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Abstract

A graph labeling is an assignment of integers to the vertices or edges, or both,
subject to certain conditions. Graph labelings were first introduced in the mid-
1960s. In the intervening years over 350 graph labelings techniques have been stud-
ied in over 3600 papers. Finding out what has been done for any particular kind
of labeling and keeping up with new discoveries is difficult because of the sheer
number of papers and because many of the papers have appeared in journals that
are not widely available. In this survey, I have collected everything I could find on
graph labeling. For the convenience of the reader, the survey includes a detailed
table of contents and index. This edition has 55 additional pages and 308 new ref-
erences that are identified with the reference number and the word “new” in the
right margin.
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1 Introduction

Most graph labeling methods trace their origin to one introduced by Rosa [2648] in 1967,
or one given by Graham and Sloane [1147] in 1980. Rosa [2648] called a function f a
B-valuation of a graph G with ¢ edges if f is an injection from the vertices of G to the set
{0,1,..., ¢} such that, when each edge zy is assigned the label | f(z) — f(y)|, the resulting
edge labels are distinct. Golomb [1115] subsequently called such labelings graceful and
this is now the popular term. Alternatively, Buratti, Rinaldi, and Traetta [631] define
a graph G with ¢ edges to be graceful if there is an injection f from the vertices of G
to the set {0,1,...,¢} such that every possible difference of the vertex labels of all the
edges is the set {1,2,...,¢}. Rosa introduced S-valuations as well as a number of other
labelings as tools for decomposing the complete graph into isomorphic subgraphs. In
particular, S-valuations originated as a means of attacking the conjecture of Ringel [2625]
that K5, can be decomposed into 2n+1 subgraphs that are all isomorphic to a given tree
with n edges. Independently, Keevash and Staden [1688] in April 2020 and Montgomery,
Pokrovskiy, and Sudakov [2188] in January in 2021 proved Ringel’s 1963 conjecture that
any tree with n edges packs 2n + 1 times into the complete graph Ky, .; for large n.
Keevash and Staden used an embedding algorithm in which the various subroutines are
analyzed by a wide range of methods, some of which are adaptations of existing methods
whereas, Montgomery et al. used probabilistic methods. Although an unpublished result
of Erdés says that most graphs are not graceful (see [1147]), most graphs that have some
sort of regularity of structure are graceful. Sheppard [2882] has shown that there are
exactly ¢! gracefully labeled graphs with ¢ edges. Rosa [2648] has identified essentially
three reasons why a graph fails to be graceful: (1) G has “too many vertices” and “not
enough edges,” (2) G “has too many edges,” and (3) G “has the wrong parity.” The
disjoint union of trees is a case where there are too many vertices for the number of edges.
An infinite class of graphs that are not graceful for the second reason is given in [562].
As an example of the third condition Rosa [2648] has shown that if every vertex has even
degree and the number of edges is congruent to 1 or 2 (mod 4) then the graph is not
graceful. In particular, the cycles Cy, 41 and Cy, o are not graceful. Knuth [1707] has
observed the more general condition that in any graceful labeling of a graph with the
number of edges congruent to 1 or 2 (mod 4), the number of vertices with an odd degree
and an odd label is always odd. Knuth [1707] proved by way a computer search that all
cubic graphs on 4,6, 8,10, 12, or 14 vertices, except 2K, and 3K, which was proved by
Kotzig, are graceful. He conjectures that that every connected cubic graph is graceful.
It has been known since 1975 [548] that rooted symmetric trees are graceful. However,
the proofs that have been presented for this fact are either indirect inductive proofs or
algorithmic descriptive proofs showing the many separate steps involved in labelling the
vertices. In 2021 Rofa [2639] provided a graceful labeling for any given rooted symmetric
tree in the form of a direct algebraic function that algebraically maps each vertex to a
unique label. The function is a generalization of the way a path is canonically gracefully
labeled as algorithmically described by Rosa in his 1967 classic paper [2648]. Rofa uses
his function to show that a class of rooted symmetric trees that contains the class of

(S8
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binomial trees has weakly a-labeling (see Section 3.1) and it can provide a concise prac-
tical, computational way of producing graceful labelings of large rooted symmetric trees
in relatively minimal time.

Acharya [27] proved that every graph can be embedded as an induced subgraph of
a graceful graph and a connected graph can be embedded as an induced subgraph of a
graceful connected graph. Acharya, Rao, and Arumugam [47] proved: every triangle-
free graph can be embedded as an induced subgraph of a triangle-free graceful graph;
every planar graph can be embedded as an induced subgraph of a planar graceful graph;
and every tree can be embedded as an induced subgraph of a graceful tree. Sethuraman,
Ragukumar, and Slater [2829] show that every tree can be embedded in a graceful tree (see
also [2828]) and pose a related open problem toward settling the Graceful Tree Conjecture.
Rao and Sahoo [2593] proved that every connected graph can be embedded as an induced
subgraph of an Eulerian graceful graph thereby answering a question originally posed by
Rao and mentioned by Acharya and Arumugum in [33]. As a consequence they deduce
that the problems on deciding whether the chromatic of a graph number is less than or
equal to k, for k£ > 3, and deciding whether the clique number of a graph is greater than
or equal to k, for k > 3 are NP-complete even for Eulerian graceful graphs.

Sethuraman and Ragukumar [2827] provided an algorithm that generates a graceful
tree from a given arbitrary tree by adding a sequence of new pendent edges to the given
arbitrary tree thereby proving that every tree is a subtree of a graceful tree. They ask
the question: If G is a graceful tree and v is any vertex of G of degree 1, is it true that
G — v is graceful? If the answer is affirmative, then those additional edges of the input
arbitrary tree T" introduced for constructing the graceful tree T' by their algorithm could
be deleted in some order so that the given arbitrary tree T' becomes graceful. This would
imply that the Graceful Tree Conjecture is true. These results demonstrate that there is
no forbidden subgraph characterization of these particular kinds of graceful graphs.

Harmonious graphs naturally arose in the study by Graham and Sloane [1147] of
modular versions of additive bases problems stemming from error-correcting codes. They
defined a graph G with ¢ edges to be harmonious if there is an injection f from the
vertices of G to the group of integers modulo ¢ such that when each edge zy is assigned
the label f(z) + f(y) (mod ¢), the resulting edge labels are distinct. When G is a tree,
exactly one label may be used on two vertices. They proved that almost all graphs are not
harmonious. Analogous to the “parity” necessity condition for graceful graphs, Graham
and Sloane proved that if a harmonious graph has an even number of edges ¢ and the
degree of every vertex is divisible by 2* then ¢ is divisible by 2¥*!. Thus, for example, a
book with seven pages (i.e., the cartesian product of the complete bipartite graph K 7
and a path of length 1) is not harmonious. Liu and Zhang [1964] have generalized this
condition as follows: if a harmonious graph with ¢ edges has degree sequence d;, ds, ..., d,
then ged(dy, ds, ... dy, q) divides ¢(¢ — 1)/2. They have also proved that every graph is
a subgraph of a harmonious graph. More generally, Sethuraman and Elumalai [2812]
have shown that any given set of graphs Gy, G, ..., G; can be embedded in a graceful or
harmonious graph. Determining whether a graph has a harmonious labeling was shown
to be NP-complete by Auparajita, Dulawat, and Rathore in 2001 (see [1758]).
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In the early 1980s Bloom and Hsu [577], [578],[551], [579], [649] extended graceful
labelings to directed graphs by defining a graceful labeling on a directed graph D(V, E)
as a one-to-one map 6 from V to {0,1,2,...,|E|} such that 6(y) — 6(z) mod (|E| + 1)
is distinct for every edge xy in E. Graceful labelings of directed graphs also arose in the
characterization of finite neofields by Hsu and Keedwell [1264], [1265]. Graceful labelings
of directed graphs was the subject of Marr’s 2007 Ph.D. dissertation [2093]. In [2093]
and [2094] Marr presents results of graceful labelings of directed paths, stars, wheels, and
umbrellas. Hegde and Kumudakshi [1221] we use complete mappings to construct graceful [1221] new
labelings of two directed cycles. Siginbate and Feng [2988] proved that the disjoint union
of three copies of a directed cycle of fixed even length is graceful.

Over the past five decades in excess of 3,000 papers have spawned a bewildering
array of graph labeling methods. Despite the unabated procession of papers, there are
few general results on graph labelings. Indeed, the papers focus on particular classes
of graphs and methods, and feature ad hoc arguments. In part because many of the
papers have appeared in journals not widely available, frequently the same classes of
graphs have been done by several authors and in some cases the same terminology is used
for different concepts. In this article, we survey what is known about numerous graph
labeling methods. The author requests that he be sent preprints and reprints as well as
corrections for inclusion in the updated versions of the survey.

Earlier surveys, restricted to one or two labeling methods, include [544], [573], [1717],
[1002], and [1004]. In [2938] Shivarajkumar, Sriraj, and Hegde provided a 2021 survey ar-
ticle graceful labeling of digraphs. The book edited by Acharya, Arumugam, and Rosa [32]
includes a variety of labeling methods that we do not discuss in this survey. In 2002 Eshghi
[902] wrote a 65 page paper providing an introduction to graceful graphs. The relationship
between graceful digraphs and a variety of algebraic structures including cyclic difference
sets, sequenceable groups, generalized complete mappings, near-complete mappings, and
neofields is discussed in [577] and [578]. The connection between graceful labelings and
perfect systems of difference sets is given in [547]. The computational complexity of the
gracefulness of a graph is not known, but the complexity of finding a harmonious labeling
of a graph is in the NP-class [176]. Labeled graphs serve as useful models for a broad range
of applications such as: coding theory, x-ray crystallography, radar, astronomy, circuit de-
sign, communication network addressing, data base management, secret sharing schemes,
cryptology, models for constraint programming over finite domains, [574], [575], [3165],
[2529], [3007], [3008], [222], [221], [288], [2995], [2131], and network passwords—see [3424],
[3132], [3423], [3425], [2723], [3207], [3583], [802] and [1101] for details. Applications of

graph labelings to encryption and decryption schemes are given in [196], [197], [121], and [196] new
[196]. According to Wang, B. Yao, and M. Yao [3427], graph labelings are used for in- [197) new
corporating redundancy in disks, designing drilling machines, creating layouts for circuit

boards, and configuring resistor networks. In [1262] Hsieh, Chen, Jiang, Liaw, and Shin [121] new
use graph labelings in algorithms for image processing schemes for monitoring air quality. [196] new

Zhang, Ye, Zhang, and Yao [3582] investigated the use of graph colorings and graph la-
belings for designing topological passwords that resist attacks. Sivakumar, Vidyanandini,
Sreedevi, Nayak, and Bhoi [2991] demonstrated how the notion of total edge irregularity
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strength of complete tripartite graphs can be used in anti-theft networks. Nithya and
Anitha [2281] investigated how graph labelings can be applied to the study of computer
networks.

Terms and notation not defined below follow that used in [684] and [1002].

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 8



2 Graceful and Harmonious Labelings

2.1 Trees

The Ringel-Kotzig conjecture (GTC) that all trees are graceful has been the focus of many
papers. Kotzig [1268] has called the effort to prove it a “disease.” Among the trees known
to be graceful are: caterpillars [2648] (a caterpillar is a tree with the property that the
removal of its endpoints leaves a path); trees with at most 4 end-vertices [1268], [3590]
and [1546]; trees with diameter at most 5 [3590] and [1259]; symmetrical trees (i.e., a
rooted tree in which every level contains vertices of the same degree) [548], [2401], [2705];
rooted trees where the roots have odd degree and the lengths of the paths from the root
to the leaves differ by at most one and all the internal vertices have the same parity [648];
rooted trees with diameter D where every vertex has even degree except for one root and
the leaves in level | D/2| [411]; rooted trees with diameter D where every vertex has even
degree except for one root and the leaves, which are in level |D /2] [411]; rooted trees
with diameter D where every vertex has even degree except for one root, the vertices in
level |D/2| — 1, and the leaves which are in level |D/2| [411]; the graph obtained by
identifying the endpoints any number of paths of a fixed length except for the case that
the length has the form 4r + 1, r > 1 and the number of paths is of the form 4m with
m > r [2736]; regular bamboo trees [2736] (a rooted tree consisting of branches of equal
length the endpoints of which are identified with end points of stars of equal size); and
olive trees [2355], [13] (a rooted tree consisting of k branches, where the ith branch is
a path of length 7); Bahls, Lake, and Wertheim [393] proved that spiders for which the
lengths of every path from the center to a leaf differ by at most one are graceful. (A
spider is a tree that has at most one vertex (called the center) of degree greater than 2.)
Jampachon, Nakprasit, and Poomsa-ard [1353] provide graceful labelings for some classes
of spiders. Panpa and Poomsa-ard [2335] showed that all spider graphs with at most four
legs of lengths greater than one admit graceful labeling. In [2163], [2164], [2328], [2165],
and [2160] Panda and Mishra and Panda, Mishra, and Dash give graceful labelings for
some new classes of trees with diameter six. Pradhan and Kumar [2482] proved that all
combs P, ® K; with perfect matching are graceful. In [3339] Varadhan and Guruswamy
give a method for combining caterpillars in a specific way such that the resulting tree is
graceful. Venkateshl and Balasubramanian [3374] also create graceful trees by recursively
merging caterpillars. In 2006 Wilf and Yoshimura [3476] defined an ordering on the set
of all rooted trees of a fixed number of vertices that leads to fast ranking and unranking
algorithms. As an application to the graceful tree conjecture, they showed how their
method can eliminate repeated isomorphism testing. They investigated graphs with at
most 10 vertices. In 2022 Brankovic and Reynolds [609] published a survey of various
computer search algorithms for finding graceful labeling of trees.

In 2018 Montgomery, Pokrovskiy, and Sudakov [2187] proved that every tree is almost-
harmonious. That is, every n-vertex tree has an injective I'-harmonious labeling for any
Abelian group T of order n 4 o(n). In 2022 Gnang [1105] posted a paper with a proof on
arXiv of the Graceful Tree Conjecture. See [1106] for a newer proof by Gnang. In 2022
Gnang and Williams [1107] posted a proof on arXiv of the long standing Graham-Sloane

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 9

[1106] new



conjecture that every tree admits a harmonious labeling.

Motivated by Horton’s work [1257], in 2010 Fang [914] used a deterministic back-
tracking algorithm to prove that all trees with at most 35 vertices are graceful. In 2011
Fang [915] used a hybrid algorithm that involved probabilistic backtracking, tabu search-
ing, and constraint programming satisfaction to verify that every tree with at most 31
vertices is harmonious. In [2067] Mahmoudzadeh and Eshghi treat graceful labelings of
graphs as an optimization problem and apply an algorithm based on ant colony opti-
mization metaheuristic to different classes of graphs and compare the results with those
produced by other methods. In [3144] Suparta and Agus Ariawan provide two methods
for expanding graceful trees from certain graceful trees.

Aldred, Siran and Sirdii [148] have proved that the number of graceful labelings of
P, grows at least as fast as (5/3)". They mention that this fact has an application to
topological graph theory. One such application was provided by Goddyn, Richter, and
and Siran [1109] who used graceful labelings of paths on 2s + 1 vertices (s > 2) to obtain
225 cyclic oriented triangular embeddings of the complete graph on 12s + 7 vertices. The
Aldred, Siran and Siran bound was improved by Adamaszek [55] to (2.37)" with the aid
of a computer. Cattell [662] has shown that when finding a graceful labeling of a path
one has almost complete freedom to choose a particular label ¢ for any given vertex v. In
particular, he shows that the only cases of P, when this cannot be done are when n = 3
(mod 4) or n = 1 (mod 12), v is in the smaller of the two partite sets of vertices, and
i = (n—1)/2. In [3413] Wang enumerated the nonequivalent graceful trees and obtained
a closed formula for the number.

Using an algorithm to run through all n! graceful graphs on n + 1 vertices Anick
[213] proves that the average number of graceful labelings grows superexponentially. He
provides a simple criterion to predict which trees have an exceptionally large number of
graceful labelings and gives evidence that trees with an exceptionally small number of
graceful labelings fall into two already known families of caterpillar graphs. Over the full
set of graceful labelings for a given n, Anick shows that the distribution of vertex degrees
associated with each label is very close to Poisson, with the exception of labels 0 and n.
A graph is said to be k-ubiquitously graceful (also called “k-rotatable”) if for every vertex
there is a graceful labeling which assigns that vertex the label k. He also gives two new
families of trees that are not k-ubiquitously graceful and includes questions suggested by
his results. Pegg [2378] proved that a graceful graph with edges 0 to m can always be
constructed with the nearest integer to y/3m + 9/4 + E vertices, where the excess F is a
0 or 1 value. For m < 51, E = 0. https://oeis.org/A326499

In [903] and [904] Eshghi and Azimi discuss a programming model for finding graceful
labelings of large graphs. The computational results show that the models can easily
solve the graceful labeling problems for large graphs. They used this method to verify
that all trees with 30, 35, or 40 vertices are graceful. Stanton and Zarnke [3051] and Koh,
Rogers, and Tan [1718], [1719], [1722] gave methods for combining graceful trees to yield
larger graceful trees. In [3447] Wang, Yang, Hsu, and Cheng generalized the constructions
of Stanton and Zarnke and Koh, Rogers, and Tan for building graceful trees from two
smaller given graceful trees. Rogers in [2642] and Koh, Tan, and Rogers in [1721] provide

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 10



recursive constructions to create graceful trees. Burzio and Ferrarese [633] have shown
that the graph obtained from any graceful tree by subdividing every edge is also graceful.
and trees obtained from a graceful tree by replacing each edge with a path of fixed length
is graceful.

The binomial tree By consists of a single vertex. The binomial tree By consists of
two binomial trees Bj_; that are linked together: the root of one is the leftmost child of
the root of the other. Ragukumara and Sethuraman [2539] proved that all binomial trees
are graceful. Sethuraman and Murugan [2824] introduced a new method of combining
graceful trees called the recursive attachment method and showed that the recursively
attached tree T; = T;_; @ T4 is graceful for ¢ > 1, where the base tree Ty is a caterpillar
and the attachment tree 74! is any caterpillar. Here T, ; @ T4 represents a tree
obtained by attaching a copy of T4~ at each vertex of degree at least two in T;_;, for
i > 1. Sethuraman and Murugan [2826] proved that any acyclic graph can be embedded
in an unicyclic graceful graph.

It 1999 Broersma and Hoede [615] proved that an equivalent conjecture for the grace-
ful tree conjecture is that all trees containing a perfect matching are strongly graceful
(graceful with an extra condition also called an a-labeling—see Section 3.1). Wang, Yang,
Hsu, and Cheng [3447] showed that there exist infinitely many equivalent versions of the
graceful tree conjecture (GTC). They verify these equivalent conjectures of the graceful
tree conjecture are true for trees of diameter at most 7.

In 1979 Bermond [544] conjectured that lobsters are graceful (a lobster is a tree with
the property that the removal of the endpoints leaves a caterpillar). Morgan [2189] has
shown that all lobsters with perfect matchings are graceful. Krop [1761] proved that a
lobster that has a perfect matching that covers all but one vertex (i.e., that has an almost
perfect matching) is graceful. Ghosh [1096] used adjacency matrices to prove that three
classes of lobsters are graceful. Broersma and Hoede [615] proved that if 7" is a tree with
a perfect matching M of T such that the tree obtained from T' by contracting the edges
in M is caterpillar, then T is graceful. Superdock [3147] used this result to prove that
all lobsters with a perfect matching are graceful. Mishra, Panda, and Dash [2160] gave a
class of graceful lobsters with an even number of branches incident on the central path.
They also provided graceful labelings for a family of lobsters in which one end vertex of
the central path is attached to an even number of branches and the remaining vertices
are attached to the combinations of branches. Mishra and Panda [2158] and [2162],
Mishra and Bhattacharjee [2157], and Mishra, Rout, and Nayak [2161] gave graceful
labeling for a general classes of lobsters by applying component moving transformations
on graceful caterpillars. More result results on graceful labeling of lobsters are in [2159].
Sathiamoorthy, Natarajan, Ayyaswamy, and Janakiraman [2722] proved that the splitting
graph of a caterpillar is graceful.

A Skolem sequence of order n is a sequence sy, Sa, . . ., Sa, of 2n terms such that, for each
k€ {1,2,...,n}, there exist exactly two subscripts i(k) and j(k) with s;u) = sju) = k
and |i(k) — j(k)| = k. A Skolem sequence of order n exists if and only if n = 0 or 1
(mod 4). Morgan [2190] has used Skolem sequences to construct classes of graceful trees.
Morgan and Rees [2191] used Skolem and Hooked-Skolem sequences to generate classes
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of graceful lobsters.

Mishra and Panigrahi [2166] and [2333] found classes of graceful lobsters of diameter
at least five. They show other classes of lobsters are graceful in [2167] and [2168]. In
[2815] Sethuraman and Jesintha [2815] explores how one can generate graceful lobsters
from a graceful caterpillar while in [2819] and [2820] (see also [1379]) they show how to
generate graceful trees from a graceful star. More special cases of Bermond’s conjecture
have been done by Ng [2283], by Wang, Jin, Lu, and Zhang [3414], Abhyanker [12], and
by Mishra and Panigrahi [2167]. Renuka, Balaganesan, Selvaraju [2614] proved spider
trees with n legs of even length ¢ and odd n > 3 and lobsters for which each vertex of the
spine is adjacent to a path of length two are harmonious.

A tree in which all internal vertices have degrees r+ 1 except one, is called an full r-ary
tree. A uniform full r-ary tree is a full r-ary tree in which all of its leaves are at the same
level. A tree that is obtained from copies of a full r-ary tree by identifying each vertex
of a fixed path with each vertex of the tree of degree r is called a uniform-distant tree.
Suparta and Ariawan [3145] gave methods for constructing graceful classes of caterpillars,
lobsters, and uniform trees that generalize results in [2205] and [3236].

Barrientos [441] defines a y-tree as a graph obtained from a path by appending an
edge to a vertex of a path adjacent to an end point. He proves that graphs obtained from
a y-tree T' by replacing every edge e; of T' by a copy of K5 ,, in such a way that the ends
of e; are merged with the two independent vertices of Ks,, after removing the edge e;
from T are graceful.

Sethuraman and Jesintha [2816], [2817], and [2818] (see also [1379]) proved that rooted
trees obtained by identifying one of the end vertices adjacent to either of the penultimate
vertices of any number of caterpillars having equal diameter at least 3 with the property
that all the degrees of internal vertices of all such caterpillars have the same parity are
graceful. They also proved that rooted trees obtained by identifying either of the penul-
timate vertices of any number of caterpillars having equal diameter at least 3 with the
property that all the degrees of internal vertices of all such caterpillars have the same
parity are graceful. In [2816], [2817], and [2818] (see also [1379] and [1410]) Sethuraman
and Jesintha prove that all rooted trees in which every level contains pendent vertices and
the degrees of the internal vertices in the same level are equal are graceful. Kanetkar and
Sane [1628] show that trees formed by identifying one end vertex of each of six or fewer
paths whose lengths determine an arithmetic progression are graceful.

Chen, Lii, and Yeh [692] define a firecracker as a graph obtained from the concatenation
of stars by linking one leaf from each. They also define a banana tree as a graph obtained
by connecting a vertex v to one leaf of each of any number of stars (v is not in any of the
stars). They proved that firecrackers are graceful and conjecture that banana trees are
graceful. Before Sethuraman and Jesintha [2822] and [2821] (see also [1379]) proved that
all banana trees and extended banana trees (graphs obtained by joining a vertex to one
leaf of each of any number of stars by a path of length of at least two) are graceful, various
kinds of bananas trees had been shown to be graceful by Bhat-Nayak and Deshmukh [557],
by Murugan and Arumugam [2223], [2221] and by Vilfred [3386].

Consider a set of caterpillars, having equal diameter, in which one of the penultimate
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vertices has arbitrary degree and all the other internal vertices including the other penul-
timate vertex is of fixed even degree. Jesintha and Sethuraman [1412] call the rooted tree
obtained by merging an end-vertex adjacent to the penultimate vertex of fixed even degree
of each caterpillar a arbitrarily fived generalized banana tree. They prove that such trees
are graceful. From this it follows that all banana trees are graceful and all generalized
banana trees are graceful.

Jeba Jesintha and Subashini proved the following graphs are graceful: the cycle of
vertex switching of even cycles [1394]; the path union of vertex switching of odd cycles
[1397]; the path union of vertex switching of even cycles in increasing order [1398]; the
path union of vertex switching of odd cycles [1396] the path union of vertex switching of
even cycles [1401]; the path union of P,,0S, [1403]; and the cycle of P,,05,, [1403]. In
[1400] they prove the cycle of caterpillar trees is graceful and as a corollary the cycle of
comb graphs, cycle of paths, and the cycle of coconut trees are graceful. In [1402] Jeba
Jasintha and Subashini proved the two quadrilateral snake graphs connected by a path,
two alternate quadrilateral snake graphs connected by a path, two double quadrilateral
snake graphs connected by a path, and two alternate double quadrilateral snake graphs
connected by a path, In [1409] Jeba Jesintha, Subashini, and Rashmi Beula proved that
the series of isomorphic copies of a star graph connected between two ladder graphs is
graceful. In [1406] Jeba Jesintha, Subashini, and Sabu proved that two complete bipartite
graphs connected by an arbitrary path of length n is graceful. In [1407] Jeba Jesintha and
Subashini, and Sabu proved that the twig diamond graph with pendant edges is graceful.
In [1408] Jeba Jesintha, Subashini, and Siddiga proved that the path union of vertex
switching of odd and even cycle graphs alternately is graceful.

Zhenbin [3593] has shown that graphs obtained by starting with any number of identi-
cal stars, appending an edge to exactly one edge from each star, then joining the vertices
at which the appended edges were attached to a new vertex are graceful. He also shows
that graphs obtained by starting with any two stars, appending an edge to exactly one
edge from each star, then joining the vertices at which the appended edges were attached
to a new vertex are graceful. In [1411] Jesintha and Sethuraman use a method of Hrnciar
and Havier [1259] to generate graceful trees from a graceful star with n edges.

Aldred and McKay [147] used a computer to show that all trees with at most 26
vertices are harmonious. That caterpillars are harmonious was by Graham and Sloane
[1147]. Ramya and Meenakshi [2590] gave graceful labelings, harmonious labelings, and
Zumkeller labelings for ladders, banana trees, and firecrackers.

Vietri [3379] utilized a counting technique that generalizes Rosa’s graceful parity con-
dition and provides constraints on possible graceful labelings of certain classes of trees.
He expresses doubts about the validity of the graceful tree conjecture. In [3362] Vietri
introduced a family of homogeneous polynomials (mod 2), one for every degree, having as
many variables as the number of vertices, for any fixed graph; a so-called “graceful poly-
nomial” that vanishes (mod 2) that may be useful for proving that the related graph is
non-graceful (the degree 1 case dates back to Rosa’s work). He also classified graphs whose
graceful polynomials vanish for degrees 2 to 4, thereby obtaining some new non-graceful
graphs.
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Using a variant of the Matrix Tree Theorem, Whitty [3468] specifies an n X n matrix
of indeterminates whose determinant is a multivariate polynomial that enumerates the
gracefully labeled (n + 1)-vertex trees. Whitty also gives a bijection between gracefully
labelled graphs and rook placements on a chessboard on the Mobius strip. In [631] Buratti,
Rinaldi, and Traetta use graceful labelings of paths to obtain a result on Hamiltonian cycle
systems.

In [611] Brankovic and Wanless describe applications of graceful and graceful-like
labelings of trees to several well known combinatorial problems including complete graph
decompositions, the Oberwolfach problem, which asks for a decomposition of K, into
copies of a given 2-regular graph F', and coloring. They also discuss the connection
between a-labeling of paths and near transversals in Latin squares and show how spectral
graph theory might be used to further the progress on the graceful tree conjecture.

In [632] Burgess, Danziger, and Traetta show that Oberwolfach problem has a solution
whenever F has a sufficiently large cycle which meets a given lower bound and, in addition,
has a single-flip automorphism, which is an involutory automorphism acting as a reflection
on exactly one of the cycles of F. Furthermore, they prove analogous results for the
minimum covering version and the maximum packing version of the problem. They also
show a similar result when the edges of K, have multiplicity 2, but in this case they do not
require that F' be single-flip. Their approach allows them to explicitly construct solutions
to the Oberwolfach Problem with well-behaved automorphisms. Their constructions use
graceful labelings of 2-regular graphs with a vertex removed. They show that this class
of graphs is graceful as long as the length of the path-component is sufficiently large. A
much better lower bound on the length of the path is given for an a-labeling of such
graphs to exist.

Arkut, Arkut, and Basak [221] and Basak [288] proposed an efficient method for
managing Internet Protocol (IP) networks by using graceful labelings of the nodes of the
spanning caterpillars of the autonomous sub-networks to assign labels to the links in the
sub-networks. Graceful labelings of trees also have been used in multi protocol label
switching (MPLS) routing platforms in IP networks [222], [2992], and [3207].

Despite the efforts of many, the graceful tree conjecture remains open even for trees
with maximum degree 3. More specialized results about trees are contained in [544], [573],
[1717], [2040], [642], [1545], and [2649]. In [865] Edwards and Howard provide a lengthy
survey paper on graceful trees. Robeva [2637] provides an extensive survey of graceful la-
belings of trees in her 2011 undergraduate honors thesis at Stanford University. Alfalayleh,
Brankovic, Giggins, and Islam [149] survey results related to the graceful tree conjecture
as of 2004 and conclude with five open problems. Alfalayleh et al.: say “The faith in
the [graceful tree] conjecture is so strong that if a tree without a graceful labeling were
indeed found, then it probably would not be considered a tree.” In his Princeton Univer-
sity senior thesis Superdock [3147] provided an extensive survey of results and techniques
about graceful trees. He also obtained some specialized results about the gracefulness of
spiders and trees with diameter 6. Arumugam and Bagga [240] discuss computational
efforts aimed at verifying the graceful tree conjecture and we survey recent results on
generating all graceful labelings of certain families of unicyclic graphs. Sethuraman and
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Murugan [2825] construct a graceful unicyclic graph G from every graceful tree T" with
V(G) = V(T') such that the graceful labeling of G is derived from the graceful labeling of
T.

