the maximum number of edges in an n-vertex graph G
with σ(G) 6 c?

2.4 Walk-nonrepetitive Colourings

The following result (implicit in [17] and explicit in [13]) characterises walk-nonrepetitive
colourings. It provides our first example of the value of considering stroll-nonrepetitive
colourings. Let G2 be the square graph of G. That is, V (G2) = V (G), and vw ∈ E(G2) if
and only if the distance between v and w in G is at most 2. A proper colouring of G2 is
called a distance-2 colouring of G.

Lemma 2.6 ([17]). A colouring of a graph is walk-nonrepetitive if and only if it is
stroll-nonrepetitive and distance-2.

Proof. It follows from the definition that every walk-nonrepetitive colouring is stroll-
nonrepetitive. Consider a walk-nonrepetitive colouring of a graph G. Adjacent vertices v
and w receive distinct colours, as otherwise v, w would be a repetitively coloured path. If
u, v, w is a path, and u and w receive the same colour, then the non-boring walk u, v, w, v
is repetitively coloured. Thus vertices at distance at most 2 receive distinct colours.

Now we prove the converse. Let c be a stroll-nonrepetitive distance-2 colouring of G.
Suppose for the sake of contradiction that G contains a non-boring repetitively coloured
walk W = (v1, . . . , v2t). Since c is stroll-nonrepetitive, vi = vt+i for some i ∈ {1, . . . , t}.
Since W is not boring, vj 6= vt+j for some j ∈ {1, . . . , t}. Choose such i and j to
minimise |i − j|. Then |j − i| = 1. Thus vi ∈ N [vj] ∩ N [vt+j] and distG(vj, vt+j) 6 2.
Hence vj and vt+j are assigned distinct colours, and W is not repetitively coloured. This
contradiction shows that G contains no non-boring repetitively coloured walk. That is, c
is walk-nonrepetitive.

Lemma 2.6 implies the following bounds on σ(G).

Corollary 2.7. For every graph G,

max{ρ(G),∆(G) + 1} 6 max{ρ(G), χ(G2)} 6 σ(G) 6 ρ(G)χ(G2) 6 ρ(G) (∆(G)2 + 1).

Proof. The lower bounds on σ(G) follow directly from Lemma 2.6 and since G2 has a
clique on ∆(G)+1 vertices. The upper bound σ(G) 6 ρ(G)χ(G2) is proved by considering
the product of a stroll-nonrepetitive colouring and a distance-2 colouring. The final upper
bound follows since χ(G2) 6 ∆(G2) + 1 6 ∆(G)2 + 1.

A graph G is d-degenerate if every subgraph of G has minimum degree at most d.
A greedy algorithm shows that every d-degenerate graph is (d + 1)-colourable. For a
d-degenerate graph G with maximum degree ∆, the square G2 is d∆-degenerate and
(d∆ + 1)-colourable. Thus Corollary 2.7 implies:
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Corollary 2.8. For every d-degenerate graph G,

σ(G) 6 ρ(G) (d∆(G) + 1).

It is not obvious that there is a finite algorithm to test if a given colouring of a graph is
walk-nonrepetitive. However, the following lemma by Barát and Wood [17] implies that to
test if a colouring of an n-vertex graph is walk-nonrepetitive, one need only test whether
walks of length at most 2n2 are nonrepetitive. A similar result for edge-colourings was
previously proved by Barát and Varjú [16].

Proposition 2.9 ([17]). Suppose that in some coloured graph G, there is a repetitively
coloured non-boring walk. Then for some k ∈ N there is a repetitively coloured non-boring
walk in G of order k and length at most 2k2.

Proof. Let k be the minimum order of a repetitively coloured non-boring walk in G. Let
W = (v1, v2, . . . , v2t) be a repetitively coloured non-boring walk of order k and with t
minimum. If 2t 6 2k2, then we are done. Now assume that t > k2. By the pigeonhole
principle, there is a vertex x that appears at least k + 1 times in v1, v2, . . . , vt. Thus there
is a vertex y that appears at least twice in the set {vt+i : vi = x, i ∈ [t]}. As illustrated
in Figure 1, W = AxBxCA′yB′yC ′ for some walks A,B,C,A′, B′, C ′ with |A| = |A′|,
|B| = |B′|, and |C| = |C ′|. Consider the walk U := AxCA′yC ′. If U is not boring, then
it is a repetitively coloured non-boring walk of order at most k and length less than 2t,
which contradicts the minimality of W . Otherwise U is boring, implying x = y, A = A′,
and C = C ′. Thus B 6= B′ since W is not boring, implying xBxB′ is a repetitively
coloured non-boring walk of order at most k and length less than 2t, which contradicts
the minimality of W .

x y

A C ′

B B′

C A′

Figure 1: Illustration for the proof of Proposition 2.9.

2.5 Lazy Considerations

Many results that follow depend on the following definitions and lemmas. Two vertices in a
graph are said to touch if they are adjacent or equal. The following definition is commonly
used in the theory of random walks. A lazy walk in a graph G is a sequence (v1, . . . , vt) of
vertices in G such that vi and vi+1 touch for each i ∈ {1, . . . , t−1}. Equivalently, a lazy walk
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in G is a walk in the pseudograph obtained from G by adding a loop at each vertex. Lazy
walks were introduced in the context of nonrepetitive colourings by Dujmović et al. [47],
although the idea was implicit in a lemma of Kündgen and Pelsmajer [99] about walk-
nonrepetitive colourings of paths.

Lemma 2.10. Every walk-nonrepetitive colouring is nonrepetitive on non-boring lazy
walks.

Proof. Let c be a walk-nonrepetitive colouring of a graph G. Suppose that G contains
a repetitively coloured non-boring lazy walk. Choose such a walk W = (v1, . . . , v2t)
with minimum length 2t. Since no non-lazy non-boring walk is repetitively coloured, by
symmetry, vi = vi+1 for some i ∈ {1, . . . , t}.

First suppose that i = t. Let W ′ be the walk (v1, . . . , vt−1, vt+1, . . . , v2t−1}. Then W ′ is
a repetitively coloured lazy walk of length 2t− 2. If W ′ is not boring, then W ′ contradicts
the choice of W . So W ′ is boring. In particular, v1 = vt+1 = vt and vt−1 = v2t−1. Since W
is not boring, vt 6= v2t. Thus (vt, vt−1, v2t, v2t−1) is a non-boring repetitively coloured walk,
which is a contradiction.

Now assume that i ∈ {1, . . . , t− 1}. Since W is repetitively coloured, c(vt+i) = c(vi)
and c(vt+i+1) = c(vi+1), implying c(vt+i) = c(vt+i+1) since vi = vi+1. If vt+i 6= vt+i+1 then
(vt+i, vt+i+1) is a repetitively coloured non-boring non-lazy walk, which is a contradiction.
So vt+i = vt+i+1. Let W ′′ be the walk (v1, . . . , vi, vi+2, . . . , vt+i, vt+i+2, . . . , v2t−1). Then
W ′′ is a repetitively coloured lazy walk of length 2t− 2. If W ′′ is boring, then vi = vi+1 =
vt+i = vt+i+1, implying that W is boring as well. Thus W ′′ is not boring. Hence W ′′

contradicts the choice of W .

The following similar definition was implicitly introduced in the context of nonrepetitive
colourings by Dujmović et al. [47]1. A lazy stroll in a graph G is a lazy walk (v1, . . . , v2t)
in G such that vi 6= vt+i for each i ∈ {1, . . . , t− 1}.

Lemma 2.11. Every stroll-nonrepetitive colouring c of a graph G is nonrepetitive on lazy
strolls.

Proof. Suppose that there is a repetitively coloured lazy stroll in G. Choose such a stroll
W = (v1, . . . , v2t) with minimum length 2t. Since no (non-lazy) stroll is repetitively
coloured, without loss of generality, vi = vi+1 for some i ∈ {1, . . . , t}.

First suppose that i = t. Then (v1, . . . , vt−1, vt+1, . . . , v2t−1} is a repetitively coloured
lazy stroll of length 2t− 2, which contradicts the choice of W .

Now assume that i ∈ {1, . . . , t− 1}. Since W is repetitively coloured, c(vt+i) = c(vi)
and c(vt+i+1) = c(vi+1), implying c(vt+i) = c(vt+i+1) since vi = vi+1. If vt+i 6= vt+i+1

then (vt+i, vt+i+1) is a repetitively coloured (non-lazy) stroll, which is a contradiction. So
vt+i = vt+i+1. Then (v1, . . . , vi, vi+2, . . . , vt+i, vt+i+2, . . . , v2t−1) is a repetitively coloured
lazy stroll of length 2t− 2, which contradicts the choice of W .

1Dujmović et al. [47] defined a colouring of a graph to be strongly nonrepetitive if for every repetitively
coloured lazy walk (v1, . . . , v2t) in G, we have vi = vt+i for some i ∈ {1, . . . , t}. This is equivalent to
saying that every lazy stroll is nonrepetitively coloured. They defined π∗(G) to be the minimum number
of colours in a strongly nonrepetitive colouring of a graph G. By Lemma 2.11, π∗(G) = ρ(G).
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Finally, we have a similar definition and lemma for lazy paths. A lazy path in a graph G
is a lazy walk (v1, . . . , vt) such that if vi = vj and 1 6 i < j 6 t then vi = vi+1 = · · · = vj,
and v1 6= vt. The last condition says that at least two distinct vertices occur in a lazy
path, which is essential for the next lemma to hold.

Lemma 2.12. Every path-nonrepetitive colouring c of a graph G is nonrepetitive on lazy
paths.

Proof. Suppose that there is a repetitively coloured lazy path in G. Choose such a lazy
path P = (v1, . . . , v2t) with the minimum number of vertices. Since no (non-lazy) path is
repetitively coloured, without loss of generality, vi = vi+1 for some i ∈ {1, . . . , t}.

First suppose that i = t. Let P ′ := (v1, . . . , vt−1, vt+1, . . . , v2t−1}. We claim that P ′ is
a lazy path. This is the case unless v1 = v2t−1, so assume that v1 = v2t−1. Since P is a
lazy path, v1 = v2 = · · · = v2t−1 and v2t−1 6= v2t. Since c(vt) = c(v2t) and vt = v2t−1, we
have c(v2t−1) = c(v2t). Thus (v2t−1, v2t) is a repetitively coloured (non-lazy) path, which is
a contradiction. Thus P ′ is a lazy path with 2t− 2 vertices, which contradicts the choice
of P .

Now assume that i ∈ {1, 2, . . . , t− 1}. Since P is repetitively coloured, c(vt+i) = c(vi)
and c(vt+i+1) = c(vi+1), implying c(vt+i) = c(vt+i+1) since vi = vi+1. If vt+i 6= vt+i+1

then (vt+i, vt+i+1) is a repetitively coloured (non-lazy) path, which is a contradiction. So
vt+i = vt+i+1. Let P ′ := (v1, . . . , vi, vi+2, . . . , vt+i, vt+i+2, . . . , v2t−1). We claim that P ′ is a
lazy path. This is the case unless v1 = v2t−1, so assume that v1 = v2t−1. Since P is a lazy
path, v1 = v2 = · · · = v2t−1 and v2t−1 6= v2t. Since c(vt) = c(v2t) and vt = v2t−1, we have
c(v2t−1) = c(v2t). Thus (v2t−1, v2t) is a repetitively coloured (non-lazy) path, which is a
contradiction. Thus P ′ is a lazy path with 2t− 2 vertices, which contradicts the choice
of P .

2.6 Shadow-Complete Layerings

This section presents results about shadow-complete layerings. This tool was first intro-
duced in the context of nonrepetitive colourings by Kündgen and Pelsmajer [99]. It will be
used to obtain results for trees (Section 4.1), graphs of bounded treewidth (Section 4.2),
and graphs excluding a fixed minor or topological minor (Section 5.3).

A layering of a graph G is a partition (V0, V1, . . . ) of V (G) such that for every edge
vw ∈ E(G), if v ∈ Vi and w ∈ Vj, then |i− j| 6 1. Vertices in Vi are said to be at depth
i. For example, if r is a vertex in a connected graph G and Vi is the set of vertices at
distance exactly i from r in G for all i > 0, then layering (V0, V1, . . . ) is a layering of G,
called a BFS layering of G.

Consider a layering (V0, V1, . . . ) of a graph G. Let H be a connected component
of G[Vi ∪ Vi+1 ∪ · · · ], for some i > 1. The shadow of H is the set of vertices in Vi−1

adjacent to some vertex in H. The layering is shadow-complete if every shadow is a clique.
This concept was introduced by Kündgen and Pelsmajer [99], who showed the utility of
shadow-complete layerings for nonrepetitive colourings by the next lemma.
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Lemma 2.13 ([99]). If a graph G has a shadow-complete layering (V0, V1, . . . , Vn), then

π(G) 6 4 max
i
π(G[Vi]).

Proof. Let c := maxi π(G[Vi]). Let βi be a nonrepetitive c-colouring of G[Vi] for each
i ∈ {1, . . . , n}. By Lemma 3.2 there is a walk-nonrepetitive 4-colouring α of the path
P = (x1, . . . , xn). Colour each vertex v in Vi by the pair φ(v) := (α(xi), βi(v)). Suppose
for the sake of contradiction that G contains a repetitively coloured pathW = (v1, . . . , v2k).
Let d be the minimum depth of a vertex in W . Let W ′ be the sequence of vertices obtained
from W by removing all vertices at depth greater than d. The projection of W on P is
an α-repetitive lazy walk in P , and is thus boring by Lemma 2.10. Thus the vertices
vj and vj+k of W have the same depth for every j ∈ {1, . . . , k}. In particular, vj is in
W ′ if and only if vj+k is. Hence, there are indices 1 6 i1 < i2 < · · · < i` 6 k such that
W ′ = (vi1 , vi2 , . . . , vi` , vi1+k, vi2+k, . . . , vi`+k). For each pair of consecutive vertices va and
vb in W ′, the vertices strictly between va and vb in W are in a single connected component
of the graph induced by the vertices of depth greater than d. By shadow-completeness,
va and vb are adjacent. Hence W ′ is a path in G[Vd]. Since W is φ-repetitive, for each
j ∈ {1, . . . , `} we have φ(vij) = φ(vij+k), implying βd(vij) = βd(vij+k). Hence W ′ is a
βd-repetitively coloured path in G[Vd], which is the desired contradiction.

Dujmović et al. [47] implicitly proved an analogous result for ρ.

Lemma 2.14 ([47]). If a graph G has a shadow-complete layering (V0, V1, . . . , Vn), then

ρ(G) 6 4 max
i
ρ(G[Vi])

Proof. Let c := maxi π(G[Vi]). Let βi be a nonrepetitive c-colouring of G[Vi]. By
Lemma 3.2 there is a walk-nonrepetitive 4-colouring α of the path (x1, . . . , xn). Colour
each vertex v in Vi by the pair φ(v) := (α(xi), βi(v)).

We now prove that φ is path-nonrepetitive. Let W be a φ-repetitive walk v1, . . . , v2k.
Our goal is to prove that vj = vj+k for some j ∈ {1, . . . , k}. Let d be the minimum depth
of a vertex in W . Let W ′ be the sequence of vertices obtained from W by removing all
vertices at depth greater than d. We claim that W ′ is a lazy walk. To see this, consider
vertices vi, vi+1, . . . , vi+t of W such that vi and vi+t have depth d but vi+1, . . . , vi+t−1 all
have depth greater than d; thus, vi+1, . . . , vi+t−1 were removed when constructing W ′.
Then, the vertices vi+1, . . . , vi+t−1 lie in a connected component of the graph induced by
the vertices at depth greater than d. Since the layering is shadow-complete, vi and vi+t
are adjacent or equal. This shows that W ′ is a lazy walk in G[Vd].

The projection of W into P is an α-repetitive lazy walk in P , and is thus boring
by Lemma 2.10. Thus the vertices vj and vj+k of W have the same depth for every
j ∈ {1, . . . , k}. In particular, vj was removed from W ′ if and only if vj+k was. Hence, there
are indices 1 6 i1 < i2 < · · · < i` 6 k such that W ′ = vi1 , vi2 , . . . , vi` , vi1+k, vi2+k, . . . , vi`+k.
Since W is φ-repetitive, it follows that W ′ is also φ-repetitive and in particular W ′ is
βd-repetitive. Hence there is an index ir such that vir = vir+k, which completes the
proof.

the electronic journal of combinatorics (2021), #DS24 13



Barát and Wood [17] proved an analogous result for σ, which we refine as follows.

Lemma 2.15. Let G be a graph that has a shadow-complete layering (V0, V1, . . . , Vn).
Assume that G has a k-colouring β in which G[Vi] is stroll-nonrepetitively coloured for each
i ∈ {0, 1, . . . , n}, and distinct vertices v, w of G are assigned distinct colours whenever
v, w ∈ Vi for some i ∈ {1, . . . , n} and v, w ∈ N(u) for some vertex u ∈ Vi−1 ∪ Vi. Then

σ(H) 6 4k.

Proof. By Lemma 3.2 there is a walk-nonrepetitive 4-colouring α of the path P =
(x0, x1, . . . , xn). Colour each vertex v in V (G) ∩ Vi by the pair φ(v) := (α(xi), β(v)).
We claim that φ is a walk-nonrepetitive colouring of G.

Suppose on the contrary that W = (v1, . . . , v2t) is a φ-repetitive non-boring walk in
G. The projection of W to P is a lazy walk, which is repetitively coloured by α, and is
therefore boring by Lemma 2.10. Thus, for i ∈ {1, . . . , t} the vertices vi and vt+i are in
the same layer.

Let k be the minimum layer containing a vertex in W . Let W ′ be the sequence of
vertices obtained from W by deleting all vertices not in Vk. Since vi ∈ W ′ if and only
if vt+i ∈ W ′, the sequence W ′ is repetitively coloured. Let vi and vj be consecutive
vertices in W ′ with i < j. Then there is walk from vi to vj with all its internal vertices
in Vk+1 ∪ · · · ∪ Vn (since k was chosen minimum), implying vi = vj or vivj is an edge of
H (since the layering is shadow-complete). Thus W ′ forms a repetitively coloured lazy
walk in G[Vk]. Since G[Vi] is stroll-repetitively coloured by β, by Lemma 2.11, some vertex
vi = vt+i is in W ′. Since W is not boring, vj 6= vt+j for some j ∈ [t]. Choose such i and
j to minimise |i− j|. Thus |i− j| = 1. Hence vj, vt+j ∈ Vk or vj, vt+j ∈ Vk+1. Moreover,
vj and vt+j have a common neighbour vi = vt+i. By assumption, β(vj) 6= β(vt+j), which
contradicts the assumption that W is repetitively coloured.

2.7 Strong Products

Nonrepetitive colourings of graph products have been studied in [17, 30, 47, 91, 99, 121].
Here we focus on strong products because doing so has applications to numerous graph
classes, such as planar graphs (Section 5.1) and graphs excluding a minor (Section 5.3).

Lemma 2.16 ([47]). For all graphs G and H,

π(G�H) 6 ρ(G�H) 6 ρ(G) · σ(H).

Proof. Let α be a stroll-nonrepetitive colouring of G with ρ(G) colours. Let β be a
walk-nonrepetitive colouring of H with σ(H) colours. By Lemma 2.10, β is nonrepetitive
on non-boring lazy walks in H. For any two vertices u ∈ V (G) and v ∈ V (H), colour
vertex (u, v) of G�H by φ(u, v) := (α(u), β(v)). We claim that φ is a stroll-nonrepetitive
colouring of G�H. To see this, consider a φ-repetitive lazy walkW = (u1, v1), . . . , (u2k, v2k)
in G�H. By the definition of the strong product and the definition of φ, the projection
WG = (u1, u2, . . . , u2k) of W into G is an α-repetitive lazy walk in G and the projection
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WH = (v1, v2, . . . , v2k) of W into H is a β-repetitive lazy walk in H. Since α is stroll-
nonrepetitive, by Lemma 2.11, ui = ui+k for some i ∈ {1, . . . , k}. Since β is nonrepetitive
on non-boring lazy walks, vj = vj+k for every j ∈ {1, . . . , k}. In particular, vi = vi+k and
(ui, vi) = (ui+k, vi+k). This shows that φ is a stroll-nonrepetitive colouring with at most
ρ(G) · σ(H) colours.

Several notes about Lemma 2.16 are in order:
• There is no known upper bound on π(G�H) that avoids stroll-nonrepetitive colouring.
This is an important reason for considering strolls.
• ρ(G � H) is not bounded by any function of ρ(G) or ρ(H). For example, if G =
H = K1,n then ρ(G) = ρ(H) = 2, but G�H contains the complete bipartite graph
Kn,n, and thus ρ(G�H) > π(G�H) > π(Kn,n) > n+ 1 by Lemma 2.1.
• As pointed out by Kevin Hendrey [personal communication, 2020], dependence on ∆

and σ is unavoidable in Lemma 2.16. Since the complete bipartite graph K∆(G),∆(H)

is a subgraph of G�H, Lemma 2.1 implies:

ρ(G�H) > π(G�H) > π(K∆(G),∆(H)) > min{∆(G),∆(H)}+ 1.

In particular, ρ(H �H) > ∆(H) + 1 and ρ(H �H) > ρ(H), implying ρ(H �H)3 >
ρ(H)(∆(H)2 + 1) > σ(H) (by Corollary 2.7) and ρ(H �H) > σ(H)1/3.

Since σ(K`) = `, Lemma 2.16 implies:

Corollary 2.17 ([47]). For every graph G and integer ` ∈ N,

ρ(G�K`) 6 ` ρ(G).

Barát and Varjú [15] proved an analogous result for walk-nonrepetitive colourings of
strong products.

Lemma 2.18 ([15]). For all graphs G and H,

σ(G�H) 6 σ(G) · σ(H).