2.2 Cycle-Related Graphs

Cycle-related graphs have been a major focus of attention. Rosa [2648] showed that the
n-cycle C,, is graceful if and only if n = 0 or 3 (mod 4) and Graham and Sloane [1147]
proved that C, is harmonious if and only if n is odd. Wheels W,, = C,, + K; are both
graceful and harmonious — [984], [1255], and [1147]. As a consequence we have that a
subgraph of a graceful (harmonious) graph need not be graceful (harmonious). The n-
cone (also called the n-point suspension; the 1-cone is the wheel; the 2-cone is also called
a double cone of C,) Cy, + K, has been shown to be graceful when m = 0 or 3 (mod 12)
by Bhat-Nayak and Selvam [563]. When 7 is even and m is 2, 6 or 10 (mod 12) C,,, + K,
violates the parity condition for a graceful graph. Bhat-Nayak and Selvam [563] also prove
that the following cones are graceful: Cy+K,,, Cs+ Ky, Cr+K,,, Co+ Ko, Cy1 + K,, and
Cio + K,,. The helm H,, is the graph obtained from a wheel by attaching a pendent edge
at each vertex of the n-cycle. Helms have been shown to be graceful [266] and harmonious
[1104], [1976], [1977] (sce also [1964], [2802], [1962], [793], and [2555]). Koh, Rogers, Teo,
and Yap, [1720] define a web graph as one obtained by joining the pendent points of a
helm to form a cycle and then adding a single pendent edge to each vertex of this outer
cycle. They asked whether such graphs are graceful. This was proved by Kang, Liang,
Gao, and Yang [1633]. Yang has extended the notion of a web by iterating the process
of adding pendent points and joining them to form a cycle and then adding pendent
points to the new cycle. In his notation, W (2, n) is the web graph whereas W (¢, n) is the
generalized web with ¢t n-cycles. Yang has shown that W(3,n) and W (4,n) are graceful
(see [1633]), Abhyanker and Bhat-Nayak [14] have done W (5,n) and Abhyanker [12] has
done W (t,5) for 5 < t < 13. Gnanajothi [1104] has shown that webs with odd cycles are
harmonious. Seoud and Youssef [2802] define a closed helm as the graph obtained from a
helm by joining each pendent vertex to form a cycle and a flower as the graph obtained
from a helm by joining each pendent vertex to the central vertex of the helm. They prove
that closed helms and flowers are harmonious when the cycles are odd. A gear graph is
obtained from the wheel W,, by adding a vertex between every pair of adjacent vertices of
the n-cycle. In 1984 Ma and Feng [2043] proved all gears are graceful while in a Master’s
thesis in 2006 Chen [693] proved all gears are harmonious. Liu [1976] has shown that
if two or more vertices are inserted between every pair of vertices of the n-cycle of the
wheel W,,, the resulting graph is graceful. Sethuraman and Sankar [2832] showed that the
subdivisions of wheels are graceful for even values of n > 4. Liu [1974] has also proved
that the graph obtained from a gear graph by attaching one or more pendent edges to
each vertex between the vertices of the n-cycle is graceful. Pradhan and Kumar [2482]
proved that graphs obtained by adding a pendent edge to each pendent vertex of hairy
cycle C,, ® K7 are graceful if n = 0 (mod 4m). They further provide a rule for determining
the missing numbers in the graceful labeling of C,, ® K; and of the graph obtained by
adding pendent edges to each pendent vertex of C, ® Kj.
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Kumar, Mishra, Kumar, and Kumar [1774] proved the following: C, ® Ki, n = 0
(mod 4) possesses an alpha labeling with the missing number 3n/2; the one-point union
of C4, and a path possesses an alpha labeling with an identifiable missing number; and
the graphs obtained by joining two isomorphic copies of the one-ponit union of Cy, and
a path posses an alpha labeling with identifiable missing numbers.

Abhyanker [12] has investigated various unicyclic (that is, graphs with exactly one
cycle) graphs. He proved that the unicyclic graphs obtained by identifying one vertex of
C, with the root of the olive tree with 2n branches and identifying an adjacent vertex on
C, with the end point of the path P, 5 are graceful. He showed that if one attaches any
number of pendent edges to these unicyclic graphs at the vertex of Cy that is adjacent
to the root of the olive tree but not adjacent to the end vertex of the attached path, the
resulting graphs are graceful. Likewise, Abhyanker proved that the graph obtained by
deleting the branch of length 1 from an olive tree with 2n branches and identifying the
root of the edge deleted tree with a vertex of a cycle of the form Cs, 3 is graceful. He
also has a number of results similar to these. In [391] Bagga, Fotso, Max, and Arumugam
investigate the gracefulness of unicyclic graphs with pendent caterpillars at two adjacent
vertices of the cycle, and pendent edges at some other vertices of the cycle. In [392] Bagga
and Heinz give some properties of graceful graphs obtained by adding pendent edges at
each vertex of a cycle.

Delorme, Maheo, Thuillier, Koh, and Teo [798] and Ma and Feng [2042] showed that
any cycle with a chord is graceful. This was first conjectured by Bodendiek, Schumacher,
and Wegner [583], who proved various special cases. In 1985 Koh and Yap [1723] gener-
alized this by defining a cycle with a Py-chord to be a cycle with the path Py joining two
nonconsecutive vertices of the cycle. They proved that these graphs are graceful when
k = 3 and conjectured that all cycles with a Py-chord are graceful. This was proved for
k > 4 by Punnim and Pabhapote in 1987 [2531]. Chen [698] obtained the same result
except for three cases which were then handled by Gao [1165]. In 2005, Sethuraman and
Elumalai [2811] defined a cycle with parallel Py-chords as a graph obtained from a cycle
C,, (n = 6) with consecutive vertices vy, vy, . .., v,_1 by adding disjoint paths Py, (k > 3),
between each pair of nonadjacent vertices vy, v,_1,v2, Vp_2,...,V;, Vn_i,...,Va, Vg Where
a=|n/2] —1and f = [n/2] +2if nis odd or § = [n/2] + 1 if n is even. They
proved that every cycle C,, (n > 6) with parallel Py-chords is graceful for k = 3,4,6,8,
and 10 and they conjecture that the cycle C,, with parallel Py-chords is graceful for all
even k. Xu [3500] proved that all cycles with a chord are harmonious except for Cy in the
case where the distance in Cs between the endpoints of the chord is 2. The gracefulness
of cycles with consecutive chords has also been investigated. For 3 < p < n —r, let
Cy(p,r) denote the n-cycle with consecutive vertices vy, v, ..., v, to which the r chords
V1Vp, V1Upi1, - - - , V1Vpsr—1 have been added. Koh and Punnin [1712] and Koh, Rogers, Teo,
and Yap [1720] have handled the cases r = 2,3 and n — 3 where n is the length of the
cycle. Goh and Lim [1114] then proved that all remaining cases are graceful. Moreover,
Ma [2045] has shown that C,,(p, n—p) is graceful when p = 0,3 (mod 4) and Ma, Liu, and
Liu [2046] have proved other special cases of these graphs are graceful. Ma also proved
that if one adds to the graph C,,(3,n — 3) any number k; of paths of length 2 from the
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vertex v; to the vertex v; for i = 2,... n, the resulting graph is graceful. Chen [698] has
shown that apart from four exceptional cases, a graph consisting of three independent
paths joining two vertices of a cycle is graceful. This generalizes the result that a cycle
plus a chord is graceful. Liu [1973] has shown that the n-cycle with consecutive vertices
U1, Vg, - . ., Uy to which the chords vivy and vivge (2 < k < n—3) are adjoined is graceful.

For the cycle C,, : viv9vs - - - v,v1 and a cycle with a C— chord Venkatesh and Sivagu-
runathan [3376] let C), ; denote the graph obtained from C), by adding a cycle Cj of
length £ between the non-adjacent vertices v, and v,. They define a cycle with a par-
allel C chord as the graph obtained from a cycle C), by adding a cycle C} of length &
between every pair of non-adjacent vertices (va, vy,), (v3, Un—1), . . ., (Va, 0) Where a = [ 5],
b=[%]+2 ifnisevenand a = [§], b= [§] +3, if n is odd. They proved that C, 4 and
C':{’ 4 are graceful for n = 0 (mod 4) and that C; ¢ 1s graceful for all odd values of n > 5.

In [794] Deb and Limaye use the notation C'(n, k) to denote the cycle C,, with k cords
sharing a common endpoint called the apez. For certain choices of n and k there is a
unique C(n, k) graph and for other choices there is more than one graph possible. They
call these shell-type graphs and they call the unique graph C(n,n — 3) a shell. Notice
that the shell C'(n,n — 3) is the same as the fan F,, 1 = P,_; + K;. Kuppusamy and
Guruswamy [1781] show that the subdivision graph of Ks,, is graceful for n > 1 and the
subdivision graph of the shell graph C'(n,n — 3) is graceful for n > 4. Deb and Limaye
define a multiple shell to be a collection of edge disjoint shells that have their apex in
common. A multiple shell is said to be balanced with width w if every shell has order w or
every shell has order w or w+ 1. Deb and Limaye [794] have conjectured that all multiple
shells are harmonious, and have shown that the conjecture is true for the balanced double
shells and balanced triple shells. Yang, Xu, Xi, and Qiao [3527] proved the conjecture is
true for balanced quadruple shells. Liang [1938] proved the conjecture is true when each
shell has the same order and the number of copies is odd.

Jeba Jesintha and Hilda [1383] define a shell-butterfly graph as a one-point union of
two shells of any order with two pendent edges at the apex. They prove that certain
shell-butterfly graphs are harmonious. Jeba Jesintha and Ezhilarasi Hilda [1381] proved
butterfly graphs with one shell of order m and the other shell of order 2m + 1 are graceful
and double shells in which each shell has the same order are graceful. Jeba Jesintha and
Hilda [1387] define a bow graph as a double shell in which each shell has arbitrary order.
A bow graph in which each shell has the same order is called a uniform bow graph. They
prove that all uniform bow graphs are graceful. Jeba Jesintha and Ezhilarasi Hilda [1389]
proved that shell-butterfly graphs are graceful. In [1382] Jeba Jesintha and Hilda prove
k copies of C'(4,1) U K», and shellflowers (a double shell with shells of order m and 2m)
are graceful.

In [1196] Haviar and Kurtulik defined a k-enriched fan graph kF,, for integers k,n > 2,
as the graph of size (k + 1)n — 1 obtained by connecting n copies of the star Sy of order
k to the fan F,, such that one vertex of each copy of the star Sy is identified with one
vertex of the main path P, of F,. They proved that k-enriched fan graphs are graceful
and and provided characterizations of the k-enriched fan graphs among all simple graphs
via Sheppard’s labeling sequences [2882] introduced in the 1970s, as well as via labeling
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relations and graph chessboards.

Sethuraman and Dhavamani [2808] use H (n,t) to denote the graph obtained from the
cycle C), by adding t consecutive chords incident with a common vertex. If the common
vertex is u and v is adjacent to u, then for £ > 1, n > 4, and 1 <t < n — 3, Sethuraman
and Dhavamani denote by G(n,t, k) the graph obtained by taking the union of k copies
of H(n,k) with the edge uv identified. They conjecture that every graph G(n,t, k) is
graceful. They prove the conjecture for the case that t =n — 3.

Fori=1,2,...,nlet v;1,vi2,...,v; 2, be the successive vertices of n copies of Cs,.
Sekar [2736] defines a chain of cycles Coyy, p, as the graph obtained by identifying v; ,, and
Vit1m for i =1,2,...,n — 1. He proves that Cs o, and Cg,, are graceful for all £ and all

n. Barrientos [444] proved that all Cs,,, Cia,, and Cg 9 are graceful.

Truszezyniski [3229] studied unicyclic graphs and proved several classes of such graphs
are graceful. Among these are what he calls dragons. A dragon is formed by joining
the end point of a path to a cycle (Koh, et al. [1720] call these tadpoles; Kim and Park
[1699] call them kites). This work led Truszczyriski to conjecture that all unicyclic graphs
except Cp,, where n = 1 or 2 (mod 4), are graceful. Guo [1164] has shown that dragons
are graceful when the length of the cycle is congruent to 1 or 2 (mod 4). Lu [2039] uses
O™ to denote the graph obtained by identif: ylng one vertex of C,, with one endpoint of
m paths each of length ¢t. He proves that o (a tadpole) is not harmonious when a + ¢
is odd and C;F®™" is harmonious when n = 3 and when n = 2k + 1 and t = k — 1Lk+1
or 2k — 1. In his Master’s thesis, Doma [843] investigates the gracefulness of various
unicyclic graphs where the cycle has up to 9 vertices. Guruswamy and Varadhan [1166]
proved that any acyclic graph can be embedded in a unicyclic graceful graph. Because
of the immense diversity of unicyclic graphs, a proof of Truszczynski’s conjecture seems
out of reach in the near future. In [569] Biatch, Baggab, and Arumugam gave a survey
of results related to Truszczynski’s conjecture on the gracefulness ofunicyclic graphs and
provided a new class of graceful unicyclic graphs.

Cycles that share a common edge or a vertex have received some attention. Murugan
and Arumugan [2222] have shown that books with n pentagonal pages (i.e., n copies of
C5 with an edge in common) are graceful when n is even and not graceful when n is odd.
Lu [2039] uses O(C,,)™ to denote the graph made from n copies of C,, that share an edge
(an n page book with m-polygonal pages). He proves ©(Cly,,;1)?" ! is harmonious for all
m and n; O(Cypy2)™ ™ and O(Cy,,)*" 3 are not harmonious for all m and n. Xu [3500]
proved that ©(C,,)? is harmonious except when m = 3. (0(C,,)? is isomorphic to Co(y,_1)
with a chord “in the middle.”) Nurvazly and Sugeng [2315] proved that ©(C3)"™ graphs
(n copies of C3 that share an edge) have graceful labelings.

A kayak paddle K P(k,m,!) is the graph obtained by joining C} and C,, by a path of
length [. Litersky [1960] proves that kayak paddles have graceful labelings in the following
cases: k=0 mod 4, m =0 or 3 (mod 4); k=m =2 (mod 4) for k > 3; and k =1 (mod
4), m = 3 (mod 4). She conjectures that K P(4k + 4,4m + 2,1) with 2k < m is graceful
when [ < 2m if [ is even and when [ < 2m + 1 if [ is odd; and K P(10,10,1) is graceful
when [ > 12. The cases are open: K P(4k,4m+1,1); KP(4k,4m+2,1); KP(4k+1,4m +
L1); KP(4k + 1,4m + 2,1); KP(4k + 2,4m + 3,1); K P(4k + 3,4m + 3,1).
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Let CY denote the one-point union of ¢ cycles of length n. Bermond, Brouwer, and
Germa [545] and Bermond, Kotzig, and Turgeon [547]) proved that C'?(f) (that is, the
friendship graph or Dutch t-windmill) is graceful if and only if ¢ = 0 or 1 (mod 4) while
Graham and Sloane [1147] proved C’:gt) is harmonious if and only if ¢t # 2 (mod 4). Koh,

Rogers, Lee, and Toh [1713] conjecture that O is graceful if and only if nt = 0 or 3
(mod 4). Yang and Lin [3519] have proved the conjecture for the case n = 5 and Yang,
Xu, Xi, Li, and Haque [3525] did the case n = 7. Xu, Yang, Li and Xi [3504] did the
case n = 11. Xu, Yang, Han and Li [3505] did the case n = 13. Qian [2537] verifies this
conjecture for the case that ¢ = 2 and n is even and Yang, Xu, Xi, and Li [3526] did the
case n = 9. Figueroa-Centeno, Ichishima, and Muntaner-Batle [935] have shown that if
m = 0 (mod 4) then the one-point union of 2, 3, or 4 copies of C,, admits a special kind
of graceful labeling called an a-labeling (see Section 3.1) and if m = 2 (mod 4), then the
one-point union of 2 or 4 copies of (), admits an a-labeling. Bodendiek, Schumacher,
and Wegner [589] proved that the one-point union of any two cycles is graceful when the
number of edges is congruent to 0 or 3 modulo 4. (The other cases violate the necessary
parity condition.) Shee [2874] has proved that C'f) is graceful for all . Seoud and Youssef
[2800] have shown that the one-point union of a triangle and C), is harmonious if and
only if n = 1 (mod 4) and that if the one-point union of two cycles is harmonious then
the number of edges is divisible by 4. The question of whether this latter condition is
sufficient is open. Figueroa-Centeno, Ichishima, and Muntaner-Batle [935] have shown
that if G is harmonious then the one-point union of an odd number of copies of G' using
the vertex labeled 0 as the shared point is harmonious. Sethuraman and Selvaraju [2838]
have shown that for a variety of choices of points, the one-point union of any number of
non-isomorphic complete bipartite graphs is graceful. They raise the question of whether
this is true for all choices of the common point.

Another class of cycle-related graphs is that of triangular cacti. The block-cutpoint
graph of a graph G is a bipartite graph in which one partite set consists of the cut vertices
of GG, and the other has a vertex b; for each block B; of G. A block of a graph is a maximal
connected subgraph that has no cut-vertex. A triangular cactus is a connected graph all of
whose blocks are triangles. A triangular snake is a triangular cactus whose block-cutpoint-
graph is a path (a triangular snake is obtained from a path vy, vs, ..., v, by joining v; and
v;4+1 to a new vertex w; for i = 1,2,...,n—1). Rosa [2650] conjectured that all triangular
cacti with t = 0 or 1 (mod 4) blocks are graceful. (The cases where t = 2 or 3 (mod 4)
fail to be graceful because of the parity condition.) Moulton [2200] proved the conjecture
for all triangular snakes. A proof of the general case (i.e., all triangular cacti) seems
hopelessly difficult. Liu and Zhang [1964] gave an incorrect proof that triangular snakes
with an odd number of triangles are harmonious whereas triangular snakes with n =
(mod 4) triangles are not harmonious. Xu [3501] subsequently proved that triangular
snakes are harmonious if and only if the number of triangles is not congruent to 2 (mod
4).

A double triangular snake consists of two triangular snakes that have a common path.
That is, a double triangular snake is obtained from a path vy, vs, ..., v, by joining v; and
vi+1 to a new vertex w; forv =1,2,...,n—1 and to a new vertex u; fori =1,2,... , n—1.
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Xi, Yang, and Wang [3496] proved that all double triangular snakes are harmonious.

A hezxagonal snake is obtained from a path pi,po,ps,...,p, by joining p;, piy1 to
new vertices x; and y; respectively and adding edges z;y; for ¢« = 1,2,...,n — 1 and
replacing every edge with a 6-cycle; an alternate hexagonal snake is obtained from a path
D1, P2, D3, - - -, D DY joining p;, pir1 to new vertices x; and y; (alternatively) and adding
edges x;y;, where 1 <7< n—1forevenn and 1 <7 < n—2 for odd n and replacing each
alternate edge with a 6-cycle; a double hexagonal snake is obtained from two hexagonal
snakes that share the n-path; a double alternate hexagonal snake is obtained from two
alternative hexagonal snakes that share the n-path. Pattabiraman, Loganathan, and
Rao [2373] provided graceful labelings for double hexagonal snakes, alternate hexagonal
snakes, odd alternate hexagonal snakes, and double alternate hexagonal snakes.

For any graph G defining G-snake analogous to triangular snakes, Sekar [2736] has
shown that C),-snakes are graceful when n = 0 (mod 4) (n > 8) and when n = 2 (mod
4) and the number of C,, is even. Gnanajothi [1104, pp. 31-34] had earlier shown that
quadrilateral snakes are graceful. Grace [1145] has proved that Kj-snakes are harmonious.
Rosa [2650] has also considered analogously defined quadrilateral and pentagonal cacti
and examined small cases. Yu, Lee, and Chin [3562] showed that (Q;-snakes and ()3-snakes
are graceful and, when the number of blocks is greater than 1, (Qo-snakes, (Q3-snakes and
(4-snakes are harmonious.

Barrientos [435] calls a graph a kC,,-snake if it is a connected graph with & blocks whose
block-cutpoint graph is a path and each of the k blocks is isomorphic to C,. (When n > 3
and k > 3 there is more than one kC,,-snake.) If a kC),-snake where the path of minimum
length that contains all the cut-vertices of the graph has the property that the distance
between any two consecutive cut-vertices is |n/2] it is called linear. Barrientos proves
that kCy-snakes are graceful and that the linear kCs-snakes are graceful when £ is even.
He further proves that kCg-snakes and kCig-snakes are graceful in the cases where the
distances between consecutive vertices of the path of minimum length that contains all
the cut-vertices of the graph are all even and that certain cases of kCjy,-snakes and kC,-
snakes are graceful (depending on the distances between consecutive vertices of the path
of minimum length that contains all the cut-vertices of the graph).

Badr [270] defines a linear cyclic snake (m, k)C,, as the graph consisting of k copies of
C,, with two non-adjecent vertices in common where every copy has m copies of C,, and
the block-cutpoint graph is not a path. He proves that the linear cyclic snakes (m, k)Cy-
snake and (m, k)Cs-snake are graceful and conjectures that all the linear cyclic snakes
(m, k)C,-snakes are graceful forn =0 (mod 4 ) orn =3 (mod 4).

Several people have studied cycles with pendent edges attached. Frucht [984] proved
that any cycle with a pendent edge attached at each vertex (i.e., a crown) is graceful (see
also [1266]). If G has order n, the corona of G with H, G ® H is the graph obtained by
taking one copy of G and n copies of H and joining the ith vertex of G with an edge to
every vertex in the ith copy of H. Barrientos [440] also proved: if G is a graceful graph
of order m and size m — 1, then G ® nK; and G + nK; are graceful; if G is a graceful
graph of order p and size ¢ with ¢ > p, then (GU (¢ + 1 — p)K;) ® nK; is graceful; and
all unicyclic graphs, other than a cycle, for which the deletion of any edge from the cycle
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results in a caterpillar are graceful.

For a given cycle C,, with n = 0 or 3 (mod 4) and a family of trees T = {11, 15, ..., T},
let u; and v;, 1 < i < n, be fixed vertices of C,, and T}, respectively. Figueroa-Centeno,
Ichishima, Muntaner-Batle, and Oshima [940] provide two construction methods that gen-
erate a graceful labeling of the unicyclic graphs obtained from C,, and T by amalgamating
them at each u; and v;. Their results encompass all previously known results for unicyclic
graphs whose cycle length is 0 or 3 (mod 4) and considerably extend the known classes
of graceful unicyclic graphs. Khairunnisa and Sugeng [1683] let A, ,) denote the graph
obtained from C,, by connecting each two adjacent vertices with P, ;. They prove that
the graphs Az 1) © K, are graceful.

In [437] Barrientos proved that helms (graphs obtained from a wheel by attaching one
pendent edge to each vertex) are graceful. Grace [1144] showed that an odd cycle with one
or more pendent edges at each vertex is harmonious and conjectured that C5, ® K7, an
even cycle with one pendent edge attached at each vertex, is harmonious. This conjecture
has been proved by Liu and Zhang [1963], Liu [1976] and [1977], Hegde [1212], Huang
[1269], and Bu [618]. Sekar [2736] has shown that the graph C,,,® P, obtained by attaching
the path P, to each vertex of C,, is graceful. For any n > 3 and any ¢ with 1 <t < n,
let C;F* denote the class of graphs formed by adding a single pendent edge to t vertices
of a cycle of length n. Ropp [2647] proved that for every n and ¢ the class C;I* contains
a graceful graph. Gallian and Ropp [1002] conjectured that for all n and ¢, all members
of Ctt are graceful. This was proved by Qian [2537] and by Kang, Liang, Gao, and Yang
[1633]. Of course, such graphs are just a special case of the aforementioned conjecture
of Truszezynski that all unicyclic graphs except C,, for n = 1 or 2 (mod 4) are graceful.
Sekar [2736] proved that the graph obtained by identifying an endpoint of a star with a
vertex of a cycle is graceful. Lu [2039] shows that the graph obtained by identifying each
vertex of an odd cycle with a vertex disjoint copy of Cy,,+1 is harmonious if and only if
m is odd. Sudha [3069] proved that the graphs obtained by starting with two or more
copies of C; and identifying a vertex of the i"* copy with a vertex of the i + 1 copy and
the graphs obtained by starting with two or more cycles (not necessarily of the same size)
and identifying an edge from the i*" copy with an edge of the i 4+ 1** copy are graceful.
Sudha and Kanniga [3076] proved that the graphs obtained by identifying any vertex of
C,, with any vertex of degree 1 of S,, where n = [(m — 1)/2] are graceful.

For a given cycle C,, with n = 0 or 3 (mod 4) and a family of trees T = {11, 15, ..., T,},
let u; and v;, 1 < i < n, be fixed vertices of C,, and T}, respectively. Figueroa-Centeno,
Ichishima, Muntaner-Batle, and Oshima [940] provide two construction methods that gen-
erate a graceful labeling of the unicyclic graphs obtained from C,, and T by amalgamating
them at each u; and v;. Their results encompass all previously known results for unicyclic
graphs whose cycle length is 0 or 3 (mod 4) and considerably extend the known classes
of graceful unicyclic graphs.

Solairaju and Chithra [3017] defined three classes of graphs obtained by connecting
copies of (4 in various ways. Denote the four consecutive vertices of 7th copy of Cj
by vi1,vi2,v;3,v;,. They show that the graphs obtained by identifying v; 4 with v;1; o
for ¢ = 1,2,...,n — 1 is graceful; the graphs obtained by joining v;4 with v;y;, for
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t=1,2,...,n —1 by an edge is graceful; and the graphs obtained by joining v;4 with
Uiy for i =1,2,...,n — 1 with a path of length 2 is graceful.

Venkatesh [3370] showed that for positive integers m and n divisible by 4 the graphs
obtained by appending a copy of C), to each vertex of C,, by identifying one vertex of C,
with each vertex of (), is graceful.

2.3 Product Related Graphs

Graphs that are cartesian products and related graphs have been the subject of many
papers. That planar grids, P, X P, (m,n > 2), (many authors use G [0 H to denote
the Cartesian product of G and H) are graceful was proved by Acharya and Gill [41] in
1978. In 1980, Maheo [2053] clarified the complicated-appearing construction of Acharya
and Gill for P,, x P, that readily extends to all grids. Liu, T. Zou, Y. Lu [1971] proved
P,, x P, x Py is graceful. In 1980 Graham and Sloane [1147] proved ladders, P,, X P,
are harmonious when m > 2 and in 1992 Jungreis and Reid [1561] showed that the grids
P,, x P, are harmonious when (m,n) # (2,2). A few people have looked at graphs
obtained from planar grids in various ways. Kathiresan [1662] has shown that graphs
obtained from ladders by subdividing each step exactly once are graceful and that graphs
obtained by appending an edge to each vertex of a ladder are graceful [1664]. Barrientos
and Minion [469] showed that a graceful graph is obtained when every step of a ladder is
subdivided an even number of times. In addition, they proved that when each edge of a
ladder is subdivided exactly once, the resulting graph is graceful.

Acharya [30] has shown that certain subgraphs of grid graphs are graceful. Lee [1836]
defines a Mongolian tent as a graph obtained from P,, x P,, n odd, by adding one extra
vertex above the grid and joining every other vertex of the top row of P,, x P, to the
new vertex. A Mongolian village is a graph formed by successively amalgamating copies
of Mongolian tents with the same number of rows so that adjacent tents share a column.
Lee proves that Mongolian tents and villages are graceful. A Young tableau is a subgraph
of P,, x P, obtained by retaining the first two rows of P,, x P, and deleting vertices from
the right hand end of other rows in such a way that the lengths of the successive rows
form a nonincreasing sequence. Lee and Ng [1860] have proved that all Young tableaus
are graceful. Lee [1836] has also defined a variation of Mongolian tents by adding an extra
vertex above the top row of a Young tableau and joining every other vertex of that row
to the extra vertex. He proves these graphs are graceful. In [3016] and [3015] Solairaju
and Arockiasamy prove that various families of subgraphs of grids P,, x P, are graceful.
Sudha [3069] proved that certain subgraphs of the grid P, x P, are graceful. Knuth [1707]
proved that K, x Pj is graceful if and only if n < 6.

Prisms are graphs of the form C), x P,. These can be viewed as grids on cylinders.
In 1977 Bodendiek, Schumacher, and Wegner [583] proved that C,, x P, is graceful when
m = 0 (mod 4). According to the survey by Bermond [544], Gangopadhyay and Rao
Hebbare did the case that m is even about the same time. In a 1979 paper, Frucht [984]
stated without proof that he had done all C,, x P,. A complete proof of all cases and
some related results were given by Frucht and Gallian [987] in 1988.
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In 1992 Jungreis and Reid [1561] proved that all C,, x P, are graceful when m and
n are even or when m = 0 (mod 4). They also investigated the existence of a stronger
form of graceful labeling called an a-labeling (see Section 3.1) for graphs of the form
P, x P,, Cy x P,, and C,, x C,, (see also [1004]).

Yang and Wang have shown that the prisms Cy, o X Pypys [3524], C,, X Py [3522], and
Cs X Py, (m > 2) (see [3524]) are graceful. Singh [2970] proved that C3 x P, is graceful for
all n. In their 1980 paper Graham and Sloane [1147] proved that C,, x P, is harmonious
when n is odd and they used a computer to show C4 X Ps, the cube, is not harmonious. In
1992 Gallian, Prout, and Winters [1007] proved that C,, x P is harmonious when m # 4.
In 1992, Jungreis and Reid [1561] showed that Cy x P, is harmonious when n > 3. Huang
and Skiena [1271] have shown that C,, x P, is graceful for all n when m is even and for
all n with 3 < n < 12 when m is odd. Abhyanker [12] proved that the graphs obtained
from Cs,,+1 X Ps by adding a pendent edge to each vertex of an outer cycle is graceful.