Proof. Let α be a walk-nonrepetitive colouring of G with σ(G) colours. Let β be a
walk-nonrepetitive colouring of H with σ(H) colours. By Lemma 2.10, α is nonrepetitive
on non-boring lazy walks in G, and β is nonrepetitive on non-boring lazy walks in
H. For any two vertices u ∈ V (G) and v ∈ V (H), colour vertex (u, v) of G � H by
φ(u, v) := (α(u), β(v)). We claim that φ is a walk-nonrepetitive colouring of G�H. To see
this, consider a φ-repetitive walk W = (u1, v1), . . . , (u2k, v2k) in G�H. By the definition
of the strong product and the definition of φ, the projection WG = (u1, u2, . . . , u2k) of W
into G is an α-repetitive lazy walk in G and the projection WH = (v1, v2, . . . , v2k) of W
in H is a β-repetitive lazy walk in H. Since α is nonrepetitive on non-boring lazy walks,
ui = ui+k for all i ∈ {1, . . . , k}. Similarly, since β is nonrepetitive on non-boring lazy
walks, vi = vi+k for all i ∈ {1, . . . , k}. Thus (ui, vi) = (ui+k, vi+k) for all i ∈ {1, . . . , k},
implying W is boring. Therefore φ is a walk-nonrepetitive colouring of G �H with at
most σ(G) · σ(H) colours. Hence σ(G�H) 6 σ(G) · σ(H).
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The above results about strong products are applied for several graph classes in
Section 5. Here we give one more application. A graph class G has polynomial growth
if for some constant c, for every graph G ∈ G, for each r > 2 every r-ball in G has at
most rc vertices. For example, every r-ball in an n × n grid graph is contained in a
(2r + 1) × (2r + 1) subgrid, which has size (2r + 1)2; therefore the class of grid graphs
has polynomial growth. More generally, let Zd be the strong product of d infinite two-way
paths. That is, V (Zd) = {(x1, . . . , xd) : x1, . . . , xd ∈ Z} where distinct vertices (x1, . . . , xd)
and (y1, . . . , yd) are adjacent in Zd if and only if |xi− yi| 6 1 for each i ∈ {1, . . . , d}. Then
every r-ball in Zd has size at most (2r + 1)d. Krauthgamer and Lee [98] characterised the
graph classes with polynomial growth as the subgraphs of Zd; see [56] for an alternative
characterisation.

Theorem 2.19 ([98]). Let G be a graph such that for some constant c and for every
integer r > 2, every r-ball in G has at most rc vertices. Then G ⊆ ZO(c log c).

Theorem 2.19 and Lemmas 2.16 and 2.18 imply:

Theorem 2.20. Let G be a graph such that for some c ∈ N and for every integer r > 2,
every r-ball in G has at most rc vertices. Then

ρ(G) 6 σ(G) 6 cO(c).

Our focus has been on strong products. The other two main graph products are also
of interest.

Open Problem 2.21. What can be said about π(G�H) and π(G×H)? This is related
to Open Problem 3.28 since Kn �Kn

∼= L(Kn,n).

3 Bounded Degree Graphs

3.1 Paths

As mentioned in Section 1, Thue [141] proved the following:

Theorem 3.1 ([141]). For every path P ,

π(P ) 6 3, (2)

with equality if |V (P )| > 4.

Proof. The following construction is due to Leech [101]. Consider the following three
blocks:

A0 : 0 1 2 1 0 2 1 2 0 1 2 1 0

A1 : 1 2 0 2 1 0 2 0 1 2 0 2 1

A2 : 2 0 1 0 2 1 0 1 2 0 1 0 2.
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First observe that A0, A1, A2 are symmetric in the sense that a cyclic permutation of
0, 1, 2 also permutes A0, A1, A2. Say W is a nonrepetitive word on {0, 1, 2}. Let W ′ be
obtained from W by replacing each element i in W by Ai. We now prove that W ′ is also
nonrepetitive. Suppose on the contary that W ′ contains a repetition x1, . . . , x2t. First
suppose that t 6 7. Then x1, . . . , x2t is contained in two consecutive blocks AiAj, and
i 6= j since W is nonrepetitive. By symmetry, we may assume that i = 0. But A0Aj is
nonrepetitive:

A0A1 : 0 1 2 1 0 2 1 2 0 1 2 1 0 1 2 0 2 1 0 2 0 1 2 0 2 1

A0A2 : 0 1 2 1 0 2 1 2 0 1 2 1 0 2 0 1 0 2 1 0 1 2 0 1 0 2.

Now assume that t > 8. Any sequence of 8 characters in any block or in any two consecutive
blocks is uniquely determined by the block or blocks involved and the starting character.
The following cases confirm this, since by symmetry one only needs to check sequences
beginning with 0:

A0 : 0 1 2 1 0 2 1 2 0 1 2 1 0

A0 : 0 1 2 1 0 2 1 2 0 1 2 1 0

A1 : 1 2 0 2 1 0 2 0 1 2 0 2 1

A1 : 1 2 0 2 1 0 2 0 1 2 0 2 1

A2 : 2 0 1 0 2 1 0 1 2 0 1 0 2

A2 : 2 0 1 0 2 1 0 1 2 0 1 0 2

A0A1 : 0 1 2 1 0 2 1 2 0 1 2 1 0 1 2 0 2 1 0 2 0 1 2 0 2 1

0 1 2 1 0 2 1 2 0 1 2 1 0 1 2 0 2 1 0 2 0 1 2 0 2 1

A0A2 : 0 1 2 1 0 2 1 2 0 1 2 1 0 2 0 1 0 2 1 0 1 2 0 1 0 2

0 1 2 1 0 2 1 2 0 1 2 1 0 2 0 1 0 2 1 0 1 2 0 1 0 2

A1A0 : 1 2 0 2 1 0 2 0 1 2 0 2 1 0 1 2 1 0 2 1 2 0 1 2 1 0

1 2 0 2 1 0 2 0 1 2 0 2 1 0 1 2 1 0 2 1 2 0 1 2 1 0

A1A2 : 1 2 0 2 1 0 2 0 1 2 0 2 1 2 0 1 0 2 1 0 1 2 0 1 0 2

1 2 0 2 1 0 2 0 1 2 0 2 1 2 0 1 0 2 1 0 1 2 0 1 0 2

A2A0 : 2 0 1 0 2 1 0 1 2 0 1 0 2 0 1 2 1 0 2 1 2 0 1 2 1 0

2 0 1 0 2 1 0 1 2 0 1 0 2 0 1 2 1 0 2 1 2 0 1 2 1 0

2 0 1 0 2 1 0 1 2 0 1 0 2 0 1 2 1 0 2 1 2 0 1 2 1 0

A2A1 : 2 0 1 0 2 1 0 1 2 0 1 0 2 1 2 0 2 1 0 2 0 1 2 0 2 1

2 0 1 0 2 1 0 1 2 0 1 0 2 1 2 0 2 1 0 2 0 1 2 0 2 1

2 0 1 0 2 1 0 1 2 0 1 0 2 1 2 0 2 1 0 2 0 1 2 0 2 1

Thus, for ` ∈ {1, . . . , t− 7}, the subsequences x`, x`+1, . . . , x`+7 and xt+`, xt+`+1, . . . , xt+`+7

appear in copies of the same block Ai or in the same block pair AiAj, and moreover, x`
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appears in the same position as xt+` in the corresponding block. This implies that the
starting word W contains a repetitive subsequence. This contradiction shows that W ′ is
nonrepetitive. Arbitrarily long paths can be nonrepetitively 3-coloured by this substitution
rule.

There is a large body of literature on substitution rules like that used in the above
proof; see [4, 36, 38, 41] for example.

We also briefly mention another proof of Theorem 3.1 via the Thue–Morse sequence,
which is the binary sequence 0 1 10 1001 10010110 . . . where the each underlined block is
the negation of the entire preceding subsequence. See [5] for a survey about the Thue–
Morse sequence. Given a path (v1, v2, . . . ), colour each vertex vi by the difference of
the (i + 1)-th and i-th entries in the Thue–Morse sequence. So the sequence of colours
is (1, 0,−1, 1,−1, 0, 1, 0, . . . ). The Thue–Morse sequence contains no 0X0X0 or 1X1X1
pattern. It follows that the above 3-colouring of the path is nonrepetitive.

Kündgen and Pelsmajer [99] showed that paths are walk-nonrepetitively 4-colourable.

Lemma 3.2 ([99]). For every path P ,

σ(P ) 6 4.

with equality if |V (P )| > 6.

Proof. Given a nonrepetitive sequence on {1, 2, 3}, insert the symbol 4 between consecutive
block of length two. For example, from the sequence 123132123 we obtain 1243143241243.
Any three consecutive elements are distinct. Thus this sequence corresponds to a distance-2
colouring φ of a path. We now show that φ is stroll-nonrepetitieve. Suppose for the sake
of contradiction that there is a repetitively coloured stroll. Let W = (v1, . . . , v2t) be a
repetitively coloured stroll with t minimum. Then t > 2.

First suppose that W is a subpath. Since φ(vi) = 4 if and only if φ(vt+i) = 4, removing
the vertices coloured 4 in W gives a repetition in the original sequence on {1, 2, 3}. Now
assume that W has a repeated vertex. Thus vi = vi+2 for some i ∈ {1, . . . , 2t− 2}. (The
stroll must turn around somewhere.) By symmetry, we may assume that i ∈ {1, . . . , t− 1}.

Suppose that i ∈ {1, . . . , t− 2}. Thus φ(vi) = φ(vi+2) = φ(vt+i) = φ(vt+i+2). Since φ
is a distance-2 colouring, vt+i = vt+i+2. Then (v1, . . . , vi−1, vi+2, . . . , vt+i−1, vt+i+2, . . . , v2t)
is a repetitively coloured stroll on 2t− 4 vertices, contradicting the choice of W .

Thus i = t− 1. Then (v1, . . . , vt−2, vt+1, . . . , v2t−2) is a repetitively coloured stroll on
2t− 4 vertices, contradicting the choice of W .

Hence φ is stroll-nonrepetitive. By Lemma 2.6, φ is walk-nonrepetitive.
Suppose on the contrary that some path P on at least six vertices is walk-nonrepetitive

3-colourable. Since the colouring is distance 2, without loss of generality, the colouring
begins 123123, which is a repetitively coloured path. Thus σ(P ) > 4.

Lemma 3.2 implies that ρ(P ) 6 4 for every path P . The preprint version of this survey
asked whether ρ(P ) 6 3 for every path P? Pascal Ochem [personal communication, 2021]
answered this question in the negative.
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Proposition 3.3 (Pascal Ochem). ρ(P ) = 4 for every path P with at least 24 vertices.

Proof. Suppose for the sake of contradiction that there is a stroll-nonrepetitive 3-colouring
of the path on n > 24 vertices. Let x1x2 . . . xn be the corresponding sequence of colours,
where x1, . . . , xn are elements of some alphabet A of size 3. For i ∈ [n− 2], let pi := 0 if
xi = xi+2, and let pi := 1 if xi 6= xi+2. The word P = p1 . . . pn−2 is called the Pansiot code
of x1x2 . . . xn. In what follows a, b, c indicate distinct elements of A.

If pipi+1 = 00 for some i ∈ [1, n − 3], then the path xi, xi+1, xi+2, xi+3 is repetitively
coloured abab. Hence pipi+1 6= 00 for all i ∈ [1, n− 3].

If pipi+1pi+2pi+3 = 1111 for some i ∈ [1, n − 5], then the path xi, xi+1, . . . , xi+5 is
repetitively coloured abcabc. Hence pipi+1pi+2pi+3 6= 1111 for all i ∈ [1, n− 5].

Suppose that pipi+1pi+2 = 010 for some i ∈ [3, n − 4]. Since 00 is not in P , we
have pi−1 = 1 and pi+3 = 1. Thus xi−1xi . . . xi+5 = abcbabc, implying that the stroll
xi−1, xi, . . . , xi+5, xi+4 is repetitively coloured abcbabcb. Hence pipi+1pi+2 6= 010 for all
i ∈ [3, n− 4].

Suppose that pipi+1pi+2pi+3 = 0110 for some i ∈ [4, n − 5]. Since 00 is not in P , we
have pi−1 = 1 and pi+4 = 1. Since 010 is not in P , we have pi−2 = 1 and pi+5 = 1.
Thus xi−2xi−1 . . . xi+6 = abcacbabca, implying that the stroll xi−2, xi−1, . . . , xi+6, xi+5, xi+4

is repetitively coloured abcacbabcacb. Hence pipi+1pi+2pi+3 6= 0110 for all i ∈ [4, n− 5].
The above four conditions imply that p4p5 . . . p19 = 0111 0111 0111 0111. It follows

that the path x4, . . . , x19 is repetitively coloured abcacbaac abcacbaac. This contradiction
shows that no path on at least 24 vertices can be stroll-nonrepetitively 3-colourable.

Lemmas 3.2 and 2.16 imply:

Corollary 3.4 ([47]). For every graph G and every path P ,

ρ(G� P ) 6 4ρ(G).

Now consider nonrepetitive list colourings of paths. Grytczuk et al. [76] first proved that
πch(P ) 6 4. Their proof uses the Lovász Local Lemma in conjunction with a deterministic
colouring rule that ensures that short paths are not repetitively coloured. We present
two proofs of this result. The first, due to Grytczuk et al. [75], uses entropy compression,
which is a technique based on the algorithmic proof of the Lovász Local Lemma by Moser
and Tardos [111].

Theorem 3.5 ([76]). Every path is nonrepetitively list 4-colourable.

Proof. Let L be a 4-list assignment of the path (v1, . . . , vn). We may assume that |L(vi)| = 4
for each i ∈ {1, . . . , n}. Apply the following algorithm, where R is a binary sequence called
the record . At the start of the while loop, vertices v1, . . . , vi−1 are coloured and vertices
vi, . . . , vn is uncoloured.
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let i := 1
let R := ()
while i 6 n do

randomly colour vi from L(vi)
append one 0 to R
if some repetitively coloured subpath P appears then

let k := 1
2
|V (P )|

uncolour the last k vertices of P
let i := i− k + 1
append k 1’s to R

else
let i := i+ 1

end-if
end-while

Each iteration of the while loop is called a step. Let Rt be the record R at the end
of step t. Let φt be the current colouring at the end of step t. A key property is that
(Rt, φt) is a ‘lossless encoding’ of the actions of the algorithm. That is, given (Rt, φt) one
can determine (Rt−1, φt−1) because whenever a repetitively coloured subpath P appears,
the colours on the second half of P (which is uncoloured by the algorithm) are determined
by the colours on the first half of P .

Consider the status of the algorithm at the end of some time step t > 1. Let at and bt
respectively be the number of 0’s and the number of 1’s in Rt. Observe that at = t and the
algorithm maintains the invariant that at− bt equals the number of coloured vertices under
φt. Call at − bt the type of Rt, which is an element of {1, . . . , n}. Let R̃t be the binary
sequence obtained by adding at− bt 1’s at the end of Rt. Thus R̃t is a Dyck word of length
|Rt|+ (at− bt) = |Rt|+ at− (|Rt| − at) = 2at = 2t. Here a Dyck word is a binary sequence
with an equal number of 0’s and 1’s, such that every prefix has at least as many 0’s as
1’s. The number of Dyck words of length 2t equals the t-th Catalan number Ct := 1

t+1

(
2t
t

)
.

Thus the number of distinct Rt’s is at most Ct ×#types = nCt. Since each vertex has
four possible colours or is uncoloured, the number of distinct φt’s is at most (4 + 1)n.

Consider the 4t possible executions of the algorithm up to time t. For each such
execution, the algorithm either finds a nonrepetitive colouring of the whole path or ‘fails’
and produces a pair (Rt, φt). By the lossless encoding property, distinct fail executions
produce distinct pairs (Rt, φt). Thus the number of fail executions is at most the number
of pairs (Rt, φt), which is at most n5nCt ≈ n5nπ−1/2t−3/24t, which is less than 4t for t� n.
Thus, there exists an execution that does not fail. Therefore (v1, . . . , vn) is L-colourable,
and every path is nonrepetitively list 4-colourable.

Our second proof that πch(P ) 6 4 uses a simple counting argument of Rosenfeld [131].

Theorem 3.6 ([131]). Every path is nonrepetitively list 4-colourable. In fact, for every
4-list assignment L of an n-vertex path, there are at least 2n+1 nonrepetitive L-colourings.
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Proof. Let L be a 4-list assignment of a path P = (v1, v2, . . . , vn). For m ∈ {1, . . . , n}, let
Cm be the number of nonrepetitive L-colourings of the subpath Pm := (v1, . . . , vm). We
now prove that Cm+1 > 2Cm by induction on m > 1. The base case holds since C1 = 4 and
C2 > 3C1. Let m ∈ {3, . . . , n} and assume the claim holds for all values less than m. Thus
Cm−1 > 2iCm−i−1 for all i ∈ {1, . . . ,m− 2}. Let F be the set of repetitive L-colourings of
Pm that induce a nonrepetitive colouring of Pm−1. Then Cm = 4Cm−1− |F |. For i ∈ N, let
Fi be the colourings in F that contain a repetitively coloured path on 2i vertices, which
must end at vertex vm. Then |F | 6

∑
i>1 |Fi|. For each colouring in Fi, the colours of

vertices vm−i+1, . . . , vm are determined by the colours of vertices vm−2i+1, . . . , vm−i. Since
v1, . . . , vm−i induce a nonrepetitively coloured path, |Fi| 6 Cm−i 6 2−i+1Cm−1. Thus
|F | 6

∑
i>1 |Fi| 6

∑
i>1 2−i+1Cm−1 6 2Cm−1. Hence Cm = 4Cm−1 − |F | > 2Cm−1, as

claimed. It follows that there exist at least 2n+1 nonrepetitive L-colourings of P .

Open Problem 3.7. Is every path nonrepetitively 3-choosable? [43, 69, 108]? Note that
a simple adaptation to the proof of Theorem 3.6 shows that every path is list 3-colourable
such that every subpath with at least four vertices is nonrepetitively coloured; that is, the
only repetitively coloured subpaths have two vertices. The results of Zhao and Zhu [152]
are also relevant here.

The following multi-colour generalisation of Theorem 3.6 will be useful for the study
of nonrepetitive colourings of subdivisions in Section 6. Shur [136] established precise
asymptotic bounds on the number of distinct nonrepetitive r-colourings in a path. So
that our presentation is self-contained, we present the slightly weaker result with a simple
proof.

Theorem 3.8. Fix r > 4. For every r-list assignment L of an n-vertex path, there are at
least kn nonrepetitive L-colourings, where k := 1

2
(r +

√
r2 − 4r) > r − 2.

Proof. Let L be an r-list assignment of a path P = (v1, v2, . . . , vn). For m ∈ {1, . . . , n},
let Cm be the number of nonrepetitive L-colourings of the subpath Pm := (v1, . . . , vm).
We now prove that Cm+1 > k Cm by induction on m > 1. The base case holds since
C1 = r > k and C2 > (r − 1)C1 > kC1. Let m ∈ {3, . . . , n} and assume the claim holds
for all values less than m. Thus Cm−1 > kiCm−i−1 for all i ∈ {1, . . . ,m− 2}. Let F be the
set of repetitive L-colourings of Pm that induce a nonrepetitive colouring of Pm−1. Then
Cm = r Cm−1 − |F |. For i ∈ N, let Fi be the colourings in F that contain a repetitively
coloured path on 2i vertices, which must end at vertex vm. Then |F | 6

∑
i>1 |Fi|. For

each colouring in Fi, the colours of vertices vm−i+1, . . . , vm are determined by the colours
of vertices vm−2i+1, . . . , vm−i. Since v1, . . . , vm−i induce a nonrepetitively coloured path,
|Fi| 6 Cm−i 6 k−i+1Cm−1. Thus |F | 6

∑
i>1 |Fi| 6

∑
i>1 k

−i+1Cm−1 6 k
k−1

Cm−1. Hence
Cm = r Cm−1 − |F | > (r − k

k−1
)Cm−1 = k Cm−1, as claimed. It follows that there exist at

least kn nonrepetitive L-colourings of P .
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3.2 Cycles

Let Cn be the n-vertex cycle. Currie [39] proved that

π(Cn) =

{
4 if n ∈ {5, 7, 9, 10, 14, 17},
3 otherwise.

Barát and Wood [17] considered walk-nonrepetitive colourings of cycles, and showed:

ρ(Cn) 6 σ(Cn) 6 5.

Open Problem 3.9. Is πch(Cn) 6 4 for infinitely many n? Is ρ(Cn) 6 4 for infinitely
many n? It is even possible that πch(Cn) 6 3, but this question is open even for paths
(Open Problem 3.7). Is σ(Cn) 6 4 for infinitely many n?

3.3 Bounded Degree Graphs

Alon et al. [8] proved that graphs with maximum degree ∆ are nonrepetitively edge-
colourable with O(∆2) colours. The precise bound shown was π′(G) 6 216∆2.
Alon et al. [8] remarked that the proof also works for nonrepetitive vertex colourings;
that is, π(G) 6 216∆2. Several authors subsequently improved this constant: to 36∆2 by
Grytczuk [70], to 16∆2 by Grytczuk [69], to (12.2 + o(1))∆2 by Haranta and Jendro ’l [80],
and to 10.4∆2 by Kolipaka, Szegedy, and Xu [94]. All these proofs used the Lovász Local
Lemma [58]. Dujmović et al. [49] improved the constant to 1, by showing that for every
graph G with maximum degree ∆,

π(G) 6 ∆2 +O(∆5/3). (3)

The proof of Dujmović et al. [49] uses entropy compression; see [59, 64, 65] for refinements
and simplifications to the method. Inequality (3) was subsequently proved using a variety
of techniques: the local cut lemma of Bernshteyn [19], cluster-expansion [13, 24], and
a novel counting argument due to Rosenfeld [131]. See [81, 82] for work on efficient
algorithms for finding a nonrepetitive (∆2 +O(∆5/3))-colouring.

We present two proof of (3). The first, perhaps surprisingly, uses nothing more than
the Lovász Local Lemma. The second is the counting arguement due to Rosenfeld [131].
Both proofs use the following well known observation:

Lemma 3.10. For every graph G with maximum degree ∆, for every vertex v of G, and
for every s ∈ N, there are at most s∆(∆−1)2s−2 paths on 2s vertices that contain v (where
we consider a path to be a subgraph of G, so that a path and its reverse are counted once.)

Proof. Let P be the set of 2s-vertex paths in G that contain v. For each P ∈ P, by
choosing the start vertex of P appropriately, we may consider v to be the i-th vertex in P ,
for some i ∈ {1, . . . , s}. There are at most ∆(∆− 1)2s−2 paths in P in which v is the first
vertex (since are at most ∆ choices for the neighbour of v in the path, and once this is
fixed, for each of the 2s− 2 internal vertices there are at most ∆− 1 choices). For each
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i ∈ {2, . . . , s}, there are at most ∆(∆ − 1)2s−2 paths in P in which v is the i-th vertex
(since at v there are at most ∆(∆−1) choices for the neighbours of v in the path, and once
these are fixed, for each of the remaining 2s− 3 internal vertices there are at most ∆− 1
choices). In total, there are at most s∆(∆− 1)2s−2 paths on 2s vertices that contain v.