Torus grids are graphs of the form C,, x C, (m > 2,n > 2). Very little success has
been achieved with these graphs. The graceful parity condition is violated for C,, x C,,
when m and n are odd and the harmonious parity condition [1147, Theorem 11] is violated
for Cp, x C,, when m = 1,2,3 (mod 4) and n is odd. In 1992 Jungreis and Reid [1561]
showed that C,, x C,, is graceful when m = 0 (mod 4) and n is even. A complete solution
to both the graceful and harmonious torus grid problems will most likely involve a large
number of cases.

There has been some work done on prism-related graphs. Gallian, Prout, and Winters
[1007] proved that all prisms C,, x P, with a single vertex deleted or single edge deleted
are graceful and harmonious. The Modbius ladder M, is the graph obtained from the
ladder P, x P, by joining the opposite end points of the two copies of P,. In 1989 Gallian
[1001] showed that all Mobius ladders are graceful and all but M3 are harmonious. Ropp
[2647] has examined two classes of prisms with pendent edges attached. He proved that
all C),, x P, with a single pendent edge at each vertex are graceful and all C,,, x P, with a
single pendent edge at each vertex of one of the cycles are graceful. Ramachandran and
Sekar [2572] proved that the graph obtained from the ladder L,, (P, x P,) by identifying
one vertex of L, with any vertex of the star S, other than the center of .S,, is graceful.

Another class of cartesian products that has been studied is that of books and
“stacked” books. The book B,, is the graph 5, X P, where S, is the star with m edges.
In 1980 Maheo [2053] proved that the books of the form By, are graceful and conjectured
that the books By, 11 were also graceful. (The books By,,+3 do not satisfy the graceful
parity condition.) This conjecture was verified by Delorme [797] in 1980. Maheo [2053]
also proved that L, x P, and By, x P, are graceful. Both Grace [1143] and Reid (see
[1006]) have given harmonious labelings for Bs,,. The books By,t3 do not satisfy the
harmonious parity condition [1147, Theorem 11]. Gallian and Jungreis [1006] conjectured
that the books By,,41 are harmonious. Gnanajothi [1104] has verified this conjecture by
showing By,11 has an even stronger form of labeling — see Section 4.1. Liang [1934] also
proved the conjecture. In 1988 Gallian and Jungreis [1006] defined a stacked book as a
graph of the form S,, x P,. They proved that the stacked books of the form S, x P, are
graceful and posed the case Sy,,,11 X P, as an open question. The n-cube Ko x Ko X--- X Ko
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(n copies) was shown to be graceful by Kotzig [1741]—see also [2053]. Although Graham
and Sloane [1147] used a computer in 1980 to show that the 3-cube is not harmonious
(see also [2334]), Ichishima and Oshima [1310] proved that the n-cube @,, has a stronger
form of harmonious labeling called an a-labeling (see Section 3.1) for n > 4.

In 1986 Reid [2611] found a harmonious labeling for K4 x P,. In 2003 Petrie and Smith
[2387] investigated graceful labelings of graphs as an exercise in constraint programming
satisfaction. They determined that K, x P, is graceful for n = 3, 4 and 5; K, x Pj is
graceful; Ky x Cj is graceful; (C, UC,)+ K; (double wheel) is graceful for n = 4 and 5;
and (C3 U C3) + K is not graceful. That K3 x K3 is not graceful follows from the parity
condition given in the introduction. Using significantly better methods in 2010, Smith and
Puget obtained the results about graceful labelings for K,, x Ky, K,, X P,, and K,, x C,
given in Table 1. Their labeling for K5 x P, and Kg X P5 are the unique graceful labelings
for those graphs. Redl [2610] proved that K, x P, is graceful for n = 1,2,3,4, and 5
using a constraint programming approach and asked if all graphs of the form K, x P, are
graceful

Vaidya, Kaneria, Srivastav, and Dani [3281] proved that P, U P, U (P, x Ps) where
t < min{r, s} and P, U P, U K, s where ¢t < min{r, s} and r, s > 3 are graceful. Kaneria,
Vaidya, Ghodasara, and Srivastav [1624] proved K, U (P, x Ps) where m,n,r,s > 1;
(P, x P;)U P, where r,s > 1 and t # 2; and K, U (P, x Ps) U P, where m,n,r,s > 1
and t # 2 are graceful. Xie, Zhao, and Yao [3498] proved that graphs of the form C, ® T
where T is a graceful tree are graceful.

The composition G1[Gs] is the graph having vertex set V(G;) x V(G3) and edge set
{(z1,91), (x2,y2)| 122 € E(Gy) or 1 = x9 and 11y, € E(G2)}. The symmetric product
G1 @ Gy of graphs G; and Gy is the graph with vertex set V(G;) x V(G2) and edge
set {(z1,91), (z2,¥2)| 129 € E(G1) or y1y2 € E(G>) but not both}. Seoud and Youssef
[2801] have proved that P, @ K5 is graceful when n > 1 and P,[P,] is harmonious for all
n. They also observe that the graphs C,, & C,, and C,,[C,,] violate the parity conditions
for graceful and harmonious graphs when m and n are odd.

2.4 Complete Graphs

The questions of the gracefulness and harmoniousness of the complete graphs K,, have
been answered. In each case the answer is positive if and only if n < 4 ([1115], [2964],
[1147], [551]). Both Rosa [2648] and Golomb [1115] proved that the complete bipartite
graphs K, , are graceful while Graham and Sloane [1147] showed they are harmonious if
and only if m or n = 1. Aravamudhan and Murugan [220] have shown that the complete
tripartite graph Kj,,, is both graceful and harmonious while Gnanajothi [1104, pp.
25-31] has shown that Kj1,,, is both graceful and harmonious and K ,,, is graceful.
Some of the same results have been obtained by Seoud and Youssef [2796] who also
observed that when m,n, and p are congruent to 2 (mod 4), K, ,, violates the parity
conditions for harmonious graphs. Beutner and Harborth [551] give graceful labelings
for Kimn, Komn, K11,mn and conjecture that these and K,,, are the only complete
multipartite graphs that are graceful. They have verified this conjecture for graphs with
up to 23 vertices via computer.
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Beutner and Harborth [551] also show that K, —e (K, with an edge deleted) is graceful
only if n < 5; any K, — 2e (K,, with two edges deleted) is graceful only if n < 6; and any
K,, — 3e is graceful only if n < 6. They also determine all graceful graphs of the form
K, — G where G is K, , with a < n — 2 and where G is a matching M, with 2a < n.

The windmill graph KM (n > 3) consists of m copies of K, with a vertex in common.
A necessary condition for K™ to be graceful is that n < 5 — see [1720]. Bermond [544]
has conjectured that K im) is graceful for all m > 4. The gracefulness of K im) is equivalent
to the existence of a (12m + 1,4, 1)-perfect difference family, which are known to exist
for m < 1000 (see [1271], [7], [3454], and [1065]). Bermond, Kotzig, and Turgeon [547]
proved that K,(lm) is not graceful when n = 4 and m = 2 or 3, and when m = 2 and
n = 5. Stones [3055] proved that Ké?’) and Ké4) are graceful. In 1982 Hsu [1263] proved
that K im) is harmonious for all m. Graham and Sloane [1147] conjectured that K is
harmonious if and only if n = 4. They verified this conjecture for the cases that n is odd
or n = 6. Liu [1962] has shown that K is not harmonious if n = 20p{* -+ - p% where
a,ay,...,as are positive integers and py, ..., ps are distinct odd primes and there is a j
for which p; = 3 (mod 4) and a; is odd. He also shows that K is not harmonious
when n = 0 (mod 4) and 3n = 4°(8k + 7) or n = 5 (mod 8). Koh, Rogers, Lee, and Toh
[1713] and Rajasingh and Pushpam [2556] have shown that Kmm(t), the one-point union
of ¢ copies of K,,,, is graceful. Sethuraman and Selvaraju [2834] have proved that the
one-point union of graphs of the form Ks,,, for i = 1,2,...,n, where the union is taken
at a vertex from the partite set with exactly 2 vertices is graceful if at most two of the
m; are equal. They conjecture that the restriction that at most two of the m; are equal
is not necessary. Sudha [3070] proved that two or more complete bipartite graphs having
one bipartite vertex set in common are graceful. Mitra and Bhoumik [2170] proved that
Kopon © Ky is graceful.

Koh, Rogers, Lee, and Toh [1720] introduced the notation B(n,r,m) for the graph
consisting of m copies of K, with a K, in common (n > r). (We note that Guo [1165] has
used the notation B(n,r,m) to denote the graph obtained by joining opposite endpoints
of three disjoint paths of lengths n,r and m.) Bermond [544] raised the question: “For
which m,n, and r is B(n,r, m) graceful?” Of course, the case r = 1 is the same as KM,
For r > 1, B(n,r,m) is graceful in the following cases: n = 3, r = 2, m > 1 [1714];
n=4,r=2 m>=1[197;n=4, r=3, m > 1 (see [544]), [1714]. Seoud and Youssef
[2796] have proved B(3,2,m) and B(4,3,m) are harmonious. Liu [1961] has shown that
if there is a prime p such that p = 3 (mod 4) and p divides both n and n — 2 and
the highest power of p that divides n and n — 2 is odd, then B(n,2,2) is not graceful.
Smith and Puget [3008] has shown that up to symmetry, B(5,2,2) has a unique graceful
labeling; B(n,3,2) is not graceful for n = 6,7,8,9, and 10; B(6,3,3) and B(7,3,3) are
not graceful; and B(5,3,3) is graceful. Combining results of Bermond and Farhi [546]
and Smith and Puget [3008] show that B(n,2,2) is not graceful for n > 5. Lu [2039]
obtained the following results: B(m,2,3) and B(m, 3, 3) are not harmonious when m = 1
(mod 8); B(m,4,2) and B(m,5,2) are not harmonious when m satisfies certain special
conditions; B(m,1,n) is not harmonious when m = 5 (mod 8) and n = 1,2,3 (mod 4);
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B(2m+1,2m,2n + 1) = Ky, + K,41 is not harmonious when m = 2 (mod 4).

More generally, Bermond and Farhi [546] have investigated the class of graphs con-
sisting of m copies of K, having exactly k copies of K, in common. They proved such
graphs are not graceful for n sufficiently large compared to r. Barrientos [441] proved that
the graph obtained by performing the one-point union of any collection of the complete
bipartite graphs Ky, 5y, Kooy - - - s Ky e, Where each K, ,, appears at most twice and
ged(ng, ng, ..., ng) = 1, is graceful.

Sethuraman and Elumalai [2810] have shown that K ,,, with a pendent edge attached
to each vertex is graceful and Jirimutu [1551] has shown that the graph obtained by
attaching a pendent edge to every vertex of K,,, is graceful (see also [179]). In [2823]
Sethuraman and Kishore determine the graceful graphs that are the union of n copies of
K4 with i edges deleted for 1 < ¢ < 5 and with one edge in common. The only cases that
are not graceful are those graphs where the members of the union are C for n = 3 (mod
4) and where the members of the union are P,. They conjecture that these two cases are
the only instances of edge induced subgraphs of the union of n copies of K, with one edge
in common that are not graceful.

Renuka, Balaganesan, Selvaraju [2614] proved the graphs obtained by joining a vertex
of K, to a vertex of K, by a path are harmonious. Sethuraman and Selvaraju [2840]
have shown that union of any number of copies of K; with an edge deleted and one edge
in common is harmonious.

Clemens, Coulibaly, Garvens, Gonnering, Lucas, and Winters [749] investigated the
gracefulness of the one-point and two-point unions of graphs. They show the following
graphs are graceful: the one-point union of an end vertex of P, and K,; the graph obtained
by taking the one-point union of K, with one end vertex of P, and the one-point union of
the other end vertex of P, with the central vertex of K ,; the graph obtained by taking
the one-point union of K, with one end vertex of P, and the one-point union of the other
end of P, with a vertex from the partite set of order 2 of K ,; the graph obtained from
the graph just described by appending any number of edges to the other vertex of the
partite set of order 2; the two-point union of the two vertices of the partite set of order 2
in K5, and two vertices from K4; and the graph obtained from the graph just described
by appending any number of edges to one of the vertices from the partite set of order 2.

A Golomb ruler is a marked straightedge such that the distances between different
pairs of marks on the straightedge are distinct. If the set of distances between marks is
every positive integer up to and including the length of the ruler, then ruler is a called
a perfect Golomb ruler. Golomb [1115] proved that perfect Golomb rulers exist only for
rulers with at most 4 marks. Beavers [522] examines the relationship between Golomb
rulers and graceful graphs through a correspondence between rulers and complete graphs.
He proves that K, is graceful if and only if there is a perfect Golomb ruler with n marks
and Golomb rulers are equivalent to complete subgraphs of graceful graphs.

2.5 Disconnected Graphs

There have been many papers dealing with graphs that are not connected. For any graph
G the graph mG denotes the disjoint union of m copies of G. In 1975 Kotzig [1740]
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investigated the gracefulness of the graphs rC;. When rs =1 or 2 (mod 4), these graphs
violate the gracefulness parity condition. Kotzig proved that when r = 3 and 4k > 4, then
rCy, has a stronger form of graceful labeling called a-labeling (see §3.1) whereas when
r > 2 and s = 3 or 5, rC; is not graceful. In 1984 Kotzig [1742] once again investigated
the gracefulness of rCy as well as graphs that are the disjoint union of odd cycles. For
graphs of the latter kind he gives several necessary conditions. His paper concludes with
an elaborate table that summarizes what was then known about the gracefulness of rCl.
M. He [1198] has shown that graphs of the form 2C,, and graphs obtained by connecting
two copies of Cy,, with an edge are graceful. Cahit [645] has shown that rC is harmonious
when 7 and s are odd and Seoud, Abdel Magsoud, and Sheehan [2762] noted that when r
or s is even, rCy is not harmonious. Seoud, Abdel Magsoud, and Sheehan [2762] proved
that C,, U C,41 is harmonious if and only if n > 4. They conjecture that C3 U Cy, is
harmonious when n > 3. This conjecture was proved when Yang, Lu, and Zeng [3520]
showed that all graphs of the form Cy;41 U Cy, are harmonious except for (n,j) = (2, 1).
As a consequence of their results about super edge-magic labelings (see §5.2) Figueroa-
Centeno, Ichishima, Muntaner-Batle, and Oshima [939] have that C,, U C3 is harmonious
if and only if n > 6 and n is even. Renuka, Balaganesan, Selvaraju [2614] proved that for
odd n C,,UP; (see also [2284]) and C,, ® K,,, U Ps are harmonious. Ng, Alwie, Marjadi, and
Sugeng [2284] proved: C,,UP; is harmonious if and only if m # 2 mod 4, C,,UP, (m > 3),
and they conjectured that C,, U Py is harmonious for all m > 3. Youssef [3543| has shown
that if G is harmonious then m(G is harmonious for all odd m.

In 1978 Kotzig and Turgeon [1745] proved that mK, is graceful if and only if m =1
and n < 4. Liu and Zhang [1964] have shown that m ), is not harmonious for n odd and
m = 2 (mod 4) and is harmonious for n = 3 and m odd. They conjecture that mKjs is
not harmonious when m = 0 (mod 4). Bu and Cao [619] give some sufficient conditions
for the gracefulness of graphs of the form K,,, UG and they prove that K,,, U P, and
the disjoint union of complete bipartite graphs are graceful under some conditions.

Recall a Skolem sequence of order n is a sequence si, S, ..., S, of 2n terms such
that, for each & € {1,2,...,n}, there exist exactly two subscripts i(k) and j(k) with
Sy = Sjky = k and |i(k) — j(k)| = k. (A Skolem sequence of order n exists if and only if
n=0or 1 (mod 4)). Abrham [19] has proved that any graceful 2-regular graph of order
n = 0 (mod 4) in which all the component cycles are even or of order n = 3 (mod 4),
with exactly one component an odd cycle, can be used to construct a Skolem sequence
of order n + 1. Also, he showed that certain special Skolem sequences of order n can be
used to generate graceful labelings on certain 2-regular graphs.

The graph H,, obtained from the cycle with consecutive vertices us, usg, . .., u, (n > 6)
by adding the chords wou,, ust,_1, ..., usus, where o = (n — 1)/2 for all n and § =
(n—1)/24+ 3 if nis odd or f = n/2+ 2 if n is even is called the cycle with parallel
chords. In Elumalai and Sethuraman [880] prove the following: for odd n > 5, H, U K,,,
is graceful; for even n > 6 and m = (n —2)/2 or m = n/2 H, U K, is graceful; for
n > 6, H,U P, is graceful, where m = n or n — 2 depending on n = 1 or 3 (mod 4) or
m = n—1orn—3 depending on n = 0 or 2 (mod 4). Elumali and Sethuraman [882] proved
that every n-cycle (n > 6) with parallel chords is graceful and every n-cycle with parallel
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Py-chords of increasing lengths is graceful for n = 2 (mod 4) with 1 < k < (|n/2] — 1).
In 1985 Frucht and Salinas [988] conjectured that Cy U P, is graceful if and only
if s+ n > 6 and proved the conjecture for the case that s = 4. The conjecture was
proved by Traetta [3222] in 2012 who used his result to get a complete solution to the
well known two-table Oberwolfach problem; that is, given odd number of people and two
round tables when is it possible to arrange series of seatings so that each person sits next
to each other person exactly once during the series. The t-table Oberwolfach problem

OP(ny,ng,...,n;) asks to arrange a series of meals for an odd number n = > n; of people
around t tables of sizes ny,ns,...,n; so that each person sits next to each other exactly
once. A solution to OP(nq,na, ..., n;) is a 2-factorization of K, whose factors consists of ¢

cycles of lengths ny, na, . .., n;. The Afold Oberwolfach problem OPy(nq,ng, . .., n;) refers
to the case where K, is replaced by AK,,. Traetta used his proof of the Frucht and Salinas
conjecture to provide a complete solutions to both OP(2r + 1,2s) and OP(2r + 1,5, s),
except possibly for OP(3,s,s). He also gave a complete solution of the general A—fold
Oberwolfach problem OPy(r, s).

Seoud and Youssef [2803] have shown that K5 U Ky, Kpp U Kpy (Mmyn,p,q >
2), KoUK, UK, s (m,n,p,q,7m,s =22, (p,q)# (2,2)), and pK,,,, (m,n >2,(m,n) #
(2,2)) are graceful. They also prove that Cy U K, (n # 2) is not graceful whereas
Choudum and Kishore [721], [1704] have proved that Cs U K, is graceful for s > 7 and
n > 1. Lee, Quach, and Wang [1876] established the gracefulness of P; U K ,,. Seoud and
Wilson [2795] have shown that C3U K4, C3UC3UKy, and certain graphs of the form C3U P,
and C3UC3U P, are not graceful. Abrham and Kotzig [24] proved that C,UC, is graceful
if and only if p+¢ =0 or 3 (mod 4). Zhou [3597] proved that K,, UK, (n > 1,m > 1) is
graceful if and only if {m,n} = {4,2} or {5,2}. Knuth [1707] used a computer to show
that K5U K, has a unique graceful labeling up to a complement. (C. Barrientos has called
to my attention that K; U K, is graceful if and only if n = 3 or 4.) Shee [2873] has shown
that graphs of the form P,UCo11 (k> 1), PsUCy%41, B, UCs, and S, U Cyyq all satisfy
a condition that is a bit weaker than harmonious. Bhat-Nayak and Deshmukh [558] have
shown that Cy U K 41 and Cyq3 U Ky 440 are graceful. Section 3.1 includes numerous
families of disconnected graphs that have a stronger form of graceful labelings.

For m = 2p 4 3 or 2p + 4, Wang, Liu, and Li [3440] proved the following graphs are
graceful: Wy, U K,,, and Wy, 0m11 U K, p; for n = m, Wy, 9m11 U Ky 5,; for m = 2n + 5,
Winami1 U (Cs + K,). If G, is a graceful graph with p edges, they proved W, 3 U G, is
graceful.

In considering graceful labelings of the disjoint unions of two or three stars S, with
e edges Yang and Wang [3523] permitted the vertex labels to range from 0 to e + 1 and
0 to e + 2, respectively. With these definitions of graceful, they proved that S,, U S, is
graceful if and only if m or n is even and that S, U S,, U Sy is graceful if and only if at
least one of m,n, or k is even (m > 1,n > 1,k > 1).

Seoud and Youssef [2799] investigated the gracefulness of specific families of the form
G U K, ,,. They obtained the following results: C3 U K, ,, is graceful if and only if m > 2
and n > 2; C4 U K, , is graceful if and only if (m,n) # (1,1); C; U K., and Cs U K,
are graceful for all m and n; mKs UnkK;, is not graceful for all m,n and r; K; U K, ,,
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is graceful for i < 4 and m > 2,n > 2 except for i = 2 and (m,n) = (2,2); K5 U Ky,
is graceful for all n; K¢ U K, is graceful if and only if n is not 1 or 3. Youssef [3545]
completed the characterization of the graceful graphs of the form C,, U K, , where n = 0
or 3 (mod 4) by showing that for n > 8 and n =0 or 3 (mod 4), C, U K,,, is graceful for
all p and ¢ (see also [439]). Note that when n =1 or 2 (mod 4) certain cases of C,, U K, ,
violate the parity condition for gracefulness.

Fori=1,2,...,m let v;1,v;2,v;3,v;4 be a 4-cycle. Yang and Pan [3518] define F}, 4
to be the graph obtained by identifying v; 3 and v; 41 for i =1,2,...,k — 1. They prove
that Fi,, 4 U Fippa U+ U Fy, 4 is graceful for all n. Pan and Lu [2327] have shown that
(P, + K,) UK, and (P, + K,,) UT, are graceful.

Barrientos [439] has shown the following graphs are graceful: CsU K 9,115 U'_; Kony i,
for 2 < m; < n;; and C,, U U§:1 Koppyn; for 2<m; <n;;m=0or 3 (mod 4), m > 11. In
[1608] Kaneria, Makadia, and Viradia proved that the union of three grid graphs, U?:l
(P, X P,,), is graceful, the union of finitely many copies of P, x P, is graceful, and
provided two new graceful labeling for P,, x P,.

Wang and Li [3438] use St(n) to denote the star K, 1, F,, to denote the fan P, ® K7,
and F,,, to denote the graph obtained by identifying the vertex of F,, with degree m
and the vertex of F,, with degree n. They showed: for all positive integers n and p and
m = 2p+2, F,UK,, and F, s, U K, , are graceful; F,, U St(n) is graceful; and
FromUSt(n) and F, 0, UG, are graceful. In [3444] Wang, Wang, and Li gave a sufficient
condition for the gracefulness of graphs of the form (P 4+ K,,) UG and (C3 + K,,) UG.
Wei, Wang, and Sun [3461] provided graceful labelings for the unions of some families of
wheels related graphs and complete bipartite graphs. They also gave graceful labelings for
some graphs of the form GU(Cs+ K,,)US, where G is wheel related. In [3563] Yu, Wang,
and Song proved the following graphs are graceful: K, ,, U (Ks + K,), K,mU (P3+ K,),
Kpm U (P14 Papya), and K,y U K 9,. They proved the gracefulness of such graphs for
a variety of cases when G involves stars and paths. More technical results like these are
given in [3446], [3445], and [651].

2.6 Joins of Graphs

A number of classes of graphs that are the join of graphs have been shown to be graceful
or harmonious. Koh, Rogers, and Lim [1714] proved G + H is graceful if G is a graceful
tree and H is one of K,,, P, U K, or a star. Koh, Phoon, and Soh [1710] point out that
some versions of this survey prior to 2017 incorrectly stated that Acharya [27] proved that
if G is a connected graceful graph, then G + K, is graceful. Redl [2610] showed that the
double cone C, + K, is graceful for n = 3,4,5,7,8,9, 11. That C,, + K, is not graceful for
n = 2 (mod 4) follows that Rosa’s parity condition. Redl asks what other double cones
are graceful. Bras, Gomes, and Selman [612] showed that double wheels (C,, U C,,) + K;
are graceful. Koh, Phoon, and Soh [1710] prove that K3 + K, is graceful. Reid [2611]
proved that P, + K; is harmonious. Sethuraman and Selvaraju [2839] and [2744] have
shown that P, 4+ K5 is harmonious. They ask whether S, + P, or P,, + P, is harmonious.
As stated in an earlier section, wheels are of the form C, + K; and are graceful and
harmonious. In 2006 Chen [693] proved that multiple wheels nC,, + K; are harmonious
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for all n £ 0 mod 4. She believes that the n # 0 (mod 4) case is also harmonious. Chen
also proved that if H has at least one edge, H 4+ K is harmonious, and if n is odd, then
nH + K is harmonious.

For n > t+2 and t > 1, Koh, Phoon, and Soh [1711] use P(n,t) to denote the graph
of order n consisting of a path of length ¢ and n — (¢ + 1) isolated vertices. For n > 2t +1
and t > 1, they use I(n,t) to denote the disjoint union of tK, and K, _s;. They proved:
K, + P(n,t) is graceful for all p > 1,n > t+2 and t > 1; K, + I(n,t) is graceful for all
p=1,n>2t+1andt > 1; and for s,t € {1,2}, P(m,s) + P(n,t) is graceful for all
m > s+2andn >t+ 2. In [1711] Koh, Phoon, and Soh ask “What can be said about
the gracefulness of C,, + P(n,t) where n > t +2” and is “Is P(m,s) + P(n,t) always
graceful for all m > s+ 2, n > t+ 2, where s > 3 or t > 37?” In [1710] they state as
problems about graceful graphs: C,, + P, (m >3, n > 3); C,, + C, (m > 3, n > 3) and
K, + P(n,t) and prove that C5 + P(n,t) is graceful for all n > ¢t + 2, where 1 <t <3
and Cs + P(n, 1) is graceful for all n > 3.

Shee [2873] has proved K,,, + K; is harmonious and observed that various cases of
K, + K, violate the harmonious parity condition in [1147]. Liu and Zhang [1964] have
proved that Ky + Ky + -+ + K5 is harmonious. Youssef [3543] has shown that if G is
harmonious then G™ is harmonious for all odd m. He asks the question of whether G is
harmonious implies G™ is harmonious when m = 0 (mod 4). Yuan and Zhu [3565] proved
that K, , + Kj is graceful and harmonious. Gnanajothi [1104, pp. 80-127] obtained the
following: C,,+ K3 is harmonious when 7 is odd and not harmonious when n = 2, 4, 6 (mod
8); S, + K, is harmonious; and P, + K, is harmonious. Balakrishnan and Kumar [413] have
proved that the join of K, and two disjoint copies of K5 is harmonious if and only if n is
even. Ramirez-Alfonsin [2577] has proved that if G is graceful and |V (G)| = |E(G)| = e
and either 1 or e is not a vertex label then G + K is graceful for all ¢. Sudha and Kanniga
[3073] proved that the graph P, + K, is graceful.

Seoud and Youssef [2801] have proved: the join of any two stars is graceful and har-
monious; the join of any path and any star is graceful; and C, + K is harmonious for
every t when n is odd. They also prove that if any edge is added to K,,,, the resulting
graph is harmonious if m or n is at least 2. Deng [800] has shown certain cases of C,, + K
are harmonious. Seoud and Youssef [2798] proved: the graph obtained by appending any
number of edges from the two vertices of degree n > 2 in K ,, is not harmonious; dragons
D, (i.e., an endpoint of P, is appended to C},) are not harmonious when m + n is odd;
and the disjoint union of any dragon and any number of cycles is not harmonious when
the resulting graph has odd order. Youssef [3542] has shown that if G is a graceful graph
with p vertices and ¢ edges with p = ¢ + 1, then G + S,, is graceful.

Sethuraman and Elumalai [2814] have proved that for every graph G with p vertices
and ¢ edges the graph G+ K, + K,, is graceful when m > 2P —p—1—¢q. As a corollary they
deduce that every graph is a vertex induced subgraph of a graceful graph. Balakrishnan
and Sampathkumar [414] ask for which m > 3 is the graph mK, + K,, graceful for all n.
Bhat-Nayak and Gokhale [562] have proved that 2K, + K, is not graceful. Youssef [3542)
has shown that mK, + K,, is graceful if m =0 or 1 (mod 4) and that mK, + K, is not
graceful if n is odd and m = 2 or 3 (mod 4). Ma [2044] proved that if G is a graceful tree
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then, G + K7, is graceful. Amutha and Kathiresan [179] proved that the graph obtained
by attaching a pendent edge to each vertex of 2K, + K, is graceful.

Wu [3487] proves that if G is a graceful graph with n edges and n + 1 vertices then
the join of G and K,, and the join of G and any star are graceful. Wei and Zhang [3460]
proved that for n > 3 the disjoint union of P; 4+ P, and a star, the disjoint union of P, + P,
and P, 4+ P,,, and the disjoint union of P, + K,, and a graceful graph with n edges are
graceful. More technical results on disjoint unions and joins are given in [3459], [3460],
[3462], [3458], and [651].

2.7 Miscellaneous Results

It is easy to see that P? is harmonious [1144] while a proof that P? is graceful has been
given by Kang, Liang, Gao, and Yang [1633]. (P*, the kth power of P,, is the graph
obtained from P, by adding edges that join all vertices u and v with d(u,v) = k.) This
latter result proved a conjecture of Grace [1144]. Seoud, Abdel Magsoud, and Sheehan
[2762] proved that P2 is harmonious and conjecture that P¥ is not harmonious when
k > 3. The same conjecture was made by Fu and Wu [991]. However, Youssef [3552] has
proved that Py is harmonious and P* is harmonious when k is odd. Yuan and Zhu [3565]
proved that P?* is harmonious when 1 < k < (n —1)/2. Selvaraju [2739] has shown that
P3 and the graphs obtained by joining the centers of any two stars with the end vertices
of the path of length n in P? are harmonious.

Cahit [645] proves that the graphs obtained by joining p disjoint paths of a fixed
length k to single vertex are harmonious when p is odd and when k£ = 2 and p is even.
Gnanajothi [1104, p. 50] has shown that the graph that consists of n copies of Cg that
have exactly P, in common is graceful if and only if n is even. For a fixed n, let v;1, v, vi3
and vy (1 < i < n) be consecutive vertices of n 4-cycles. Gnanajothi [1104, p. 35] also
proves that the graph obtained by joining each v;; to v;41 3 is graceful for all n and the
generalized Petersen graph P(n, k) is harmonious in all cases (see also [1881]). Recall
P(n,k), where n > 5 and 1 < k < n, has vertex set {ag,a1,...,an-1,b0,01,...,bp_1}
and edge set {CLZ’CLZ‘+1 | 1= O,l,...,n— 1} U {azbz | 1= 0,].,...,77,— 1}U {bib“_k ’ 1=
0,1,...,n — 1} where all subscripts are taken modulo n [3457]. The standard Petersen
graph is P(5,2).) Redl [2610] has used a constraint programming approach to show that
P(n, k) is graceful for n = 5,6,7,8,9, and 10. In [3361] and [3377] Vietri proved that
P(8t,3) and P(8t + 4,3) are graceful for all ¢. He conjectures that the graphs P(8t,3)
have a stronger form a graceful labeling called an a-labeling (see §3.1). The gracefulness
of the generalized Petersen graphs is an open problem. Shao, Deng, Li, and Vese [2866]
provide an backtracking algorithm that finds graceful labelings for all generalized Petersen
graphs P(n, k) with n < 75 within several seconds. The algorithm strongly outperforms
the standard backtracking algorithm.

Rao and Sahoo [2593] prove that every connected graph can be embedded as an induced
subgraph in an Eulerian graceful graph. They also show that for an integer £ > 3, the
problems of deciding whether the chromatic number is less than or equal to & and whether
the clique number is greater than or equal to k£ are NP-complete even for Eulerian graceful
graphs. Sethuraman, Ragukumar, and Slater [2830] proved that any tree with m edges
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can be embedded in a graceful tree with less than 4m edges and in a graceful planar
graph. A conjecture in the graph theory book by Chartrand and Lesniak [684, p. 266]
that graceful graphs with arbitrarily large chromatic numbers do not exist was shown to
be false by Acharya, Rao, and Arumugam [47] (see also Mahmoody [2065]).

In [447] Barrientos calculates the number of non-isomorphic harmoniously labeled
graphs with n edges and at most n vertices. He provides harmonious labelings for certain
unicyclic graphs obtained via the corona product and triangular grids obtained via edge
amalgamation of copies of C3 in such a way that each copy of a cycle shares at most
two edges with other copies. Moreover, he uses the edge-switching technique on Cy; to
generate unicyclic graphs with strongly felicitous labelings (see §4.4).

Baca and Youssef [390] investigated the existence of harmonious labelings for the
corona graphs of a cycle and a graph GG. They proved that if G+ K is strongly harmonious
(that is, a harmonious labeling f for which the edge labels induced by f(x)+ f(y) for each
edge xy are 1,...,q. with the 0 label on the vertex of K, then C),, ® G is harmonious for
all odd n > 3. By combining this with existing results they have as corollaries that the
following graphs are harmonious: C, ® C,, for odd n > 3 and m # 2 (mod 3); C,, ® K,
for odd n > 3; and C,, ® K 5, for odd n > 3.

Sethuraman and Selvaraju [2833] define a graph H to be a supersubdivision of a graph
G, if every edge uv of G is replaced by Ks,, (m may vary for each edge) by identifying
u and v with the two vertices in Ky, that form the partite set with exactly two mem-
bers. Sethuraman and Selvaraju prove that every supersubdivision of a path is graceful
and every cycle has some supersubdivision that is graceful. They conjecture that every
supersubdivision of a star is graceful and that paths and stars are the only graphs for
which every supersubdivision is graceful. Barrientos [441] disproved this latter conjecture
by proving that every supersubdivision of a y-trees is graceful (recall a y-tree is obtained
from a path by appending an edge to a vertex of a path adjacent to an end point). Bar-
rientos asks if paths and y-trees are the only graphs for which every supersubdivision is
graceful. This seems unlikely to be the case. The conjecture that every supersubdivision
of a star is graceful was proved by Kathiresan and Amutha [1666]. In [2837] Sethuraman
and Selvaraju prove that every connected graph has some supersubdivision that is grace-
ful. They pose the question as to whether this result is valid for disconnected graphs.
Barrientos and Barrientos [451] answered this question by proving that any disconnected
graph has a supersubdivision that admits an a-labeling (see §3.1). They also proved that
every supersubdivision of a connected graph admits an a-labeling. Sekar and Ramachan-
dren proved that an arbitrary supersubdivision of disconnected graph is graceful [2737]
and supersubdivisions of ladders are graceful [2574]. Sethuraman and Selvaraju also asked
if there is any graph other than K, ,, that can be used to replace an edge of a connected
graph to obtain a supersubdivision that is graceful.

Sethuraman and Selvaraju [2833] call superdivision graphs of G where every edge uv
of GG is replaced by Ks,, and m is fixed an arbitrary supersubdivision of G. Barrientos
and Barrientos [451] answered the question of Sethuraman and Selvaraju by proving that
any graph obtained from K ,, by attaching k& pendent edges and n pendent edges to the
vertices of its 2-element stable set can be used instead of K,,, to produce an arbitrary
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supersubdivision that admits an a-labeling (a stable set S consists of a set of vertices such
that there is not an edge v;v; for all pairs v;,v; in 5).

Kathiresan and Sumathi [1676] affirmatively answer the question posed by Sethuraman
and Selvaraju in [2833] of whether there are graphs different from paths whose arbitrary
supersubdivisions are graceful.

For a graph G Ambili and Singh [175] call the graph G* a strong supersubdivision of
G if G* is obtained from G by replacing every edge e; of G by a complete bipartite graph
K, s,. A strong supersubdivision G* of (G is said to be an arbitrary strong supersubdivision
if G* is obtained from G by replacing every edge e; of G by a complete bipartite graph
K, (ris fixed and s; may vary). They proved that arbitrary strong supersubdivisions
of paths, cycles, and stars are graceful. They conjecture that every arbitrary strong
supersubdivision of a tree is graceful and ask if it is true that for any non-trivial connected
graph GG, an arbitrary strong supersubdivision of G is graceful?

In [2836] Sethuraman and Selvaraju present an algorithm that permits one to start
with any non-trivial connected graph and successively form supersubdivisions that have
a strong form of graceful labeling called an a-labeling (see §3.1 for the definition).

Kathiresan [1663] uses the notation P, to denote the graph obtained by identifying
the end points of b internally disjoint paths each of length a. He conjectures that P, is
graceful except when «a is odd and b = 2 (mod 4) and proves the conjecture for the case
that a is even and b is odd. Liang and Zuo [1944] proved that the graph P, is graceful
when both a and b are even. Daili, Wang and Xie [789] provided an algorithm for finding
a graceful labeling of Ps,. and showed that a P, 22x41) is graceful for all positives r and
k. Sekar [2736] has shown that P, is graceful when a # 4r + 1, r > 1,b = 4m, and
m > r. Yang (see [3521]) proved that P, is graceful when a = 3,5,7, and 9 and b is odd
and when a = 2,4,6, and 8 and b is even (see [3521]). Yang, Rong, and Xu [3521] proved
that P, is graceful when a = 10,12, and 14 and b is even. Yan [3510] proved Psy. oy, is
graceful when r is odd. Yang showed that Py, 12,41 and Py o, (r < 7, and r = 9) are
graceful (see [2646]). Rong and Xiong [2646] showed that Ps,; is graceful for all positive
integers r and b. Kathiresan also shows that the graph obtained by identifying a vertex
of K, with any noncenter vertex of the star with 2"~! — n(n — 1)/2 edges is graceful.

For a family of graphs G (uq,us), Go(ug, u3), . . ., Gp(tm, Umy1) where u; and w;, ;1 are
vertices in G; Cheng, Yao, Chen, and Zhang [702] define a graph-block chain H,, as the
graph obtained by identifying u;,, of G; with w; 41 of G,; for ¢ = 1,2,...;m. They
denote this graph by H,,, = G1(u1,u2) ® Ga(ug, u3) & - -+ ® G (U, Um+1). The case where
each G; has the form P, ;, they call a path-block chain. The vertex u, is called the initial
vertex of H,,. They define a generalized spider S}, as a graph obtained by starting with
an initial vertex ug and m path-block graphs and join uy with each initial vertex of each
of the path-block graphs. Similarly, they define a generalized caterpillar T}, as a graph
obtained by starting with m path-block chains Hy, Hs, ..., H,, and a caterpillar T" with
m isolated vertices vy, vs, ..., v, and join each v; with the initial vertex of each H;. They
prove several classes of path-block chains, generalized spiders, and generalized caterpillars
are graceful.

The graph T), with 3n vertices and 6n — 3 edges is defined as follows. Start with a
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triangle 7, with vertices vy 1,v12 and vy 3. Then Ty, consists of T; together with three
new vertices viy1,1, Vit1,2, Vit1,3 and edges Vi41,1V4,25 Vit1,1V4,3, Vit1,2Vi1, Vi41,2V53, Vi41,3V5 1,
V;i+1,3V;2. Gnanajothi [1104] proved that T, is graceful if and only if n is odd. Sekar [2736]
proved T, is graceful when n is odd and 7T,, with a pendent edge attached to the starting
triangle is graceful when n is even.

In [526] and [2851] Begam, Palanivelrajan, Gunasekaran, and Hameed give graceful
labelings for graphs constructed by combining theta graphs (that is, a collection of edge
disjoint paths that have common endpoints) with paths and stars. Khatun and Abu
Nayeem [1685] prove that the zero divisor graph of the commutative ring of integers
modulo n is graceful if n = pq, 4p or 9p, where p and ¢ are prime numbers.

The torch graph O, is defined by V(0,) = {v; | 1 < i < n + 4}, E(0,) =
{vivps1 |2 < i < n—=2}U{vups |2 < i< n—2}U{vy |2 < i< n+4}U
{Vn-1Vn, UnVnt2, UnUnia, Uny1Vn+s}. Manulang and Sugeng [2077] showed that the torch
graph is graceful.

For a graph G, the splitting graph of G, S’(G), is obtained from G by adding for each
vertex v of G a new vertex v’ so that v" is adjacent to every vertex that is adjacent to v.
Sekar [2736] has shown that S’(P,) is graceful for all n and S’(C,,) is graceful for n = 0,1
(mod 4). Vaidya and Shah [3304] proved that the square graph of a bistar, the splitting
graph of a bistar, and the splitting graph of a star are graceful graphs.

In [3074] Sudha and Kanniga proved that fans and the splitting graph of a star are
graceful. Sudha and Kanniga [3075] proved that the following graphs are graceful: arbi-
trary supersubdivisions of wheels; combs (P,® K} ); double fans (P, ®K>); (P,UP,)®K;
and graphs obtained by starting with two star graphs .S,, and S,, and identifying some
of the pendent vertices of each. Sudha and Kanniga [3076] proved that the graphs ob-
tained from P, ® K; by identifying the center of a S, with the endpoint of a pendent
edge attached to the endpoint of P, are graceful; and the graphs obtained from a fan
P, ® K; by deleting a pendent edge attached to an endpoint of P, are graceful. Sunda
[3069] provided some results on graphs obtained by connecting copies of K, , in certain
ways. Sudha and Kanniga [3072] proved that the graphs obtained by joining the vertices
of a path to any number isolated points are graceful. They also proved that the arbitrary
supersubdivision of all the edges of helms, combs (P, ® K;) and ladders (P, x P,) with
pendent edges at the vertices of degree 2 by a complete bipartite graphs K ,, are graceful.

The duplication of an edge e = uv of a graph G is the graph G’ obtained from G by
adding an edge ¢’ = u/v’ such that N(u) = N(v') and N(v) = N(v'). The duplication of
a vertex of a graph G is the graph G’ obtained from G by adding a new vertex v’ to G
such that N(v') = N(v). Kaneria, Vaidya, Ghodasara, and Srivastav [1624] proved the
duplication of a vertex of a cycle, the duplication of an edge of an even cycle, and the
graph obtained by joining two copies of a fixed cycle by an edge are graceful.

For a graph GG and a vertex v of G, a vertex switching G, is the graph obtained from G
by removing all edges incident to v and adding edges joining v to every vertex not adjacent
to v in G. Boxwala and Vashishta [606] show that the graph obtained by switching an
arbitrary vertex of C,, (n > 3), the duplication of an arbitrary vertex on the rim of a
wheel with an even number of vertices, and the mirror graph of a path are graceful. Jeba
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Jesintha and Subashini [1413] proved that the path union of vertex switching of even
cycles in increasing order is graceful.

The join sum of complete bipartite graphs < K, n,, ..., K, n, > is the graph ob-
tained by starting with /K, 5y, ..., K, n, and joining a vertex of each pair K, ,, and
Ko miy, to a new vertex v; where 1 <4 < k — 1. The path union of a graph G is the
graph obtained by adding an edge from n copies G, G, ...,G, of G from G; to G;1; for
i=1,...,n— 1. We denote this graph by P(n - G). Kaneria, Makadia, and Meghpara
[1604] proved the following graphs are graceful: the graph obtained by joining Cy,, and
Cy, by a path of arbitrary length; the path union of finite many copies of Cy,; and Cy,
with twin chords. Kaneria, Makadia, Jariya, and Meghpara [1603] proved that the join
sum of complete bipartite graphs, the star of complete bipartite graphs, and the path
union of a complete bipartite graphs are graceful.

Given connected graphs G1, Gs, . .., G,, Kaneria, Makadia, and Jariya [1602] define a
cycle of graphs C(G1,Gs, ..., G,) as the graph obtained by adding an edge joining G; to
Giy1 fori = 1,...,n — 1 and an edge joining G, to G;. (The resulting graph can vary
depending on which vertices of the ;s are chosen.) When the n graphs are isomorphic to
G the notation C'(n- @) is used. Kaneria et al. proved that C'(2t-Cy,) and C(2t- K,, ,,) are
graceful. In [1605] and [1607] Kaneria, Makadia, and Meghpara prove that the following

graphs are graceful: C(2t - K,,); C(Canyy Ciang, - - -, Cap,) when t is even and Z?:l n; =
ZZ:% ng;; C(2t- P,, x P,); the star of P,, x P,; and the path union of ¢ copies of P, X P,.
Kaneria, Viradia, Jariya, and Makadia [1625] proved the cycle graph C(t - P,) is graceful.

The star of graphs G1,Gs,...,G,, denoted by S(Gi,Gs,...,G,), is the graph ob-
tained by identifying each vertex of K, ,,, except the center, with one vertex from each of
G1,Gs, ..., G,. The case that Gy = Gy = -+ - = G,, = G is denoted by S(n-G). In [1616]
and [1617] Kaneria, Meghpara, and Makadia proved the following graphs are graceful:
S(t- Kpy); S(t- P, x P,); the barycentric subdivision of P,, x P, (that is, the graph
obtained from P,, x P, by inserting a new vertex in each edge); the graph obtained by
replacing each edge of K;, by P,; the graph obtained by identifying each end point of
K, , with a vertex of K,,,; and the graph obtained by identifying each end point of K,
with a vertex of P,, x P,. Kanani and Kaneria [1573] proved that the following graphs
are graceful: the barycentric subdivision of C,-snakes (that is, the graph obtained from
the subdivision of C,, by inserting a new vertex in each edge); the barycentric subdivision
of alternate C,-snakes; and quadrilateral snakes.

Kaneria and Makadia [1593] and [1594] proved the following graphs are graceful: (P, x
P,) U (P, X Py); Cofi3U (P x P,) U (P, x Ps), where f = 2(mn+1rs) — (m+n+r+s);
the tensor product of P, and Ps; the tensor product of P,, and P, for odd m and n; the
star of Cy,; the t—supersubdivision of P,, x P,; and the graph obtained by joining Cy,
and a grid graph with a path. In [1615] Kaneria, Meghpara, and Makadia proved that
the star of K, is a graceful tree.

The graph P! is obtained by identifying one end point from each of ¢ copies of P,. The
graph P'(Gy,Gs,...,Gy,) obtained by replacing each edge of P!, except those adjacent
to the vertex of degree t, by the graphs G, G, ..., Gy, is called the one point path union
of G1,Ga, ..., Gy,. The case where Gy = Gy = -+ = Gy, = H is denoted by P!(tn - H)
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. In [1616] and [1617] Kaneria, Meghpara, and Makadia proved P! and P!(tn - K,,,) are
graceful. In [1614] Kaneria and Meghpara proved P (tn- P, x Py), Pt (tn-Ki ), S(t-Cun),
and P! (tn - Cy,,) are graceful.

A graph H is said to be a m-super subdivision of a simple graph G, if every edge
of G is replaced by the complete bipartite graph K,,,, with m > 2 in such a way that
the end vertices of the edge are merged with any two vertices of the same partite set
A or B of K,,,, after removal of the edge of G. Srinivasan, Chidambaram, Devadoss,
Pakkirisamy, and Krishnamoorthi [3046] proved that m-super subdivision of path and
cycle are graceful.

Kanneria and Makadia [1595] define a step grid graph as the graph obtained by starting
with paths P,, P,, P,_1,..., P, (n > 3) arranged vertically parallel with the vertices in
the paths forming horizontal rows and edges joining the vertices of the rows. In [1595] and
[1596] they prove the following graphs are graceful: step grid graphs; one point union for
a path of step grid graphs; cycles of step grid graphs; stars of step grid graphs; m—super
subdivisions of the step grid graphs; open stars of step grid graphs; one point unions of
paths of step grid graphs; and graphs obtained by joining C,, and step grid graphs with
a path of arbitrary length.

For n even [1597] Kaneria and Makadia [1597] define a double step grid graph
of size n (denoted by DSt,) as the graph obtained by starting with paths
P, P, P, 2, P, 4,..., P, P, arranged vertically parallel with the vertices in the paths
forming horizontal rows and edges joining the vertices of the rows. They prove the follow-
ing graphs are graceful: double step grid graphs; path unions of copies of DS%,,; cycles of
r =0, 3 (mod 4) copies of double step grid graphs; and stars of double step grid graphs.

In [1609] Kaneria, Makadia and Viradia prove the following graphs are graceful: open
stars of double step grid graphs; one point union of paths of double step grid graphs
P,!(tn- DSt,,); graphs obtained by joining Cy,, and a double step grid graph with a path
of arbitrary length; and graphs obtained by starting with a cycle C,,* (m = 2 mod 4)
with chords that form a triangle with an edge of the cycle and joining C,,* and a double
step grid graph with a path of arbitrary length.

For even n > 2 Kaneria and Makadia [1598] define a plus graph of size n (denoted by
Pl,,) as the graph obtained by starting with paths Py, Py, ..., P2, Py, Py, Py o, ..., Py, Py
arranged vertically parallel with the vertices in the paths forming horizontal rows and
edges joining the vertices of the rows. They prove plus graphs, path unions of copies of
Pl,, cycles of r = 0, 3 (mod 4) copies of Pl,, and stars of plus graphs are graceful. In
[1599] Kaneria and Makadia prove the following graphs are graceful: open stars of plus
graphs; graphs obtained by joining C},, and a plus graph with a path of arbitrary length;
graphs obtained from cycles C,,™ (m = 2 (mod 4)) with twin chords that form a triangle
with an edge of the cycle by joining C,,™ and a plus graph with a path of arbitrary length.

Kaneria and Makadia [1600] define a swastik graph as the graph obtained from four
copies of Cy, (n > 1) with vertices V;; (7 =1,2,3,4, j = 1,2,...,4n) and identifying
Viae and Voq, Vo and Vg, V34 and Vy;, and V4 and Vi ;. They proved that path
unions of swastik graphs of the same size, cycles of r = 0, 3 (mod 4) copies of swastik
graphs of the same size, and the star of swastik graphs are graceful. In [1601] Kaneria and
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Makadia prove the following graphs are graceful: open stars of swastik graphs; one point
unions for paths of swastik graphs; graphs obtain by joining Cy,, and a swastik graph
with a path of arbitrary length; graphs obtained from cycles C,, (m = 2 (mod 4)) with
twin chords that form a triangle with an edge by joining C,, ® K; and a swastik graph
with a path of arbitrary length.

In [1588] and [1587] Kaneria and Jariya define a smooth graceful graph as a bipartite
graph G with ¢ edges with the property that for all positive integers [ there exists a map
g:V—{0,1,... |5, [ 2] +1, | Z2] +1,..., g+I} such that the induced edge labeling
map ¢* : E — {1+ 1,2+1,...,q+ [} defined by ¢g*(e) = |g(u) — g(v)] is a bijection.
Note that by taking [ = 0 a smooth graceful labeling is a graceful labeling. Kaneria and
Jariya proved the following graphs are smooth graceful: P,; Cuy; Ka,; Py X Pp; and the
graph obtained by joining a cycle Cy,,+o with twin chords to Cy,. They also proved that
the graph obtained by joining Cl4,, to W,, with a path is graceful. They proved that K,
is semi smooth graceful, the star of K, is graceful, the path union of a smooth graceful
tree is graceful, and the star of a smooth graceful tree is a graceful tree.

Kaneria, Makadia and Viradia [1610] proved the following: the star of a semi
smooth graceful graph is graceful; K,,,, P(t- H) are semi smooth graceful where H
is a semi smooth graceful graph; step grid graphs; and the cycle graphs C(t - H) are
smooth graceful, when ¢ = (mod 4), H is a semi smooth; C'(m - C,), P'(k - T),
< Cnyy Py Crgs oo Prgy, Gy > < Kpynas Pry s Kng o s Proy -+ Pry s Koy oy >,
< Py, X Py, P, Py, X Ppy,..., P, Py, X P, > are graceful when 7' is semi smooth
graceful tree.

Kaneria and Meghpara [1613] prove that B,,,, the splitting graphs S’(B,,,) and
S'(P,) are semi smooth graceful and if graphs obtained by joining semi smooth graceful
graph and Bfn’n by an arbitrary path is graceful.

A komodo dragon is formed by attaching a path to a vertex of degree 3 in a cycle with
a chord and attaching star graphs to the end points of the path. A komodo dragon with
many tails is formed by attaching many paths of length two to an endpoint of the path
in a komodo dragon. In [2852] and [2854] Shahul Hameed, Palanivelrajan, Gunasekaran
and Raziya Begam provide graceful labelings of various komodo dragon graphs and their
extensions. In [2853] and [2855] Shahul Hameed et al. investigated the gracefulness of
classes of graphs constructed by combining some subdivisions of certain theta graphs with
stars.

For a bipartite graph G with partite sets X and Y let G’ be a copy of G and X’
and Y’ be copies of X and Y. Lee and Liu [1853] define the mirror graph, M(G), of G
as the disjoint union of G and G’ with additional edges joining each vertex of Y to its
corresponding vertex in Y’. The case that G = K, ,, is more simply denoted by M (m,n).
They proved that for many cases M(m,n) has a stronger form of graceful labeling (see
§3.1 for details).

The total graph T'(P,) has vertex set V(P,) U E(P,) with two vertices adjacent when-
ever they are neighbors in P,. Balakrishnan, Selvam, and Yegnanarayanan [415] have
proved that T'(P,) is harmonious.

For any graph G with vertices vy, ...,v, and a vector m = (my,...,m,) of positive
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integers the corresponding replicated graph, Ry (G), of G is defined as follows. For each
v; form a stable set S; consisting of m; new vertices i = 1,2,...,n (a stable set S consists
of a set of vertices such that there is not an edge v;v; for all pairs v;,v; in S); two
stable sets S;,S;,1 # j, form a complete bipartite graph if each v;v; is an edge in G
and otherwise there are no edges between S; and S;. Ramirez-Alfonsin [2577] has proved
that Ry (P,) is graceful for all m and all n > 1 (see §3.4 for a stronger result) and that
R, 1)(Can), R21,..1)(Cr) (n = 8) and,R(221,...1)(Cap) (n > 12) are graceful.

For any permutation f on 1,...,n, the f-permutation graph on a graph G, P(G, f),
consists of two disjoint copies of GG, G; and G9, each of which has vertices labeled
v1,V2,...,V, With n edges obtained by joining each v; in G to vy in G. In 1983 Lee
(see [1919]) conjectured that for all n > 1 and all permutations on 1,2, ..., n, the permu-
tation graph P(P,, f) is graceful. Lee, Wang, and Kiang [1919] proved that P(Pay, f) is
graceful when f = (12)(34)--- (k,k +1)---(2k — 1,2k). They conjectured that if G is a
graceful nonbipartite graph with n vertices, then for any permutation f on 1,2,...,n, the
permutation graph P(G, f) is graceful. Fan and Liang [913] have shown that if f is a per-
mutation in S,, where n > 2(m — 1) + 2 then the permutation graph P(P,, f) is graceful
if the disjoint cycle form of f is 2;10(771 +2k,m+ 2k +1), and if n > 2(m — 1) 4 4l the
permutation graph P(P,, f) is graceful the disjoint cycle form of f is 2;10(m + 4k, m +
4k + 2)(m + 4k + 1,m + 4k + 3). For any integer n > 5 and some permutations f in
S(n), Liang and Y. Miao, [1941] discuss gracefulness of the permutation graphs P(P,, f)
if f=(m,m+1,m+2,m+3,m+4),(m,m+2)(m+1,m+3),(m,m+1,m+2,m+4,m+
3), (m, m+1, m+4, m+3, m+2), (m, m+2, m+3, m+4, m+1), (m, m+3, m+4, m+2, m+1)
and (m,m+4,m+ 3,m+ 2,m+1). In [1943] Liang, Zhang, Xu, Ye, Fan, and Ge prove
the permutation graphs P(P,, f) where f is one of the permutations (12345), (2345),
(234), (123456) and (23)(45) are graceful. Some families of graceful permutation graphs
are given in [1846], [1936], and [1174].

In [2640] Rofa defined generalized strongly graceful permutations and discovered two
new permutations in addition to the known permutation that is obtained by replacing
each vertex label f(v) by ¢ — f(v). He use these permutations to prove, by induction,
that a lobster with a perfect matching that consists of the set of end edges of the lobster,
is strongly graceful. He further showed that there exist strongly graceful labelings that
assign the label 0 to four specific vertices of any tree belonging to this family of lobsters.
He provided a tractable way for proving an equivalent form of Bermond conjecture which
states that all lobsters are graceful. Two out of a total of three cases of the proposed
equivalent form of Bermond’s conjecture are completed leaving the third case open for
refutation or completion. As an applications of his results, he provided in [2641] number
systems that are representable by all vertices of a rooted symmetric tree in such a way that
the number representation of each vertex depends on its distance from the root vertex.

In [529] Bell provided methods to combine graceful bipartite graphs to create new
graceful graphs. These methods unify and generalize some well-known results in the
graceful labeling literature. She also found a new class of graceful trees.

The power graph of a finite group G has the elements of G as its vertex set and two
distinct vertices of GG are adjacent if one is a power of other. Sehgal, Takshak, Maan, and
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Malik [2735] proved that the power graph of Z5~! x Z, has a graceful labeling.

A graph (p, q)-graph G(V, E) is said to be (k, d)-hooked Skolem graceful if there exists
a bijection f from V(G) to {1,2,...,p—1,p+ 1} such that the induced edge labeling g
from E to {k,k+d, ..., k+(n—1)d} defined by g;(uv) = |f(u)— f(v)| for all wv in E is also
bijective. Such a labeling f is called a (k,d)-hooked Skolem graceful labeling of G. Note
that when £ = d = 1, this notion coincides with that of hooked Skolem graceful labeling of
the graph G. In [2383] Pereira, Singh, and Arumugam present some preliminary results on
(k, d)-hooked Skolem graceful graphs and prove that nK5 is (2, 1)-hooked Skolem graceful
if and only if n =1 or 2 (mod 4).

Gnanajothi [1104, p. 51] calls a graph G bigraceful if both G and its line graph are
graceful. She shows the following are bigraceful: P,,; P,, x P,; C,, if and only if n =0, 3
(mod 4); Sp; K, if and only if n < 3; and B, if and only if n = 3 (mod 4). She also shows
that K,,, is not bigraceful when n = 3 (mod 4). (Gangopadhyay and Hebbare [1014]
used the term “bigraceful” to mean a bipartite graceful graph.) Murugan and Arumugan
[2220] have shown that graphs obtained from Cj by attaching two disjoint paths of equal
length to two adjacent vertices are bigraceful.

Several well-known isolated graphs have been examined. Graceful labelings have been
found for the Petersen graph [984], the cube [1032], the icosahedron and the dodecahe-
dron. In [1033] [pp. 163-164] Gardner credits Ashenfelter and Chandra for showing the
Platonic solids have graceful labelings.! Gardner stated that the icosahedron has only five
fundamentally different graceful labelings, whereas in 2021 Knuth [1706] determined the
correct number to be 24. Graham and Sloane [1147] showed that all of these solids except
the cube are harmonious. Winters [3481] verified that the Grétzsch graph (see [596, p.
118]), the Heawood graph (see [596, p. 236]), and the Herschel graph (see [596, p. 53])
are graceful. Graham and Sloane [1147] determined all harmonious graphs with at most
five vertices. Seoud and Youssef [2800] did the same for graphs with six vertices.

In 2009 Zak [3569] defined the following generalization of harmonious labelings. For a
graph G(V, E) and a positive integer ¢t > |E| a function h from V(G) to Z; (the additive
group of integers modulo ¢) is called a t-harmonious labeling of G if h is injective for
t > |V| or surjective for t < |V, and h(u) + h(v) # h(x) + h(y) for all distinct edges
uv and xy. The smallest such ¢ for which G has a t-harmonious labeling is called the
harmonious order of G. Obviously, a graph G(V, E)with |E| > |V| is harmonious if and
only if the harmonious order of G is | E|. Zak determines the harmonious order of complete
graphs, complete bipartite graphs, even cycles, some cases of P¥, and 2nK3. He presents
some results about the harmonious order of the Cartesian products of graphs, the disjoint
union of copies of a given graph, and gives an upper bound for the harmonious order of
trees. He conjectures that the harmonious order of a tree of order n is n + o(n). Hegde
and Murthy [1224] proved Zak’s conjecture [3569] using the value sets of polynomials,
which partially proves the cordial tree conjecture by Hovey [1258] that all trees of order
less than a prime p are p-cordial. (See Section 3.7.)