3.4 Lovász Local Lemma

The Lovász Local Lemma is a powerful tool for proving the existence of combinatorial
objects, and has been applied in numerous and diverse settings. The following is a
statement of the General Local Lemma, which is due to Lovász and first published by
Spencer [138].

Lemma 3.11 (General Local Lemma). Let E = {A1, . . . , An} be a set of ‘bad’ events,
such that each Ai is mutually independent of E \ (Di ∪ {Ai}) for some Di ⊆ E. Let
x1, . . . , xn ∈ [0, 1) such that for each i ∈ {1, . . . , n},

P(Ai) 6 xi
∏
Aj∈Di

(1− xj).

Then with positive probability, none of A1, . . . , An occur.

Lemma 3.11 can be difficult to apply, since choosing the right values of x1, . . . , xn is some-
what mysterious. The following Weighted Local Lemma by Molloy and Reed [109, p.221]
avoids this difficulty, since in practice the weights t1, . . . , tn are self-evident.

Lemma 3.12 (Weighted Local Lemma). Let E = {A1, . . . , An} be a set of ‘bad’ events,
such that each Ai is mutually independent of E \ (Di ∪ {Ai}) for some Di ⊆ E. Assume
p ∈ [0, 1

4
] and t1, . . . , tn > 1 are real numbers such that for each i ∈ {1, . . . , n},

• P(Ai) 6 pti, and
•
∑

Aj∈Di
(2p)tj 6 ti

2
.

Then with positive probability, none of A1, . . . , An occur.

Lemma 3.12 leads to the following straightforward proof that π(G) 6 O(∆(G)2), which
we include as a warm-up.

Proposition 3.13. For every graph G with maximum degree ∆ > 1,

πch(G) 6 d2∆2 + 4∆
√

∆ + 1 + 4∆e.

Proof. Let c := 2∆2 + 4∆
√

∆ + 1 + 4∆ and r := 2∆2

c
< 1 and p := 1

c
6 1

4
. Let L be

a dce-list assignment for G. Colour each vertex v of G, independently at random, by
an element of L(v). Let P1, . . . , Pn be the non-empty paths in G with an even number
of vertices. For each i ∈ {1, . . . , n}, let Ai be the event that Pi is repetitively coloured,
and let ti := 1

2
|V (Pi)|. Then P(Ai) 6 pti , and the first condition in Lemma 3.12 is

satisfied. Let Di := {Aj : Pj ∩ Pi 6= ∅, j 6= i}. Then Ai is mutually independent of
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{A1, . . . , An} \ (Di ∪ {Ai}). By Lemma 3.10, each Pi intersects at most 2tis∆
2s−1 paths

with 2s vertices. The second condition in Lemma 3.12 is satisfied since∑
Aj∈Di

(2p)ti 6
∑
s>1

(2tis∆
2s−1)(2p)s =

2ti
∆

∑
s>1

s(2p∆2)s =
2ti
∆

∑
s>1

srs =
2ti
∆

r

(1− r)2
=
ti
2
.

The penultimate equality here uses a formula for the sum of an arithmetico-geometric
sequence [145]. The last equality is proved by solving the quadratic, 4r = ∆(1− r)2, and
substituting r = 2∆2

c
. By Lemma 3.12, with positive probability, none of A1, . . . , An occur.

Hence there exists an L-colouring such that none of A1, . . . , An occur, in which case there
are no repetitively coloured paths. Therefore πch(G) 6 dce.

Molloy and Reed [109] write, “As the reader will see upon reading the proof of the
Weighted Local Lemma, the constant terms in the statement can be adjusted somewhat if
needed.” The next lemma does this.

Lemma 3.14 (Optimised Weighted Local Lemma). Fix ε, δ, p > 0 such that 0 < p 6 δ <
1

1+ε
. Define γ := (1 + ε)δ and α := 1

γ
log( 1

1−γ ) and β := 1
α

log(1 + ε). Let E = {A1, . . . , An}
be a set of ‘bad’ events, such that each Ai is mutually independent of E \ (Di ∪ {Ai}) for
some Di ⊆ E. Let t1, . . . , tn > 1 be real numbers such that for each i ∈ {1, . . . , n},
• P(Ai) 6 pti, and
•
∑
Aj∈Di

((1 + ε)p)tj 6 βti.

Then with positive probability, none of A1, . . . , An occur.

Note that Lemma 3.14 with ε = 1 implies Lemma 3.12 since β > 1
2
for p ∈ [0, 1

4
]. The

proof of Lemma 3.14 is essentially the same as the proof of Lemma 3.12 by Molloy and
Reed [109], who use ε = 1 and α = 2 log 2.

Proof of Lemma 3.14. For each i ∈ {1, . . . , n}, let xi := ((1+ε)p)ti . Then xi ∈ [0, (1+ε)δ].
Note that α > 1 and 1− x > exp(−αx) for all x ∈ [0, (1 + ε)δ]. Thus

xi
∏
Aj∈Di

(1− xj) > xi
∏
Aj∈Di

exp(−αxj)

= xi exp(−α
∑
Aj∈Di

xj)

= ((1 + ε)p)ti exp(−α
∑
Aj∈Di

((1 + ε)p)tj)

> ((1 + ε)p)ti exp(−αβti)
= ((1 + ε)p)ti exp(− log(1 + ε)ti)

= pti

> P(Ai).

The result follows from Lemma 3.11.
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We now give our first proof of (3).

Theorem 3.15. For every graph G with maximum degree ∆ > 2,

πch(G) 6 ∆2 + 24/3∆5/3 +O(∆4/3).

Proof. Let ε := 21/3∆−1/3. (The reason for this definition will be apparent at the end of
the proof.) Let δ := (1 + ε)−1∆−2. As in Lemma 3.14, define γ := (1 + ε)δ = ∆−2 and
α := 1

γ
log( 1

1−γ ) and β := 1
α

log(1 + ε). Note that 1 6 α 6 4 log(4
3
) < 1.15 since γ 6 1

4
. (It

may help the reader’s intuition to pretend that α = 1.) Let

c := (1 + ε)∆(∆ + 1
β
(
√

2β∆ + 1 + 1)).

We now prove that πch(G) 6 dce. First we write c in a more convenient form. Since β > 0,

(2β∆ + 2− 2
√

2β∆ + 1)(2β∆ + 2 + 2
√

2β∆ + 1) = (2β∆ + 2)2 − 4(2β∆ + 1) = 4β2∆2.

Thus

2β∆3

2β∆ + 2− 2
√

2β∆ + 1
=

∆

2β
(2β∆ + 2 + 2

√
2β∆ + 1) = ∆(∆ + 1

β
(
√

2β∆ + 1 + 1)).

Muliplying by 1 + ε,

c =
(1 + ε)2β∆3

(2β∆ + 2)−
√

8β∆ + 4
.

Let p := 1
c
. Then p 6 δ 6 1

1+ε
, as required by Lemma 3.14. Let r := (1 + ε)p∆2 < 1. Then

r =
(1 + ε)∆2

c
=

(2β∆ + 2)−
√

8β∆ + 4

2β∆
=

(2β∆ + 2)−
√

(2β∆ + 2)2 − 4β2∆2

2β∆
.

By the quadratic formula, β∆r2 + (−2β∆− 2)r + β∆ = 0. That is,

2r = β∆(1− 2r + r2) = β∆(1− r)2.

Let L be a dce-list assignment for G. Colour each vertex v of G, independently at
random, by an element of L(v). Let P1, . . . , Pn be the non-empty paths in G with an even
number of vertices. Here we consider a path to be a subgraph of G, so that a path and its
reverse are the same path. For each i ∈ {1, . . . , n}, let Ai be the event that Pi is repetitively
coloured, and let ti := 1

2
|V (Pi)|. Then P(Ai) 6 pti , and the first condition in Lemma 3.14

is satisfied. Let Di := {Aj : Pj ∩ Pi 6= ∅, j 6= i}. Then Ai is mutually independent of
{A1, . . . , An} \ (Di ∪ {Ai}). By Lemma 3.10, for each s ∈ N, each Pi intersects at most
2tis∆

2s−1 paths with 2s vertices. (The lower order terms in this result can be improved by
using Lemma 3.10 more precisely.) The second condition in Lemma 3.14 is satisfied since∑

Aj∈Di

((1 + ε)p)ti 6
∑
s>1

(2tis∆
2s−1)((1 + ε)p)s
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6
∑
s>1

(2tis∆
2s−1)

( r

∆2

)s
=

2ti
∆

∑
s>1

srs

=
2ti
∆

r

(1− r)2

= β ti. (4)

The penultimate equality uses a formula for the sum of an arithmetico-geometric se-
quence [145]. By Lemma 3.12, with positive probability, none of A1, . . . , An occur. Hence
there exists an L-colouring such that none of A1, . . . , An occur, in which case there are no
repetitively coloured paths. Therefore πch(G) 6 c.

It remains to prove the upper bound on dce. Using Taylor series expansion as ε→ 0,

c =(1 + ε)∆2 +
(1 + ε)∆(

√
2β∆ + 1 + 1)

β

6(1 + ε)∆2 +
(1 + ε)∆(

√
2β∆ + 2)

β

=(1 + ε)∆2 +
(1 + ε)

√
2∆3

√
β

+
2(1 + ε)∆

β

=(1 + ε)∆2 +
(2α)1/2∆3/2(1 + ε)√

log(1 + ε)
+

2α∆(1 + ε)

log(1 + ε)

=(1 + ε)∆2 + (2α)1/2∆3/2
(
ε−1/2 + 5

4
ε1/2 + 17

96
ε3/2 − 13

384
ε5/2 +O(ε3)

)
+ 2α∆

(
ε−1 + 3

2
+ 5

12
ε− 1

24
ε2 + 11

720
ε3 +O(ε4)

)
=(1 + ε)∆2 + (2α)1/2∆3/2

(
ε−1/2 + 5

4
ε1/2 +O(ε3/2)

)
+ 2α∆

(
ε−1 + 3

2
+O(ε)

)
=(1 + 21/3∆−1/3)∆2 + (2α)1/2∆3/2

(
(21/3∆−1/3)−1/2 + 5

4
(21/3∆−1/3)1/2 +O(∆−1/2)

)
+

+ 2α∆

(
(21/3∆−1/3)−1 +

3

2
+O(∆−1/3)

)
=∆2 + 21/3∆5/3 + (2α)1/2∆3/2

(
2−1/6∆1/6 + 5

4
21/6∆−1/6 +O(∆−1/2)

)
+

+ 2α∆
(
2−1/3∆1/3 + 3

2
+O(∆−1/3)

)
=∆2 + 21/3∆5/3 +

(
21/3α1/2∆5/3 + α1/25 2−4/3∆4/3 +O(∆)

)
+(

α22/3∆4/3 + 3α∆ +O(∆2/3)
)

=∆2 + 21/3(1 + α1/2)∆5/3 + (α1/25 · 2−4/3 + α22/3)∆4/3 +O(∆).

Note that α1/2 = ( 1
γ

log( 1
1−γ ))1/2 6 1 + γ since γ 6 1

4
. Thus α1/2 6 1 + ∆−2, implying

c 6 ∆2 + 24/3∆5/3 + (5 · 2−4/3 + 22/3)∆4/3 +O(∆).

I now reflect on how to use the Optimised Weighted Local Lemma. First introduce a
parameter ε = ε(∆), which tends to 0 as ∆→∞. Leave ε undefined at this stage; it can
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be determined optimally at the end of this process. Introduce a variable c for the number
of colours, and leave c undefined at first. Guess a lower bound c′ for c, as close to c as
possible. In the above proof, c′ is (1 + ε)∆2. Let p := 1

c
and δ := 1

c′
. So δ is a close upper

bound for p. Define γ, α and β (in terms of δ and ε) as in Lemma 3.14. Define appropriate
events, and compute their probabilities (in term of p), from which the weights t1, . . . , tn
should be self-evident. Then bound the dependencies of events. Equation (4) is the heart
of the proof. Using the bounds on the dependencies, determine an upper bound Xi(p, ε)
for
∑

Aj∈Di
((1 + ε)p)ti . Then solving the equation Xi(p, ε) = βti gives a value for p and

in turn a value for c (in terms of ε) so that Lemma 3.14 is applicable. Finally, choose
ε to minimise c. Using this approach, the mysterious process of choosing the numbers
x1, . . . , xn in the General Local Lemma is partially automated.

3.5 Rosenfeld Counting

The following proof of (3) uses a clever counting argument due to Rosenfeld [131]2, which
is inspired by the so-called power series method for pattern avoidance [25, 119, 127]. See
[143] for an abstract generalisation of Theorem 3.16 that has applications to several other
(hyper)graph colouring problems.

Theorem 3.16. For every graph G with maximum degree ∆ > 2,

πch(G) 6 ∆2 + 3 · 2−2/3∆5/3 + 22/3∆4/3 −∆− 24/3∆2/3 + 2.

This theorem is implied by the following lemma with r := (1 + 21/3∆−1/3)−1. In fact,
this lemma proves a stronger result that implies there are exponentially many colourings
and is essential for the inductive argument. For a list assignment L of a graph G, let
Π(G,L) be the number of nonrepetitive L-colourings of G.

Lemma 3.17. Fix an integer ∆ > 2 and a real number r ∈ (0, 1). Let

β :=
(∆− 1)2

r
and c :=

⌈
β +

∆

(1− r)2

⌉
.

Then for every graph G with maximum degree ∆, for every c-list assignment L of G, and
for every vertex v of G,

Π(G,L) > β Π(G− v, L).

Proof. We proceed by induction on |V (G)|. The base case with |V (G)| = 1 is trivial
(assuming Π(G,L) 6= ∅ if V (G) = ∅). Let n be an integer such that the lemma holds for
all graphs with less than n vertices. Let G be an n-vertex graph with maximum degree
∆. Let L be a c-list assignment of G. Let v be any vertex of G. Let F be the set of
L-colourings of G that are repetitive but are nonrepetitive on G− v. Then

Π(G,L) = |L(v)|Π(G− v, L) − |F | > cΠ(G− v, L) − |F |. (5)

2The bound in Theorem 3.16 is slightly less than the bound of Rosenfeld [131], improving the coefficient
in the ∆ term.
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We now upper-bound |F |. For i ∈ N, let Fi be the set of colourings in F , for which
there is a repetitively coloured path in G on 2i vertices. Then |F | 6

∑
i∈N |Fi|. For each

colouring φ in Fi there is a repetitively coloured path PQ on 2i vertices in G such that
v ∈ V (P ), G− V (P ) is nonrepetitively coloured by φ, and φ is completely determined by
the restriction of φ to G − V (P ) colouring (since the colouring of Q is identical to the
colouring of P ). Charge φ to PQ. The number of colourings in Fi charged to PQ is at
most Π(G− V (P ), L). Since P contains v and i− 1 other vertices, by induction

Π(G− v, L) > βi−1 Π(G− V (P ), L).

Thus the number of colourings in Fi charged to PQ is at most β1−i Π(G − v, L). By
Lemma 3.10, there are at most i∆(∆− 1)2i−2 paths on 2i vertices including v. Thus

|Fi| 6 i∆(∆− 1)2i−2 β1−i Π(G− v, L) = i∆

(
(∆− 1)2

β

)i−1

Π(G− v, L)

= i∆ri−1 Π(G− v, L).

Hence

|F | 6
∑
i∈N

|Fi| =
∑
i∈N

i∆ri−1 Π(G− v, L) = ∆ Π(G− v, L)
∑
i∈N

i ri−1

=
∆

(1− r)2
Π(G− v, L).

By (5),

Π(G,L) > cΠ(G− v, L) − |F | > cΠ(G− v, L) − ∆

(1− r)2
Π(G− v, L)

> β Π(G− v, L)

as desired.

Open Problem 3.18. What is the maximum nonrepetitive chromatic number of graphs
G with maximum degree 3? Lemma 3.17 with r = 0.389 implies πch(G) 6 19. I expect
this bound can be improved using entropy compression tailored to the ∆ 6 3 case.

3.6 Lower Bound

Alon et al. [8] proved the following lower bound on the nonrepetitive chromatic nuber of
bounded degree graphs.

Theorem 3.19 ([8]). There is an absolute constant c > 0 such that for all ∆ there exists
a graph G with maximum degree ∆, and

π(G) >
c∆2

log ∆
.
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Proof. We make no attempt to optimise the constant c. We may assume that ∆ is
sufficiently large, since the result is trivial for small ∆ if c is small enough. Let n be a
(large) integer. Define p := 4

√
logn
n

. Let G = G(12n, p) be the graph with vertex set
{1, . . . , 12n} obtained by choosing each pair of distinct vertices to be an edge, independently
at random with probability p.

We claim that G satisfies the following three properties with probability tending to 1
as n→∞:
(i) The maximum degree of G is at most ∆ := 96

√
n log n.

(ii) There is at least one edge of G between any two disjoint sets of vertices each of size
at least n.

(iii) For every collection of 3n pairwise disjoint subsets {u1, v1}, {u2, v2}, . . . , {u3n, v3n}
of V (G), there is a subset S ⊆ {1, . . . , 3n} with |S| > n such that the graph with
vertex-set S and edge-set {st : usut, vsvt ∈ E(G)} is connected.

To prove this claim, we show that for each of (i) – (iii) the probability of failure tends
to 0 as n→∞.

For (i), the expected degree of each vertex v of G equals p(12n − 1) < 48
√
n log n.

Chernoff’s Inequality implies that the probability that deg(v) > 96
√
n log n is less than

exp(−16
√
n log n). Thus the probability that some vertex of G has degree greater than

96
√
n log n is less than exp(−16

√
n log n)n→ 0.

For (ii), consider disjoint sets A,B ⊆ V (G) with |A|, |B| > n. The probability that
there is no AB-edge in G equals (1−p)|A| |B| 6 exp(−p |A| |B|) 6 exp(−4n3/2

√
log n). The

number of such pairs A,B is less than
(

12n
n

)2
6 (12e)2n. Hence, the probability that (ii)

fails is less than exp(−4n3/2
√

log n)(12e)2n = exp(−(4 + o(1))
√

log nn3/2)→ 0.
For (iii), fix pairwise disjoints subsets {u1, v1}, {u2, v2}, . . . , {u3n, v3n} of V (G). We

now estimate the probability that there is no set S as in (iii). Let H be the graph with
vertex-set {1, . . . , 3n} and edge-set {ij : uiuj, vivj ∈ E(G)}. Then H is a random graph
with 3n vertices in which every pair of distinct vertices forms an edge, independently
at random with probability p2 = 16 logn

n
. Our objective is to estimate the probability

that there is no connected component of at least n vertices in H. If this happens,
then the set of vertices of H can be partitioned into two disjoint sets, each of size
at least n with no edges between them. The probability of this event is less than
23n(1 − p2)n

2
< 23n exp(−p2n2) 6 23n exp(−16(log n)n) = 23nn−16n. The number of

pairwise disjoint subsets {u1, v1}, {u2, v2}, . . . , {u3n, v3n} of V (G) equals
(

12n
6n

)
(6n− 1)!! =(

12n
6n

)
(6n)!

23n3n!
< (12n)6n. Thus the probability that (iii) fails is less than (12n)6n23nn−16n → 0.

This completes the proof of the claim.
Returning to the proof of the theorem, suppose that G satisfies (i)–(iii). Consider any

6n-colouring of G. Omit one vertex from each color class containing an odd number of
vertices, and partition the remaining vertices within each colour class into pairs. This
produces at least 3n pairs {u1, v1}, . . . , {u3n, v3n}, where ui and vi have the same color.
Thus there is a subset S ⊆ {1, . . . , 3n} satisfying (iii). By (ii) applied to the sets {ut : t ∈ S}
and {vs : s ∈ S} there is an edge utvs of G with s, t ∈ S. Let (s = s1, s2, . . . sr = t) be
a path from s to t in the graph with vertex-set S and edge-set {ij : uiuj, vivj ∈ E(G)}.

the electronic journal of combinatorics (2021), #DS24 29



Such a path exists, by (iii). Then, the path (us, us2 , us3 , . . . , ut, vs, vs2vs3 , . . . , vt) in G is
repetitively coloured. Thus π(G) > 6n > ∆2

3072 log ∆
.

We finish this subsection with a number of open problems.

Open Problem 3.20. What is the maximum nonrepetitive chromatic number of graphs
with maximum degree ∆? The answer is between Ω(∆2/ log ∆) and ∆2 +O(∆5/3). Given
the plethora of proofs of the (1 + o(1))∆2 upper bound, it would be very interesting to
obtain a (1 − ε)∆2 upper bound for some fixed ε. Even ∆2 or ∆2 + O(∆) would be of
interest.

Little is known about stroll-nonrepetitive and walk-nonrepetitive colourings of graphs
with bounded degree.

Open Problem 3.21. Is there a function f such that ρ(G) 6 f(∆(G)) for every graph
G?

Open Problem 3.22 ([16, 17]). Is there a function f such that σ(G) 6 f(∆(G)) for
every graph G?

Lemma 2.6 implies that Open Problems 3.21 and 3.22 have the same answer.
Open Problem 3.22 was extensively studied by Barát and Wood [17]. Indeed, Barát

and Wood [17] formulated a conjecture that they claimed would imply a positive answer
to Open Problem 3.22. However, Hendrey [87] disproved the conjecture. Also note that
Aprile [13] claimed to prove an affirmative answer to Open Problem 3.22, but the proof
has an error [personal communication, Manuel Aprile 2017].

The analogous lower bound questions are also of interest.

Open Problem 3.23. Is there a quadratic or super-quadratic lower bound on ρ or σ for
some graph of maximum degree ∆?

3.7 Edge Colourings and Line Graphs

An edge-colouring of a graph G is nonrepetititive if for every path P in G, the sequence
of colours on the edges of P is not a repetition. Nonrepetitive edge colourings have been
studied in several papers [8, 13, 16, 30, 100], as has walk-nonrepetitive edge colourings [16].
Since any two edges incident with a common vertex form a repetition,

π′(G) > χ′(G) > ∆(G). (6)

Conversely, Alon et al. [8] showed that π′(G) 6 O(∆2) for every graph G with maximum
degree ∆. The best upper bound on π′(G), due to Rosenfeld [131], is

π′(G) 6 ∆(G)2 +O(∆5/3). (7)

Resolving the gap in these bounds on π′(G) is an important open problem.
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Open Problem 3.24 ([8]). Is there a constant c such that for every graph G,

π′(G) 6 c∆(G) ?

Let L(G) be the line graph of a graph G. That is, V (L(G)) := E(G) where two vertices
in L(G) are adjacent whenever the corresponding edges in G share a common endpoint.
Since every path in G corresponds to a path in L(G),

π′(G) 6 π(L(G))). (8)

Note that equality does not necessarily hold in (8). For example, π′(C4) = 2 but π(L(C4)) =
π(C4) = 3. In general, a path in L(G) might correspond to a cycle in G, so a nonrepetitive
vertex-colouring of L(G) does not necessarily correspond to a nonrepetitive edge-colouring
of G. Indeed, Aprile [13] showed that the gap between π(L(G)) and π′(G) can be arbitrarily
large; see [107] for more results in this direction.

By (3) and since ∆(L(G)) 6 2(∆(G)− 1),

π(L(G)) 6 (1 + o(1))∆(L(G))2 6 (4 + o(1))∆(G)2 6 (4 + o(1))π′(G)2.

Alon et al. [8] determined the nonrepetitive chromatic index of complete graphs as
follows (thus answering Open Problem 3.24 in the affirmative in this case).

Theorem 3.25 ([8]). For every k ∈ N,

π′(K2k) = 2k − 1.

Proof. (6) implies the lower bound, π′(K2k) > 2k−1. For the upper bound, we may assume
that V (K2k) is the set of elements of the additive group Zk2. Colour each edge vw by v+w,
where addition is in Zk2. Since v + w = 0 if and only if v = w, each edge is coloured by a
non-zero element of Zk2. Suppose for the sake of contradiction that P = (v1, v2, . . . , v2t+1)
is a path whose edges are repetitively coloured. Thus vi + vi+1 = vt+i + vt+i+1 for each
i ∈ {1, . . . , t}. Hence

v1 + vt+1 =
t∑
i=1

(vi + vi+1) =
t∑
i=1

(vt+i + vt+i+1) = vt+1 + v2t+1.

Therefore v1 = v2t+1 and P is a cycle. This contradiction shows that K2k is nonrepetitively
coloured, and π′(K2k) 6 2k − 1.

Corollary 3.26 ([8]). For every n ∈ N,

n− 1 6 π′(Kn) 6 2n− 3.

The proof method in Theorem 3.25 generalises to show that for complete bipartite
graphs, π′(K2k,2k) = 2k. Thus n 6 π′(Kn) 6 2n− 1. However, determining π(L(Kn)) and
π(L(Kn,n)) are open.
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Open Problem 3.27. What is π(L(Kn))?

The above results show that n− 1 6 π(L(Kn)) 6 (4 + o(1))n2. Aprile [13] improved
the lower bound to π(L(Kn)) > 3

2
(n− 2).

Open Problem 3.28. What is π(L(Kn,n))?

The above results show that n 6 π(L(Kn,n)) 6 (4 + o(1))n2.
Total Thue coloring was introduced by Schreyer and Škrabu ’láková [134]. A colouring

of the edges and the vertices of a graph is a weak total Thue coloring if the sequence of
consecutive vertex-colors and edge-colors of every path is nonrepetitive. If, in addition, the
sequence of vertex-colors and the sequence of edge-colors of any path are both nonrepetitive
then this is a (strong) total Thue coloring .

For every path P in a graph G, the sequence of vertices and edges in P corresponds
to a path in the 1-subdivision of G. Thus every nonrepetitive colouring of G(1) defines a
weak total nonrepetitive colouring of G. Hence the weak total Thue chromatic number
of G is at most π(G(1)). Similarly, if G′ is the square of G(1), then every nonrepetitive
colouring of G′ defines a strong total nonrepetitive colouring of G. Hence the strong total
nonrepetitive chromatic number of G is at most π(G′).

Rosenfeld [131] proved that every graph with maximum degree ∆ has weak total Thue
chromatic number at most 6∆ and at most d17

4
∆e if ∆ > 300. Theorem 6.2 gives an upper

bound on π(G(1)) which implies that every graph with maximum degree ∆ has weak total
Thue chromatic number at most d5.22 ∆e.

4 Trees and Treewidth

4.1 Trees

Brešar et al. [29] proved that every tree is path-nonrepetitively 4-colourable.
Dujmović et al. [47] extended this result for strolls.

Theorem 4.1 ([29, 47]). For every tree T ,

π(T ) 6 ρ(T ) 6 4.

Proof. Let r be any vertex of T . Let Vi := {v ∈ V (T ) : distT (r, v) = i}. Thus
(V0, V1, . . . , Vn) is a shadow-complete layering of T . Each G[Vi] is an independent set and
is thus stroll-nonrepetitively 1-colourable. The result then follows from Lemma 2.14.

Brešar et al. [29] show that π(T ) = 4 for some tree T .
Barát and Wood [17] characterised walk-nonrepetitive colourings of trees as follows.

This strengthens the analogous characterisation for general graphs in Lemma 2.6.

Lemma 4.2 ([17]). A colouring c of a tree T is walk-nonrepetitive if and only if c is
path-nonrepetitive and distance-2.
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Proof. Every walk-nonrepetitive colouring is path-nonrepetitive and distance-2 by
Lemma 2.6. We now prove the converse. Assume c is a nonrepetitive distance-2 colouring
of T . Suppose on the contrary that T has a repetitively coloured non-boring walk. Let
W = (v1, v2, . . . , v2t) be a repetitively coloured non-boring walk in T of minimum length.
Some vertex is repeated in W , as otherwise W would be a repetitively coloured path. By
considering the reverse of W , without loss of generality, vi = vj for some i ∈ {1, . . . , t− 1}
and j ∈ {i+ 2, . . . , 2t}. Choose i and j to minimise j − i. Thus vi is not in the sub-walk
(vi+1, vi+2, . . . , vj−1). Since T is a tree, vi+1 = vj−1. Thus i + 1 = j − 1, as otherwise
j − i is not minimised. That is, vi = vi+2. Assuming i 6= t − 1, since W is repetitively
coloured, c(vt+i) = c(vt+i+2), which implies that vt+i = vt+i+2 because c is a distance-2
colouring. Thus, even if i = t− 1, deleting the vertices vi, vi+1, vt+i, vt+i+1 from W , gives
a walk (v1, v2, . . . , vi−1, vi+2, . . . , vt+i−1, vt+i+2, . . . , v2t) that is also repetitively coloured.
This contradicts the minimality of the length of W .

Barát and Wood [17] showed the following bound on σ(T ).

Lemma 4.3 ([17]). For every tree T with maximum degree ∆,

∆(T ) + 1 6 σ(T ) 6 4∆.

Proof. The lower bound follows from Corollary 2.7. For the upper bound, root T at some
leaf vertex r. Let Vi := {v ∈ V (T ) : distT (r, v) = i}. Thus (V0, V1, . . . , Vn) is a shadow-
complete layering of T . Each G[Vi] is an independent set and is thus stroll-nonrepetitive
in any colouring. Each vertex v ∈ Vi has at most ∆− 1 children, all of which are in Vi+1.
Let G be the graph obtained from T by adding an edge between every pair of vertices
with a common parent. A greedy algorithm shows that G is ∆-colourable. This colouring
of G satisfies the property in Lemma 2.15. Thus σ(T ) 6 4χ(G) 6 4∆(T ).

Open Problem 4.4. Is there a constant c such that σ(T ) 6 ∆(T ) + c for every tree T?

Lemmas 4.3 and 2.16 imply:

Corollary 4.5. For every graph G and every tree T ,

ρ(G� T ) 6 4∆(T ) ρ(G).

Fiorenzi et al. [61] proved the following surprising result about the nonrepetitive
choice-number of trees.

Theorem 4.6 ([61]). Trees have unbounded nonrepetitive choice-number.

Theorem 4.6 leads to the natural question: which classes of trees have bounded
nonrepetitive choice-number πch? Grytczuk et al. [76] proved an affirmative answer for
paths (Theorem 3.5). More generally, Dujmović et al. [49] proved that caterpillars have
bounded πch (see Appendix B in the arXiv version of [49]). Since caterpillars are the
graphs with pathwidth 1, Dujmović et al. [49] asked whether trees or graphs with bounded
pathwidth have bounded πch. These questions were completely answered by Gągol, Joret,
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Kozik, and Micek [63], who showed that (a) trees with bounded pathwidth have bounded
πch, and (b) this result does not extend to general graphs, by constructing a family of
pathwidth-2 graphs with unbounded πch.

While O(∆2) is an almost tight upper bound on the nonrepetitive choice-number of
graphs with maximum degree ∆, it is interesting to ask for which graph classes is there a
O(∆2−ε) bound for some fixed ε > 0. Kozik and Micek [97] proved such a result for trees.

Theorem 4.7 ([97]). For any fixed ε > 0, and for every tree T with maximum degree ∆,

πch(T ) 6 O(∆1+ε).

Open Problem 4.8. What is the maximum nonrepetitive nonrepetitive choice-number
of trees with maximum degree ∆. The best lower bound, due to Fiorenzi et al. [61], is
polylog(∆). The best upper bound is O(∆1+ε) due to Kozik and Micek [97].

4.2 Treewidth and Pathwidth

Treewidth measures how similar a given graph is to a tree, and is particularly important
in structural and algorithmic graph theory; see the surveys [26, 83, 128]. It is defined
as follows. For a tree T , a T -decomposition of a graph G consists of a collection {Bx ⊆
V (G) : x ∈ V (T )} of subsets of V (G), called bags , indexed by the vertices of T , and with
the following properties:
• for every vertex v of G, the set {x ∈ V (T ) : v ∈ Bx} induces a non-empty (connected)

subtree of T , and
• for every edge vw of G, there is a vertex x ∈ V (T ) for which v, w ∈ Bx.

The width of such a T -decomposition is max{|Bx| : x ∈ V (T )} − 1. A tree-decomposition
is a T -decomposition for any tree T . The treewidth of a graph G is the minimum width
of a tree-decomposition of G. Tree-decompositions and tree-width were introduced by
Robertson and Seymour [129], although several equivalent notions were previously studied
in the literature.

Tree-decompositions and treewidth are closely related to chordal graphs. A graph is
chordal if there is no chordless cycle of length greater than 3. It is well-known that a graph
is chordal if and only if it has a tree-decomposition in which each bag is a clique [44]. It
follow that a graph has treewidth k if and only if G is a subgraph of a chordal graph with
no clique on k + 2 vertices [44]. We will need the following result.

Lemma 4.9 ([51, 99]). Every BFS-layering (V0, . . . , Vn) of a connected chordal graph G
is shadow-complete.

Proof. Say V0 = {r}. Let H be a connected component of G[Vi] for some i ∈ {1, . . . , n}.
Let X be the set of vertices in Vi−1 adjacent to some vertex in H. Suppose for the sake
of contradiction that distinct vertices v, w ∈ X are not adjacent. There is a walk from
v to w through r in G[V0 ∪ · · · ∪ Vi]. Thus there is a shortest path P from v to w in
G[V0 ∪ · · · ∪ Vi]. Since vw 6∈ E(G), P has at least one internal vertex. By definition v
has a neighbour x in H, and w has a neighbour y in H. Since H is connected, there is
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a path Q from y to x in H. Choose x, y and Q to minimise the length of Q. It follows
that (P,w, y,Q, x, v) is a chordless cycle on at least four vertices in G. This contradiction
shows that X is a clique, and (V0, . . . , Vn) is shadow-complete.

Brešar et al. [29] proved that every tree is nonrepetitively 4-colourable. Barát and
Varjú [15] and Kündgen and Pelsmajer [99] independently proved that graphs of bounded
treewidh have bounded nonrepetitive chromatic number. The best bound is due to Kündgen
and Pelsmajer [99], who showed that every graph with treewidth k is nonrepetitively
4k-colourable. Dujmović et al. [47] showed that the proof of Kündgen and Pelsmajer [99]
actually gives the following stronger result:

Theorem 4.10 ([47]). For every graph G of treewidth k,

π(G) 6 ρ(G) 6 4k.

Proof. The proof proceeds by induction on k. If k = 0, then G has no edges, so assigning
the same colour to all the vertices gives a stroll-nonrepetitive colouring. Now assume
that k > 1. We may assume that G is connected. Consider a tree-decomposition of G
of width at most k. By adding edges if necessary, we may assume that every bag of the
tree-decomposition is a clique. Thus, G is chordal with clique-number at most k + 1.
Let (V0, V1, . . .) be a BFS-layering of G. By Lemma 4.9, (V0, . . . , Vn) is shadow-complete.
Moreover, the subgraph G[Vi] of G induced by each layer Vi has treewidth at most k − 1.
This is clear for i = 0 (since k > 1), and for i > 1 this follows from the fact that the
graph G[Vi] plus a universal vertex is a minor of G (contract V0 ∪ · · · ∪ Vi−1 into a single
vertex and remove Vi+1, Vi+2, . . . ), and thus has treewidth at most k. Since removing a
universal vertex decreases the treewidth by exactly one, it follows that G[Vi] has treewidth
at most k − 1. By induction, ρ(G[Vi]) 6 4k−1 for each i ∈ {0, 1, . . . , n}. By Lemma 2.14,
ρ(G) 6 4 · 4k−1 = 4k.

Open Problem 4.11 ([99]). Is there an upper bound on π(G) or ρ(G) that is polynomial
in tw(G)? There is a quadratic lower bound, since π(G) > χs(G) and Albertson et al. [3]
proved that for each k ∈ N there is a graph G with tw(G) = k and χs(G) =

(
k+2

2

)
.

The following corollary of Lemma 2.16, Corollary 2.17, and Theorem 4.10 will be useful
later.

Lemma 4.12 ([47]). For every graph G, path P and integer `,

ρ(G� P �K`) 6 ` 4tw(G)+1.

Dujmović et al. [49] answered Open Problem 4.11 in the affirmative for π and pathwidth.
The proof works for ρ.

Theorem 4.13 ([49]). For every graph G with pathwidth k,

π(G) 6 ρ(G) 6 2k2 + 6k + 1.
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The proof of Theorem 4.13 depends on the following helpful way to think about graphs
of bounded pathwidth3.

Lemma 4.14 ([49]). Every graph G with pathwidth k contains pairwise disjoint sets
B1, . . . , Bm of vertices, such that:
• no two vertices in distinct Bi are adjacent,
• G[Bi] has pathwidth at most k − 1 for each i ∈ {1, . . . ,m}, and
• if H is the graph obtained from G by deleting Bi and adding a clique on NG(Bi) for
each i ∈ {1, . . . ,m}, then H is isomorphic to a subgraph of Pm �Kk+1.

Proof. Consider a path decomposition D of G with width k. Let X1, . . . , Xm be the set of
bags in D, such that X1 is the first bag in D, and for each i > 2, the bag Xi is the first
bag in D that is disjoint from Xi−1. Thus X1, . . . , Xm are pairwise disjoint. For i ∈ [1,m],
let Bi be the set of vertices that only appear in bags strictly between Xi and Xi+1 (or
strictly after Xm if i = m). By construction, each such bag intersects Xi. Hence G[Bi]
has pathwidth at most k − 1. Since each Xi separates Bi−1 and Bi+1 (for i 6= m), no two
vertices in distinct Bi are adjacent. Moreover, the neighbourhood of Bi is contained in
Xi∪Xi+1 (or Xi if i = m). Hence the graph H (defined above) has vertex set X1∪· · ·∪Xm

where Xi ∪ Xi+1 is a clique for each i ∈ [1,m − 1]. Since |Xi| 6 k + 1, the graph H is
isomorphic to a subgraph of Pm �Kk+1.

Proof of Theorem 4.13. We proceed by induction on k > 0. Every graph with pathwidth
0 is edgeless, and is thus nonrepetitively 1-colourable, as desired. Now assume that G is a
graph with pathwidth k > 1. Let B1, . . . , Bm be the sets that satisfy Lemma 4.14. Let
X := B1 ∪ · · · ∪Bm. Since no two vertices in distinct Bi are adjacent, pw(G[X]) 6 k − 1.
By induction, ρ(G[X]) 6 2(k − 1)2 + 6(k − 1) + 1. Let G′ be the graph obtained from G
by adding a clique on NG(Bi) for each i ∈ {1, . . . ,m}. By Lemma 4.14, G′[V (G) \X] is
isomorphic to Pm�Kk+1, which is stroll-nonrepetitively 4(k+1)-colourable by Lemma 2.16.
By construction, (V (G) \ X,X) is a shadow-complete layering of G′. By the proof of
Lemma 2.14 (using distinct sets of colours for X and V (G) \X), we have π(G) 6 ρ(G) 6
ρ(G′) 6 4(k + 1) + 2(k − 1)2 + 6(k − 1)− 4 = 2k2 + 6k − 4.

Open Problem 4.15 ([49]). What is the maximum nonrepetitive chromatic number of
graphs with pathwidth k? The best known bounds are Ω(k) and O(k2).

Since graphs of pathwidth k are k-degenerate, Corollary 2.8 and Theorem 4.13 imply
the following bounds on the walk-nonrepetitive chromatic number of graphs with given
pathwidth.

Corollary 4.16. For every graph G with pathwidth k,

∆(G) + 1 6 σ(G) 6 (2k2 + 6k + 1)(k∆(G) + 1).

3Dujmović et al. [49] presented Lemma 4.14 in terms of the lexicographical product Pm ·Kk+1, which
equals Pm �Kk+1.
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4.3 Treewidth and Degree

Barát and Wood [17] proved the following polynomial bound on π for graphs of bounded
treewidth and maximum degree, thus solving Open Problem 4.11 for bounded degree
graphs. The same proof works for ρ.

Lemma 4.17 ([17]). For every graph G with treewidth k and maximum degree ∆,

π(G) 6 ρ(G) 6 10(k + 1)(7
2
∆− 1).

Proof. Let ` := b5
2
(k + 1)(7

2
∆− 1)c. Wood [150] proved4 that G is a subgraph of T �K`

for some tree T with maximum degree at most `∆. By Theorem 4.10, ρ(T ) 6 4. Of course,
σ(K`) = `. By Lemma 2.16,

ρ(G) 6 ρ(T �K`) 6 ρ(T )σ(K`) 6 4` 6 10(k + 1)(7
2
∆− 1).

Lemma 4.17 leads to the following bound on π(L(G)). Harvey and Wood [84] proved
that tw(L(G)) 6 (tw(G) + 1)∆(G) − 1. By definition, ∆(L(G)) 6 2∆(G) − 2. Thus
Lemma 4.17 implies the following result observed by Maystre [107]:

Corollary 4.18 ([107]). For every graph with treewidth k and maximum degree ∆,

π(L(G)) 6 10(k + 1)∆(7∆− 8).

Improving this bound is an interesting open problem.
Now consider walk-nonrepetitive colourings of graphs with given treewidth and given

maximum degree. Every graph with treewidth k is k-degenerate. Thus Corollary 2.8
and Theorem 4.10 imply that graphs with bounded treewidth have Θ(∆) walk-nonrepetitive
chromatic number.

Corollary 4.19. For every graph G with treewidth k and maximum degree ∆,

∆ + 1 6 σ(G) 6 4k(k∆ + 1).

Corollaries 2.7 and 2.8 and Lemma 4.17 imply the following polynomial bounds on σ:

Lemma 4.20 ([17]). For every graph G with treewidth k and maximum degree ∆,

∆ + 1 6 σ(G) 6 ρ(G)χ(G2) 6 10(k + 1)(7
2
∆− 1) min{k∆ + 1,∆2 + 1}.

These results lead to the following results for strong products. Lemmas 2.16 and 4.20
imply:

Corollary 4.21. For every graph G and for every graph H with treewidth k and maximum
degree ∆,

ρ(G�H) 6 ρ(G) 10(k + 1)(7
2
∆− 1) min{k∆ + 1,∆2 + 1}.

4The proof is a minor improvement to a similar result by an anonymous referee of the paper by Ding
and Oporowski [45]. The result in [45, 150] is presented in terms of tree-partitions, which are easily seen
to be equivalent to strong products of a tree and complete graph.
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Theorem 4.10 and Corollary 4.21 imply:

Corollary 4.22. For every graph G with treewidth ` and for every graph H with treewidth
k and maximum degree ∆,

ρ(G�H) 6 4` 10(k + 1)(7
2
∆− 1) min{k∆ + 1,∆2 + 1}.

Inequality (3) in Section 3.3 and Theorem 3.19 give tight bounds (up to a logarithmic
factor) on the nonrepetitive choice-number of graphs with given maximum degree. However,
the nonrepetitive choice-number of graphs with given maximum degree and bounded
treewidth is wide open.

Open Problem 4.23. Are graphs of bounded treewidth and maximum degree ∆ non-
repetitively O(∆2−ε)-choosable, for some fixed ε > 0? By Theorem 4.7, the answer is ‘yes’
for trees. The treewidth 2 case is open.

4.4 Outerplanar Graphs

A graph is outerplanar if it has a drawing in the plane with no crossing and with all the
vertices on the boundary of a single face. Here we consider nonrepetitive colourings of
outerplanar graphs. First, note the following folklore result:

Lemma 4.24. Every edge-maximal outerplanar graph has a shadow-complete layering
(V0, V1, . . . , Vn) such that for each i ∈ {0, 1, . . . , n} each connected component of G[Vi] is a
path.

Proof. Since G is edge-maximal, G is connected and chordal. Let (V0, V1, . . . ) be a BFS-
layering of G. By Lemma 4.9, (V0, V1, . . . ) is shadow-complete. For i > 1, let Gi be the
graph obtained from G[V0 ∪ · · · ∪ Vi] by contracting V0 ∪ · · · ∪ Vi−1 into a single vertex w.
Since outerplanarity is a minor-closed property and G[V0 ∪ · · · ∪ Vi−1] is connected, Gi is
outerplanar. Since every vertex in Vi has a neighbour in Vi−1, w dominates Gi. If G[Vi]
contains a cycle C, then Gi contains a K4-minor, which is a contradiction since K4 is not
outerplanar. If G[Vi] contains K1,3, then Gi contains K2,3, which is a contradiction since
K2,3 is not outerplanar. Thus G[Vi] is a forest with maximum degree at most 2. Hence,
each connected component of G[Vi] is a path.

Lemmas 2.13 and 4.24 imply the following result independently due to
Barát and Varjú [16] and Kündgen and Pelsmajer [99]:

Theorem 4.25 ([16, 99]). For every outerplanar graph G,

π(G) 6 12.