A graceful labeling of P, is said to be an (a, b; n)-graceful labeling if one endpoint is
labeled a and the other labeled b. A conjecture made in Gvozdjak’s PhD Thesis [1168]

ID. Knuth called this to my attention.
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on the Oberwolfach Problem in 2004 is: “An (a,b;n)-graceful labeling of P, exists if
and only if the integers a,b,n satisfy (1) b — a has the same parity as n(n + 1)/2; (2)
O0<|b—al<(n+1)/2and (3) n/2 < a+b<3n/2.” In [3586] Zhang, Zhang, and Wang
showed that the conjecture is true for every n whenever it is true for n < 4a + 1 and a is
a fixed value. Moreover, they proved that the conjecture is true for a = 0,1, 2, 3,4, 5, 6.

For a graph with e edges Vietri [3378] generalizes the notion of a graceful labeling by
allowing the vertex labels to be real numbers in the interval [0,¢]. For a simple graph
G(V, E) he defines an injective map 7 from V to [0, ¢] to be a real-graceful labeling of G
provided that > 27W=7(®) 1 27()=1(w) — 9¢+1 _9=¢ _ 1 where the sum is taken over all
edges uv. In the case that the labels are integers, he shows that a real-graceful labeling is
equivalent to a graceful labeling. In contrast to the case for graceful labelings, he shows
that the cycles Cy;11 and Cy; o have real-graceful labelings. He also shows that the non-
graceful graphs K5, Kg, and K; have real-graceful labelings. With one exception, his
real-graceful labels are integers.

The gamma-number (or gracefulness) of a graph G, denoted by « (G), is the smallest
positive integer n for which there exists an injective function f : V (G) — {0,1,...,n}
such that each wv € E (G) is labeled |f (u) — f (v)| and the resulting edge labels are
distinct. The strong gamma-number of a graph G, denoted by ~, (G), is defined to be the
smallest positive integer n such that v (G) = n with the additional property that there
exists an integer A so that min{f (u), f (v)} < Amax{f (u), f (v)} for each uv € E(G).
The strong gamma-number is defined to be +o00, otherwise. Ichishima and Oshima [1314]
proved that if G is a bipartite graph, then v (mG) < m~vy(G) + m — 1 for any positive
integer m. They also show that s (G) < 400 and 7, (G) < 27 (G) + 1 for any bipartite
graph G. Moreover, they provide a sharp upper bound for v (G U H) in terms of v (G)
and s (H) when G and H are graphs such that H is bipartite, and give formulas for
the gamma-number of certain forests. In addition to these, they present strong gamma-
number analogues to the gamma-number results and determine the exact values of the
gamma-number and strong gamma-number for all cycles.

A graph G with m vertices and n edges, is said to be prime graceful if there is an
injection ¢ from the vertices of G to {1,2,...,k} where k& = min{2m,2n} such that
ged(¢(v;), #(v;)) = 1 and the induced injective function ¢* from the edges of G to
{1,2,...,k—1} defined by ¢*(v;v;) = |(v;) — @(v;)], the resulting edge labels are distinct.
In [2745] Selvarajan and Subramoniam proved paths, cycles, stars, friendship graphs, bis-
tars, Cy U P,,, K, 2, and K, 2 U P, have prime graceful labelings.

In 2020 [3572] Zeen El Deen introduced a new type of labeling of a graph as follows.
For any postive integer ¢ an edge d-graceful labeling of a graph G(V, E) with p vertices and
q edges is a bijective f from E to {9,26,...,qd} such f[V) = {f(u) =>_ f(uv) mod(kd)
over all edges v incident to w and k = max(p,q) are pairwise distinct. He proved the
existence of an edge d—graceful labeling, for any positive integer ¢, for wheels, alternate
triangular cycles, double wheels, C, x P», W, X P5, gears, helms, butterflies, and friendship
graphs. In [3573] Zeen El Deen and Elmahdy showed that for any positive integer § there
is an edge d-graceful labeling for the following graphs: the splitting graphs of cycles, fans,
and crowns; the shadow graphs of the paths, cycles, and fans; the middle graphs and the
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total graphs of paths, cycles, and crowns; twigs; and snails.

In [635] Byers and O’Mellan introduceed a new concept that combines graceful and
harmonious labelings as follows. A connected graph G with size m is said to be a graceful-
harmonious labeling if there exits injection f : V(G) — {0,1,2,...,m} such that when
each edge uv is assigned either | f(u) — f(v)| or (f(u) + f(v)) (mod g). each edge receives
a distinct label from the set {0,1,2,...,m}. They prove that cycles, friendship graphs,
and double cones Cy, + K5 admit graceful-harmonious labelings.

For a graph G(V, F') without isolated vertices, Pereira, Singh, and Arumugam [2382]
defined the gracefulness, grac(G), of G as the smallest positive integer k for which there
exists an injective function f : V — {0,1,2,...,k} such that the edge induced function
gr + E — {1,2,... k} defined by gf(uv) = |f(u) — f(v)| is also injective. Let ¢(f) =
{1,2,...,i} denote the edge labels and let m(G) = max{c(f)}, where the maximum is
taken over all injective functions f : V' — N U {0} such that g is also injective. This
measure m(G) determines how close G is to being graceful. They determine m(G) for
certain cycles and friendship graphs.

A number of authors have investigated the gracefulness of the directed graphs obtained
from copies of directed cycles C,, that have a vertex in common or have an edge in
common. A digraph D(V, E) is said to be graceful if there exists an injection f: V(G) —
{0,1,...,|E|} such that the induced function f’: E(G) — {1,2,...,|F|} that is defined
by f'(u,v) = (f(v) - f(u)) (mod |E| + 1) for every directed edge uv is a bijection. The
notations 7 - C., and n — C,, are used to denote the digraphs obtained from n copies ( of
C,, with exactly one point in common and the digraphs obtained from n copies of Chn
with exactly one edge in common. Du and Sun [855] proved that a necessary condition
for n — C,, to be graceful is that mn is even and that n - C,, is graceful when m is even.
They conjectured that n - C, is graceful for any odd m and even n. This conjecture was
proved by Jirimutu, Xu, Feng, and Bao in [1558]. Xu, Jirimutu, Wang, and Min [3502]
proved that n — ém is graceful for m = 4,6,8,10 and even n. Feng and Jirimutu (see
[3589]) conjectured that n — C., is graceful for even n and asked about the situation for
odd n. The cases where m = 5,7,9,11, and 13 and even n were proved Zhao and Jirimutu
[3588]. The cases for m = 15,17, and 19 and even n were proved by Zhao et al. in [3587],
and [2989]. Zhao, Sigintuya, and Jirimutu [3589] proved that a necessary condition for
n—C,, to be graceful is that nm is even.

In a 1985 paper Bloom and Hsu [579] say a directed graph D with e edges has a
graceful labeling 6 if for each vertex v there is a vertex labeling 6 that assigns each
vertex a distinct integer from 0 to e such that for each directed edge (u,v) the integers
0(v) — 6(u) mod (e + 1) are distinct and nonzero. They conjectured that digraphs whose
underlying graphs are wheels and that have all directed edges joining the hub and the
rim in the same direction and all directed edges in the same direction are graceful. This
conjecture was proved in 2009 by Hegde and Shivarajkumar [1236]. Yao, Yao, and Cheng
[3532] investigated the gracefulness for many orientations of undirected trees with short
diameters and proved some directed trees do not have graceful labelings. Hegde and
Kumudkshi [1222] established the gracefulness of the directed graph that is an orientation
of the planar grid graph P,, x P, in which each cell is a unicycle of length four. A
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graceful difference labeling of a directed graph G with vertex set V' is a bijection f: V —
{1,...,|V|} such that, when each arc uv is assigned the difference label f(v) — f(u), the
resulting arc labels are distinct. Hertz and Picouleau [1246] conjectured that all disjoint
unions of circuits have a graceful difference labeling, except in two particular cases. They
provided partial results that support this conjecture. A survey of results on graceful
digraphs by Feng, Xu, and Jirimutu is given in [921]. Marr [2094] and [2093] summarizes
previously known results on graceful directed graphs and presents some new results on
directed paths, stars, wheels, and umbrellas.

In [2938] Shivarajkumar, Sriraj, and Hegde provided a 2021 survey results on graceful
labeling of digraphs.

2.8 Summary

The results and conjectures discussed above are summarized in the tables following. The
letter G after a class of graphs indicates that the graphs in that class are known to be
graceful; a question mark indicates that the gracefulness of the graphs in the class is an
open problem; we put a question mark after a “G” if the graphs have been conjectured
to be graceful. The analogous notation with the letter H is used to indicate the status of
the graphs with regard to being harmonious. The tables impart at a glimpse what has
been done and what needs to be done to close out a particular class of graphs. Of course,
there is an unlimited number of graphs one could consider. One wishes for some general
results that would handle several broad classes at once but the experience of many people
suggests that this is unlikely to occur soon. The Graceful Tree Conjecture alone has
withstood the efforts of scores of people over the past four decades. Analogous sweeping
conjectures are probably true but appear hopelessly difficult to prove. I thank Don Knuth
for his correspendence about the results of Smith and Puget [3008] in Table 1 regarding
the gracefulness K,,, x K K,, x P,, and K,, x C,,.

Table 1: Summary of Graceful Results

Graph Graceful

trees G if < 35 vertices [914]

G if symmetrical [548]

G if at most 4 end-vertices [1268]
G with diameter at most 5 [1259]
G? Ringel-Kotzig

G caterpillars [2648]

G firecrackers [692]

G bananas [2822], [2821]

G? lobsters [544]

cycles C, G iff n=0,3 (mod 4) [2648]

Continued on next page
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Table 1 — Continued from previous page

Graph Graceful

wheels W, G [984], [1255]

helms (see §2.2) G [266]

webs (see §2.2) G [1633]

gears (see §2.2) G [2043]

cycles with Pg-chord (see §2.2) G [798], [2042], [1723], [2531]

C,, with k consec. chords (see §2.2) | G if k =2,3,n — 3 [1712], [1720]

unicyclic graphs G?iff G £ C,,n=1,2 (mod 4) [3229]
P G if k = 2 [1633]
oP (see §2.2) n=3Giff t=0,1 (mod 4)

[545], [547]

G?if nt = 0,3 (mod 4) [1713]

G if n = 6,t even [1713]
Gifn=41¢>1[2874]
Gifn=51¢>1][3519]
Gifn="7and t =0,3 (mod 4) [3525]
Gifn=9and t =0,3 (mod 4) [3526]
Gift=2n%1 (mod 4) [2537], [589]
G if n = 11 [3504]

triangular snakes (see §2.2) G iff no. blocks = 0,1 (mod 4) [2200]
K ,-snakes (see §2.2) ?

quadrilateral snakes (see §2.2) G [1104], [2537]

crowns C, ® K3 G [984]

Cn © By G [2736]

grids P, x P, G [41]

prisms C,, x P, G if n = 2 [987], [3522]

Continued on next page
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Table 1 — Continued from previous page

Graph Graceful
G if m even [1271]
G if m odd and 3 < n < 12 [1271]
G if m = 3 [2970]
G if m = 6 see [3524]
G if m =2 (mod 4), n = 3 (mod 4) [3524]
K,, x P, G if (m,n) = (4,2),(4,3), (4,4), (4,5),
(5,2),(5,3),(6,3), (4,6), (4,7), (4,8)
notGl (3,3),(m,2) m=6,7,8,9, 10,
11,12
not G? for (m,2) with m > 12 [3008]
K, x C, G if (m,n) = (4,3),(3,4), (4,4), (4,5),
(3,6), (4,6)
not G for (m,n) = (6,3) [3008]
K, © Ky Gifm=3,4,56,7,8,9
not G if m =10,11,12,13,14, 15
not G? if m > 15 [3008]
Ko © K1 G [1551]

K,UK, (m,n>1)

t
Ui:l sz )TV

torus grids C,, x C,,

vertex-deleted C,, x P,
edge-deleted C,, x P,
Mébius ladders M,, (see §2.3)
stacked books S,, x P,

(see §2.3)

n-cube Ko X Ko X +-- X Ko

G iff {m,n} = {4,2} or {5,2}

G if m =0 (mod 4), n even [1561]
not G if m,n odd (parity condition)

G if n = 2 [1007]

G if n = 2 [1007]

G [1001]

n =2, G iff m # 3 (mod 4) [2053],
[797], [1006]

G if m even [1006]

G [1741]

Continued on next page
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Table 1 — Continued from previous page

windmills KT(Lm)(n > 3) (see §2.4)

B(n,r,m) r > 1 (see §2.4)

mK, (see §2.5)
CnUP,

CnUCy,

C,UK,,

K, UK,
UZ:l Kmi,ni

Cm U szl Kmmm

Graph Graceful

K, x P3 G iff n <6 [1707]

K, G iff n < 4 [1115], [2964]
Kn G [2648], [1115]

Kl,mn G [220]

Ki1,mn G [1104]

G if n = 4,m < 1000 [1271],[7],[3454],[1065]
G?7ifn=4,m >4 [544]

Gifn=>5m=4, 5[3055]

not G if n =4, m = 2,3 [544]

not G if (m,n) = (2,5) [547]

not G if n > 5 [1720]

G if (n,r) = (3,2), (4,3) [1714], (4,2) [797]
G (n,r,m) = (5,2,2) [3008]
not G for (n,2,2) for n > 5 [546], [3008]

Giff m =1,n < 4 [1745]
G iff m+n > 6 [3222]

Giff m+n=0,3 (mod 4) [24]

forn>8 Giff n=0,3 (mod 4) [3545]
G Cg X Kyans1 [439]

G C3 X Ky p iff myn > 2 [2799]

G Cy X Ky iff (m,n) # (1,1)[2799]
G Oy x Ky [2799]

G Cg X Kpn [2799]

G [439]

G2<mi<ni,
m =0 or 3 (mod 4), m > 11 [439]

Continued on next page
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Table 1 — Continued from previous page

Graph

Graceful

G+ K,

double cones C,, + K,

t-point suspension C,, + K,

P? (see §2.7)

n

Petersen P(n, k) (see §2.7)

G for connected graceful G [1714]

Gforn=34,578911,12
not G for n =2 (mod 4) [2610]

Gifn=0or

3 (mod 12) [563]

not G if ¢ is even and
n=2,6,10 (mod 12)
Gifn=4,7,11 or 19 [563]
Gifn=>5o0r9andt =2 [563]

G [1845]

G for n = 5,6,7,8,9,10 [2610],
(n, k) = (8t,3) [3361]

Table 2: Summary

of Harmonious Results

webs (see §2.2)
gears (see §2.2)
cycles with Pg-chord (see §2.2)

C,, with k consec. chords

Graph Harmonious
trees H if < 31 vertices [915]
H? [1147]
H caterpillars [1147]
? lobsters
cycles C,, H iff n is odd [1147]
wheels W, H [1147]
helms (see §2.2) H [1104], [1977]

H if cycle is odd
H [693]

?

Continued on next page
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Table 2 — Continued from previous page

Graph

Harmonious

(see §2.2)
unicyclic graphs
Pk

cP (see §2.2)

triangular snakes (see §2.2)

K y-snakes (see §2.2)
quadrilateral snakes (see §2.2)
crowns (), ©® K;

grids P, x P,
prisms C,, X P,

torus grids C,, x C,,,

vertex-deleted C,, x P,
edge-deleted C,, x P,
Mébius ladders M, (see §2.3)

stacked books S, x P, (see §2.3)

Hif k=2 [1144], k odd [2762], [3552]
H if k is even and

k/2 < (n—1)/2 [3565]
n=3Hiff t £2 (mod 4) [1147]
Hifn=4, t>1 [2874]

H if number of blocks is odd [3501]
not H if number of blocks = 2
(mod 4) [3501]

H [1145]

?

I [1144], [1963]

H iff (m,n) # (2,2) [1561]
H if n = 2,m % 4 [1007]

H if n odd [1147]

Hif m =4 and n > 3 [1561]
Hif m =4, n >3 [1561]
not H if m # 0 (mod 4),

n odd [1561]

H if n = 2 [1007]

H if n = 2 [1007]

H iff n # 3 [1001]

n =2, Hif m even [1143], [2611]

not H m =3 (mod 4), n = 2,
(parity condition)

Continued on next page
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Table 2 — Continued from previous page

Graph

Harmonious

n-cube K3 X Ky X -+ X Ky
K, x P,

K,

K

Kimmn

Ki1mm

windmills K™ (n > 3) (see §2.4)

B(n,r,m) r > 1 (see §2.4)
mIK, (see §2.5)

nG

G’VL

Cm UP,

fans F,, = P, + K3

nCp, + Ky n# 0 mod 4

Hif m =1 (mod 4), n =2 [1104]
H if and only if n > 4 [1310)]

H [2611]

H iff n < 4 [1147]

H iff m or n =1 [1147]

H [220]

H [1104]

H if n = 4 [1263]

m =2, H? iff n =4 [1147]

not H if m = 2,n odd or 6 [1147]
not H for some cases m = 3 [1962]
(n.7) = (3,2), (4,3) [2796]

H n =3, m odd [1964]

not H for n odd and

m = 2 (mod 4) [1964]

H when G is harmonious and

n odd [3543]

H when G is harmonious and
n odd [3543]

Hn=1iff m # 2 mod 4 [2284]
Hn =2 [2284]

H (m,3) odd m > 3 [2614], [2284]
H? (m,3) m >3

H [1147]

H [693]

Continued on next page
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Table 2 — Continued from previous page

Graph Harmonious
double fans P, + Ky H [1147]
t-point suspension P, + K; of P, | H [2611]

S + K H [1104], [674]

t-point suspension C,, + K, of C,

Petersen P(n, k) (see §2.7)

H if n odd and ¢ = 2 [2611], [1104]
not Hif n=2,4,6 (mod 8)
and t = 2 [1104]

H [1104], [1881]
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3 Variations of Graceful Labelings

3.1 «-labelings

In 1966 Rosa [2648] defined an a-labeling (or a-valuation) as a graceful labeling with
the additional property that there exists an integer k£ so that for each edge zy either
flz) < k< f(y) or fly) < k < f(x). (Other names for such labelings are balanced,
interlaced, and strongly graceful.) It follows that such a k& must be the smaller of the two
vertex labels that yield the edge labeled 1. Also, a graph with an a-labeling is necessarily
bipartite and therefore can not contain a cycle of odd length. Wu [3490] has shown that a
necessary condition for a bipartite graph with n edges and degree sequence di, ds, ..., d,
to have an a-labeling is that the ged(dy, ds, . .., d,, n) divides n(n — 1)/2. Barrientos and
Minion [468] proved that any tree of size n and excess € is a spanning tree of a graph of
size n + € that admits an a-labeling.

For a path with consecutive vertices vy, vy, ..., v, a triangular tree is the tree obtained
identifying each v; to an end vertex of the path P;. Barrientos [446] proved that all
triangular trees admit an a-labeling. He also presented several ways to combine this type
of trees to construct new trees and unicyclic graphs that can a-labeled.

A common theme in graph labeling papers is to build up graphs that have desired
labelings from pieces with particular properties. In these situations, starting with a
graph that possesses an a-labeling is a typical approach. (See [674], [1144], [692], and
[1561].) Moreover, Jungreis and Reid [1561] showed how sequential labelings of graphs
(see Section 4.1) can often be obtained by modifying a-labelings of the graphs.

Graphs with a-labelings have proved to be useful in the development of the theory of
graph decompositions. Rosa [2648], for instance, has shown that if G is a graph with ¢
edges and has an a-labeling, then for every natural number p, the complete graph Koy, 11
can be decomposed into copies of GG in such a way that the automorphism group of the
decomposition itself contains the cyclic group of order p. In the same vein El-Zanati
and Vanden Eynden [886] proved that if G has ¢ edges and admits an a-labeling then
K ym.qn can be partitioned into subgraphs isomorphic to G for all positive integers m and
n. Although a proof of Ringel’s conjecture that every tree has a graceful labeling has
withstood many attempts, examples of trees that do not have a-labelings are easy to
construct (one example is the subdivision graph of K5 — see [2648]). Kotzig [1739] has
shown however that almost all trees have a-labelings. Sethuraman and Ragukumar [2827]
have proved that every tree is a subtree of a graph with an a-labeling.

As to which graphs have a-labelings, Rosa [2648] observed that the n-cycle has an a-
labeling if and only if n = 0 (mod 4) whereas P, always has an a-labeling. Other familiar
graphs that have a-labelings include caterpillars [2648], the n-cube [1738], Mobius ladders
M,, when n is odd (see §2.3) for the definition) [2352], By, (i.e., books with 4n+1 pages)
[1006], Cgm U Cgm and C4m U C4m U C4m forall m > 1 [1740], C4m U C4m U C4n for all
(m,n) 7é 1, 1) [905], Pn X Qn [2053], KLQk X Qn [2053], C4m U C4m U C4m U C4m [1798],
C4m U O4n+2 U C4r+2, C4m U C4n U 047« when m +n < T [24], C4m U C4n U C4T U 045 when
m = n+r+s[20], CunUCL, UCy 12UCy 1o when m = n+r+s+1[20], (m+1)2+1)C,4
for all m [3596], k2C, for all k [3596], and (k? + k)C, for all k [3596]. Abrham and Kotzig
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[22] have shown kC) has an a-labeling for 4 < k < 10 and that if £Cj has an a-labeling
then so does (4k 4+ 1)Cy, (5k 4+ 1)Cy, and (9% + 1)Cy. Eshghi [898] proved that 3Cy, and
5C4, have an a-labeling for all k. In [905] Eshghi and Carter show several families of
graphs of the form Cly,, U Cy,, U --- U Cy,, have a-labelings.

In [901] Eshghi provides an integer programming model and a Tabu search algorithm
to generate a-labelings of the quadratic graphs mCy) where 6 > m > 10 and 2 > k£ > 10.
(See also [907].) The computational complexity of the gracefulness of a graph is not
known, but the complexity of finding a harmonious labeling of a graph is in the NP-class
[176]. Research on programming models for finding graceful labelings of graphs can be
found in [897], [907], [906], [1795], [2674], [903], [2610], [3008], [2066], and [2844].

In [176] Amini and Eshghi gave a new mathematical integer programming model for
the graph labeling graphs of the form mC, (some authors use the notation @Q(m,n)).
The advantages of this model are linearity and the existence of an objective function.
They also gave two constraint programming models and a meta-heuristics algorithm that
generate feasible graceful labeling and a-labeling for special classes of quadratic graphs.
Their results include: mCy, with 1 < 11 and less than 1000 vertices has an a-labeling
with the exception of 3Cy; 12C};, has a-labeling for 1 < k£ < 19; and 13CY4y;, has a-labeling
for 1 < k < 13. In [906] and [2674] Eshghi and Salarrezaei proved that 7Cy; has an
a-labeling for all k. Lakshmi and Vangipuram [1795] proved that 4Cy; is graceful.

In [470], Barrientos and Minion investigated series-parallel operations with graphs
that admit a-labelings. They provided necessary conditions on the graphs G; and Gs
to obtain a new a-labeled graph G through each of these operations. As consequence of
the series operation, they proved that the one-point union of three or four copies of K, ,,
has an a-labeling, and that any tree with maximum degree four that can be decomposed
into copies of the path of length eleven has an a-labeling when the distance between any
pair of vertices of degree four is even. They also showed that any graph of order n + 1
and size n with an a-labeling is an induced subgraph of a graph of order n + 3 and size
2n+1. Additionally, they presented an a-labeling for any graph of the form K, ,, x P,,. In
[448] Barrientos used vertex and edge duplications, replications of the entire graph, and
k-vertex amalgamations to generate a-labeled graphs. He proved that for some families of
graphs, it is possible to duplicate several vertices or edges. Using k-vertex amalgamations
he obtained an a-labeling of a graph that can be decomposed into multiple copies of a
given a-labeled graph as well as a robust family of irregular grids that can a-labeled.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [935] have shown that if m = 0
(mod 4) then the one-point union of 2, 3, or 4 copies of C,, admits an a-labeling, and
if m = 2 (mod 4) then the one-point union of 2 or 4 copies of C,, admits an a-labeling.
They conjecture that the one-point union of n copies of (), admits an a-labeling if and
only if mn =0 (mod 4).

Pei-Shan Lee [1835] proved that Cg x Py;y1 and gear graphs have a-labelings. He raises
the question of whether Cy,,1o X P11 has an a-labeling for all m. Brankovic, Murch,
Pond, and Rosa [608] conjectured that all trees with maximum degree three and a perfect
matching have an a-labeling.

In his 2001 Ph. D. thesis Selvaraju [2739] investigated the one-point union of complete
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bipartite graphs. He proves that the one-point unions of the following forms have an
a-labeling: Ky, », and Ky, .7 Kiyngs K ong, and Ko,y where my < mg < mg and
ny < ng < ng; Kpyn, Kngn, and K, , where my < mgy < ms < 2n.

Zhile [3596] uses C,(n) to denote the connected graph all of whose blocks are C,,, and
whose block-cutpoint-graph is a path. He proves that for all positive integers m and n,
Cym(n) has an a-labeling but C,,(n) does not have an a-labeling when m is odd.

Abrham and Kotzig [24] have proved that C,, U C, has an a-labeling if and only if
both m and n are even and m +n = 0 (mod 4). Kotzig [1740] has also shown that
C,UCyUCYy does not have an a-labeling. He asked if n = 3 is the only integer such that
the disjoint union of n copies of Cy; does not have an a-labeling. This was confirmed by
Abrham and Kotzig in [23]. Eshghi [897] proved that every 2-regular bipartite graph with
3 components has an a-labeling if and only if the number of edges is a multiple of four
except for Cy UCyUCy. In [900] Eshghi gives more results on the existence of a-labelings
for various families of disjoint union of cycles.

Jungreis and Reid [1561] investigated the existence of a-labelings for graphs of the
form P,, x P,,C,, x P,, and C,, x C,, (see also [1004]). Of course, the cases involving
C,, with m odd are not bipartite, so there is no a-labeling. The only unresolved cases
among these three families are Cy,, 12 X Po, 11 and Cy,,io X Cyyyo. All other cases result
in a-labelings.

Let vy j,v24,. .., Um,; be the consecutive vertices of the jth copy of P, in P, x P,. An
elementary transformation of P, x P, is the graph obtained by replacing the edge v; ;v 11 ;
by the new edge v;_; ;Vit144;. A graph is said to be a grid-like graph if it is obtained
through a sequence of elementary transformations. In [471] Barrientos and Minion proved
the exitence of an a-labeling for any grid-like graph. As consequence of this result, they
showed that the graphs Cyy x P, U P, and Cy x P, U P,_y x P, admit a-labelings.

Balakrishman [408] uses the notation @, (G) to denote the graph Py X Py X --- X Py x G
where P, occurs n — 1 times. Snevily [3011] has shown that the graphs @, (Cy,,) and the
cycles Cy,, with the path P, adjoined at each vertex have a-labelings. He [3012] also has
shown that compositions of the form G[K,] (see §2.3 for the definition) have an a-labeling
whenever G does (see §2.3 for the definition of composition). Balakrishman and Kumar
[412] have shown that all graphs of the form @, (G) where G is K33, K44, or P,, have an
a-labeling. Balakrishman [408] poses the following two problems. For which graphs G
does @, (G) have an a-labeling? For which graphs G does @,,(G) have a graceful labeling?

Rosa [2648] has shown that K, ,, has an a-labeling (see also [436]). In [1313] Ichishima
and Oshima proved that if m,s and ¢ are integers with m > 1,s > 2, and ¢ > 2, then
the graph mK,,; has an a-labeling if and only if (m,s,t) # (3,2,2). Barrientos [436]
has shown that for n even the graph obtained from the wheel W,, by attaching a pendent
edge at each vertex has an a-labeling. In [443] Barrientos shows how to construct graceful
graphs that are formed from the one-point union of a tree that has an a-labeling, P,, and
the cycle C,,. In some cases, P, is not needed. Qian [2537] has proved that quadrilateral
snakes have a-labelings. Yu, Lee, and Chin [3562] showed that @3-and (3-snakes have
a-labelings. Fu and Wu [991] showed that if T"is a tree that has an a-labeling with partite
sets V; and V5 then the graph obtained from T by joining new vertices wy, ws, ..., w; to
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every vertex of V; has an a-labeling. Similarly, they prove that the graph obtained from T’
by joining new vertices wy, ws, ..., w, to the vertices of V; and new vertices uq, us, . .., Uy
to every vertex of V5 has an a-labeling. They also prove that if one of the new vertices of
either of these two graphs is replaced by a star and every vertex of the star is joined to
the vertices of V] or the vertices of both V; and V5, the resulting graphs have a-labelings.
Fu and Wu [991] further show that if T is a tree with an a-labeling and the sizes of the
two partite sets of T" differ by at most 1, then T' x P,, has an a-labeling. Zhao, Ma, and
Yao [3591] proved that a class of super lobster trees have a-labelings. Ghosh [1096] uses
various methods of joining graceful graphs and graphs with a-labelings to obtain some
classes of graceful lobsters. Lalitha and Tamilselvi [1796] proved that the hexagonal snake
graph has an a-labeling.

Selvaraju and G. Sethurman [2744] prove that the graphs obtained from a path P,
by joining all the pairs of vertices u, v of P, with d(u,v) = 3 and the graphs obtained by
identifying one of vertices of degree 2 of such graphs with the center of a star and the
other vertex the graph of degree 2 with the center of another star (the two stars needs
need not have the same size) have a-labelings. They conjecture that the analogous graphs
where 3 is replaced with any ¢ with 2 <t < n — 2 have a-labelings.