Barát and Varjú [15] also proved the following lower bound:

Proposition 4.26 ([15]). There exists an outerplanar graph G with

π(G) > 7.
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Proof. Let n be a sufficiently large integer. Let T be the complete n-ary tree of height
n. Let G be obtained from T by adding, for each non-leaf vertex v of T , a path Pv on
the children of v. This can be done so that G is outerplanar. Suppose for the sake of
contradiction that there exists a nonrepetitive colouring φ of G with colour-set {1, . . . , 6}.

Claim 1. For every vertex v of T that is neither a leaf nor the parent of a leaf, there is a
set Cv of four colours, each of which appears at least twice on Pv.

Proof. Suppose for the sake of contradiction that φ(v) = 1 but only three colours, say
2, 3, 4, appear on Pv. All three colours appear on any four consecutive vertices of Pv. Thus,
for sufficiently large n, each of 2, 3, 4 appears at least twice on Pv.

If this 3-colouring of Pv is distance-2, then the sequence of colours on Pv, without
loss of generality, starts 234234, which is a repetitively coloured 6-vertex path. Thus the
colouring of Pv is not distance 2. Hence Pv contains a subpath (a, b, c, d, e, f, g), where
without loss of generality, φ(a) = φ(c) = 3 and φ(b) = 2 (since n is sufficiently large).

Let x be any vertex of Pc. If φ(x) = 1 then xcva is coloured 1313. If φ(x) = 2 then
xcba is coloured 2323. If φ(x) = 3 then xc is coloured 33. Thus Pc is coloured by 4, 5, 6
and each colour appears since n is sufficiently large.

Now, φ(d) ∈ {2, 3, 4} since d ∈ V (Pv). If φ(d) = 2 then abcd is coloured 3232. If
φ(d) = 3 then cd is coloured 33. Thus φ(d) = 4. Let x be any vertex of Pd. If φ(x) = 1
then xdvy is coloured 1414 for some y ∈ V (Pv) \ {d} coloured 4. If φ(x) = 3 then xdcy is
coloured 3434 for some y ∈ V (Pc) coloured 4. If φ(x) = 4 then xd is coloured 44. Thus Pd
is coloured by 2, 5, 6 and each colour appears since n is sufficiently large.

Now, φ(e) ∈ {2, 3, 4} since e ∈ V (Pv). If φ(e) = 3 then edcy is coloured 3434 for some
y ∈ V (Pc) coloured 4. If φ(e) = 4 then de is coloured 44. Thus φ(e) = 2. Let x be any
vertex of Pe. If φ(x) = 1 then xevb is coloured 1212. If φ(x) = 2 then xe is coloured 22. If
φ(x) = 4 then xedy is coloured 4242 for some vertex y ∈ V (Pd) coloured 2. Thus Pe is
coloured by 3, 5, 6 and each colour appears since n is sufficiently large.

Now, φ(f) ∈ {2, 3, 4} since f ∈ V (Pv). If φ(f) = 2 then ef is coloured 22. If φ(f) = 4
then fedy is coloured 4242 for some y ∈ V (Pd) coloured 2. Thus φ(f) = 3. Let x be any
vertex of Pf . If φ(x) = 1 then xfvc is coloured 1313. If φ(x) = 2 then xfey is coloured
2323 for some y ∈ V (Pe) coloured 3. If φ(x) = 3 then xf is coloured 33. Thus Pf is
coloured by 4, 5, 6 and each colour appears since n is sufficiently large.

Now, φ(g) ∈ {2, 3, 4} since g ∈ V (Pv). If φ(g) = 3 then fg is coloured 33. If φ(g) = 2
then gfey is coloured 2323 for some y ∈ V (Pe) coloured 3. Thus φ(g) = 4.

Therefore the subpath (b, c, d, e, f, g) is coloured 234234. This contradiction shows that
Pv is assigned at least four colours.

At this point we have assumed that n > n0 for some fixed number n0. Taking n > 6n0,
we can partition Pv into six disjoint subpaths each with n0 vertices, and by the above
argument, at least four distinct colours appear in each subpath. Since at most five colours
appear on Pv, on at least two of these subpaths the same set of four colours appears. This
completes the proof.

Let u be a vertex of T that is neither a leaf nor the parent of a leaf. Let v be a
vertex in Pu with φ(v) ∈ Cu. Let x be any vertex in Pv. If φ(x) = φ(v) then xv is
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repetitively coloured. If φ(x) = φ(u) then xvuy is repetitively coloured for some vertex
y ∈ V (Pu) \ {v} coloured φ(v). Such a vertex y exists by the claim and since φ(v) ∈ Cu.
Hence Cv = {1, . . . , 6} \ {φ(v), φ(u)}.

Let r be the root of T . By the claim, without loss of generality, φ(r) = 1 and
Cr = {2, 3, 4, 5}. Let a be a vertex in Pr coloured 2; thus Ca = {3, 4, 5, 6}. Let b be a
vertex in Pa coloured 3; thus Cb = {1, 4, 5, 6}. Let c be a vertex in Pb coloured 1. Let d be
a vertex in Pr coloured 3; thus Cd = {2, 4, 5, 6}. Let e be a vertex in Pd coloured 2. These
vertices exist and are neither leaves nor parent of leaves, since T has sufficiently large
height. Now (c, b, a, r, d, e) is a path in T coloured 132132. This contradiction completes
the proof.

Note that the proof of Proposition 4.26 actually shows that there is an outerplanar
graph G such that every 6-colouring has a repetitively coloured path on 2, 4 or 6 vertices.

Open Problem 4.27. What is the maximum nonrepetitive chromatic number of an
outerplanar graph? The answer is in {7, 8, . . . , 12}. This question may have a bearing on
Open Problem 4.11.

For stroll-nonrepetitive colourings, Lemmas 2.14 and 4.24 imply:

Theorem 4.28. For every outerplanar graph G,

ρ(G) 6 16.

Open Problem 4.29. What is the maximum stroll-nonrepetitive chromatic number of
an outerplanar graph? The answer is in {7, 8, . . . , 16}. Any improvement to the upper
bound would have a bearing on Open Problem 5.3.

Lih and Wang [102] proved that χ(G2) 6 ∆(G) + 2 for every outerplanar graph G.
Corollary 2.7 and Theorem 4.28 thus imply that the walk-nonrepetitive chromatic number
of outerplanar graphs is Θ(∆).

Corollary 4.30. For every outerplanar graph G with maximum degree ∆,

∆ + 1 6 σ(G) 6 16∆ + 32.

5 Planar Graphs and Beyond

5.1 Planar Graphs

Alon et al. [8] first asked whether planar graphs have bounded nonrepetitive chromatic
number. For several years, this problem was widely recognised as the most important open
problem in the field of nonrepetitive graph colouring. The first non-trivial upper bound
was due to Dujmović, Frati, Joret, and Wood [48], who proved that π(G) 6 O(log |V (G)|)
for all planar graphs G. The above question was solved by Dujmović et al. [47]. Much
of the above machinery involving strong products was developed as a tool to answer the
question for planar graphs.
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Theorem 5.1 ([47]). For every planar graph G,

π(G) 6 ρ(G) 6 768.

Proof. Dujmović, Joret, Micek, Morin, Ueckerdt, and Wood [50] proved that every planar
graph G is a subgraph of H � P �K3 for some graph H with treewidth 3 and path P .
By Corollary 2.17, ρ(G) 6 ρ(H � P �K3) 6 3 ρ(H � P ), which is at most 12 ρ(H) by
Corollary 3.4. Since H has treewidth at most 3, ρ(G) 6 12 ·43 = 768 by Theorem 4.10.

We now present the best known lower bound on the nonrepetitive chromatic number
of planar graphs.

Proposition 5.2 (Pascal Ochem; see [48]). There is a planar graph G such that π(G) > 11.

Proof. By Proposition 4.26, there is an outerplanar graph H with π(H) > 7. Let G be the
following planar graph. Start with a path P = (v1, . . . , v22). Add two adjacent vertices x
and y that both dominate P . Let each vertex vi in P be adjacent to every vertex in a copy
Hi of H. Suppose on the contrary that G is nonrepetitively 10-colourable. Without loss
of generality, x and y are respectively coloured 1 and 2. A vertex in P is redundant if its
colour is used on some other vertex in P . If no two adjacent vertices in P are redundant
then at least 11 colours appear exactly once on P , which is a contradiction. Thus some
pair of consecutive vertices vi and vi+1 in P are redundant. Without loss of generality, vi
and vi+1 are respectively coloured 3 and 4. If some vertex in Hi ∪Hi+1 is coloured 1 or 2,
then since vi and vi+1 are redundant, with x or y we have a repetitively coloured path on
4 vertices. Now assume that no vertex in Hi ∪Hi+1 is coloured 1 or 2. If some vertex in
Hi is coloured 4 and some vertex in Hi+1 is coloured 3, then with vi and vi+1, we have a
repetitively coloured path on 4 vertices. Thus no vertex in Hi is coloured 4 or no vertex
in Hi+1 is coloured 3. Without loss of generality, no vertex in Hi is coloured 4. Since
vi dominates Hi, no vertex in Hi is coloured 3. We have proved that no vertex in Hi is
coloured 1, 2, 3 or 4, which is a contradiction, since π(Hi) > 7. Therefore π(G) > 11.

Open Problem 5.3. What is the maximum nonrepetitive chromatic number of a planar
graph? The answer is in {11, . . . , 768}.

We briefly mention that several papers studied colourings of plane graphs in which
only facial paths are required to be nonrepetitively coloured [14, 28, 42, 78, 86, 88, 88, 124,
125, 133]. Barát and Czap [14] proved that every plane graph is facially-nonrepetitively
24-colourable, and Gutowski [78] proved that every plane graph is facially-nonrepetitively
O(1)-choosable. This latter result is in sharp contrast to Theorem 4.6, which says that
trees have unbounded nonrepetitive choice-number.

Theorem 5.1 leads to a Θ(∆) bound on the walk-nonrepetitive chromatic number of
planar graphs. Van den Heuvel and McGuinness [142] proved that χ(G2) 6 2∆(G) + 25
for every planar graph G. Thus Theorem 5.1 and Corollary 2.7 implies:

Corollary 5.4. For every planar graph G,

∆(G) + 1 6 σ(G) 6 1536 ∆(G) + 19200.
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The above result for planar graphs can be combined with other results in various ways.
For example, Lemma 4.20 and Theorem 5.1 imply:

Corollary 5.5. For every planar graph G and for every graph H with treewidth k and
maximum degree ∆,

ρ(G�H) 6 ρ(G)σ(H) 6 7680 (k + 1)(7
2
∆− 1) min{k∆ + 1,∆2 + 1}.

5.2 Graphs on Surfaces

Dujmović et al. [47] proved the following generalisation of Theorem 5.1 for graphs of
bounded Euler genus.

Theorem 5.6 ([47]). For every graph G with Euler genus g,

π(G) 6 ρ(G) 6 256 max{2g, 3}.

Proof. Dujmović et al. [50] proved that every graph G of Euler genus g is a subgraph of
H � P �Kmax{2g,3} for some graph H with treewidth at most 3 and some path P . Thus
Lemma 2.16 and Theorem 4.10 imply

π(G) 6 ρ(G) 6 ρ(H � P �Kmax{2g,3}) 6 max{2g, 3} · ρ(H � P ) 6 max{2g, 3} · 4 · ρ(H)

6 max{2g, 3} · 44

= 256 max{2g, 3}.

Amini, Esperet, and van den Heuvel [12] proved that for all ε > 0 and g > 0, for
sufficiently large ∆, every graph G with Euler genus g and maximum degree at most ∆
satisfies χ(G2) 6 (3

2
+ ε)∆. Thus Theorem 5.6 and Corollary 2.7 imply:

Corollary 5.7. For every graph G of Euler genus g,

∆(G) + 1 6 σ(G) 6 O(g∆(G)).

Open Problem 5.8. What is the maximum nonrepetitive chromatic number of a graph
with Euler genus g? Theorem 5.6 proves a O(g) upper bound. The best known lower bound
follows from Theorem 3.19 [Louis Esperet, personal communication, 2020]. In particular,
Theorem 3.19 implies there is a graph G with m 6 O(n3/2 log1/2 n) edges and π(G) > Ω(n).
Say G has Euler genus g. Then g 6 m and π(G) > Ω(n) > Ω(m2/3/ log1/3m) >
Ω(g2/3/ log1/3 g).

5.3 Minor-Closed Classes

This section proves the result of Dujmović et al. [47] that graphs excluding a fixed minor or
fixed topological minor have bounded nonrepetitive chromatic number. The same method
shows the analogous result for stroll-nonrepetitive chromatic number. The proof employs
the following graph minor structure theorem of Robertson and Seymour [130]. A torso
of a tree-decomposition is a graph induced by a bag augmented with a clique on each
intersection of that bag with another bag of the tree-decomposition.
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Theorem 5.9 ([130]). For every graph X, there is an integer k > 1 such that every
X-minor-free graph has a tree-decomposition in which each torso is k-almost-embeddable.

We omit the definition of k-almost embeddable, since we do not need it. All we need
to know is the following theorem of Dujmović et al. [50], where A+B is the complete join
of graphs A and B.

Theorem 5.10 ([50]). Every k-almost embeddable graph is a subgraph of

Kk + (H � P �Kmax{6k,1})

for some graph H with treewidth at most 11k + 10 and for some path P .

Lemma 5.11 ([47]). For every k-almost embeddable graph G,

π(G) 6 ρ(G) 6 k + 6k · 411(k+1).

Proof. Observe that ρ(G + Kk) = ρ(G) + k for every graph G and integer k > 0. Thus
Theorems 4.10 and 5.10 and Lemma 2.16 imply that for every k-almost embeddable
graph G,

π(G) 6 ρ(G) 6 ρ(Kk + (H � P �Kmax{6k,1}))

6 k + 6k · ρ(H � P )

6 k + 6k · 4ρ(H)

6 k + 6k · 411(k+1).

A tree-decomposition (Bx : x ∈ V (T )) of a graph G has adhesion r if |Bx ∩By| 6 r for
each edge xy ∈ E(T ). Dujmović et al. [52] proved the following useful result in the case of
π. The same proof works for ρ. We delay the proof of Lemma 5.12 until Section 5.4.

Lemma 5.12 ([52]). Let G be a graph that has a tree-decomposition with adhesion r.
Then

π(G) 6 4r max
H

π(H) and ρ(G) 6 4r max
H

ρ(H),

where both maximums are taken over the torsos H of the tree-decomposition.

The following theorem of Dujmović et al. [47] confirms a conjecture of Grytczuk [69, 71].

Theorem 5.13 ([47]). For every graph X, there is an integer c such that for every
X-minor-free graph G,

π(G) 6 ρ(G) 6 c.

Proof. Lemma 5.11 and Theorem 5.9 imply that there exists an integer k (depending
only on X) such that if d := k + 6k · 411(k+1) then every X-minor-free graph G has a
tree-decomposition (Bx : x ∈ V (T )) in which each torso is nonrepetitively d-colourable.
For each edge xy ∈ E(T ), since Bx ∩ By induces a clique in each torso, the adhesion of
(Bx : x ∈ V (T )) is at most d. By Lemma 5.12, π(G) 6 ρ(G) 6 d 4d. The result follows
with c = d 4d.
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Open Problem 5.14. What is the maximum nonrepetitive chromatic number of Kt-
minor-free graphs? Since the above proof depends on the Graph Minor Structure Theorem
(Theorem 5.9) the constant in Theorem 5.13 is huge. It would be very interesting to prove
Theorem 5.13 without using the Graph Minor Structure Theorem.

Kt-minor-free graphs are O(t
√

log t)-degenerate [95, 96, 139, 140]. Thus Corollary 2.8
and Theorem 5.13 imply the following bounds on the walk-nonrepetitive chromatic number
of graphs excluding a fixed minor.

Theorem 5.15. For every graph X, there is an integer c such that for every X-minor-free
graph G with maximum degree ∆,

∆ + 1 6 σ(G) 6 c∆.

To obtain results for graphs excluding a topological minor we use the following version
of the structure theorem of Grohe and Marx [66].

Theorem 5.16 ([66]). For every graph X, there is a constant k such that every graph
excluding X as a topological minor has a tree-decomposition such that each torso is k-
almost-embeddable or has at most k vertices with degree greater than k.

Theorem 5.17. For every graph X, there is an integer c such that for every X-topological-
minor-free graph G,

π(G) 6 c.

Proof. Lemma 5.11 says that every k-almost embeddable graph is nonrepetitively c1-
colourable, where c1 := k + 6k · 411(k+1). Inequality (3) implies that if a graph has at
most k vertices with degree greater than k, then it is nonrepetitively c2-colourable, where
c2 := k2 +O(k5/3) + k. Let c := max{c1, c2}. Theorem 5.16 implies that every topological-
minor-free graph G has a tree-decomposition (Bx : x ∈ V (T )) such that each torso is
nonrepetitively c-colourable. For each edge xy ∈ E(T ), since Bx ∩By induces a clique in
each torso, the adhesion of (Bx : x ∈ V (T )) is at most c. By Lemma 5.12, π(G) 6 c 4c, as
desired.

5.4 Proof of Lemma 5.12

A tree-decomposition (Bx ⊆ V (G) : x ∈ V (T )) of a graph G is k-rich if Bx∩By is a clique
in G on at most k vertices, for each edge xy ∈ E(T ). Rich tree-decompositions are implicit
in the graph minor structure theorem, as demonstrated by the following lemma.

Lemma 5.18 ([52]). For every fixed graph H there are integers k > 1 and ` > 1, such
that every H-minor-free graph G0 is a spanning subgraph of a graph G that has a k-rich
tree-decomposition in which each bag induces an `-almost-embeddable subgraph of G.

Proof. By Theorem 5.9, there is a constant ` = `(H) such that, for some tree T , G0 has a
T -decomposition (Bx ⊆ V (G) : x ∈ V (T )) in which each torso is `-almost-embeddable. Let
G be the graph obtained from G0 by adding a clique on Bx ∩By for each edge xy ∈ E(T ).
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Thus each bag Bx induces an `-almost-embeddable subgraph of G. Dujmović et al. [52]
observed that there is a constant k depending only on ` such that every clique in an
`-almost embeddable graph has size at most k. Thus (Bx ⊆ V (G) : x ∈ V (T )) is a k-rich
tree-decomposition of G.

The following lemma by Dujmović et al. [52] generalises Lemma 4.9. For a subgraph
H of a graph G, a tree-decomposition (Cy ⊆ V (H) : y ∈ V (F )) of H is contained in a
tree-decomposition (Bx ⊆ V (G) : x ∈ V (T )) of G if for each bag Cy there is a bag Bx

such that Cy ⊆ Bx.

Lemma 5.19 ([52]). Let G be a graph with a k-rich tree-decomposition T for some k > 1.
Then G has a shadow-complete layering (V0, V1, . . . , Vt) such that every shadow has size at
most k, and for each i ∈ {0, . . . , t}, the subgraph G[Vi] has a (k−1)-rich tree-decomposition
contained in T .

Proof. We may assume that G is connected with at least one edge. Say T is a tree and
T = (Bx ⊆ V (G) : x ∈ V (T )) is a k-rich T -decomposition of G. If Bx ⊆ By for some
edge xy ∈ E(T ), then contracting xy into y (and keeping bag By) gives a new k-rich
tree-decomposition of G. Moreover, if a tree-decomposition of a subgraph of G is contained
in the new tree-decomposition of G, then it is contained in the original. Thus we may
assume that Bx 6⊆ By and By 6⊆ Bx for each edge xy ∈ V (T ).

Let G′ be the graph obtained from G by adding an edge between every pair of vertices
in a common bag (if the edge does not already exist). Let r be a vertex of G. Let α be a
node of T such that r ∈ Bα. Root T at α. Now every non-root node of T has a parent
node. Since G is connected, G′ is connected. For i > 0, let Vi be the set of vertices of G
at distance i from r in G′. Thus, for some t, (V0, V1, . . . , Vt) is a layering of G′ and also of
G (since G ⊆ G′).

Since each bag Bx is a clique in G′, V1 is the set of vertices of G in bags that contain
r (not including r itself). More generally, Vi is the set of vertices v of G in bags that
intersect Vi−1 such that v is not in V0 ∪ · · · ∪ Vi−1.

Define B′α := Bα \ {r} and B′′α := {r}. For a non-root node x ∈ V (T ) with parent node
y, define B′x := Bx \By and B′′x := Bx ∩By. Since Bx 6⊆ By, it follows that B′x 6= ∅. One
should think that B′x is the set of vertices that first appear in Bx when traversing down
the tree-decomposition from the root, while B′′x is the set of vertices in Bx that appear
above x in the tree-decomposition.

Consider a node x of T . Since Bx is a clique in G′, Bx is contained in at most two
consecutive layers. Consider (not necessarily distinct) vertices u, v in the set B′x, which
is not empty. Then the distance between u and r in G′ equals the distance between v
and r in G′. Thus B′x is contained in one layer, say V`(x). Let w be the neighbour of v
in some shortest path between v and r in G′. Then w is in B′′x ∩ V`(x)−1. In conclusion,
each bag Bx is contained in precisely two consecutive layers, V`(x)−1 ∪ V`(x), such that
∅ 6= B′x ⊆ V`(x) and Bx ∩ V`(x)−1 ⊆ B′′x 6= ∅. Also, observe that if y is an ancestor of x in T ,
then `(y) 6 `(x). Call this property (?).

We now prove that G[Vi] has the desired (k − 1)-rich tree-decomposition. Since G[V0]
has one vertex and no edges, this is trivial for i = 0. Now assume that i ∈ {1, . . . , t}.
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Let Ti be the subgraph of T induced by the nodes x such that `(x) 6 i. By property
(?), Ti is a (connected) subtree of T . We claim that Ti := (Bx ∩ Vi : x ∈ V (Ti)) is a
Ti-decomposition of G[Vi]. First we prove that each vertex v ∈ Vi is in some bag of Ti. Let
x be the node of T closest to α such that v ∈ Bx. Then v ∈ B′x and `(x) = i. Hence v is
in the bag Bx ∩ Vi of Ti, as desired.

Now we prove that for each edge vw ∈ E(G[Vi]), both v and w are in a common bag of
Ti. Let x be the node of T closest to α such that v ∈ Bx. Let y be the node of T closest
to α such that w ∈ By. Thus v ∈ B′x and x ∈ V (Ti), and w ∈ B′y and y ∈ V (Ti). Since
vw ∈ E(G), there is a bag Bz containing both v and w, and z is a descendant of both x
and y in T (by the definition of x and y). Without loss of generality, x is on the yα-path
in T . Moreover, v is also in By (since v and w are in a common bag of T ). Thus v and w
are in the bag By ∩ Vi of Ti, as desired.

Finally, we prove that for each vertex v ∈ Vi, the set of bags in Ti that contain v
correspond to a (connected) subtree of Ti. By assumption, this property holds in T . Let
X be the subtree of T whose corresponding bags in T contain v. Let x be the root of X.
Then v ∈ B′x and `(x) = i. By property (?), `(z) > i for each node z in X. Moreover,
again by property (?), deleting from X the nodes z such that `(z) > i+1 gives a connected
subtree of X, which is precisely the subtree of Ti whose bags in Ti contain v.

Hence Ti is a Ti-decomposition of G[Vi]. By definition, Ti is contained in T .
We now prove that Ti is (k − 1)-rich. Consider an edge xy ∈ E(Ti). Without loss of

generality, y is the parent of x in Ti. Our goal is to prove that Bx ∩By ∩ Vi = B′′x ∩ Vi is a
clique on at most k − 1 vertices. Certainly, it is a clique on at most k vertices, since T is
k-rich. Now, `(x) 6 i (since x ∈ V (Ti)). If `(x) < i then Bx ∩ Vi = ∅, and we are done.
Now assume that `(x) = i. Thus B′x ⊆ Vi and B′x 6= ∅. Let v be a vertex in B′x. Let w
be the neighbour of v on a shortest path in G′ between v and r. Thus w is in B′′x ∩ Vi−1.
Thus |B′′x ∩ Vi| 6 k − 1, as desired. Hence Ti is (k − 1)-rich.

We now prove that (V0, V1, . . . , Vt) is shadow-complete. Let H be a connected com-
ponent of G[Vi ∪ Vi+1 ∪ · · · ∪ Vt] for some i ∈ {1, . . . , t}. Let X be the subgraph of T
whose corresponding bags in T intersect V (H). Since H is connected, X is indeed a
connected subtree of T . Let x be the root of X. Consider a vertex w in the shadow of H.
That is, w ∈ Vi−1 and w is adjacent to some vertex v in V (H) ∩ Vi. Let y be the node
closest to x in X such that v ∈ By. Then v ∈ B′y and w ∈ B′′y . Thus `(y) = i. Note that
Bx ⊆ V`(x)−1 ∪ V`(x) and some vertex in Bx is in V (H) and is thus in Vi ∪ Vi+1 ∪ · · · ∪ Vt.
Thus `(x) > i. Since x is an ancestor of y in T , `(x) 6 `(y) = i by property (?), implying
`(x) = i. Thus w ∈ B′′x. Since B′′x is a clique, the shadow of H is a clique. Hence
(V0, V1, . . . , Vt) is shadow-complete. Moreover, since |B′′x| 6 k, the shadow of H has size at
most k.

Iterating Lemma 2.13 gives the next lemma.

Lemma 5.20 ([52]). For some number c, let G0 be a class of graphs G with π(G) 6 c.
For k > 1, let Gk be a class of graphs that have a shadow-complete layering such that each
layer induces a graph in Gk−1. Then π(G) 6 c 4k for every graph G ∈ Gk.

Lemmas 5.19 and 5.20 lead to the following result:
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Lemma 5.21. Let G be a graph that has a k-rich tree-decomposition T such that the
subgraph induced by each bag is nonrepetitively c-colourable. Then

π(G) 6 c 4k.

Proof. For j ∈ {0, . . . , k}, let Gj be the set of induced subgraphs of G that have a j-rich
tree-decomposition contained in T . Note that G itself is in Gk. Consider a graph G′ ∈ G0.
Then G′ is the union of disjoint subgraphs of G, each of which is contained in a bag of T and
is thus nonrepetitively c-colourable. Thus G′ is nonrepetitively c-colourable. Now consider
some G′ ∈ Gj for some j ∈ {1, . . . , k}. Thus G′ is an induced subgraph of G with a j-rich
tree-decomposition contained in T . By Lemma 5.19, G′ has a shadow-complete layering
(V0, . . . , Vt) such that for each layer Vi, the induced subgraph G′[Vi] has a (j − 1)-rich
tree-decomposition Ti contained in T . Thus G′[Vi] is in Gj−1. By Lemma 5.20, the graph
G is nonrepetitively 4kc-colourable.

An identical proof using Lemma 2.14 instead of Lemma 2.13 gives the following
analogous result for stroll-nonrepetitive colourings.

Lemma 5.22. Let G be a graph that has a k-rich tree-decomposition T such that the
subgraph induced by each bag is stroll-nonrepetitively c-colourable. Then

ρ(G) 6 c 4k.

If a graph G has a tree-decomposition with adhesion r such that each torso is nonrepet-
itively c-colourable, then G is a subgraph of a graph that has an r-rich tree-decomposition
such that each bag is nonrepetitively c-colourable. Thus Lemmas 5.21 and 5.22 imply
Lemma 5.12, whose proof was the goal of this subsection.

5.5 Non-Minor-Closed Classes

This section explores generalisations of the results in Sections 5.1 and 5.2 for various
non-minor-closed classes. All the results are due to Dujmović, Morin, and Wood [53] and
are based on the previous work on treewidth and strong products. Dujmović et al. [53]
only presented their results for π, but the proofs immediately generalise for ρ.

A graph is k-planar if it has a drawing in the plane in which each edge is involved in at
most k crossings. Such graphs provide a natural generalisation of planar graphs, and are
important in graph drawing research; see the recent bibliography on 1-planar graphs and
the 140 references therein [92]. Dujmović et al. [53] extended the above-mentioned result
of Dujmović et al. [50] to show that every 1-planar graph is a subgraph of H � P �K30

for some planar graph H with treewidth at most 3 and for some path P . Lemma 4.12
then implies:

Theorem 5.23 ([53]). For every 1-planar graph G,

π(G) 6 ρ(G) 6 30× 44 = 7680.
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Similarly, Dujmović et al. [53] proved that every k-planar graph is a subgraph of
H � P � K18k2+48k+30, for some graph H of treewidth

(
k+4

3

)
− 1 and for some path P .

Lemma 4.12 then implies:

Theorem 5.24 ([53]). For every k-planar graph G,

π(G) 6 ρ(G) 6 (18k2 + 48k + 30) 4(k+4
3 ).

More generally, a graph G is (g, k)-planar if it has a drawing in a surface with Euler
genus at most g in which each edge is involved in at most k crossings. Dujmović et al. [53]
proved that every (g, k)-planar graph is a subgraph of H �P �K` for some graph H with
tw(H) 6

(
k+5

4

)
− 1, where ` := max{2g, 3} · (6k2 + 16k + 10). Lemma 4.12 then implies:

Theorem 5.25 ([53]). For every (g, k)-planar graph G,

π(G) 6 ρ(G) 6 max{2g, 3} · (6k2 + 16k + 10) 4(k+5
4 ).

Map graphs provide another natural generalisation of graphs embedded in surfaces.
Start with a graph G0 embedded in a surface of Euler genus g, with each face labelled
a ‘nation’ or a ‘lake’, where each vertex of G0 is incident with at most d nations. Let G
be the graph whose vertices are the nations of G0, where two vertices are adjacent in G
if the corresponding faces in G0 share a vertex. Then G is called a (g, d)-map graph. A
(0, d)-map graph is called a (plane) d-map graph; see [35, 62] for example. The (g, 3)-map
graphs are precisely the graphs of Euler genus at most g; see [46]. So (g, d)-map graphs
generalise graphs embedded in a surface; now assume that d > 4.

Dujmović et al. [53] proved that every d-map graph is a subgraph of H �P �K21d(d−3)

for some path P and for some graph H with tw(H) 6 9. Lemma 4.12 then implies:

Theorem 5.26 ([53]). For every d-map graph G,

π(G) 6 ρ(G) 6 21 · 410d(d− 3).

Dujmović et al. [53] proved that for integers g > 0 and d > 4, if ` := 7d(d−3) max{2g, 3}
then every (g, d)-map graph G is a subgraph of H �P �K` for some path P and for some
graph H with tw(H) 6 14. Lemma 4.12 then implies:

Theorem 5.27 ([53]). For integers g > 0 and d > 4, and for every (g, d)-map graph G,

π(G) 6 7 · 415 d(d− 3) max{2g, 3}.

6 Subdivisions

This section studies nonrepetitive colourings of graph subdivisions. These results are of
independent interest, and will be important when considering expansion in the following
section.
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6.1 Upper Bounds: Small Subdivisions

Nešetřil et al. [114] observed the following simple upper bounds on the nonrepetitive
chromatic number of any subdivision. Note that much better bounds follow.

Lemma 6.1 ([114]). (a) For every (6 1)-subdivision H of a graph G,

π(H) 6 π(G) + 1.

(b) For every (6 2)-subdivision H of a graph G,

π(H) 6 π(G) + 2.

(c) For every subdivision H of a graph G,

π(H) 6 π(G) + 3.

Proof. First we prove (a). Given a nonrepetitive k-colouring of G, introduce a new
colour for each division vertex of H. Since this colour does not appear elsewhere, a
repetitively coloured path in H defines a repetitively coloured path in G. Thus H contains
no repetitively coloured path. Part (b) follows by applying (a) twice.

Now we prove (c). Let n be the maximum number of division vertices on some edge of
G. By Theorem 3.1, Pn has a nonrepetitive 3-colouring (c1, c2, . . . , cn). Arbitrarily orient
the edges of G. Given a nonrepetitive k-colouring of G, choose each ci to be one of three
new colours for each arc vw of G that is subdivided d times, colour the division vertices
from v to w by (c1, c2, . . . , cd). Suppose H has a repetitively coloured path P . Since
H − V (G) is a collection of disjoint paths, each of which is nonrepetitively coloured, P
includes some original vertices of G. Let P ′ be the path in G obtained from P as follows.
If P includes the entire subdivision of some edge vw of G then replace that subpath by vw
in P ′. If P includes a subpath of the subdivision of some edge vw of G, then without loss
of generality, it includes v, in which case replace that subpath by v in P ′. Since the colours
assigned to division vertices are distinct from the colours assigned to original vertices, a
t-vertex path of division vertices in the first half of P corresponds to a t-vertex path of
division vertices in the second half of P . Hence P ′ is a repetitively coloured path in G.
This contradiction proves that H is nonrepetitively coloured. Hence π(H) 6 k + 3.

Note that Lemma 6.1(a) is best possible in the weak sense that π(C5) = 4 and π(C4) = 3;
see [40]. But better asymptotic results can be obtained.

First we prove that for graphs with maximum degree ∆, the O(∆2) upper bound for
general graphs can be improved to O(∆) for subdivided graphs. The proof uses Rosenfeld
counting.

Theorem 6.2. For every (> 1)-subdivision of a graph with maximum degree ∆,

πch(G) 6 d5.22 ∆e.

Theorem 6.2 follow from the next lemma with r = 0.36. Recall that Π(G,L) is the
number of nonrepetitive L-colourings of a graph G.
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Lemma 6.3. Fix an integer ∆ > 2 and a real number r ∈ (0, 1). Let

β :=
∆− 1

r
and c :=

⌈
β +

∆

(1− r)2

⌉
.

Then for every (> 1)-subdivision G of a graph with maximum degree ∆, for every c-list
assignment L of G, and for every vertex v of G,

Π(G,L) > β Π(G− v, L).

Proof. We proceed by induction on |V (G)|. The base case with |V (G)| = 1 is trivial
(assuming Π(G,L) = 1 if V (G) = ∅). Let n be an integer such that the lemma holds for
all graphs with less than n vertices. Let G be an n-vertex (> 1)-subdivision of a graph
with maximum degree ∆. Let L be a c-list assignment of G. Let v be any vertex of G. Let
F be the set of L-colourings of G that are repetitive but are nonrepetitive on G− v. Then

Π(G,L) = |L(v)|Π(G− v, L) − |F | > cΠ(G− v, L) − |F |. (9)

We now upper-bound |F |. For i ∈ N, let Fi be the set of colourings in F , for which there
is a repetitively coloured path in G on 2i vertices. Then |F | 6

∑
i∈N |Fi|. For i ∈ N, for

each colouring φ in Fi there is a repetitively coloured path PQ on 2i vertices in G such
that v ∈ V (P ), G−V (P ) is nonrepetitively coloured by φ, and φ is completely determined
by the restriction of φ to G− V (P ) colouring (since the colouring of Q is identical to the
colouring of P ). Charge φ to PQ. The number of colourings in Fi charged to PQ is at
most Π(G− V (P ), L). Since P contains v and i− 1 other vertices, by induction

Π(G− v, L) > βi−1 Π(G− V (P ), L).

Thus the number of colourings in Fi charged to PQ is at most β1−i Π(G− v, L). A simple
adaptation of Lemma 3.10 shows that there are at most i∆(∆− 1)i−1 paths on 2i vertices
including v. Thus

|Fi| 6 i∆(∆− 1)i−1 β1−i Π(G− v, L) = i∆ri−1 Π(G− v, L).

Hence

|F | 6
∑
i∈N
|Fi| =

∑
i∈N

i∆ri−1 Π(G− v, L) = ∆ Π(G− v, L)
∑
i∈N

i ri−1 =
∆

(1− r)2
Π(G− v, L).

By (9),

Π(G,L) > cΠ(G− v, L) − |F | > cΠ(G− v, L) − ∆

(1− r)2
Π(G− v, L) > β Π(G− v, L)

as desired.
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Upper bounds on π(G(1)) that do not depend on ∆(G) are difficult. There is a lower
bound,

π(G(1)) > χs(G
(1)) >

√
χ(G),

where the second inequality was proved by Wood [149]. We have the following upper
bound that also involves χ(G).

Lemma 6.4. For every graph G,

π(G(1)) 6 2d(χ(G) π(G))1/3e2 + χ(G)

Proof. Let k := d(χ(G) π(G))1/3e. Let c be a proper colouring of G with colour-set
{1, . . . , χ(G)}. Let A := {1, . . . , d k2

χ(G)
e} and B := {1, . . . , k}. Let φ be a nonrepetitive

colouring of G with colour-set A×B (which exists since |A| |B| = d k2

χ(G)
ek > k3

χ(G)
> π(G)).

For each vertex v of G, if c(v) = i and φ(v) = (a, b) then colour v by (i, a). For each edge
vw of G, if c(v) < c(w) and φ(v) = (a, b) and φ(w) = (a′, b′), then colour the division vertex
of vw by (b, b′). The number of colours is at most χ(G)|A|+ |B|2 = χ(G)d k2

χ(G)
e+ k2 6

2k2 + χ(G) = 2d(χ(G)π(G))1/3e2 + χ(G).
Suppose for the sake of contradiction that G(1) contains a repetitively coloured path

P = (p1, . . . , p2t). Since P alternates between original and division vertices, exactly one of
p1 and p2t is original. Without loss of generality, p1 is an original vertex (otherwise consider
the reverse path). Since original and division vertices are assigned distinct colours, pi is
original if and only if pt+i is original. Thus Q := (p1, p3, . . . , pt−1, pt+1, pt+3, . . . , p2t−1) is
path in G. In particular, t is even and at least 2. Consider each j ∈ {1, 3, . . . , t− 1}. Then
pj and pt+j are coloured (i, a), and pj+1 and pt+j+1 are coloured (b, b′) for some distinct
i, i′ ∈ {1, . . . , χ(G)} and a ∈ A and b, b′ ∈ B. If i < i′ then φ(pj) = φ(pt+j) = (a, b),
otherwise φ(pj) = φ(pt+j) = (a, b′). Hence Q is φ-repetitive.

This contradiction shows that G(1) is nonrepetitively coloured. Hence π(G(1)) 6
2d(χ(G)π(G))1/3e2 + χ(G).

For 2-subdivisions and 3-subdivisions we have the following improved upper bounds.

Lemma 6.5. For every graph G,

π(G(2)) 6 3dπ(G)1/2e.

Proof. Let k := dπ(G)1/2e. Let φ be a nonrepetitive colouring of G with colour-set
{1, . . . , k}× {1, . . . , k}. Arbitrarily orient the edges of G. Let A(G) be the resulting set of
arcs of G. For each original vertex v ∈ V (G), if φ(v) = (a, i) then colour v by Ba. For each
arc vw ∈ A(G), if (v, x, y, w) is the path in G(2) corresponding to vw, and φ(v) = (a, i)
and φ(w) = (b, j), then colour x by Ci and colour y by Dj. There are at most 3k colours.

Suppose for the sake of contradiction that (p1, . . . , pn, q1, . . . , qn) is a repetitively
coloured path in G(2). Since only original vertices are assigned a type-B colour, pi is
original if and only if qi is original. Say p`1 , p`2 , . . . , p`t , q`1 , q`2 , . . . , q`t are the original
vertices in Q.
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Suppose that t = 0. Then Q is the subpath formed by the two division vertices of some
edge of G. These two vertices are assigned distinct colours, implying Q is nonrepetitively
coloured.

Now assume that t > 1. Then R := (p`1 , p`2 , . . . , p`t , q`1 , q`2 , . . . , q`t) is a path in G.
Without loss of generality, p`t+1 is in the first half of Q (otherwise consider Q in the
reverse order). For each i ∈ {1, . . . , t}, if p`i and q`i are coloured Ba, and p`i+1 and q`i+1

are coloured Cj or Dj, then φ(p`i) = φ(q`i) = (a, j). Hence R is φ-repetitive.
This contradiction shows that G(2) is nonrepetitively coloured. Hence π(G(2)) 6 3k.

Lemma 6.6. For every graph G,

π(G(3)) 6 (4 + o(1))π(G)2/5.

Proof. Let k := dπ(G)1/5e. Let φ be a nonrepetitive colouring of G with colour-set
{1, . . . , k2} × {1, . . . , k2} × {1, . . . , k}. Arbitrarily orient the edges of G. Let A(G) be the
resulting set of arcs of G. For each original vertex v ∈ V (G), if φ(v) = (a, b, c) then colour
v by Aa. For each arc vw ∈ A(G), if (v, x,m, y, w) is the path in G(2) corresponding to
vw, and φ(v) = (a, b, c) and φ(w) = (a′, b′, c′), then colour x by Bb, colour m by Cc,c′ , and
colour y by B′b′ . There are at most k2 colours of each type (A, B, C and B′). In total,
there are at most 4k2 colours.

Suppose for the sake of contradiction that (p1, . . . , pn, q1, . . . , qn) is a repetitively
coloured path in G(2). Since only original vertices are assigned a type-A colour, pi is
original if and only if qi is original. Say p`1 , p`2 , . . . , p`t , q`1 , q`2 , . . . , q`t are the original
vertices in Q.

Suppose that t = 0. Then Q is contained in the subpath formed by the three division
vertices of some edge of G. These three vertices are assigned distinct colours, implying Q
is nonrepetitively coloured.

Now assume that t > 1. Then R := (p`1 , p`2 , . . . , p`t , q`1 , q`2 , . . . , q`t) is a path in G.
Without loss of generality, p`t+1 is in the first half of Q (otherwise consider Q in the
reverse order). Consider each i ∈ {1, . . . , t}. Then p`i and q`i are coloured Aa for some
a ∈ {1, . . . , k2}. And p`i+1 and q`i+1 are coloured Bb or B′b, for some b ∈ {1, . . . , k2}. And
p`i+2 and q`i+2 are coloured Cc,c′ , for some c, c′ ∈ {1, . . . , k}. If p`i+1 and q`i+1 are coloured
Bb, then φ(p`i) = φ(q`i) = (a, b, c). Otherwise, p`i+1 and q`i+1 are coloured B′b, implying
φ(p`i) = φ(q`i) = (a, b, c′). In both cases, φ(p`i) = φ(q`i). Hence R is φ-repetitive. This
contradiction shows that G(3) is nonrepetitively coloured. Hence π(G(3)) 6 4k2.

6.2 Upper Bounds: Large Subdivisions

Loosely speaking, Lemma 6.1 says that nonrepetitive colourings of subdivisions are not
much “harder" than nonrepetitive colourings of the original graph. This intuition is made
more precise if we subdivide each edge many times. Then nonrepetitive colourings of
subdivisions are much “easier" than nonrepetitive colourings of the original graph. In
particular, Grytczuk [69] proved that every graph has a nonrepetitively 5-colourable
subdivision. This bound was improved to 4 by Barát and Wood [17] and by Marx and
Schaefer [106], and to 3 by Pezarski and Zmarz [122] (affirming a conjecture of Grytczuk
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[69]). This deep generalisation of Thue’s Theorem implies that the class of nonrepetitively
3-colourable graphs is not contained in a proper topologically-closed class.

For each of these results, the number of division vertices per edge is O(|V (G)|) or
O(|E(G)|). Improving these bounds, Nešetřil et al. [114] proved that every graph has a
nonrepetitively 17-colourable subdivision with O(log |V (G)|) division vertices per edge,
and that Ω(log n) division vertices are needed on some edge of any nonrepetitively O(1)-
colourable subdivision of Kn (see Theorem 6.28 below). No attempt was made to optimise
the constant 17. Dujmović et al. [49] improved the number of colours to 5 using entropy
compression. Moreover, each edge vw is subdivided O(log deg(v) + log deg(w)) times,
which is O(log ∆) for graphs of maximum degree ∆, which is at most the O(log |V (G)|)
bound of Nešetřil et al. [114]. Theorem 6.11 below presents a new proof using 5 colours
and O(log π(G)) division vertices per edge. Like the result of Dujmović et al. [49] the
number of division vertices per edge depends on the original graph, and in the worst
case is O(log |V (G)|), thus matching the upper bound of Nešetřil et al. [114]. For graphs
of maximum degree ∆, since π(G) 6 O(∆2), the new upper bound matches the bound
O(log ∆) by Dujmović et al. [49]. Note that Brešar et al. [29] proved that every tree has a
nonrepetitively 3-colourable subdivision.

The preprint version of this paper asked whether every graph G has a nonrepetitively
3-colourable subdivision with O(log |V (G)|) division vertices per edge, or (even better)
O(log π(G)) division vertices per edge. Rosenfeld [132] answered the first question, by
proving that there is a constant c such that for every graph G, every subdivision of G with
at least c log π′(G) division vertices per edge is nonrepetitively 3-colourable. This is the
state-of-the-art for nonrepetitive colouring of graph subdivisions. The following question
remains open.