Makadia, Karavadiya, and Kanerian [2070] proved that the graph obtained by merging
t consecutive vertices of two cycle Cy,. and Cy4 has an a-labeling when ¢ < 2min{r, s}.
They also proved that if G; has an a-labeling and G, is graceful then there exists a
graceful labeling of the graph obtained by joining (G; and G2 by any path. Moreover, if
both G; and G5 have a-labelings then there exists an a-labeling of the graph obtained by
joining G4 and G; by any path. Let C,,,C,,,...,C,, be a collection of cycles. In [469],
Barrientos and Minion say that a graph G is the coalescence of these cycles if for every
2 <1 < k, the first ¢; vertices of C,,, are identified with the last ¢; vertices of C,,,_,, where
t; < n;/2. They proved that the coalescence of these cycles admits an a-labeling when
each n; = 0( mod 4).

Lee and Liu [1853] investigated the mirror graph M(m,n) of K,,, (see §2.3 for the
definition) for a-labelings. They proved: M (m,n) has an a-labeling when n is odd or
m is even; M(1,n) has an a-labeling when n = 0 (mod 4); M(m,n) does not have an
a-labeling when m is odd and n = 2 (mod 4), or when m = 3 (mod 4) and n = 4 (mod
8).

Kumar, Mishra, Kumar, and Kumar [1774] proved that the following graphs have
alpha labelings: Cy, ® K7, the graph obtained by joining any path to a vertex of Cy,, and
graphs obtained by joining two isomorphic copies of Cy, ® Kj.

Barrientos and Minion [460] proved that the Cartesian product of two a-trees is an
a-tree when both trees admit a-labelings and their stable sets are balanced. (A stable set
S consists of a set of vertices such that there is not an edge v;v; for all pairs v;, v; in S).
In addition, they present a tree that has the property that when any number of pendent
vertices are attached to the vertices of any subset of its smaller stable set the resulting
graph is an a-tree. They also prove of an a-labeling of three types of graphs obtained by
connecting, sequentially, any number of paths of equal size.

Barrientos [437] defines a chain graph as one with blocks By, Bs, ..., B, such that for
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every i, B; and B;,; have a common vertex in such a way that the block-cutpoint graph
is a path. He shows that if By, By, ..., B,, are blocks that have a-labelings then there
exists a chain graph G with blocks By, Bs, ..., B,, that has an a-labeling. He also shows
that if By, Bs, ..., B,, are complete bipartite graphs, then any chain graph G obtained by
concatenation of these blocks has an a-labeling.

The symmetric product G1 @ Gy of G7 and G5 is the graph with vertex set V(G;) X
V(G2) and edge set {(u1,v1)(ug, v2)} where ujus is an edge in G or vyvy is an edge in Gy
but not both ujus is an edge in G7 and v1vy is an edge in Go. A snake of length n > 1is a
packing of n congruent geometrical objects, called cells, such that the first and the last cell
each has only one neighbor and all n — 2 cells in between have exactly two neighbors. In
[456] Barrientos and Minion define a snake polyomino as a snake with square cells. They
prove that given two graphs of sizes m and n with a-labelings, the graph that results
from the edge amalgamation (identification of two edges) of the edges of weight 1 and n,
also has an a-labeling. They use that result to prove the existence of a-labelings of snake
polyominoes and hexagonal chains. The result about snake polyominoes partially answers
the question of Acharya. In [457], they prove that the third power of a caterpillar admits
an a-labeling and that the symmetric product G & 2K, has an a-labeling when G does.
In addition they prove that G U P, is graceful provided that G admits an a-labeling that
does not assign the integer A\ 4+ 2 as a label, where X is its boundary value. They ask if
all triangular chains are graceful.

In [462] Barrientos and Minion proved that under certain conditions, the union C, UG
of the cycle C,. and a caterpillar G admits a graceful labeling when r is odd, and an
a-labeling when 7 is even. They also proved the existence of an a-labeling for any tree
obtained by connecting with a path of length two the central vertices of GG; and G, 1, where
G, is a caterpillar of diameter 2d with bipartite sets A; and B; such that |A;] = |B;| + 1
and A; contains the vertices of maximum eccentricity in G;.

Let T1,T5, ..., T, be trees. A chain tree obtained by identifying, for every 1 < i < s—1,
a vertex of T; with a vertex of T;,;. In [463], Barrientos and Minion prove that if every 7;
admits an a-labeling, then there exists a chain tree that also admits an a-labeling. Let T’
be a tree of size n and v be a fixed vertex of T. The tree T,/" is obtained by connecting,
with a path of length r, two copies of T', by identifying the end-point of this path with
the vertices v of each copy of T'. They give necessary conditions for the existence of an
a-labeling for a tree T, where v is any of the vertices labeled A, A\—1,..., A — deg(v) —1
by an a-labeling with boundary value A that assigns the labels A+1,A\4+2,... A+ deg(v)
to leaves of T. In addition they proved that 7, has an a-labeling if there exists an a-
labeling f of T', with boundary value A, such that f(v) = A — 1. In [463], Barrientos and
Minion prove the following.The tree @&(T},Ts,T3,Ty) obtained by connecting to a new
vertex w, the vertices labeled n in 77 and T3 and the vertices labeled n/2 in Ty and Ty,
where T; is an a-labeled tree of even size n that has partite sets of cardinality n/2 and
n/2+ 1. If G is a graph of order m and size n, with m < n, that admits an a-labeling,
and H is any graceful graph of size t — 1, then tG U H is a graceful graph. For every
m>=n,m2>=3, n=2 andt > 2 tK,,UL,_; admits an a-labeling where L;_; is any
linear forest of size t — 1. If GG is a graph of order m and size n, with m < n, that admits
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an a-labeling, then tG U L;_; also admits an a-labeling when L; ; is a linear forest of
size t — 1. As a consequence of this result they prove that tG' U P, admits an a-labeling
provided that G' does.

Barrientos [467] showed that all lobsters constructed with & copies of any caterpillar of
diameter four by connecting the central vertices of all pairs of consecutive copies with an
edge have an a-labeling. Additionally, he proved that any chain-tree formed by caterpillars
and this type of lobsters admits an a-labeling. Barrientos and Minion [471] say that a tree
is reqular when the cardinalities of its stable sets are equal or differ by one. They prove
if S and T are regular trees that admit a-labelings then S x T" also admits an a-labeling.
They use this result to prove that S x T admits a sequential labeling (see Section 4.1)
as well as a harmonious labeling. They define a fence as the tree obtained by connecting
an internal vertex of P,, with an internal vertex of P, , by a path of length [; for every
1 <7 < t. They prove the existence of an a-labeling for any fence constructed with ¢
copies of P,, where [; = 2. They define a 2-link fence as the graph obtained by connecting
with an edge, two vertices of the ¢th copy of P,, with the corresponding two vertices of
the (i + 1)th copy of P,. They prove that all such graphs admit a-labelings. In [467]
Barrientos says that a fence is irregular if two consecutive copies of P, are connected by
one or two pairs of corresponding vertices. He proved that all irregular fences have an
a-labeling provided that all their Eulerian subgraphs have size divisible by four. In [472]
Barrientos and Minion study subfamilies of 2-link fences, a subfamily of column-convex
polyominoes, and a subfamily of irregular cyclic-snakes. They prove that under certain
conditions, an a-labelings of these graphs can be transformed into harmonious labelings.

Barrientos and Minion [474] provided new families of harmoniously labeled graphs
built on a-labeled tress. Among them are P ¥ the join of G and tK; where G has a
restrictive type of harmonious labeling and its order is different of its size by at most one,
K UKy 1, and GUT where G is a unicyclic graph and 7' is a tree built with a-trees.
They also showed that almost all trees admit harmonious labelings.

In [466] Barrientos and Minion extend the concept of vertex amalgamation as follows.
The k-vertex amalgamation of G and G5 is the graph obtained by identifying k indepen-
dent vertices of G; with k independent vertices of Gy. A t-fold of a graph G is obtained
using t-copies of GG, where the ith copy of G is k-vertex amalgamated with the (7 + 1)th
copy of G. They prove that if G admits an a-labeling, then any t¢-fold of G admits an
a-labeling. They consider a more general version of this construction for the case where G
is a tree. They also introduce a new family of trees that admit a-labelings; in particular,
they prove that any tree of diameter 2n formed by identifying the end-vertices of four
caterpillars admits an a-labeling.

Froncek, Kingston, and Vezina [973] generalized snake polyomino graphs by intro-
ducing straight simple polyominal caterpillars and proving that they also admit an alpha
labeling. This implies that every straight simple polyominal caterpillar with n edges
decomposes the complete graph Koy, for any positive integer k. In [967] Froncek in-
troduced a similar family of graphs called full hexagonal caterpillars and prove that they
admit an alpha labeling. This implies that every full hexagonal caterpillar with n edges
decomposes the complete graph Ko,11 for any positive integer k.

ot
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Golomb [1116] introduced polyominoes in 1953 in a talk to the Harvard Mathematics
Club. Polyominoes are planar shapes made by connecting a certain number of equal-sized
squares, each joined together with at least one other square along an edge.

A graph G = (V(G), E(G)) is even graceful if there exists an injection f from the set
of vertices V(G) to {0,1,2,3,4,...,2|E(G)|} such that when each edge uv is assigned
the label |f(u) — f(v)|, the resulting edge labels are 2,4,6,...,2|FE(G)|. Elsonbaty and
Mohamed [876] use even graceful labelings to give a new proof for necessary and suffi-
cient conditions for the gracefulness of cycles. They extend this technique to odd graceful
and super Fibonacci graceful labelings of cycle graphs (see §3.3). The polar grid graph
P,,,, consists of n copies of C,, numbered from the inner most cycle to the outer cycle
as C1),,,...,CW),, and m copies of paths P, intersected at the center vertex vy num-
bered as P'1),,1,..., Pm),1 In [877] Elsonbaty and Daoud provided edge even graceful
labelings for various classes of P, x C,. El Dean [3571] obtained an edge even graceful
labeling for Y-trees, double stars By, ,,, (K125 @ K12m), Pon—1 ® Ko, Ko + P,, the cycle
vy, Vs, . . ., Vg, With a chord from v; to v,, P, ® C,,, flags, and flowers. Zeen El Deen and
Omar [3575] gave sufficient conditions for K, , to have an edge even graceful labeling.
They also provided edge even graceful labelings of the join of K; with stars, wheels, and
sunflowers, and the join of K, with stars and wheels. For results on Fibonacci trees see
[1716].

Wu ([3489] and [3491]) has given a number of methods for constructing larger grace-
ful graphs from graceful graphs. Let G1,Gs,...,G), be disjoint connected graphs. Let
w; be in G; for 1 < ¢ < p. Let w be a new vertex not in any G;. Form a new
graph @,(G1,Gs,...,G,) by adjoining to the graph G; U Gy U --- U G, the edges
wWwi, Wws, ..., ww,. In the case where each of G, Gy, ..., G, is isomorphic to a graph G
that has an a-labeling and each w; is the isomorphic image of the same vertex in G;, Wu
shows that the resulting graph is graceful. If f is an a-labeling of a graph, the integer
k with the property that for any edge uv either f(u) < k < f(v) or f(v) < k < f(u)
is called the boundary value or critical number of f. Wu [3489] has also shown that if
G1,Gs,...,G, are graphs of the same order and have a-labelings where the labelings for
each pair of graphs G; and G,_;4+1 have the same boundary value for 1 < i < n/2, then
®y(Gh,Gs, ..., G,) is graceful. In [3487] Wu proves that if G has n edges and n + 1
vertices and G has an a-labeling with boundary value A, where |n — 2A — 1| < 1, then
G x P, is graceful for all m.

Given graceful graphs H and G with at least one having an a-labeling Wu and Lu
[3492] define four graph operations on H and G that when used repeatedly or in turns
provide a large number of graceful graphs. In particular, if both H and G have a-labelings,
then each of the graphs obtained by the four operations on H and G has an a-labeling.

Ajitha, Arumugan, and Germina [161] use a construction of Koh, Tan, and Rogers
[1722] to create trees with a-labelings from smaller trees with graceful labelings. These
in turn allows them to generate large classes of trees that have a type of called edge-
antimagic labelings (see §6.1). Shiue and Lu [2937] prove that the graph obtained from
K i by replacing each edge with a path of length 3 has an a-labeling if and only if £ < 4.
In [3371] Venkatesh and Bharathi recursively construct new trees starting with caterpillars
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that admit a-lableings.

Seoud and Helmi [2777] have shown that all gear graphs have an a-labeling, all dragons
with a cycle of order n = 0 (mod 4) have an a-labeling, and the graphs obtained by
identifying an endpoint of a star S, (m > 3) with a vertex of Cy, has an a-labeling.

Mavonicolas and Michael [2110] say that trees (T3, 601, wq) and (T, 0, we) with roots
wy and wq and |V(T1)| = |V (T3)| are gracefully consistent if either they are identical or
they have a-labelings with the same boundary value and 60;(w;) = 65(ws). They use
this concept to show that a number of known constructions of new graceful trees using
several identical copies of a given graceful rooted tree can be extended to the case where
the copies are replaced by a set of pairwise gracefully consistent trees. In particular,
let (T,0,w) and (Ty, 6y, wo) be gracefully labeled trees rooted at w and wy respectively.
They show that the following four constructions are adaptable to the case when a set
of copies of (T, 6, w) is replaced by a set of pairwise gracefully consistent trees. When
O(w) = |E(T)| the garland construction due to Koh, Rogers, and Tan [1715] gracefully
labels the tree consisting of h copies of (T, w) with their roots connected to a new vertex
r. In the case when 6(w) = |F(T)| and whenever uw € E(T) and 6(u) # 0, then
vw € E(T) where 0(u) + 0(v) = |E(T)|, the attachment construction of Koh, Tan and
Rogers [1722] gracefully labels the tree formed by identifying the roots of h copies of
(T,w). A construction given by Koh, Tan and Rogers [1722] gracefully labels the tree
formed by merging each vertex of (Tp, wg) with the root of a distinct copy of (T', w). When
Oo(wo) = |E(Tp)|, let N be the set of neighbors of wy and let = be the vertex of T" at even
distance from w with 6(z) = 0 or 6(z) = |E(T)|. Then a construction of Burzio and
Ferrarese [633] gracefully labels the tree formed by merging each non-root vertex of Tj
with the root of a distinct copy of (T, w) so that for each v € N the edge vwy is replaced
with a new edge xwy (where z is in the corresponding copy of T').

Snevily [3012] says that a graph G eventually has an «-labeling provided that there is
a graph H, called a host of GG, which has an a-labeling and that the edge set of H can
be partitioned into subgraphs isomorphic to G. He defines the a-labeling number of G to
be G, = min{t : there is a host H of G with |E(H)| = t|G|}. Snevily proved that even
cycles have a-labeling number at most 2 and he conjectured that every bipartite graph
has an a-labeling number. This conjecture was proved by El-Zanati, Fu, and Shiue [883].
There are no known examples of a graph G with G, > 2. In [3012] Snevily conjectured
that the a-labeling number for a tree with n edges is at most n. Shiue and Fu [2935] proved
that the a-labeling number for a tree with n edges and radius r is at most [r/2]|n. They
also prove that a tree with n edges and radius r decomposes K; for some ¢ < (r+1)n*+1.

Ahmed and Snevily [124] investigated the claim that for every tree T there exists an
a-labeling of T', or else there exists a graph Hy with an a-labeling such that Hp can be
decomposed into two edge-disjoint copies of T. They proved this claim is true for the
graphs C,, ; obtained from K, ,, by replacing each edge in K ,, with a path of length k.

A graph G with vertex set V and edge set E is called super edge-graceful if there
is a bijection f from E to {0,£1,42,...,£(|F| — 1)/2} when |E| is odd and from E to
{£1,£2,...,£|F|/2} when | E| is even such that the induced vertex labeling f* defined by
[*(u) =3 f(uv) over all edges uv is a bijection from V to {0, £1,£2,...,£(|V]—1)/2}
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when |V] is odd and from V' to {£1,£2,...,£|V]|/2} when |V] is even. Clifton and
Khodkar [750] proved that graphs formed by identifying the endpoint of a path P, and
a vertex of a cycle (kites) with n > 5 vertices, n # 6 are super edge-graceful. Khodkar,
Nolen, and Perconti [1691] proved that all complete bipartite graphs except for Ks o, Ko 3,
and Ky, (n odd) are super edge-graceful. Khodkar [1693] and [1692] proved that all
complete tripartite graphs except K. are super edge-graceful and that the union of
vertex disjoint 3-cycles is super edge-graceful. Lee, Su, and Wei [1899] provide a family
of trees of odd orders which are super edge-graceful.

For a tree T" with m edges, the a-deficit oo s (1) equals m—a(T") where o(T) is defined
as the maximum number of distinct edge labels over all bipartite labelings of T. Rosa
and Siran [2651] showed that for every m > 1, agef(Crn2) = |m/3], which implies that
(Cm2)a = 2 for m > 3. Ahmed and Snevily [124] define the graph C;, ; as a comet-
like tree with a central vertex of degree m where each neighbor of the central vertex is
attached to j pendent vertices for 1 < j < (m —1). Form >3 and 1 < j < (m—1)
they prove: (C}, ;)a < 25 (Cyyyy j)a = 2 for 1 < j < 2k and conjecture if A = (2k + 1),
then ager(T") < k. Ahmed and Snevily [124] prove that for every comet 7" (that is, graphs
obtained from stars by replacing each edge by a path of some fixed length) there exists
an a-labeling of T', or else there exists a graph Hp with an a-labeling such that Hr can
be decomposed into two edge-disjoint copies of T'. This is particularly noteworthy since
comets are known to have arbitrarily large a-deficits.

Given two bipartite graphs GG; and G, with partite sets H; and L; and Hy and Lo,
respectively, Snevily [3011] defines their weak tensor product G1®G2 as the bipartite
graph with vertex set (Hy x Hy, L1 X Ly) and with edge (hy, ho)(l1,12) if hily € E(Gy)
and hyly € E(G5). He proves that if G; and G have a-labelings then so does G1Q)Go.
This result considerably enlarges the class of graphs known to have a-labelings. In [1986]
Lépez and Muntaner-Batle gave a generalization of Snevily’s weak tensor product that
allows them to significantly enlarges the classes of graphs admitting a-labelings, near
a-labelings (defined later in this section), and bigraceful graphs.

The sequential join of graphs G, G, ..., G, is formed from G; UGy U --- U G, by
adding edges joining each vertex of G; with each vertex of G;;; for 1 < i < n — 1. Lee
and Wang [1908] have shown that for all n > 2 and any positive integers aq, as, ..., a,
the sequential join of the graphs K,,, K,, ..., K,, has an a-labeling.

In [1002] Gallian and Ropp conjectured that every graph obtained by adding a single
pendent edge to one or more vertices of a cycle is graceful. Qian [2537] proved this
conjecture and in the case that the cycle is even he shows the graphs have an a-labeling.
He further proves that for n even any graph obtained from an n-cycle by adding one or
more pendent edges at some vertices has an a-labeling as long as at least one vertex has
degree 3 and one vertex has degree 2.

In [2354] Pasotti introduced the following generalization of a graceful labeling. Given a
graph G with e = dm edges, an injective function from V' (I') to the set {0,1,2,...,d(m+
1) — 1} such that {|f(z) — f(y)| | [z,y] € E(T)} = {1,2,3,...,d(m+ 1) — 1} — {m +
1,2(m+1),...,(d—1)(m+ 1)} is called a d-divisible graceful labeling of G. Note that
for d = 1 and of d = e one obtains the classical notion of a graceful labeling and of
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an odd-graceful labeling (see §3.6 for the definition), respectively. A d-divisible graceful
labeling of a bipartite graph G with the property that the maximum value on one of
the two bipartite sets is less than the minimum value on the other one is called a d-
divisible a-labeling of GG. Pasotti proved that these new concepts allow to obtain certain
cyclic graph decompositions. In particular, if there exists a d-divisible graceful labeling
of a graph G of size e = dm then there exists a cyclic G-decomposition of K(g+1)x2d
and that if there exists a d-divisible a-labeling of a graph I' of size e then there exists

a cyclic G-decomposition of K (£41)x2dn for any integer n > 1. She also it is proved the
d

following: paths and stars admit a d-divisible a-labeling for any admissible d; Cy; admits
a 2-divisible a-labeling and a 4-divisible a-labeling for any k& > 1; Cy; admits a 2-divisible
labeling for any odd integer k£ > 1; and the ladder graph Lo, has a 2-divisible a-labeling
if and only if £ is even.

Pasotti [2354] generalized the notion of graceful labelings for graphs G with e =
d - m edges by defining a d-graceful labeling as an injective function f from V(G) to
{0,1,2,...,d(m+ 1) — 1} such that {|f(z) — f(y)| | zy € E(G)} ={1,2,...,d(m+1) —
1} —{m+1,2(m+1),...,(d—=1)(m+1)}. The case d = 1 is a graceful labeling and
the case that d = e is an odd-graceful labeling. A d-graceful a-labeling of a bipartite
graph is a d-graceful labeling with the property that the maximum value in one of the
two bipartite sets is less than the minimum value on the other bipartite set. Pasotti
[2354] proved that paths and stars have d-graceful a-labelings for all admissible d, ladders
P, x P have a 2-graceful labeling if and only if n is even, and provided partial results
about cycles of even length. He showed that the existence of d-graceful labelings can be
used to prove that certain complete graphs have cyclic decompositions. Benini and Pasotti
[531] used d-divisible a-labelings to construct an infinite class of cyclic I'-decompositions
of the complete multipartite graphs, where I is a caterpillar, a hairy cycle or a cycle. Such
labelings imply the existence of cyclic I'-decompositions of certain complete multipartite
graphs. Riasat, Kanwal, and Javed [2622] give odd-graceful labelings for disjoint unions
of graphs consisting of generalized combs, ladders, stars, bistars, caterpillars and paths.

In [2353], Pasotti proved the existence of d-divisible a-labelings for Cyy, x P, for any
integers k > 1, m > 2 ford = 2m —1, 2(2m — 1) and 4(2m — 1). Benini and Pasotti [532]
proved that the generalized Petersen graph Fg,3 admits an a-labeling for any integer
n > 1 confirming that the conjecture posed by A. Vietri in [3361] is true.

For any tree T(V, E) whose vertices are properly 2-colored Rosa and Siran [2651]
define a bipartite labeling of T' as a bijection f : V — {0,1,2,...,|F|} for which there
is a k such that whenever f(u) < k < f(v), then uw and v have different colors. They
define the a-size of a tree T' as the maximum number of distinct values of the induced
edge labels |f(u) — f(v)|,uv € E, taken over all bipartite labelings f of 7. They prove
that the a-size of any tree with n edges is at least 5(n + 1)/7 and that there exist trees
whose a-size is at most (5n 4+ 9)/6. They conjectured that minimum of the a-sizes over
all trees with n edges is asymptotically 5n/6. This conjecture has been proved for trees of
maximum degree 3 by Bonnington and Siran [597]. For trees with n vertices and maximum
degree 3 Brankovic, Rosa, and Sirén [610] have shown that the a-size is at least || — 1.
In [608] Brankovic, Murch, Pond, and Rose provide a lower bound for the a-size trees
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with maximum degree three and a perfect matching as a function of a lower bound for
minimum order of such a tree that does not have an a-labeling. Using a computer search
they showed that all such trees on less than 30 vertices have an a-labeling. This brought
the lower bound for the a-size to 14n/15, for such trees of order n. They conjecture that
all trees with maximum degree three and a perfect matching have an a-labeling. Heinrich
and Hell [1240] defined the gracesize of a graph G with n vertices as the maximum, over
all bijections f: V(G) — {1,2,...,n}, of the number of distinct values |f(u) — f(v)| over
all edges uv of G. So, from Rosa and Sirdn’s result, the gracesize of any tree with n edges
is at least 5(n +1)/7.

In [614] Brinkmann, Crevals, Mélot, Rylands, and Steffan define the parameter oj.f
which measures how far a tree is from having an a-labeling as it counts the minimum
number of errors, that is, the minimum number of edge labels that are missing from the
set of all possible labels. Trees with an a-labeling have deficit 0. For a tree T' = (V, E)
with bipartition classes V; and V, and a bipartite labeling f : V' — {0,...,|V| — 1} the
edge parity of T is (Zli‘l i)mod2 = 1(|V]| = 1)|V|mod 2. Soif f is an a-labeling this is
the sum of all edge labels modulo 2; it is 0 if |V| = 0,1mod 4 and 1 if |V| = 2,3 mod 4.
The vertex parity is the parity of the number of vertices of odd degree with odd label.

Brinkmann et al. [614] proved: in a tree T with a-deficit 0 the edge parity and the
vertex parities are equal; and for all non-negative integers k& and d and n > k? + k, the
number of trees T' with n vertices, ajof(7) = d and maximum degree n — k is the same.
Furthermore, they provide computer results on the a-deficit of all trees with up to 26
vertices; with maximum degree 3 and up to 36 vertices, with maximum degree 4 and up
to 32 vertices, and with maximum degree 5 and up to 31 vertices.

In [1007] Gallian weakened the condition for an a-labeling somewhat by defining a
weakly a-labeling as a graceful labeling for which there is an integer k so that for each
edge xy either f(x) < k < f(y) or f(y) < k < f(z). Unlike a-labelings, this condition
allows the graph to have an odd cycle, but still places a severe restriction on the structure
of the graph; namely, that the vertex with the label £ must be on every odd cycle. Gallian,
Prout, and Winters [1007] showed that the prisms C,, x P, with a vertex deleted have
a-labelings. The same paper reveals that C,, x P, with an edge deleted from a cycle has
an a-labeling when n is even and a weakly a-labeling when n > 3.

In [458] and [461] Barrientos and Minion focused on the enumeration of graphs with
graceful and a-labelings, respectively. They used an extended version of the adjacency
matrix of a graph to count the number of labeled graphs. In [458] they count the number
of gracefully-labeled graphs of size n and order m, for all possible values of m. In [461]
they count the number of a-labeled graphs of size n and order m, for all possible values
of m, as well as those a-labeled graphs of size n with boundary value A. They also count
the number of a-labeled graphs of size n, order m, and boundary value A for all possible
values of m and .

A special case of a-labeling called strongly graceful was introduced by Maheo [2053]
in 1980. A graceful labeling f of a graph G is called strongly graceful if GG is bipartite with
two partite sets A and B of the same order s, the number of edges is 2¢ + s, there is an
integer k with t — s < k <t+s— 1suchthatifa € A, f(a) <k, and if b € B, f(b) > k,
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and there is an involution 7 that is an automorphism of GG such that: 7 exchanges A and
B and the s edges am(a) where a € A have as labels the integers between t 4+ 1 and ¢ + s.
Maheo’s main result is that if G is strongly graceful then so is G x (),,. In particular, she
proved that (P, X Q,) X Ky, Ba,, and By, X @, have strongly graceful labelings.

In 1999 Broersma and Hoede [615] conjectured that every tree containing a perfect
matching is strongly graceful. Yao, Cheng, Yao, and Zhao [3529] proved that this conjec-
ture is true for every tree with diameter at most 5 and provided a method for constructing
strongly graceful trees.

El-Zanati and Vanden Eynden [887] call a strongly graceful labeling a strong a-labeling.
They show that if G has a strong a-labeling, then G x P, has an a-labeling. They show
that K,, 2 X K3 has a strong a-labeling and that K,, » X P, has an a-labeling. They also
show that if GG is a bipartite graph with one more vertex than the number of edges, and if
G has an a-labeling such that the cardinalities of the sets of the corresponding bipartition
of the vertices differ by at most 1, then G x K5 has a strong a-labeling and G' x P, has
an a-labeling. El-Zanati and Vanden Eynden [887] also note that K33 X Ko, K34 X Ko,
K, 4x Ky, and Oy, X Ko all have strong a-labelings. El-Zanati and Vanden Eynden proved
that K, X @), has a strong a-labeling and that K,, s x P, has an a-labeling for all n.
They also prove that if G is a connected bipartite graph with partite sets of odd order
such that in each partite set each vertex has the same degree, then G x K5 does not have
a strong a-labeling. As a corollary they have that K, , X K, does not have a strong
a-labeling when m and n are odd.

An a-labeling f of a graph G is called free by El-Zanati and Vanden Eynden in [888]
if the critical number £ (in the definition of a-labeling) is greater than 2 and if neither 1
nor k — 1 is used in the labeling. Their main result is that the union of graphs with free
a-labelings has an a-labeling. In particular, they show that K,,,, m > 1, n > 2, has a
free a-labeling. They also show that @), n > 3, and K, 2 X @, m > 1, n > 1, have free
a-labelings. El-Zanati [personal communication| has shown that the Heawood graph has
a free a-labeling.

Wannasit and El-Zanati [3456] proved that if G is a cubic bipartite graph each of
whose components is either a prism, a Mobius ladder, or has order at most 14, then G
admits free a-labeling. They conjecture that every bipartite cubic graph admits a free
a-labeling.

In [2071] Makadia, Karavadiya, and Kaneria call a vertex v in a graph G with a
graceful labeling f a graceful center of G if f(v) =0 or f(v) = |E(G)|. They say a graph
G is a universal graceful graph if for every v € V(G), v is a graceful center for G with
respect to some graceful labeling of G. They call G a universal a-graceful graph if for
every v € V(G), v is a graceful center for G with respect to some a-graceful labeling of
G. They define the ring sum of two graphs G; and G5 denoted Gy & G, as the graph
with vertex set (V(G1) U V(Gs) and edge set E(G1) U E(G2) — (E(G1) N E(G3)). They
proved: any graph G that admits a-labeling has at least four graceful centers; if G is a
graceful graph, then G® K ,, is graceful; if G is a universal graceful graph, then G @ K is
a graceful; if G is graceful and (G5 has an a-labeling, then the ring sum G; @& G5 with the
graceful center of G; and the graceful center of G5 as a common vertex is a graceful; and

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 61



if G; and G have « labelings, then the ring sum Gy & G5 with the two graceful centers
of G; and G5 as a common vertex has an « labeling.