Open Problem 6.7. Does every graph G have a nonrepetitively 3-colourable subdivision
with O(log π(G)) division vertices per edge?

Table 2: Bounds on the number of colours and number of division vertices in nonrepetitively
colourable subdivisions.

# colours # division vertices per edge vw reference
π 6 5 O(|E(G)|) Grytczuk [69]
π 6 4 O(|V (G)|) Barát and Wood [17]
π 6 4 O(|E(G)|) Marx and Schaefer [106]
π 6 17 O(log |V (G)|) Nešetřil et al. [114]
πch 6 5 O(log deg(v) + log deg(w))) Dujmović et al. [49]
π 6 5 O(log π(G)) Theorem 6.11
π 6 3 O(|E(G)|) Pezarski and Zmarz [122]
π 6 3 O(log π′(G)) Rosenfeld [132]

Now consider nonrepetitive choosability of subdivisions. Grytczuk et al. [76] asked
whether every graph has a nonrepetitively c-choosable subdivision, for some constant c?
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The above-mentioned result by Dujmović et al. [49] solved this question. They proved
that every graph has a nonrepetitively 5-choosable subdivision, where each edge vw is
subdivided O(log deg(v) + log deg(w)) times.

Open Problem 6.8. Does every graph have a nonrepetitively 4-choosable subdivision?
Even 3-choosable might be possible (although this is open even for paths).

We start with the proof of Barát and Wood [17]5.

Theorem 6.9 ([17]). Every graph G has a nonrepetitively 4-colourable subdivision.

Proof. Without loss of generality, G is connected. Say V (G) = {v0, v1, . . . , vn−1} ordered
by non-decreasing distance from v0. As illustrated in Figure 2, let G′ be the subdivision of
G obtained by subdividing each edge vivj ∈ E(G) (with i < j) 2(j − i) − 1 times. The
depth of each vertex x of G′ is the distance from v0 to x in G′. In the original graph G,
for each j ∈ {1, . . . , n}, vertex vj has a neighbour vi with i < j; it follows that vj is at
depth 2j. For i > 0, let Vi be the set of vertices in G′ at depth i. So (V0, V1, . . . , V2n) is
a layering of G′. Note that the endpoints of each edge are in consecutive layers. (Think
of v0, v1, . . . , vn−1 on a horizontal line in this order, with a vertical line through each vi,
and an additional vertical line between vi and vi+1. Each edge of G is subdivided at each
point it crosses a vertical line.)

v0 v1 v2 v3 v4 v5

Figure 2: Proof of Theorem 6.9: The subdivision H with G = K6.

By Lemma 3.2, there is a walk-nonrepetitive 4-colouring φ of the path P =
(p0, p1, . . . , p2n). Colour each vertex of G′ at depth j by φ(pj).

5The original proof of Barát and Wood [17] had an error, which was reported and corrected by
Antonides, Spychalla and Yamzon; see the corrigendum in [17].
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Suppose that G′ contains a repetitively coloured path Q = (x1, x2, . . . , xt, y1, y2, . . . , yt).
Let R be the projection of Q into P . Since no two adjacent vertices in G′ are at the same
depth, R is a walk in P . Since φ is walk-nonrepetitive, R is boring. Thus xj and yj are
at the same depth for each j ∈ {1, . . . , t} Since no two adjacent vertices in G′ are at the
same depth, t > 2.

First suppose that t = 2. Since x1 and y1 are at the same depth, and x2 is adjacent to
both x1 and y1, it must be that x2 is an original vertex (since division vertices only have
two neighbours, and they are at distinct depths). Similarly, y1 is an original vertex. This
is a contradiction, since no two original vertices of G are adjacent in G′. Now assume that
t > 3.

First suppose that xj−1 and xj+1 are at the same depth for some j ∈ {2, . . . , t − 1}.
Thus xj is an original vertex of G. Say xj is at depth i. Without loss of generality, xj−1

and xj+1 are at depth i− 1. There is at most one original vertex in each layer. Thus yj,
which is also at depth i, is a division vertex. Now yj has two neighbours in H, which
are at depths i − 1 and i + 1. Thus yj−1 and yj+1 are at depths i − 1 and i + 1, which
contradicts the fact that xj−1 and xj+1 are both at depth i− 1.

Now assume that for all j ∈ {2, . . . , t− 1}, the vertices xj−1 and xj+1 are at distinct
depths.

Say x1 is at depth i. Without loss of generality, x2 is at depth i + 1 (since no edge
of G′ has both endpoints at the same depth). It follows that xj is at depth i + j − 1
for each j ∈ {1, . . . , t}. In particular, xt is at depth i + t − 1. Now, y1 is at depth i
(the same depth as x1). Since xty1 is an edge, and every edge goes between consecutive
levels, |(i + t − 1) − i| = 1, implying t = 2, which is a contradiction. Hence we have a
path-nonrepetitive 4-colouring of G′.

The next lemma is a key to our O(log π(G)) bounds on the number of division vertices
per edges in a nonrepetitively c-colourable subdivision.

Lemma 6.10. Assume that there exist at least k distinct nonrepetitive r-colourings of the
t-vertex path, for some k, r, t ∈ N. Then for every graph G with π(G) 6 k,

π(G(2t+1)) 6 r + 2.

Proof. Fix a nonrepetitive colouring φ of G with colour-set {1, . . . , k}. Let c1, . . . , ck be
distinct nonrepetitive colourings of the path (1, . . . , t), each with colour-set {1, . . . , r}.
That is, for all distinct i, j ∈ {1, . . . , k} there exists ` ∈ {1, . . . , t} such that ci(`) 6= cj(`).

For each edge vw of G, if Pvw = (v, x1, . . . , xt, z, yt, . . . , y1, w) is the path in G(2t+1)

corresponding to vw and φ(v) = i, then colour x` by ci(`) for each ` ∈ {1, . . . , t}. The
same rule colours y` by cj(`) where j = φ(w). Call z a middle vertex. Colour each original
vertex r + 1 and colour each middle vertex r + 2.

Suppose for the sake of contradiction that G(2t+1) contains a repetitively coloured path
Q = (p1, . . . , pn, q1, . . . , qn). Since only original vertices are coloured r + 1, pi is original if
and only if qi is original. Say pi1 , pi2 , . . . , pia , qi1 , qi2 , . . . , qia are the original vertices in Q.

Suppose that a = 0. Then for some edge vw of G, Q is a subpath of
(x1, . . . , xt, z, yt, . . . , y1) using the above notation for Pvw. Since only middle vertices
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are coloured r + 2, without loss of generality, Q is a subpath of (x1, . . . , xt), which is a
contradiction since (x1, . . . , xt) is nonrepetitively coloured.

Now assume that a > 1. Then R := (pi1 , pi2 , . . . , pia , qi1 , qi2 , . . . , qia) is a path in G.
Without loss of generality, the middle vertex of the edge piaqi1 is in the first half of Q
(otherwise consider Q in the reverse order). Consider j ∈ {1, 2, . . . , a} and ` ∈ {1, 2, . . . , t}.
By construction, pij+` is coloured cα(`) where α := φ(pij ), and qij+` is coloured cβ(`) where
β := φ(qij). Since Q is repetitively coloured, pij+` and qij+` are assigned the same colour.
That is, cα(`) = cβ(`) for each ` ∈ {1, 2, . . . , t}. Since c1, . . . , ck are distinct colourings,
α = β. Thus φ(pij) = φ(qij). Hence R is a φ-repetitively coloured path in G.

This contradiction shows that G(2t+1) is nonrepetitively (r + 2)-coloured, and
π(G(2t+1)) 6 r + 2.

Numerous authors have shown that paths have exponentially many nonrepetitive
colourings; see [21] for a survey. Shur [135, 136] determined tight bounds on the number
of nonrepetitive r-colourings of a path for each r > 3. In particular, he showed that the
t-vertex path has at least 1.301759t distinct nonrepetitive 3-colourings, which is tight up
to at least 5 decimal places. This result and Lemma 6.10 imply:

Theorem 6.11. For every graph G, if d := 2dlog1.301759 π(G)e+ 1 then

π(G(d)) 6 5.

For 6 or more colours, Theorem 3.8 with t := dlogr−2 π(G)e and Lemma 6.10 imply:

Theorem 6.12. For every graph G and integer r > 4, if d := 2dlogr−2 π(G)e+ 1 then

π(G(d)) 6 r + 2.

We can restate this result as the following upper bound on π(G(d)).

Theorem 6.13. For every graph G and odd integer d > 3,

π(G(d)) 6 π(G)2/(d−1) + 4.

Proof. The result is trivial if E(G) = ∅. Now assume that E(G) 6= ∅, implying π(G) > 2.
Let t := (d − 1)/2, which is in N. Let r := dπ(G)1/te + 2. So r > 4 is an integer. By
Theorem 3.8 there exist at least (r − 2)t > π(G) distinct nonrepetitive r-colourings of the
t-vertex path. By Lemma 6.10,

π(G(d)) = π(G(2t+1)) 6 r + 2 = dπ(G)1/te+ 4 = dπ(G)2/(d−1)e+ 4.

6.3 Lower Bounds

We now set out to prove a converse of Lemma 6.1; that is, if H is a subdivision of G with
a bounded number of division vertices per edge, then π(G) is bounded by a function of
π(H) (see Theorem 6.21 below). The following tool by Nešetřil and Raspaud [115] will be
useful.
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Lemma 6.14 ([115]). For every k-colouring of the arcs of an oriented forest T , there is
a (2k + 1)-colouring of the vertices of T , such that between each pair of (vertex) colour
classes, all arcs go in the same direction and have the same colour.

A rooting of a forest F is obtained by nominating one vertex in each component tree
of F to be a root vertex.

Lemma 6.15 ([114]). Let T ′ be the 1-subdivision of a forest T . Then for every nonrepetitive
k-colouring c of T ′, and for every rooting of T , there is a nonrepetitive k(k + 1)(2k + 1)-
colouring q of T , such that:
(a) For all edges vw and xy of T with q(v) = q(x) and q(w) = q(y), the division vertices

corresponding to vw and xy have the same colour in c.
(b) For all non-root vertices v and x with q(v) = q(x), the division vertices corresponding

to the parent edges of v and x have the same colour in c.
(c) For every root vertex r and every non-root vertex v, we have q(r) 6= q(v).
(d) For all vertices v and w of T , if q(v) = q(w) then c(v) = c(w).

Proof. Let c be a nonrepetitive k-colouring of T ′ with colour-set {1, . . . , k}. Colour each
edge of T by the colour assigned by c to the corresponding division vertex. Orient each edge
of T towards the root vertex in its component. By Lemma 6.14, there is a (2k+1)-colouring
f of the vertices of T , such that between each pair of (vertex) colour classes in f , all
arcs go in the same direction and have the same colour in c. Consider a vertex v of T .
If v is a root, let g(r) := 0; otherwise let g(v) := c(vw) where w is the parent of v. Let
q(v) := (c(v), f(v), g(v)) for each vertex v of T . The number of colours in q is at most
k(k + 1)(2k + 1). Observe that claims (c) and (d) hold by definition.

We claim that q is nonrepetitive. Suppose on the contrary that there is a path
P = (v1, . . . , v2s) in T that is repetitively coloured by q. That is, q(vi) = q(vi+s) for each
i ∈ {1, . . . , k}. Thus c(vi) = c(vi+s) and f(vi) = f(vi+s) and g(vi) = g(vi+s). Since no two
root vertices are in a common path, (c) implies that every vertex in P is a non-root vertex.

Consider the edge vivi+1 of P for some i ∈ {1, . . . , s − 1}. We have f(vi) = f(vi+s)
and f(vi+1) = f(vi+s+1). Between these two colour classes in f , all arcs go in the same
direction and have the same colour. Thus the edge vivi+1 is oriented from vi to vi+1 if and
only if the edge vi+svi+s+1 is oriented from vi+s to vi+s+1. And c(vivi+1) = c(vi+svi+s+1).

If at least two vertices vi and vj in P have indegree 2 in P , then some vertex between
vi and vj in P has outdegree 2 in P , which is a contradiction. Thus at most one vertex
has indegree 2 in P . Suppose that vi has indegree 2 in P . Then each edge vjvj+1 in P is
oriented from vj to vj+1 if j 6 i− 1, and from vj+1 to vj if j > i (otherwise two vertices
have indegree 2 in P ). In particular, v1v2 is oriented from v1 to v2 and vs+1vs+2 is oriented
from vs+2 to vs+1. This is a contradiction since the edge v1v2 is oriented from v1 to v2

if and only if the edge vs+1vs+2 is oriented from vs+1 to vs+2. Hence no vertex in P has
indegree 2. Thus P is a directed path.

Without loss of generality, P is oriented from v1 to v2s. Let x be the parent of v2s.
Now g(v2s) = c(v2sx) and g(vs) = c(vsvs+1) and g(vs) = g(v2s). Thus c(vsvs+1) = c(v2sx).
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Summarising, the path(
v1, v1v2, v2, . . . , vs, vsvs+1︸ ︷︷ ︸, vs+1, vs+1vs+2, vs+2, . . . , v2s, v2sx︸ ︷︷ ︸ )

in T ′ is repetitively coloured by c. (Here division vertices in T ′ are described by the
corresponding edge.) Since c is nonrepetitive in T ′, we have the desired contradiction.
Hence q is a nonrepetitive colouring of T .

It remains to prove claims (a) and (b). Consider two edges vw and xy of T , such that
q(v) = q(x) and q(w) = q(y). Thus f(v) = f(x) and f(w) = f(y). Thus vw and xy have
the same colour in c. Thus the division vertices corresponding to vw and xy have the
same colour in c. This proves claim (a). Finally consider non-root vertices v and x with
q(v) = q(x). Thus g(v) = g(x). Say w and y are the respective parents of v and x. By
construction, c(vw) = c(xy). Thus the division vertices of vw and xy have the same colour
in c. This proves claim (b).

A colouring of a graph is acylic if adjacent vertcies are assigned distinct colours and
every cycle is assigned at least three distinct colours; that is, the subgraph induced by any
two colour classes is a forest. The acyclic chromatic number of a graph G, denoted by
χa(G), is the minimum number of colours in an acyclic colouring of G. Acyclic colourings
are well studied [2, 10, 11, 27]. For example, every planar graph is acyclically 5-colourable
[27]. We now extend Lemma 6.15 to apply to graphs with bounded acyclic chromatic
number; see [9, 115] for similar methods.

Lemma 6.16 ([114]). Let G′ be the 1-subdivision of a graph G, such that π(G′) 6 k and
χa(G) 6 `. Then

π(G) 6 `
(
k(k + 1)(2k + 1)

)`−1
.

Proof. Let p be an acyclic `-colouring of G with colour-set {1, . . . , `}. Let c be a non-
repetitive k-colouring of G′. For distinct i, j ∈ {1, . . . , `}, let G{i,j} be the subgraph of G
induced by the vertices coloured i or j by p. Thus each G{i,j} is a forest, and c restricted
to G′{i,j} is nonrepetitive.

For distinct i, j ∈ {1, . . . , `}, by Lemma 6.15 applied to G{i,j}, there is a nonrepetitive
k(k + 1)(2k + 1)-colouring q{i,j} of G{i,j} satisfying Lemma 6.15(a)–(d).

Consider a vertex v of G. For each colour j ∈ {1, . . . , `} with j 6= p(v), let qj(v) :=
q{p(v),j}(v). Define

q(v) :=
(
p(v),

{
(j, qj(v)) : j ∈ {1, . . . , `}, j 6= p(v)

})
.

Note that the number of colours in q is at most `
(
k(k + 1)(2k + 1)

)`−1
. We claim that q is

a nonrepetitive colouring of G.
Suppose on the contrary that some path P = (v1, . . . , v2s) in G is repetitively coloured

by q. That is, q(va) = q(va+s) for each a ∈ {1, . . . , s}. Thus p(va) = p(va+s) for
each a ∈ {1, . . . , s}. Let i := p(va). Consider any j ∈ {1, . . . , `} with j 6= i. Thus
(j, qj(va)) = (j, qj(va+s)) and qj(va) = qj(va+s). Hence c(va) = c(va+s) by Lemma 6.15(d).
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Consider an edge vava+1 for some i ∈ {1, . . . , s− 1}. Let i := p(va) and j := p(va+1).
Now q(va) = q(va+s) and q(va+1) = q(va+s+1). Thus p(va+s) = i and p(va+s+1) =
j. Moreover, (j, qj(va)) = (j, qj(va+s)) and (i, qi(va+1)) = (i, qi(va+s+1)). That is,
q{i,j}(va) = q{i,j}(va+s) and q{i,j}(va+1) = q{i,j}(va+s+1). Thus c(vava+1) = c(va+sva+s+1) by
Lemma 6.15(a).

Consider the edge vsvs+1. Let i := p(vs) and j := p(vs+1). Without loss of generality,
vs+1 is the parent of vs in the forest G{i,j}. In particular, vs is not a root of G{i,j}. Since
q{i,j}(vs) = q{i,j}(v2s) and by Lemma 6.15(c), v2s also is not a root of G{i,j}. Let y be the
parent of v2s in G{i,j}. By Lemma 6.15(b) applied to vs and v2s, we have c(vsvs+1) = c(v2sy).

Summarising, the path(
v1, v1v2, v2, . . . , vs, vsvs+1︸ ︷︷ ︸, vs+1, vs+1vs+2, vs+2, . . . , v2s, v2sy︸ ︷︷ ︸ )

is repetitively coloured in G′. This contradiction proves that G is repetitively coloured
by q.

Lemma 6.16 generalises for (6 1)-subdivisions as follows:

Lemma 6.17 ([114]). Let H be a (6 1)-subdivision of a graph G, such that π(H) 6 k
and χa(G) 6 `. Then

π(G) 6 `
(
(k + 1)(k + 2)(2k + 3)

)`−1
.

Proof. Since G′ is a (6 1)-subdivision of H, Lemma 6.1(a) implies that π(G′) 6 k + 1.
Lemma 6.16 implies the result.

Lemma 6.18 ([114]). Let c be a nonrepetitive k-colouring of the 1-subdivision G′ of a
graph G. Then

χa(G) 6 k · 22k2 .

Proof. Orient the edges of G arbitrarily. Let A(G) be the set of oriented arcs of G. So c
induces a k-colouring of V (G) and of A(G). For each vertex v of G, let

q(v) :=
{
c(v)

}
∪
{

(+, c(vw), c(w)) : vw ∈ A(G)
}
∪
{

(−, c(wv), c(w)) : wv ∈ A(G)
}
.

The number of possible values for q(v) is at most k · 22k2 . We claim that q is an acyclic
colouring of G.

Suppose on the contrary that q(v) = q(w) for some arc vw of G. Thus c(v) = c(w)
and (+, c(vw), c(w)) ∈ q(v), implying (+, c(vw)c(w)) ∈ q(w). That is, for some arc wx,
we have c(wx) = c(vw) and c(x) = c(w). Thus the path (v, vw,w,wx) in G′ is repetitively
coloured. This contradiction shows that q properly colours G. It remains to prove that G
contains no bichromatic cycle (with respect to q).

First consider a bichromatic path P = (u, v, w) in G with q(u) = q(w). Thus c(u) =
c(w).

Suppose on the contrary that P is oriented (u, v, w), as illustrated in Figure 3(a). By
construction, (+, c(uv), c(v)) ∈ q(u), implying (+, c(uv), c(v)) ∈ q(w). That is, c(uv) =
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c(wx) and c(v) = c(x) for some arc wx (and thus x 6= v). Similarly, (−, c(vw), c(v)) ∈ q(w),
implying (−, c(vw), c(v)) ∈ q(u). Thus c(vw) = c(tu) and c(v) = c(t) for some arc tu
(and thus t 6= v). Hence the 8-vertex path (tu, u, uv, v, vw,w,wx, x) in G′ is repetitively
coloured by c, as illustrated in Figure 3(b). This contradiction shows that both edges in
P are oriented toward v or both are oriented away from v.

v w x

(a)

t u v w x

(b)

t u v w x

(c)

u v w x y

(d)

u v

wx

(e)

Figure 3: Illustration for Lemma 6.18.

Consider the case in which both edges in P are oriented toward v. Suppose on
the contrary that c(uv) 6= c(wv). By construction, (+, c(uv), c(v)) ∈ q(u), implying
(+, c(uv), c(v)) ∈ q(w). That is, c(uv) = c(wx) and c(v) = c(x) for some arc wx (implying
x 6= v since c(uv) 6= c(wv)). Similarly, (+, c(wv), c(v)) ∈ q(w), implying (+, c(wv), c(v)) ∈
q(u). That is, c(wv) = c(ut) and c(t) = c(v) for some arc ut (implying t 6= v since
c(ut) = c(wv) 6= c(uv)). Hence the path (ut, u, uv, v, wv, w,wx, x) in G′ is repetitively
coloured in c, as illustrated in Figure 3(c). This contradiction shows that c(uv) = c(wv).
By symmetry, c(uv) = c(wv) when both edges in P are oriented away from v.

Hence in each component of G′, all the division vertices have the same colour in c.
Every bichromatic cycle contains a 4-cycle or a 5-path. If G contains a bichromatic 5-path
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(u, v, w, x, y), then all the division vertices in (u, v, w, x, y) have the same colour in c, and
(u, uv, v, vw,w,wx, x, xy) is a repetitively coloured path in G′, as illustrated in Figure 3(d).
Similarly, if G contains a bichromatic 4-cycle (u, v, w, x), then all the division vertices
in (u, v, w, x) have the same colour in c, and (u, uv, v, vw,w,wx, x, xu) is a repetitively
coloured path in G′, as illustrated in Figure 3(e).

Thus G contains no bichromatic cycle, and q is an acyclic colouring of G.

Note that the above proof establishes the following stronger statement: If the 1-
subdivision of a graph G has a k-colouring that is nonrepetitive on paths with at most 8
vertices, then G has an acyclic k ·22k2-colouring in which each component of each 2-coloured
subgraph is a star or a 4-path.

Lemmas 6.1 and 6.18(a) imply:

Lemma 6.19 ([114]). If some (6 1)-subdivision of a graph G has a nonrepetitive k-
colouring, then

χa(G) 6 (k + 1) · 22(k+1)2 .

Lemma 6.20 ([114]). If π(H) 6 k for some (6 1)-subdivision of a graph G, then

π(G) 6 (k + 1) · 22(k+1)2
(
(k + 1)(k + 2)(2k + 3)

)(k+1)·22(k+1)2−1
.