For connected bipartite graphs Grannell, Griggs, and Holroyd [1148] introduced a
labeling that lies between a-labelings and graceful labelings. They call a vertex labeling
f of a bipartite graph G with g edges and partite sets D and U gracious if f is a bijection
from the vertex set of G to {0,1,...,q} such that the set of edge labels induced by
f(u) — f(v) for every edge wv with w € U and v € D is {1,2,...,q}. Thus a gracious
labeling of G with partite sets D and U is a graceful labeling in which every vertex in
D has a label lower than every adjacent vertex. They verified by computer that every
tree of size up to 20 has a gracious labeling. This led them to conjecture that every tree
has a gracious labeling. For any £ > 1 and any tree 7" Grannell et al. say that 7" has a
gracious k-labeling if the vertices of T' can be partitioned into sets D and U in such a way
that there is a function f from the verticies of G to the integers modulo k such that the
edge labels induced by f(u) — f(v) where u € U and v € D have the following properties:
the number of edges labeled with 0 is one less than the number of verticies labeled with
0 and for each nonzero integer ¢ the number of edges labeled with ¢ is the same as the
number of verticies labeled with ¢t. They prove that every nontrivial tree has a k-gracious
labeling for & = 2,3,4, and 5 and that caterpillars are k-gracious for all £ > 2. In [530]
Bell and Cummins provided new methods for combining certain families of gracefully
labeled graphs to produce new gracefully labeled graphs. If the constituent graphs have
a gracious labeling, then the methods presented produce a gracious labeling. They also
introduce new infinite families of gracious trees and new classes of graceful trees.

The same labeling that is called gracious by Grannell, Griggs, and Holroyd is called
a near a-labeling by El-Zanati, Kenig, and Vanden Eynden [885]. The latter prove that
if G is a graph with n edges that has a near a-labeling then there exists a cyclic G-
decomposition of Ks,,1; for all positive integers z and a cyclic G-decomposition of K, ,,.
They further prove that if G and H have near a-labelings, then so does their weak
tensor product (see earlier part of this section) with respect to the corresponding vertex
partitions. They conjecture that every tree has a near a-labeling.

In [2052] Mahalingam and Rajendram introduced a new labeling called m-bonacci
graceful labeling as follows. A graph G on n edges is m-bonacci graceful if the vertices can
be labeled with distinct integers from the set of the first n m-bonacci numbers such that
the derived edge labels are the first n m-bonacci numbers. They showed that complete
graphs, complete bipartite graphs, gear graphs, triangular grid graphs, and wheel graphs
are not m-bonacci graceful. They gave m-bonacci graceful labeling for cycles, friendship
graphs, polygonal snake graphs, and double polygonal snake graphs and proved that
almost all trees are m-bonacci graceful.

For a simple, finite, connected, undirected, non-trivial graph G' Sumathi and Raman
[3121] introduced the notion of arithmetic sequential graceful as an injection f : V(G) —
{a,a+d,a+2d,a+ 3d,...,2(a+ qd)}, where a > 0 and d > 1, with the property that
f*: E(GQ) = {d,2d,3d,4d, . .., qd} defined by f*(uv) = |f(u) — f(v)] is a bijection. They
proved that stars, double stars, and some star related graphs are arithmetic sequential
graceful.
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Another kind of labelings for trees was introduced by Ringel, Llado, and Serra [2627]
in an approach to proving their conjecture K, , is edge-decomposable into n copies of
any given tree with n edges. If T is a tree with n edges and partite sets A and B, they
define a labeling f from the set of vertices to {1,2,...,n} to be a bigraceful labeling of
T if f restricted to A is injective, f restricted to B is injective, and the edge labels given
by f(y) — f(z) where yx is an edge with y in B and x in A is the set {0,1,2,...,n — 1}.
(Notice that this terminology conflicts with that given in Section 2.7 In particular, the
Ringel, Llado, and Serra bigraceful does not imply the usual graceful.) Among the graphs
that they show are bigraceful are: lobsters, trees of diameter at most 5, stars Sy, with
k spokes of paths of length m, and complete d-ary trees for d odd. They also prove that
if T" is a tree then there is a vertex v and a nonnegative integer m such that the addition
of m leaves to v results in a bigraceful tree. They conjecture that all trees are bigraceful.

A pronic number is one of the form n(n + 1), where n is a positive integer. Porchelvi
and Devi [2479] defined a pronic graceful labeling of a graph G with n > 2 verticies as a
bijection f: V(G) — {0,2,...,n(n+ 1)} such that the upon labeling each edge uv with
|f(u) — f(v)| the labels are distinct. A graph G is called a pronic graceful graph if it
admits pronic graceful labeling. They proved that paths, cycles, wheels, stars, twigs, and
generalized Peterson graphs are pronic graceful. In [812] they proved that the generalized
Peterson graphs P(6,2), P(8,3), (10,2), P(10,3), and P(12,5) are pronic graceful.

Table 3 summarizes some of the main results about a-labelings; a indicates that the
graphs have an a-labeling.
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Table 3: Summary of Results on a-labelings

Graph a-labeling

cycles C,, aiff n =0 (mod 4) [2648]
caterpillars a [2648]

n-cube a [1738]

books Bon, Binyi a [2053], [1006]

Mobius ladders My 41 a [2352]

Cn UG,

Cam U Cy U Cpyy (m > 1)
Cam U Capy U Cyy U Cipy
mKs; (m>1,st>2)
P, xQ,

Ban x Qn

Ky, X Qn

Ko X Qn

Ko x P,

Pox Pyx---x PyxG

PQXPQX"'XPQXPm

Py x Py x - X Py X Ky oy,

a iff m, n are even and
m—+n =0 (mod 4)[24]

a [1740]

a [1740]

if (m, s,t) # (3,2,2) [1313]
a [2053]

a [2053]

a [2053]

a [887]

o [887]

a when G = Cyy,, P, Kss,
K4’4 [3011]

a [3011]
a [3011] when m = 3 or 4

a when G is a [3012]
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3.2 ~-Labelings

In 2004 Chartrand, Erwin, VanderJagt, and Zhang [676] define a ~y-labeling of a graph G
of size m as a 1-1 function f from the vertices of G to {0, 1,2, ..., m} that induces an edge
labeling f’ defined by f'(uv) = | f(u)—f(v)]| for each edge uv. They define the following pa-
rameters of a y-labeling: val(f) = X f'(e) over all edges e of G; valmax(G) = max{ val(f) :
[ is a y-labeling of G}, val,;,,(G) = min{ val(f) : fis ay — labeling of G}. Among
their results are the following:

valin(Pa) = valmax(P,) = [(n? — 2)/2]; val,;,(Cn) = 2(n — 1); for even n > 4,
valmax(Cr) = n(n + 2)/2; for odd n > 3, valmax(C,) = (n — 1)(n + 3)/2; for odd
n, valyin (K,) = ("5); for odd n, valmax(K,) = (n* — 1)(3n* — 5n + 6)/24; for
even n, valmax(K,) = n(3n® — 5n® + 6n — 4)/24; for every n > 3, val i (Ki,-1) =
(L?HJ) + ((%1]); valmax(K1,-1) = (;) for a connected graph of order n and size
m, valy,in (G) = m if and only if G is isomorphic to P,; if G is maximal outerplanar
of order n > 2, val,;;,(G) > 3n — 5 and equality occurs if and only if G = P2; if
G is a connected r-regular bipartite graph of order n and size m where r > 2, then
valmax(G) = rn(2m —n + 2) /4.

In another paper on ~-labelings of trees Chartrand, Erwin, VanderJagt, and Zhang
[677] prove for p,q > 2, val,,i, (Spq) (that is, the graph obtained by joining the centers of
Ko and K by am edge)= ([p/2]+1)2+(1a/2]+1)2— (nyp/2] +1)*+(n, [ (a+2) /2] +1)%),
where n; is 1 if ¢ is even and n; is 0 if n; is odd; valy,;,(Sp,e) = (P*+¢*+4pg—3p—3¢+2)/2;
for a connected graph G of order n at least 4, valy,;,,(G) = n if and only if G is a caterpillar
with maximum degree 3 and has a unique vertex of degree 3; for a tree T' of order n at
least 4, maximum degree A, and diameter d, val i, (T) > (8n + A? — 6A —4d + 0,)/4
where da is 0 if A is even and da is 0 if A is odd. They also give a characterization of all
trees of order n at least 5 whose minimum value is n + 1.

Saduakdee and Khemmani [2695] investigated connected graphs having the unique
~v-min labeling. They determined the minimum value of a y-labeling for some classes of
trees and showed that they have no unique y-min labeling.

In [630] Buratti and Del Fra solved the existence problem for cyclic k-cycle systems
of the complete graph K, with v = 1 (mod 2k), and the existence problem for cyclic
k-cycle systems of the complete m-partite graph K,,xx for m and k odd. As a particular
consequence, a cyclic p-cycle system of K, with p a prime exists for all admissible values
of v but (p,v) # (3,9). This was previously known only for p = 3,5, 7.

In [2694] Sanaka determined valmax(Km,») and valy i, (Kmy). In [629] Bunge, Chan-
tasartraaamee, El-Zanati, and Vanden Eynden generalized v-labelings by introducing two
labelings for tripartite graphs. Graphs G that admit either of these labelings guarantee
the existence of cyclic G-decompositions of K, for all positive integers x. They also
proved that, except for C's U ('3, the disjoint union of two cycles of odd length admits one
of these labelings.
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3.3 Graceful-like Labelings

As a means of attacking graph decomposition problems, Rosa [2648] invented another
analogue of graceful labelings by permitting the vertices of a graph with ¢ edges to assume
labels from the set {0, 1, ..., ¢+ 1}, while the edge labels induced by the absolute value of
the difference of the vertex labels are {1,2,...,¢—1,q} or {1,2,...,g—1,q+ 1}. He calls
these p-labelings. Frucht [986] used the term nearly graceful labeling instead of p-labelings.
Frucht [986] has shown that the following graphs have nearly graceful labelings with edge
labels from {1,2,...,¢—1,q+1}: P,UP,; S, USy; SinUP,; GUK, where G is graceful;
and C3 U Ky U S, where m is even or m = 3 (mod 14). Seoud and Elsakhawi [2771]
have shown that all cycles are nearly graceful. Barrientos [435] proved that C,, is nearly
graceful with edge labels 1,2,...,n—1,n+ 1 if and only if n = 1 or 2 (mod 4). Nurvazly
and Sugeng [2315] proved that ©(C5)™ graphs (n copies of C5 that share an edge) have p
labelings. Gao [1021] shows that a variation of banana trees is odd-graceful and in some
cases has a nearly graceful labeling. (A graph G with ¢ edges is odd-graceful if there is
an injection f from V(G) to {0,1,2,...,2¢q — 1} such that, when each edge zy is assigned
the label |f(z) — f(y)], the resulting edge labels are {1,3,5,...,2¢ — 1}).

For a graph G with p vertices and ¢ directed edges that are assigned distinct vertex
labels in {0, ..., ¢} and distinct edge labels in {1,...,p} so that the label of the directed
edge from u to v is (f(v) — f(u)) mod(q+ 1) (this generalizes Rosa’s p-valuations. Knuth
[1707] has observed that there is a nice data structure for storing a graph or digraph in a
computer. He calls this a graceful data structure labeling.

In 1988 Rosa [2650] conjectured that triangular snakes with ¢ = 0 or 1 (mod 4) blocks
are graceful and those with ¢ = 2 or 3 (mod 4) blocks are nearly graceful (a parity
condition ensures that the graphs in the latter case cannot be graceful). Moulton [2200]
proved Rosa’s conjecture while introducing the slightly stronger concept of almost graceful
by permitting the vertex labels to come from {0,1,2,...,¢—1, ¢+ 1} while the edge labels
are 1,2,...,g—1,q,0r 1,2,...,¢g—1,qg+ 1. More generally, Rosa [2650] conjectured that
all triangular cacti are either graceful or near graceful and suggested the use of Skolem
sequences to label some types of triangular cacti. Dyer, Payne, Shalaby, and Wicks [862]
verified the conjecture for two families of triangular cacti using Langford sequences to
obtain Skolem and hooked Skolem sequences with specific subsequences.

Seoud and Elsakhawi [2771] and [2772] have shown that the following graphs are
almost graceful: C; P, + K Po + K1 Ko Kt Ko2.mi Ki1mm; Po X P (n > 3);
Ks UK, ,; Kg UK ,, and ladders.

For a graph G with p vertices, ¢ edges, and 1 < k < ¢, Eshghi [899] defines a holey a-
labeling with respect to k as an injective vertex labeling f for which f(v) € {1,2,...,q+1}
for all v, {|f(u) — f(v)| | for all edges uv} ={1,2,...,k—1,k+1,...,¢+ 1}, and there
exist an integer v with 0 < v < ¢ such that min{ f(u), f(v)} <~ < max{f(u), f(v)}. He
proves the following: P, has a holey a-labeling with respect to all k; C), has a holey a-
labeling with respect to k if and only if either n = 2 (mod 4), k is even, and (n, k) # (10, 6),
orn =0 (mod 4) and k is odd.

Recall from Section 2.2 that a kC),-snake is a connected graph with k£ blocks whose
block-cutpoint graph is a path and each of the k blocks is isomorphic to C),. In addition
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to his results on the graceful kC,,-snakes given in Section 2.2, Barrientos [439] proved that
when £ is odd the linear kCs-snake is nearly graceful and that C,, U K , is nearly graceful
when m = 3,4, 5, and 6.

Yet another kind of labeling introduced by Rosa in his 1967 paper [2648] is a p-labeling.
(Sometimes called a rosy labeling ). A p-labeling (or p-valuation) of a graph is an injection
from the vertices of the graph with ¢ edges to the set {0,1,...,2q}, where if the edge
labels induced by the absolute value of the difference of the vertex labels are ay, as, . . ., a4,
then a; = i or a; = 2¢ + 1 — i. Rosa [2648] proved that a cyclic decomposition of the
edge set of the complete graph Ky, into subgraphs isomorphic to a given graph G' with
q edges exists if and only if G has a p-labeling. (A decomposition of K, into copies of G
is called cyclic if the automorphism group of the decomposition itself contains the cyclic
group of order m.) It is known that every graph with at most 11 edges has a p-labeling
and that all lobsters have a p-labeling (see [659]).

In [468] Barrientos and Minion proved that a tree admits a p-labeling when the deletion
of some of its leaves results in a graceful tree. They use this result to prove the existence
of p-labeling for several families of trees such as lobsters and those of diameter up to
seven. Similarly, they showed that if 7" is any graceful tree of size n and k is an integer
such that 2k > n + 1, then any tree of size n + 2k obtained attaching a path of length 2
to k distinct vertices of T" has a p-labeling.

Donovan, El-Zanati, Vanden Eyden, and Sutinuntopas [844] prove that rC,, has a p-
labeling (or a more restrictive labeling) when r < 4. They conjecture that every 2-regular
graph has a p-labeling. Gannon and El-Zanati [1015] proved that for any odd n > 7,rC,,
admits p-labelings. The cases n = 3 and n = 5 were done in [840] and [884]. Aguado,
El-Zanati, Hake, Stob, and Yayla [69] give a p-labeling of C, U Cs U C} for each of the
cases where r = 0, s = 1, t =1 (mod 4); r =0, s = 3, t = 3 (mod 4); and r = 1,
s=1,t=3 (mod 4); iv)r=1,s=2,t=3 (mod 4); (v) r=3,s=3,¢t =3 (mod 4).
Caro, Roditty, and Schénheim [659] provide a construction for the adjacency matrix for
every graph that has a p-labeling. They ask the following question: If H is a connected
graph having a p-labeling and ¢ edges and G is a new graph with ¢ edges constructed
by breaking H up into disconnected parts, does G also have a p-labeling? Kézdy [1689]
defines a stunted tree as one whose edges can be labeled with ey, e, ..., e, so that e; and
eo are incident and, for all j = 3,4,...,n, edge ¢; is incident to at least one edge ey
satisfying 2k < j — 1. He uses Alon’s “Combinatorial Nullstellensatz” to prove that if
2n + 1 is prime, then every stunted tree with n edges has a p-labeling.

Jeba Jesintha and Ezhilarasi Hilda [1390] introduced a variation of Rosa’s p-labeling
as follows. A p*-labeling of a graph G is an injection from the vertices of the graph with
q edges to the set {0,1,...,2q}, where if the edge labels induced by the absolute value of
the difference of the vertex labels are eq, eq, ..., ¢4, then e; =i or e; = 2¢ —i. They prove
that all paths and shell-butterfly graphs have a p*-labeling.

In [459] Barrientos and Minion proved the existence of p-labelings for some types of
forests that considerably reduce the number of trees that need to be studied to prove
Kotzig’s Conjecture that states that Ks,.; can be cyclically decomposed into 2n + 1
subgraphs isomorphic to a given tree with n edges. Among their results are the following.
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If T7 and T, admit a-labelings such that one of the end-vertices of the edge of weight 1
in Ty is a leaf, then 77 UT5, admits a p-labeling. If Gy, G, ..., Gy is a collection of graphs
that admit a-labelings, where GG}, is a caterpillar of size at least k—2, then Ule G; admits
a p-labeling. Let R denote the family that consists of all trees G such that G has a branch
H, (i.e., G — H is a tree) that is a caterpillar, where the excess of G — H is at most the
size of H. They prove that G admits a p-labeling when G € R.

Recall a kayak paddle K P(k,m,!) is the graph obtained by joining C}y and C,, by
a path of length [. Froncek and Tollefeson [981], [982] proved that KP(r,s,l) has a
p-labeling for all cases. As a corollary they have that the complete graph Ko, is de-
composable into kayak paddles with n edges.

In [964] Froncek generalizes the notion of an a-labeling by showing that if a graph G
on n edges allows a certain type of p-labeling), called as-labeling, then for any positive
integer k the complete graph Kos,;1 can be decomposed into copies of G.

In their investigation of cyclic decompositions of complete graphs El-Zanati, Vanden
Eynden, and Punnim [890] introduced two kinds of labelings. They say a bipartite graph
G with n edges and partite sets A and B has a 0-labeling h if h is a one-to-one function from
V(GQ) to {0,1,...,2n} such that {|h(b) — h(a)| ab € E(G),a € A,be B} ={1,2,...,n}.
They call h a pt-labeling of G if h is a one-to-one function from V(G) to {0,1,...,2n}
and the integers h(z) — h(y) are distinct modulo 2n 4+ 1 taken over all ordered pairs (x,y)
where zy is an edge in G, and h(b) > h(a) whenever a € A,b € B and ab is an edge in
G. Note that #-labelings are pT-labelings and p*-labelings are p-labelings. They prove
that if G is a bipartite graph with n edges and a p*-labeling, then for every positive
integer x there is a cyclic G-decomposition of Ky,,11. They prove the following graphs
have pt-labelings: trees of diameter at most 5, Cy,, lobsters, and comets (that is, graphs
obtained from stars by replacing each edge by a path of some fixed length). They also
prove that the disjoint union of graphs with a-labelings have a #-labeling and conjecture
that all forests have p-labelings.

A o-labeling of G(V, E) is a one-to-one function f from V to {0,1,...,2|E|} such
that {|f(u) — f(v)| | wv € E(G)} = {1,2,...,|E|}. Such a labeling of G yields cyclic
G-decompositions of Ky, and of Ky, o — F, where F' is a 1-factor of Ky, 5. El-Zanati
and Vanden Eynden (see [68]) have conjectured that every 2-regular graph with n edges
has a p-labeling and, if n = 0 or 3 (mod 4), then every 2-regular graph has a o-labeling.
Aguado and El-Zanati [68] have proved that the latter conjecture holds when the graph
has at most three components.

Given a bipartite graph GG with partite sets X and Y and graphs H; with p vertices
and Hs with ¢ vertices, Froncek and Winters [983] define the bicomposition of G and H;
and H,, G[Hy, Hsl, as the graph obtained from G by replacing each vertex of X by a
copy of Hy, each vertex of Y by a copy of Hy, and every edge xy by a graph isomorphic to
K, , with the partite sets corresponding to the vertices x and y. They prove that if G'is a
bipartite graph with n edges and G has a 6-labeling that maps the vertex set V=X UY
into a subset of {0,1,2,...,2n}, then the bicomposition G[K,, K,] has a #-labeling for
every p,q > 1. As corollaries they have: if a bipartite graph G with n edges and at most
n + 1 vertices has a gracious labeling (see §3.1), then the bicomposition graph G [Fp, Fq]
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has a gracious labeling for every p,q > 1, and if a bipartite graph G with n edges has a
f-labeling, then for every p,q > 1, the bicomposition GG [Fp, E] decomposes the complete
graph Koppgi1-

In a paper published in 2009 [889] El-Zanati and Vanden Eynden survey “Rosa-type”
labelings. That is, labelings of a graph G that yield cyclic G-decompositions of Ko, 1 or
K41 for all natural numbers z. The 2009 survey by Froncek [963] includes generaliza-
tions of p- and a-labelings that have been used for finding decompositions of complete
graphs that are not covered in [889].

Blinco, El-Zanati, and Vanden Eynden [572] call a non-bipartite graph almost-bipartite
if the removal of some edge results in a bipartite graph. For these kinds of graphs G they
call a labeling f a ~y-labeling of G if the following conditions are met: f is a p-labeling;
G is tripartite with vertex tripartition A, B,C with C' = {c} and b € B such that {b, c}
is the unique edge joining an element of B to c¢; if av is an edge of G with a € A, then
f(a) < f(v); and f(c) — f(b) = n. (In § 3.2 the term v-labeling is used for a different kind
of labeling.) They prove that if an almost-bipartite graph G with n edges has a y-labeling
then there is a cyclic G-decomposition of Ky, for all x. They prove that all odd cycles
with more than 3 vertices have a 7-labeling and that C5 U Cy,, has a v-labeling if and
only if m > 1. In [628] Bunge, El-Zanati, and Vanden Eynden prove that every 2-regular
almost bipartite graph other than C5 and C3 U Cy have a 7-labeling.

In [572] Blinco, El-Zanati, and Vanden Eynden consider a slightly restricted p*-
labeling for a bipartite graph with partite sets A and B by requiring that there exists a
number A\ with the property that p*(a) < A for all @ € A and p*(b) > A for all b € B.
They denote such a labeling by p**. They use this kind of labeling to show that if G is a
2-regular graph of order n in which each component has even order then there is a cyclic
G-decomposition of Ko, for all x. They also conjecture that every bipartite graph has
a p-labeling and every 2-regular graph has a p-labeling.

Dufour [857] and Eldergill [868] have some results on the decomposition of complete
graphs using labeling methods. Balakrishnan and Sampathkumar [414] showed that for
each positive integer n the graph K,, + 2K, admits a p-labeling. Balakrishnan [408] asks
if it is true that K, +mK, admits a p-labeling for all n and m. Fronéek [962] and Froncek
and Kubesa [976] have introduced several kinds of labelings for the purpose of proving
the existence ofspecial kinds of decompositions of complete graphs into spanning trees.

For positive integers ¢ and d, let K .4 denote the complete multipartite graph with ¢
parts, each containing d vertices. Let G with n edges be the union of two vertex-disjoint
even cycles. In [3056] Su et al. use Rosa-type graph labelings to show that there exists
a cyclic G- decomposition of K(2n + 1) x t, Ky /o+1)xat, K5y (n/2)t, and of Ky, for every
positive integer t. If n = 0 (mod 4),then there also exists a cyclic G-decomposition of
K1 X 2t, Kpay41 % 8t, Ko x (n/4)t, and of Kz, for every positive integer ¢.

For (p,q)-graphs with p = ¢ + 1, Frucht [986] has introduced a stronger version of
almost graceful graphs by permitting as vertex labels {0,1,...,¢ — 1,¢+ 1} and as edge
labels {1,2,...,q}. He calls such a labeling pseudograceful. Frucht proved that P, (n > 3),
combs, sparklers (i.e., graphs obtained by joining an end vertex of a path to the center of
a star), C5U P, (n # 3), and C, U P, (n # 1) are pseudograceful whereas K, (n > 3) is

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 69



not. Kishore [1704] proved that C U P, is pseudograceful when s > 5 and n > (s + 7)/2
and that Cs U S, is pseudograceful when s = 3,s = 4, and s > 7. Seoud and Youssef
[2803] and [2799] extended the definition of pseudograceful to all graphs with p < ¢ + 1.
They proved that K, is pseudograceful if and only if m = 1,3, or 4 [2799]; K,,, is
pseudograceful when n > 2, and P, + K,, (m > 2) [2803] is pseudograceful. They also
proved that if G is pseudograceful, then G U K, ,, is graceful for m > 2 and n > 2 and
G U K,,,, is pseudograceful for m > 2,n > 2 and (m,n) # (2,2) [2799]. They ask if
G U K is pseudograceful whenever G is. Seoud and Youssef [2799] observed that if G
is a pseudograceful Eulerian graph with g edges, then ¢ = 0 or 3 (mod 4). Youssef [3545]
has shown that C), is pseudograceful if and only if n = 0 or 3 (mod 4), and for n > 8
and n = 0 or 3 (mod 4), C,, U K,,, is pseudograceful for all p,q > 2 except (p,q) = (2,2).
Youssef [3542] has shown that if H is pseudograceful and G has an a-labeling with &
being the smaller vertex label of the edge labeled with 1 and if either kK + 2 or £ — 1 is
not a vertex label of G, then G U H is graceful. In [3546] Youssef shows that if G is (p, q)
pseudograceful graph with p = ¢+ 1, then G U S,, is Skolem-graceful (see Section 3.5 for
the definition). As a corollary he obtains that for all n > 2, P, U S,, is Skolem-graceful
if and only if n > 3 or n = 2 and m is even.

In [3551] Youssef generalizes his results in [3542] and provides new families of discon-
nected graphs that have a-labelings and pseudo a-labelings. (A pseudo a-labeling f is an
a-labeling for which there is an integer k; with the property that for each edge xy of the
graph either f(x) < k; < f(y) or f(y) < k; < f(z).)

For a graph G Ichishima, Muntaner-Batle, and Oshima [1293] defined the beta-number
of G, B(G), to be either the smallest positive integer n for which there exists an injective
function f from the vertices of G to {1,2,...,n} such that when each edge uv is labeled
|f(u) — f(v)| the resulting set of edge labels is {¢,c 4+ 1,...,c + |E(G)| — 1} for some
positive integer ¢ or +oo if there exists no such integer n. They defined the strong
beta-number of G to be either the smallest positive integer n for which there exists an
injective function f from the vertices of G to {1,2,...,n} such that when each edge uv is
labeled |f(u) — f(v)| the resulting set of edge labels is {1,2,...,|E(G)|} or +o0 if there
exists no such integer n. They gave some necessary conditions for a graph to have a
finite (strong) beta-number and some sufficient conditions for a graph to have a finite
(strong) beta-number. They also determined formulas for the beta-numbers and strong
beta-numbers of C,,, 2C,,, K,, (n > 2), S,,US,, P, US,, and prove that nontrivial trees
and forests without isolated vertices have finite strong beta-numbers. In [1282] Ichishima,
Lépez, Muntaner-Batte, and Oshima proved that if G is a bipartite graph and m is odd,
then S(mG) < m|E(G)| +m — 1. If G has the additional property that G is a graceful
nontrivial tree, then S(mG) = m|V(G)| +m — 1. They also investigate the (strong) beta-
number of forests with components that are isomorphic to either paths or stars. They
propose new conjectures on the (strong) beta-number of forests. In [1309] Ichishima and
Oshima determine a formula for the (strong) beta-number of the linear forests P, U P,.
As a corollary they provide a partial formula for the beta-number of the disjoint union
of multiple copies of the same linear forest. In [1295] Ichishima, Muntaner-Batle, Oshima
provide lower and upper bounds for (G +nkK;) when 5(G) = |V(G)|—1 and formulas for
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B(G +nKy) and B5(G + nkK;)) when 54(G) = |V(G)| — 1. They also determine formulas
for B(G + K1) and Bs(G + K ,,) when ,(G) = |[V(G)| — 1. They conclude with two
problems.

In [1288] Ichishima, Oshima, and Takahashi establish a lower bound for the beta-
number of an arbitrary galaxy under certain conditions. They also introduce the notions
of odd symmetric and even symmetric galaxies and determine formulas for the beta-
number and gamma-number of odd symmetric galaxies. As corollaries, they provide
formulas for the beta-number and gamma-number of the disjoint union of multiple copies
of the same galaxy when the number of copies is odd. In addition to these, the present an
upper bound for the beta-number of even symmetric galaxies and obtain partial formulas
for the beta-number and gamma-number of even symmetric galaxies.

For a graph G of order p and size ¢ and every positive integer n Ichishima, Muntaner-
Batle, and Oshima [1298] proved if S(G) = p — 1, then there exists some positive integer
¢ such that g+ np < B(G +nK;) <c+q+np—1;if s(G) = p—1, then (G +nk;) =
Bs(G+nKy) = q+np and G + nkK; is graceful; and if ¢ = p — 1 and 55(G) = p — 1, then
B(G+S,) =B(G+S,) = (n+2)p+n—1. In particular, if T is a graceful tree of order
p then (T +nK;) = Bs(T + nk;) = (n+ 1)p — 1. Moreover, T'+ nK; and T + S, are
graceful.

In [1301] Ichishima, Muntaner-Batle, and Oshima establish a lower bound for the
strong beta-number of an arbitrary galaxy (that is, a forest whose components are stars)
under certain conditions. They also determine formulas for the (strong) beta-number
and gracefulness of galaxies with three and four components. As corollaries, they provide
formulas for the beta-number and gracefulness of the disjoint union of multiple copies of
the same galaxies if the number of copies is odd. They pose some problems and conjecture.
In [1290] Ichishima and Muntaner-Batle determined formulas for the (strong) beta-number
and gracefulness of galaxies with five components. In [1305] Ichishima, Muntaner-Batle,
and Oshima determined formulas for the (strong) beta-number and gamma-number of
galaxies with five components. As a corollary of these results, they provide formulas for
the beta-number and gamma-number of the disjoint union of multiple copies of the same
galaxies if the number of copies is odd.

McTavish [2120] has investigated labelings of graphs with ¢ edges where the vertex
and edge labels are from {0,...,q,q+ 1}. She calls these p-labelings. Graphs that have
p-labelings include cycles and the disjoint union of P, or S,, with any graceful graph.