Proof. χa(G) 6 (k + 1) · 22(k+1)2 by Lemma 6.19. The result follows from Lemma 6.17
with ` = (k + 1) · 22(k+1)2 .

Iterated application of Lemma 6.20 proves the following theorem.

Theorem 6.21 ([114]). There is a function f such that for every graph G and every
(6 d)-subdivision H of G,

π(G) 6 f(π(H), d).

Theorem 6.21 can be interpreted as follows. For each fixed integer c > 3, let fc(G)
be the minimum integer k such that π(G′) 6 c for some (6 k)-subdivision G′ of G. The
results discussed at the start of this section show that fc is well-defined. For c > 5,
Theorem 6.11 shows that fc(G) 6 O(log π(G)) for every graph G. Theorem 6.21 shows
that a converse also holds. That is, for each integer c > 5, the parameters fc and π are
tied.

Open Problem 6.22. Does every nonrepetitively k-colourable subdivision of a graph G
have an edge subdivided at least c logk π(G) times, for some absolute constant c > 0?

The results in the next section give an affirmative answer to this question for complete
graphs, and indeed for any graph G with π(G) > c|V (G)|.
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6.4 Subdivisions of Dense Graphs

Nešetřil et al. [114] proved the following generalisation of Proposition 2.2 in the case of
complete graphs. The same proof works for all graphs.

Lemma 6.23. For every (6 d)-subdivision G′ of a graph G,

|E(G)| 6 2π(G′)d+1(|V (G)| − π(G′)+1
2

).

Moreover,
|E(G)| 6 π(G(d))d+1(|V (G)| − π(G(d))+1

2
).

Lemma 6.23 is implied by the following stronger result. This strengthening will be
useful in Section 7.

Lemma 6.24. Let G′ be a (6 d)-subdivision a graph G. Assume that G′ is c-colourable
with no repetitively coloured paths on at most 4d+ 4 vertices. Then

|E(G)| 6 2cd+1(|V (G)| − c+1
2

).

Moreover, if G′ = G(d) then

|E(G)| 6 cd+1(|V (G)| − c+1
2

).

Proof. Arbitrarily orient each edge of G. Let A(G) be the resulting set of arcs of G. Let
φ be a c-colouring of G′ with colour-set {1, . . . , c} and with no repetitively coloured paths
on at most 4d + 4 vertices. Let Vi be the set of vertices in G coloured i. For each arc
e = vw ∈ A(G), if e1, . . . , ed is the sequence of division vertices on e from v to w, then let
f(e) := (φ(e1), . . . , φ(ed)). Let Z := {f(e) : e ∈ A(G)}. Note that

|Z| 6
d∑
i=0

ci =
cd+1 − 1

c− 1
< 2cd.

Moreover, if G′ = G(d) then |Z| 6 cd.
For i, j ∈ {1, . . . , c} and z ∈ {1, . . . , c}d, let Gi,j,z be the subgraph of G with V (Gi,j,z) :=

Vi ∪ Vj and E(Gi,j,k) := {vw ∈ E(G) : v ∈ Vi, w ∈ Vj, f(vw) = z}. Note that possibly
i = j. We now bound the number of edges in each Gi,j,z.

First suppose that Gi,j,z contains a directed path (u, v, w). Let α := uv and β :=
vw. Thus f(α) = f(β) = z, and α and β are both subdivided d′ times, for some
d′ ∈ {0, 1, . . . , d}. Moreover, φ(u) = φ(v) and φ(αi) = φ(βi) for each i ∈ {1, . . . , d′}.
Thus (u, α1, . . . , αd′ , v, β1, . . . , βd′) is a repetitively coloured path in G′ on 2d′ + 2 6 4d+ 4
vertices, as illustrated in Figure 4(a). This contradiction shows that Gi,j,z contains no
2-edge directed path.

Let Gi,j,z be the undirected graph underlying Gi,j,z. Suppose that Gi,j,z contains a
cycle C = (v1, v2, . . . , vk) for some k > 3. Each edge of C is subdivided d′ times, for some
d′ ∈ {0, 1, . . . , d}. Since Gi,j,z contains no 2-edge directed path, without loss of generality,
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(a)

(b)

Figure 4: Illustration for Lemma 6.23.

the edges of C are oriented v1v2, v3v4, v5v6, . . . and v3v2, v5v4, v7v6, . . . . Thus k > 4. By
construction, i = φ(v1) = φ(v3) = · · · and j = φ(v2) = φ(v4) = · · · . Let α := v1v2 and
β := v3v2 and γ := v3v4 and δ := v5v4. By construction φ(αi) = φ(βd′+1−i) = φ(γi) =
φ(δd′+1−i) for each i ∈ {1, . . . , k}. Thus

(v1, α1, α2, . . . , αd′ , v2, βd′ , βd′−1, . . . , β1, v3, γ1, γ2, . . . , γd′ , v4, δd′ , δd′−1, . . . , δ1)

is a repetitively coloured path in G′ on 4d′+4 6 4d+4 vertices, as illustrated in Figure 4(b).
This contradiction shows that Gi,j,z is acyclic. Thus |E(Gi,j,z)| 6 |Vi|+ |Vj| − 1. Hence

|E(G)| 6
∑

i,j∈{1,...,c}

|Z|(|Vi|+ |Vj| − 1) =|Z|

−c(c+ 1)

2
+
∑

i∈{1,...,c}

c|Vi|


=c |Z|

(
|V (G)| − c+ 1

2

)
.

The result follows by the above bounds on |Z|.

Lemma 6.1(c) and Lemma 6.23 imply:

Lemma 6.25. For every graph G and integer d > 0, if G′ is any (6 d)-subdivision of G,
then

π(G′) >

(
|E(G)|
|V (G)| − 1

)1/(d+1)

− 3.

6.5 Complete Graphs

Theorem 6.21 with G = Kn implies that there is a function f such that for every (6 d)-
subdivision H of Kn,

π(H) > f(n, d),

and limn→∞ f(n, d) =∞ for all fixed d. Nešetřil et al. [114] obtained reasonable bounds
on f , and indeed, for fixed d > 2, determined π(K

(d)
n ) up to a constant factor.
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Lemma 6.26 ([114]). Let A > 1 and B > 2 and d > 2 be integers. If n 6 A ·Bd then

π(K(d)
n ) 6 A+ 8B.

Proof. Let (c1, . . . , cd) be a nonrepetitive sequence such that c1 = 0 and {c2, c3, . . . , cd} ⊆
{1, 2, 3}. Let � be a total ordering of the original vertices of K(d)

n . Since n 6 A ·Bd, the
original vertices of K(d)

n can be injectively labelled

{v = 〈v0, v1, . . . , vd〉 : 1 6 v0 6 A, 1 6 vi 6 B, 1 6 i 6 d}.

Colour each original vertex v by col(v) := v0. Consider original vertices v and w with
v ≺ w. If (v, r1, r2, . . . , rd, w) is the transition from v to w, then for i ∈ [1, d], colour the
division vertex ri by

col(ri) := (δ(vi, wi), ci, vi),

where δ(a, b) is the indicator function of a = b. We say this transition is rooted at v.
Observe that the number of colours is at most A+ 2 · 4 ·B = A+ 8B.

Every transition is coloured(
x0, (δ1, c1, x1), (δ2, c2, x2), . . . , (δd, cd, xd), xd+1

)
for some x0, xd+1 ∈ [1, A] and x1, . . . , xd ∈ [1, B] and δ1, . . . , δd ∈ {true, false}. Every such
transition is rooted at the original vertex 〈x0, x1, . . . , xd〉. That is, the colours assigned to
a transition determine its root.

Suppose on the contrary that P = (a1, . . . , a2s) is a repetitively coloured path in K(d)
n .

Since every original vertex receives a distinct colour from every division vertex, for all
i ∈ [s], ai is an original vertex if and only if ai+s is an original vertex, and ai is a division
vertex if and only if ai+s is a division vertex.

By construction, every transition is coloured nonrepetitively. Thus P contains at
least one original vertex, implying {a1, . . . , as} contains at least one original vertex. If
{a1, . . . , as} contains at least two original vertices, then {a1, . . . , as} contains a transition
(ai, . . . , ai+d+1), implying (as+i, . . . , as+i+d+1) is another transition receiving the same tuple
of colours. Thus (ai, . . . , ai+d+1) and (as+i, . . . , as+i+d+1) are rooted at the same original
vertex, implying P is not a path.

Now assume there is exactly one original vertex ai in {a1, . . . , as}. Thus as+i is the only
original vertex in {as+1, . . . , a2s}. Hence (ai, . . . , as+i) is a transition, implying s = d+ 1.
Without loss of generality, ai ≺ as+i and this transition is rooted at ai.

Let v := ai and w := as+i. For j ∈ [1, d], the vertex ai+j is the j-th vertex in the
transition from v to w, and is thus coloured (δ(vj, wj), cj, vj).

Suppose that i 6 s− 1. Let x be the original vertex such that the transition between
w and x contains {as+i+1, . . . , a2s}. Now

col(as+i+1) = col(ai+1) = (δ(v1, w1), c1, v1).

Since c1 6= cd, we have w ≺ x. For j ∈ [1, s− i], the vertex as+i+j is the j-th vertex in the
transition from w to x, and thus

(δ(wj, xj), cj, wj) = col(as+i+j) = col(ai+j) = (δ(vj, wj), cj, vj).
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In particular, vj = wj for all j ∈ [1, s − i]. Note that if i = s then this conclusion is
vacuously true.

Now suppose that i > 2. Let u be the original vertex such that the transition between
u and v contains {a1, . . . , ai−1}. Now

col(ai−1) = col(as+i−1) = (δ(vd, wd), cd, vd).

Since cd 6= c1, we have u ≺ v. For j ∈ [s− i+ 1, d], the vertex ai+j−s is the j-th vertex in
the transition from u to v, and thus

(δ(uj, vj), cj, uj) = col(ai+j−s) = col(ai+j) = (δ(vj, wj), cj, vj).

In particular, vj = uj and δ(vj, wj) = δ(uj, vj). Thus vj = wj for all j ∈ [s− i+ 1, d]. Note
that if i = 1 then this conclusion is vacuously true.

Hence vj = wj for all j ∈ [1, d]. Now v is coloured v0, and w is coloured w0. Since
v = ai and w = as+i receive the same colour, v0 = w0. Therefore vj = wj for all j ∈ [0, d].
That is, v = w, which is the desired contradiction.

Therefore there is no repetitively coloured path in K(d)
n .

Theorem 6.27 ([114]). For d > 2,(n
2

)1/(d+1)

6 π(K(d)
n ) 6 9dn1/(d+1)e.

Proof. The lower bound follows from Lemma 6.23. The upper bound is Lemma 6.26 with
B = (n/8)1/(d+1) and A = 8B.

As mentioned earlier, Nešetřil et al. [114] showed that for a O(1)-colourable subdivision
of Kn, Θ(log n) division vertices per edge is best possible.

Theorem 6.28. For every n ∈ N, the (1 + 2dlog1.301759 ne)-subdivision of Kn has a
nonrepetitive 5-colouring. Conversely, if H is a subdivision of Kn and π(H) 6 c then some
edge of Kn is subdivided at least logc+3(n

2
)− 1 times.

Proof. The upper bound follows from Theorem 6.11. For the lower bound, suppose that
H is a (6 d)-subdivision of Kn and π(H) 6 c. By Lemma 6.25, (n

2
)1/(d+1)− 3 6 π(H) 6 c.

That is, logc+3
n
2
− 1 6 d. Hence some edge of H is subdivided at least logc+3(

n
2
) − 1

times.

Now consider nonrepetitive colourings of the 1-subdivision of Kn. Nešetřil et al. [114]
proved the following upper bound6.

Proposition 6.29 ([114]). For every n ∈ N,

π(K(1)
n ) 6 5

2
n2/3 +O(n1/3).

6The proof of Proposition 6.29 corrects an error in the proof in [114].
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Proof. Let N := dn1/3e. In K ′N3 , let {〈i, k〉 : 1 6 i 6 N2, 1 6 k 6 N} be the original
vertices, and let 〈i, k; j, `〉 be the division vertex having 〈i, k〉 and 〈j, `〉 as its neighbours.

Colour each original vertex 〈i, j〉 by Ai. Colour each division vertex 〈i, k; j, `〉 by Bk,`

if i < j. Colour each division vertex 〈i, k; i, `〉 by Ck,` where k < `.
Suppose that PQ is a repetitively coloured path. Since original and division vertices

are assigned distinct colours, |P | is even.
First suppose that |P | > 4. Then P contains some transition T . Observe that each

transition is uniquely identified by the three colours that it receives. In particular, the only
transition coloured AiBk,`Aj with i < j is 〈i, k〉〈i, k; j, `〉〈j, `〉. And the only transition
coloured AiCk,`Ai is 〈i, k〉〈i, k; i, `〉〈i, `〉. Thus T is repeated in Q, which is a contradiction.

Otherwise |P | = 2. Thus PQ is coloured AiCk,`AiCk,` for some k < `. But the only
edges coloured AiCk,` are the two edges in the transition 〈i, k〉〈i, k; i, `〉〈i, `〉, which again
is a contradiction

Hence there is no repetitively coloured path. The number of colours is N2 +N2 +
(
N
2

)
6

5
2
N2 6 5

2
n2/3 +O(n1/3).

Open Problem 6.30. What is π(K
(1)
n )? Lemma 6.23 and Proposition 6.29 imply (n

2
)1/2 6

π(K
(1)
n ) 6 O(n2/3). The slightly better lower bound π(K

(1)
n ) >

√
n follows from the

previously mentioned lower bound π(K
(1)
n ) > χs(K

(1)
n ) >

√
n by Wood [149]. The best

known upper bound is O(n2/3) in Proposition 6.29.

Open Problem 6.31 ([49]). Is there a function f such that π(G/M) 6 f(π(G)) for every
graph G and for every matching M of G, where G/M denotes the graph obtained from
G by contracting the edges in M? This would generalise the results in Section 6.3 about
subdivisions (when each edge in M has one endpoint of degree 2).

7 Bounded Expansion

Nešetřil and Ossona de Mendez [113] introduced the notion of bounded expansion graph
classes as a robust measure of graph sparsity. The main result in this section is that graphs
with bounded nonrepetitive chromatic number have bounded expansion, as proved by
Nešetřil, Ossona de Mendez, and Wood [114].

For r ∈ N, a graph H is an r-shallow minor of a graph G if there is a set X of pairwise
disjoint connected induced subgraphs of G, each with radius at most r, such that H is
isomorphic to a subgraph of the graph obtained from G by contracting each subgraph in
X into a vertex. For a graph G, Nešetřil and Ossona de Mendez [113] defined ∇r(G) to
be the maximum, taken over all r-shallow minors H of G, of the average degree of H.

A graph class G has bounded expansion with bounding function f if ∇r(G) 6 f(r) for
each G ∈ G and r ∈ N. We say G has linear expansion if, for some constant c, for all
r ∈ N, every graph G ∈ G satisfies ∇r(G) 6 cr. Similarly, G has polynomial expansion if,
for some constant c, for all r ∈ N, every graph G ∈ G satisfies ∇r(G) 6 crc. For example,
when f(r) is a constant, G is contained in a proper minor-closed class. As f(r) is allowed
to grow with r we obtain larger and larger graph classes.
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Bounded expansion classes can be characterised by excluded subdivisions. A rational
number r is a half-integer if 2r is an integer. For a half-integer r, a graph H is an r-shallow
topological minor of a graph G if a (6 2r)-subdivision of H is a subgraph of G. Nešetřil
and Ossona de Mendez [113] defined ∇̃r(G) to be the maximum of |E(H)|

|V (H)| taken over all
r-shallow topological minors H in G.

Now add nonrepetitive chromatic number into the picture. Consider a graph G.
By definition, some subgraph G′ of G is a (6 2r)-subdivision of some graph H with
|E(H)|
|V (H)| = ∇̃r(G). By Lemma 6.23,

|E(H)| 6 2π(G′)2r+1(|V (H)| − c+1
2

) < 2π(G′)2r+1|V (H)|.

Since G′ is a subgraph of G, we have π(G′) 6 π(G). Thus

∇̃r(G) =
|E(H)|
|V (H)|

< 2π(G′)2r+1 6 2π(G)2r+1. (10)

It follows from a result of Dvořák [55] that ∇r(G) and ∇̃r(G) are equivalent in the sense
that

∇̃r(G) 6 ∇r(G) 6 4(4∇̃r(G))(r+1)2 . (11)

Equations (10) and (11) imply:

∇r(G) 6 4(8π(G)2r+1)(r+1)2 .

This implies the following theorem:

Theorem 7.1 ([114]). For each c ∈ N the class of graphs {G : π(G) 6 c} has bounded
expansion.

Nešetřil et al. [114] actually proved a stronger result that we now present. The idea
originates in a notion of Dujmović and Wood [54], who defined a graph parameter α
to be topological if for some function f , every graph G satisfies α(G) 6 f(α(G(1))) and
α(G(1)) 6 f(α(G)), where G(1) is the 1-subdivision of G. For instance, tree-width and
genus are topological, but chromatic number is not. Sightly more generally, Nešetřil
et al. [114] defined a graph parameter α to be strongly topological if for some function
f , for every graph G and every (6 1)-subdivision H of G, we have α(G) 6 f(α(H)) and
α(H) 6 f(α(G)). Lemmas 6.1 and 6.20(a) imply:

Theorem 7.2 ([114]). π is strongly topological.

Nešetřil et al. [114] characterised bounded expansion classes as follows, where a graph
parameter α is monotone if α(H) 6 α(G) for every subgraph H of G, and α is degree-bound
if for some function f , every graph G has a vertex of degree at most f(α(G)).

Lemma 7.3 ([114]). A graph class C has bounded expansion if and only if there exists a
strongly topological, monotone, degree-bound graph parameter α and a constant c such that
C ⊆ {G : α(G) 6 c}.
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By definition, π is a monotone graph parameter. By Proposition 2.2, every graph G has
a vertex of degree at most 2π(G)− 2, implying that π is degree-bound. Thus Lemma 7.3
is applicable with C = {G : π(G) 6 c} where α is nonrepetitive chromatic number itself.
In particular, Lemma 7.3 implies Theorem 7.1.

The following well-known folklore theorem takes this result further, and actually
characterises bounded expansion classes in terms of nonrepetitive colourings.

Theorem 7.4. A graph class G has bounded expansion if and only if there is a function f
such that for every graph G ∈ G and every k ∈ N, there is an f(k)-colouring of G with no
repetitively coloured path on at most 2k vertices.

Proof. The following definition is useful for the proof. A coloring of a graph G is p-centred
if for every connected subgraph H of G, some color appears exactly once in H or H is
assigned at least p colours. Let χp(G) be the minimum number of colours in a p-centred
colouring of G.

(=⇒) (This direction is similar to a result of Grytczuk [69] about weak colouring
numbers and a result of Yang [151] about transitive fraternal augmentations.) Let G be a
graph class with bounded expansion. Nešetřil and Ossona de Mendez [113] proved that
G has bounded χp for every p ∈ N. That is, there exists a function f (depending on the
expansion function of G) such that χp(G) 6 f(p) for every graph G ∈ G. Consider a
(k + 1)-centred colouring φ of a graph G ∈ G with at most f(k + 1) colours. Let P be
a path in G on at most 2k vertices. If P is repetitively coloured by φ, then no colour
appears exactly once in P , implying that P is assigned at least k + 1 colours, which is
impossible for a repetitively coloured path on at most 2k vertices. Thus paths with at
most 2k vertices in G are nonrepetitiely coloured.

(⇐=) Let G be a graph class and let f be a function such that for every graph G ∈ G
and every k ∈ N, there is an f(k)-colouring of G with no repetitively coloured path on
at most 2k vertices. To show that ∇̃r(G) is bounded for G ∈ G, we use the argument at
the start of this section. By definition, some subgraph G′ of G is a (6 2r)-subdivision
of some graph H with |E(H)|

|V (H)| = ∇̃r(G). Let k := 4r + 2. By assumption, there is an
f(k)-colouring of G with no repetitively coloured path on at most 2k vertices. The same
property holds for the subgraph G′ of G. By Lemma 6.24 with d = 2r and 4d+ 4 = 2k,
we have ∇̃r(G) = |E(H)|

|V (H)| < 2f(k)2r+1. By (11), ∇r(G) 6 4(8f(k))2r+1)(r+1)2 , which is a
function of r. Hence G has bounded expansion.

Many graph classes with bounded expansion also have bounded nonrepetitive chromatic
number (such as planar graphs, graphs excluding a fixed minor, graphs excluding a fixed
subdivision, (g, k)-planar graphs, etc.) The following open problem is probably the most
important direction for future research on nonrepetitive colourings.

Open Problem 7.5. Do graphs of linear / polynomial / single exponential expansion
have bounded nonrepetitive chromatic number? Single exponential expansion would be
best possible here, since by Theorem 6.28, the o(log n)-subdivision of Kn has unbounded π.
It is even possible that if a graph class C has bounded expansion with expansion function
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f(r), then for some constant c, every graph G ∈ C satisfies

π(G) 6 c sup
r
f(r)2/r (12)

Note that graphs G with maximum degree ∆ have bounded expansion with expansion
function f(r) 6 ∆r. So if (12) holds, then π(G) 6 c supr ∆2, implying (3). This is the
reason for the 2 in (12). This question is highly speculative. Whether graphs with linear
or polynomial expansion have bounded π is already a challenging question. Note that (12)
was jointly formulated with Gwenaël Joret.
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bounding function, 66

cartesian product, 6
p-centred, 68
choice-number, 6
choosability, 6
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chordal, 34
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colouring, 4
L-colouring, 6
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T -decomposition, 34
d-degenerate, 9
degree-bound, 67
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direct product, 7
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Dyck word, 20

graph parameter, 7

half-integer, 67

layering, 12
lazy path, 12
lazy stroll, 11
lazy walk, 10
linear expansion, 66
list chromatic number, 6
list-assignment, 6
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(g, d)-map graph, 48
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nonrepetitive choice-number, 6
nonrepetitive chromatic number, 4
nonrepetitively k-choosable, 6
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polynomial expansion, 66
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φ-repetitive, 4
repetitively coloured by φ, 4
k-rich, 44
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shadow-complete, 12
r-shallow minor, 66
r-shallow topological minor, 67
square, 9
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star colouring, 4
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stroll-nonrepetitive, 5
stroll-nonrepetitive chromatic number, 5
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strongly nonrepetitive, 11
strongly topological, 67
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total Thue coloring, 32
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