Frucht [986] has made an observation about graceful labelings that yields nearly grace-
ful analogs of a-labelings and weakly a-labelings in a natural way. Suppose G(V, E) is a
graceful graph with the vertex labeling f. For each edge zy in E, let [f(z), f(y)] (where
f(z) < f(y)) denote the interval of real numbers r with f(x) < r < f(y). Then the
intersection N[f(x), f(y)] over all edges xy € E is a unit interval, a single point, or empty.
Indeed, if f is an a-labeling of G' then the intersection is a unit interval; if f is a weakly
a-labeling, but not an a-labeling, then the intersection is a point; and, if f is a graceful
but not a weakly a-labeling, then the intersection is empty. For nearly graceful labelings,
the intersection also gives three distinct classes.

Let G(V, E) be a graph without isolated vertices and with ¢ edges. The gracefulness
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grac(G) of G is the smallest positive integer k for which there exists an injective function
f:+ V. —={0,1,2,...,k} such that the edge induced function g, : E — {1,2,...,k}
defined by gf(uv) = |f(u) — f(v)| for all edges wv is also injective. Let ¢(f) = max{i :
1,2,...,1} are edge labels} and let m(G) = max{c(f)} where the maximum is taken
over all injective functions f from V' to the nonnegative integers such that g; is also
injective. The measure m(G) is called m-gracefulness of G. It determines how close G is
to being graceful. Pereira, Singh, Arumugam [2380] prove that there are infinitely many
nongraceful graphs with m-gracefulness ¢—1 and give necessary conditions for an Eulerian
graph with ¢ edges and K, with ¢ edges to have m-gracefulness ¢ — 1 and ¢ — 2. They
prove that Kjy is the only complete graph to have m-gracefulness ¢ — 1. They also give
an upper bound for the highest possible vertex label of K, if m(K,) = ¢ — 2.

A (p,q)-graph G is said to be a super graceful graph if there is a a bijective function
f:V(G)UE(G) — {1,2,...,p+ q} such that f(uv) = |f(u) — f(v)| for every edge
uwv € E(G) labeling. Perumal, Navaneethakrishnan, Nagarajan, Arockiaraj [2385] and
[2386] show that the graphs P,, C,, P, ®nK;, K, ,, and P, ® K; minus a pendent edge
at an endpoint of P, are super graceful graphs. Lau, Shiu, and Ng [1810] study the super
gracefulness of complete graphs, the disjoint union of certain star graphs, the complete
tripartite graphs K11, and certain families of trees. They also provide four methods of
constructing new super graceful graphs. They prove all trees of order at most 7 are super
graceful and conjecture that all trees are super graceful. Amutha and Uma Devi [180]
proved the following graphs are super graceful: fans, double fans DF,, = P, + K, (n > 2),
and for (m > 3,n > 2) the graphs obtained by identifying a central vertex of the star S,,
with an end vertex of path in P, + Kj.

For k > 1, Lau, Shiu, and Ng [1815] say a bijection f : VUFE — [k, k +p+ q — 1]
is a k-super graceful labeling if f(uv) = |f(u) — f(v)| for every edge uv in G. A graph
G is k-super graceful if it admits a k-super graceful labeling. This is a generalization of
super graceful labeling defined by Perumal, Navaneethakrishnan, Nagarajan, Arockiaraj
in [2386]. It was referred to as a k-sequential labeling by Slater in [3000], in which Slater
gave necessary and sufficient conditions for a star to be k-sequential. In [1814] Lau,
Shiu, and Ng investigated the existence of k-sequential labelings (which they call k-super
graceful labelings) of paths, cycles, caterpillars, complete bipartite and complete tripartite
graphs.

In [875] Elsonbaty and Daoud introduce a new version of gracefulness called an edge
even graceful labeling of graphs. A bijective function f from the edges of a (p, ¢)-graph G
to {2,4,...,2q} is said to be an edge even graceful labeling of G if the induced function
f* from the vertices to {0,2,...,2q} defined by f*(e) is the sum of f(e) (mod max(p,q))
is injective. They prove the following graphs have edge even graceful labelings: P, if and
only if n is odd, C,, if and only if n is odd, K, if and only if n is even, wheels, fans,
friendship graphs, and double wheels W), ,,. The polar grid graph P, ,, consists of n copies
of C,,, a new vertex vy, and m copies on P, ; that share a endpoint at vy The graph
is drawn as m concentric circles with a center at a new vertex vy and the m vertices of
each cycle lie on a line with one endpoint at vy and the other endpoint at the outermost
cycle in such a way that the n vertices of the copies on P, ; other the vy intersect the
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vertices of cycles. Daoud [781] provided necessary and sufficient conditions for the polar
grid graph to be edge even graceful.

Singh and Devaraj [2977] call a graph G with p vertices and ¢ edges triangular grace-
ful if there is an injection f from V(G) to {0,1,2,...,T,} where T, is the gth triangular
number and the labels induced on each edge uv by |f(u) — f(v)| are the first ¢ triangular
numbers. They prove the following graphs are triangular graceful: paths, level 2 rooted
trees, olive trees (see § 2.1 for the definition), complete n-ary trees, double stars, caterpil-
lars, Cy,, Cy, with pendent edges, the one-point union of C3 and P,, and unicyclic graphs
that have Cj as the unique cycle. They prove that wheels, helms, flowers (see §2.2 for the
definition) and K,, with n > 3 are not triangular graceful. They conjecture that all trees
are triangular graceful. In [2843] Sethuraman and Venkatesh introduced a new method
for combining graceful trees to obtain trees that have a-labelings.

Van Bussel [3336] considered two kinds of relaxations of graceful labelings as applied
to trees. He called a labeling range-relaxed graceful it is meets the same conditions as
a graceful labeling except the range of possible vertex labels and edge labels are not
restricted to the number of edges of the graph (the edges are distinctly labeled but not
necessarily labeled 1 to ¢ where ¢ is the number of edges). Similarly, he calls a labeling
vertex-relaxed graceful if it satisfies the conditions of a graceful labeling while permitting
repeated vertex labels. He proves that every tree T with ¢ edges has a range-relaxed
graceful labeling with the vertex labels in the range 0, 1, ..., 2¢—d where d is the diameter
of T and that every tree on n vertices has a vertex-relaxed graceful labeling such that
the number of distinct vertex labels is strictly greater than n/2. In 2017 Sethuraman,
Ragukumar, and Slater [2830] improved the bound on the range-relaxed graceful labeling
given by Van Bussel in [3336] in 2002 for a tree 7.

The range-relaxed graceful game is a maker-breaker game played in a simple graph
G where two players, Alice and Bob, alternately assign an unused label f(v) €
{0,...,k} (k > |E(G)|), to an unlabeled vertex v € V(G). If both ends of an edge
vw € F(G) are already labeled, then the label of the edge is defined as |f(v) — f(w)|. Al-
ice’s goal is to end up with a vertex labeling of G where all edges of GG have distinct labels,
and Bob’s goal is to prevent this from happening. When it is required that k = |E(G)|,
the game is called a graceful game. The range-relaxed graceful game and the graceful game
were proposed by Tuza in 2017 [3233]. In [2319] Oliveira, Dantas, and Lui, considered a
question about the least number of consecutive non-negative integer labels necessary for
Alice to win the game on an arbitrary simple graph G and also asked if Alice can win the
range-relaxed graceful game on G with the set of labels {0,...,k + 1} once it is known
that she can win with the set {0, ..., k}. They investigated the graceful game in Cartesian
and corona products of graphs, and determined that Bob has a winning strategy in all
investigated families independently of who starts the game. Additionally, they partially
answer Tuza’s questions presenting the first results in the range-relaxed graceful game
and proving that Alice wins on any simple graph G with order n, size m, and maximum
degree A, for any set of labels {0,...,k} with &k > (n — 1)+ 2A(m — A) + (A(A —1))/2.

In [455], Barrientos and Krop introduce left- and right-layered trees as trees with a
specific representation and define the excess of a tree. Applying these ideas, they show
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a range-relaxed graceful labeling which improves the upper bound for maximum vertex
label given by Van Bussel in [3336]. They also improve the bounds given by Rosa and
Siran in [2651] for the a-size and gracesize of lobsters.

Sekar [2736] calls an injective function ¢ from the vertices of a graph with ¢ edges to
{0,1,3,4,6,7,...,3(q — 1),3q — 2} one modulo three graceful if the edge labels induced
by labeling each edge uv with |¢p(u) — ¢(v)| is {1,4,7,...,3¢ — 2}. He proves that the
following graphs are one modulo three graceful: P,,; C,, if and only if n = 0 mod 4;
K n; C’éi) (the one-point union of two copies of Cy,); OV forn=4or 8 and t > 2; Cét)
and t > 4; caterpillars; stars; lobsters; banana trees; rooted trees of height 2; ladders; the
graphs obtained by identifying the endpoints of any number of copies of P,; the graph
obtained by attaching pendent edges to each endpoint of two identical stars and then
identifying one endpoint from each of these graphs; the graph obtained by identifying a
vertex of Cyryo with an endpoint of a star; n-polygonal snakes (see §2.2) for n = 0 (mod
4); n-polygonal snakes for n = 2 (mod 4) where the number of polygons is even; crowns
C, ® K; for n even; Cy, ® P,, (Cy, with P,, attached at each vertex of the cycle) for
m > 3; chains of cycles (see §2.2) of the form Cy,,, Cs 2, and Cs,,. He conjectures that
every one modulo three graceful graph is graceful.

A subdivided shell graph is obtained by subdividing the edges in the path of the shell
graph. Jeba Jesintha and Ezhilarasi Hilda [1385] proved that the subdivided uniform shell
bow graphs (that is, double shells in which each shell has the same order) are one modulo
three graceful. Jeba Jesintha and Ezhilarasi Hilda [1384] proved the disjoint union of two
subdivided shell graphs are one modulo three graceful.

In [2569] Ramachandran and Sekar introduced the notion of one modulo N grace-
ful as follows. For a positive integer N a graph G with ¢ edges is said to be one
modulo N graceful if there is an injective function ¢ from the vertex set of G to
{0,1, N,N+1,2N,2N +1,...,(¢q—1)N,(qg—1)N + 1} such that ¢ induces a bijection ¢*
from the edge set of G to {1, N+1,2N+1,...,(¢—1)N+1} where ¢*(uv) = |p(u)—p(v)|.
They proved the following graph are one modulo N graceful for all positive integers V:
paths, caterpillars, and stars [2569]; n-polygonal snakes, C,gt), P,, [2583]; the splitting
graphs S'(Pay), S'(Pan+1), S'(K1,), all subdivision graphs of double triangular snakes,
and all subdivision graphs of 2m-triangular snakes [2570]; the graph L, ® S, obtained
from the ladder L,, (P, x P,) by identifying one vertex of L,, with any vertex of the star
Sy, other than the center of S,, [2572]; arbitrary supersubdivisions of paths, disconnected
paths, cycles, and stars [2571]; and regular bamboo trees and coconut trees [2573]. Ra-
machandran and Sekar [2574] proved the supersubdivisions of ladders are one modulo N
graceful for all positive integers N. In [2575] Ramachandran and Sekar proved that the
crowns, armed crowns, and chain of even cycles are one modulo N graceful for all positive
integers N.

In 1983 Bange and Barkauskas z [418] introduced the notion of Fibonacci graceful
graphs as follows. A function f : V(G) — {0,1,2,..., F,}, where G has ¢ edges and F,
is the gth Fibonacci number, is a Fibonacci graceful labeling if the induced edge labeling
f(uv) = |f(u) — f(v)| is a bijection to the set of the first ¢ Fibonacci numbers. Such
a graph is called Fibonacci graceful. They derived a number of properties of Fibonacci
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graceful graphs and provided some forbidden subgraphs of Fibonacci graceful graphs.
Other results include: C,, is Fibonacci graceful if and only if n = 0 or 2 mod 3, trees
with at least 7 vertices are Fibonacci graceful, and a maximal outerplanar graph with at
least four vertices is Fibonacci graceful if and only if it has exactly two vertices of degree
2. Kathiresan and Amutha in [1667] prove the following: K, is Fibonacci graceful if and
only if n < 3; if an Eulerian graph with ¢ edges is Fibonacci graceful, then ¢ = 0 (mod
3); paths are Fibonacci graceful; fans P, ® K; are Fibonacci graceful; squares of paths P2
are Fibonacci graceful; and caterpillars are Fibonacci graceful. Dharman and Shanmuga
Sundaram [815] proved that balloon trees, barycentric subdivisions of bistars, umbrella
graphs, and double comb graphs are Fibonacci graceful graphs.

Kalyan and Kempepatil [1568] proved that trees and the graphs obtained by joining a
vertex of (s, and a vertex of (3, by P, or P3 admit Fibonacci graceful labelings. They
define a function f : V(G) — {0, F1, Fy, ..., F,}, where F; is the ith Fibonacci number, to
be a super Fibonacci graceful labeling if the induced labeling f(uv) = | f(u) — f(v)] is onto
the set { F1, Fy, ..., F,;}. They show that bistars B,,,, are Fibonacci graceful but not super
Fibonacci graceful for n > 5; cycles (), are super Fibonacci graceful if and only if n =0
(mod 3); if G is Fibonacci or super Fibonacci graceful, then G ® K is Fibonacci graceful;
if G; and G4 are super Fibonacci graceful graphs in which no two adjacent vertices have
the labels 1 and 2, then G; U G4 is Fibonacci graceful; and if G, Gs, ..., G, are super
Fibonacci graceful graphs in which no two adjacent vertices are labeled with 1 and 2, then
the amalgamation of G1,Ga, ..., G, obtained by identifying the vertices having labels 0
is also a super Fibonacci graceful. Karthikeyan, Arthi, Abinaya, Swathi, Madhumathi
[1657] proved that friendship graphs C?Et) and the graphs obtained by the one-point union
of copies of K, with an edge deleted are super Fibonacci graceful.

Vaidya and Prajapati [3296] proved: the graphs obtained joining a vertex of Cj,, and
a vertex of (3, by a path P, are Fibonacci graceful; the graphs obtained by starting with
any number of copies of Cj,,, and joining each copy with a copy of the next by identifying
the end points of a path with a vertex of each successive pair of Cjs,, (the paths need
not be the same length) are Fibonacci graceful; the one point union of Cs,, and Cj, is
Fibonacci graceful; the one point union of &k cycles Cj,, is super Fibonacci graceful; every
cycle C,, withn = 0 (mod 3) or n = 1 (mod 3) is an induced subgraph of a super Fibonacci
graceful graph; and every cycle C,, with n = 2 (mod 3) can be embedded as a subgraph of
a Fibonacci graceful graph. [3041] Sridevi, Navaneethakrishnan, and Nagarajan proved
the following graphs are super Fibonacci graceful: the graphs obtained by identifying the
apex of a fan with the end point of a path, the graphs obtained by identifying the apex of
a fan with the vertex of maximum degree of K ,, © P, the graphs obtained by identifying
a vextex of Cj, with the end point of a path, the graphs obtained by identifying a vextex
of (5, with the center of a star, and the graphs obtained by identifying each endpoint a
star with the center of K .

For a graph G with ¢ edges an injective function f from the vertices of G to
{0, F\,F5, ..., Fy_1, Fyi1}, where F; is the ith Fibonacci number (as defined by Kathire-
san and Amuth above), is said to be almost super Fibonacci graceful if the induced
edge labeling f * (uwv) = |f(u) — f(v)| is a bijection onto the set {Fi, Fs,..., F,} or
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{0, Fy, Fs, ..., Fyq, Fyi1}. Sridevi, Navaneethakrishnan, and Nagarajan [3041] proved
that paths, combs, graphs obtained by subdividing each edge of a star, and some special
types of extension of cycle related graphs are almost super Fibonacci graceful labeling.
Sridevi, Navaneethakrishnan, and Nagarajan [3040] showed that paths, combs, and some
special types of extension of cycle-related graphs are almost super Fibonacci graceful.

For a graph G and a vertex v of G, a vertex switching G, is the graph obtained from ¢
by removing all edges incident to v and adding edges joining v to every vertex not adjacent
to v in G. Vaidya and Vihol [3321] prove the following: trees are Fibonacci graceful; the
graph obtained by switching of a vertex in cycle is Fibonacci graceful; wheels and helms
are not Fibonacci graceful; the graph obtained by switching of a vertex in a cycle is super
Fibonacci graceful except n > 6; the graph obtained by switching of a vertex in cycle C,
for n > 6 can be embedded as an induced subgraph of a super Fibonacci graceful graph;
and the graph obtained by joining two copies of a fixed fan with an edge is Fibonacci
graceful.

The Perrin sequence of numbers P, is defined by the linear recurrence relation satisfy-
ing the conditions: P, =3,P, =0,P;3 =2,and P, = P, o+ P,_3, if n > 4. Letting P; be
the i'" term of the Perrin sequence and Py = 0, Sugumaran and Rajesh [3118] introduced
the notion of Perrin graceful labeling as follows: A function f is called a Perrin grace-
ful labeling of a graph G, if f: V(G) — {F, P1, P, ..., P,} is injective and the induced
function f* : B(G) — {Py, Py, ..., P,} defined by f*(uv) = |f(u) — f(v)| is bijective. A
graph that admits Perrin graceful labeling is called a Perrin graceful graph. In [3118]
Sugumaran and Rajesh proved that the following graphs are Perrin graceful graphs: K ,,
Bn,na P, ® Kl, Cn ©O) Kl, and < Kl,n;4 >.

For n > 1 the Pell numbers are defined as py = 0, p; = 1, and p,,11 = 2p,+pn_1. For a
graph G with ¢ edges Muthuramakrishnan and Sutha [2236] introduced the concept of Pell
graceful labeling as an injective function f from V(G) to the Pell numbers {0,1,2,...,p,}
such that the induced edge labeling f*(uv) = |f(u) — f(v)| is a bijection onto the Pell
numbers {pi, pa,...,p,} They prove that paths, combs P, ® K; (n > 3), and the graphs
obtained by the one point union of paths of lengths 1,2,...,n (n > 3) are Pell graceful.

In [613] Bresar and Klavzar define a natural extension of graceful labelings of certain
tree subgraphs of hypercubes. A subgraph H of a graph G is called isometric if for every
two vertices u, v of H, there exists a shortest u-v path that lies in H. The isometric
subgraphs of hypercubes are called partial cubes. Two edges xy, uv of G are in O-relation
if dg(z,u) + dg(y,v) # da(z,v) + dg(y,u). A O-relation is an equivalence relation that
partitions E(G) into ©-classes. A O-graceful labeling of a partial cube G on n vertices is
a bijection f: V(G) — {0,1,...,n — 1} such that, under the induced edge labeling, all
edges in each ©-class of G have the same label and distinct ©-classes get distinct labels.
They prove that several classes of partial cubes are ©-graceful and the Cartesian product
of ©-graceful partial cubes is ©-graceful. They also show that if there exists a class of
partial cubes that contains all trees and every member of the class admits a ©-graceful
labeling then all trees are graceful.

Cohen and Kovse showed that the graph obtained by merging two vertices of two
4-cycles is not a O-graceful partial cube, thereby answering in the negative a question of
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Bresar and Klavzar [613] who asked whether every partial cube is ©-graceful.

Table 4 provides a summary results about graceful-like labelings adapted from [611].
“Y” indicates that all graphs in that class have the labeling; “N” indicates that not all
graphs in that class have the labeling; “?” means unknown; “C” means conjectured.

Table 4: Summary of Results on Graceful-like labelings

Graph a-labeling | S-labeling o-labeling | p-labeling
Cycle C,, n=0mod 4 | Y [2648] |Y Y Y
Cycle Cy,, n=3 mod 4 | N [2648] | Y [2648] Y Y
Wheels N Y [984], [1255] | Y Y
Trees
Yes, if order < 5 35 [914] 54
Paths Y [2648] |Y Y Y
Caterpillars Y [2648] |Y Y Y
Firecrackers Y [692] Y Y Y
Lobsters NI[573] 7C [544] Y Y [659]
Bananas ? Y [2822], [2821] | ¥ Y
Symmetrical trees N [573] Y [548] Y Y
Olive trees ? Y [2355], [13] Y Y
Diameter < 8 N [3447] |Y Y Y
< 5 end vertices N [573] Y [2648] Y Y
Max degree 3 N [2651] | C C C
Max degree 3 and
perfect matching | C [608] C C C

3.4 k-graceful Labelings

A natural generalization of graceful graphs is the notion of k-graceful graphs introduced
independently by Slater [3001] in 1982 and by Maheo and Thuillier [2054] in 1982. A graph
G with ¢ edges is k-graceful if there is labeling f from the vertices of G to {0,1,2,...,¢+
k — 1} such that the set of edge labels induced by the absolute value of the difference
of the labels of adjacent vertices is {k,k + 1,...,¢ + k — 1}. Obviously, 1-graceful is
graceful and it is readily shown that any graph that has an a-labeling is k-graceful for
all k. Graphs that are k-graceful for all k£ are sometimes called arbitrarily graceful. The
result of Barrientos and Minion [456] that all snake polyominoes are a-graphs partially
answers a question of Acharya [30] and supports his conjecture that if the length of every
cycle of a graph is a multiple of 4, then the graph is arbitrarily graceful. In [2772] Seoud
and Elsakhawi show that P, @ K, (n > 2) is arbitrarily graceful. Ng [2282] has shown
that there are graphs that are k-graceful for all £ but do not have an a-labeling.

Results of Maheo and Thuillier [2054] together with those of Slater [3001] show that:
C,, is k-graceful if and only if either n = 0 or 1 (mod 4) with & even and k < (n —1)/2,
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or n =3 (mod 4) with k£ odd and k£ < (n? —1)/2. Maheo and Thuillier [2054] also proved
that the wheel Wo, 1 is k-graceful and conjectured that Wy, is k-graceful when k # 3 or
k # 4. This conjecture was proved by Liang, Sun, and Xu [1942]. Kang [1631] proved that
P,, x Cy, is k-graceful for all k. Lee and Wang [1906] showed that the graphs obtained
from a nontrivial path of even length by joining every other vertex to one isolated vertex
(a lotus), the graphs obtained from a nontrivial path of even length by joining every other
vertex to two isolated vertices (a diamond), and the graphs obtained by arranging vertices
into a finite number of rows with ¢ vertices in the ith row and in every row the jth vertex
in that row is joined to the jth vertex and j + 1st vertex of the next row (a pyramid) are
k-graceful. Liang and Liu [1930] have shown that K, is k-graceful. Bu, Gao, and Zhang
[622] have proved that P, x P and (P, x Py)U (P, x P) are k-graceful for all k. Acharya
(see [30]) has shown that a k-graceful Eulerian graph with ¢ edges must satisfy one of the
following conditions: ¢ = 0 (mod 4), ¢ = 1 (mod 4) if k is even, or ¢ = 3 (mod 4) if k
is odd. Bu, Zhang, and He [627] have shown that an even cycle with a fixed number of
pendent edges adjoined to each vertex is k-graceful. Lu, Pan, and Li [2041] have proved
that K ,, UK, , is k-graceful when £ > 1, and p and ¢ are at least 2. Jirimutu, Bao, and
Kong [1552] have shown that the graphs obtained from K, (n > 2) and K3, (n > 3)
by attaching r > 2 edges at each vertex is k-graceful for all £ > 2. Seoud and Elsakhawi
[2772] proved: paths and ladders are arbitrarily graceful; and for n > 3, K,, is k-graceful
if and only if £ =1 and n = 3 or 4. Li, Li, and Yan [1927] proved that K, , is k-graceful
graph. Pradhan and Kamesh [2481] showed that the hairy cycle C,, - 7K; (n = 3 (mod
4), the graph obtained by adding a pendent edge to each pendent vertex of hairy cycle
C, - Ki; n =0 (mod 4), double graphs of path P,, and double graphs of combs P, - K;
are k-graceful.

Yao, Cheng, Zhongfu, and Yao [3530] have shown: a tree of order p with maximum
degree at least p/2 is k-graceful for some k; if a tree T has an edge ujus such that the
two components T and Ty of T — ujus have the properties that dr, (u;) > |T1]/2 and
dr,(uz) = |T3|/2, then T is k-graceful for some positive k; if a tree T has two edges
uyug and usug such that the three components T, Ty, and T3 of T' — {ujus, usus} have
the properties that dr, (uy) = |11]/2, dr,(u2) = |T»|/2, and dr,(u3) > |T3|/2, then T is
k-graceful for some k > 1; and every Skolem-graceful (see 3.5 for the definition) tree is
k-graceful for all £ > 1. They conjecture that every tree is k-graceful for some £ > 1.

Several authors have investigated the k-gracefulness of various classes of subgraphs of
grid graphs. Acharya [28] proved that all 2-dimensional polyminoes that are convex and
Eulerian are k-graceful for all k; Lee [1836] showed that Mongolian tents and Mongolian
villages are k-graceful for all k (see §2.3 for the definitions); Lee and K. C. Ng [1860]
proved that all Young tableaus (see §2.3 for the definitions) are k-graceful for all k. (A
special case of this is P, x P,.) Lee and H. K. Ng [1860] subsequently generalized these
results on Young tableaus to a wider class of planar graphs.

In [465] Barrientos and Minion say that two caterpillars I" and € of size n are analogous
if the stable sets of I" have the same cardinalities as the stable sets of 2. They prove that if
() is an induced subgraph of a gracefully labeled graph G, such that the induced labeling is
a bipartite k-labeling shifted ¢ units, then the graph G’ obtained by replacing €2 with any
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other caterpillar I' analogous to €2, is a graceful graph. This result is used to generalize
several existing results that use k-graceful labelings of paths such as the subdivision of
graceful trees [633], the a-labeling of the ith attachment tree [2843], the a-labelings of
path-like trees [438], the a-labelings of the graphs obtained by identifying the end-vertices
of b paths of length a with two new vertices, as well as the graceful labelings of the armed
crowns [2736].

Duan and Qi [856] use Gy(my, n1; ma, no; . .. ;ms, ng) to denote the graph composed of
the s complete bipartite graphs Ky, n,; K ngs - - - K, n, that have only ¢
(1 < t < min{my,mg,...,ms}) common vertices but no common edge and
G(mq,ni;me,ny) to denote the graph composed of the complete bipartite graphs
Ky nys Ky o With exactly one common edge. They prove that these graphs are k-
graceful graphs for all £.

Let ¢, m, p1,pa, ..., pm be positive integers. For ¢ =1,2,...,m, let S; be a set of p; +1
integers and let D; be the set of positive differences of the pairs of elements of .5;. If all
these differences are distinct then the system Dy, Do, ..., D,, is called a perfect system of
difference sets starting at c if the union of all the sets D; is ¢,c+1,...,c—1+Y ", (pigl).
There is a relationship between k-graceful graphs and perfect systems of difference sets. A
perfect system of difference sets starting with ¢ describes a c-graceful labeling of a graph
that is decomposable into complete subgraphs. A survey of perfect systems of difference
sets is given in [18].

Acharya and Hegde [44] generalized k-graceful labelings to (k, d)-graceful labelings by
permitting the vertex labels to belong to {0,1,2,...,k + (¢ — 1)d} and requiring the set
of edge labels induced by the absolute value of the difference of labels of adjacent vertices
to be {k,k+d,k+2d,...,k+ (¢ — 1)d}. They also introduce an analog of a-labelings
in the obvious way. Notice that a (1,1)-graceful labeling is a graceful labeling and a
(k,1)-graceful labeling is a k-graceful labeling. Bu and Zhang [626] have shown: K, ,
is (k,d)-graceful for all k and d; for n > 2, K, is (k,d)-graceful if and only if £ = d
and n < 4; if m;,n; > 2 and max{m;,n;} > 3, then K, n, U Kpppp U -+ U Ky g, 18
(k,d)-graceful for all k,d, and r; if G has an a-labeling, then G is (k, d)-graceful for all
k and d; a k-graceful graph is a (kd, d)-graceful graph; a (kd, d)-graceful connected graph
is k-graceful; and a (k,d)-graceful graph with ¢ edges that is not bipartite must have
k< (q—2)d.

Let T be a tree with adjacent vertices uy and vy and pendent vertices v and v such
that the length of the path uy — u is the same as the length of the path vy — v. Hegde
and Shetty [1231] call the graph obtained from T by deleting uyvy and joining u and v
an elementary parallel transformation of T. They say that a tree T"is a T),-tree if it can
be transformed into a path by a sequence of elementary parallel transformations. They
prove that every T),-tree is (k, d)-graceful for all £ and d and every graph obtained from
a T)-tree by subdividing each edge of the tree is (k, d)-graceful for all k and d.

Yao, Cheng, Zhongfu, and Yao [3530] have shown: a tree of order p with maximum
degree at least p/2 is (k, d)-graceful for some k and d; if a tree T has an edge ujus such
that the two components 77 and Ty of T'— ujuy have the properties that dp, (uq) > |T1|/2
and T is a caterpillar, then T is Skolem-graceful (see 3.5 for the definition); if a tree T’
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has an edge u;us such that the two components 77 and 75 of T'— uyus have the properties
that dp, (u1) > |T1|/2 and dp,(ug) > |T3|/2, then T is (k, d)-graceful for some k£ > 1 and
d > 1; if a tree T' has two edges ujus and usuz such that the three components T, T,
and T3 of T' — {ujus, ugus} have the properties that dr, (u1) = |1T1]/2, dp,(ug) = |T3|/2,
and dr,(us) > |T3|/2, then T is (k,d)-graceful for some & > 1 and d > 1; and every
Skolem-graceful tree is (k,d)-graceful for £ > 1 and d > 0. They conjecture that every
tree is (k, d)-graceful for some k£ > 1 and d > 1.

Hegde [1215] has proved the following: if a graph is (k,d)-graceful for odd k and
even d, then the graph is bipartite; if a graph is (k,d)-graceful and contains Cy;4; as
a subgraph, then k < jd(q —j — 1); K, is (k,d)-graceful if and only if n < 4; Cy is
(k,d)-graceful for all k and d; Cyyq is (2t,1)-graceful; Cypyo is (2t — 1,2)-graceful; and
Cuys is (2t + 1, 1)-graceful.

A semismooth graceful graph is a bipartite graph GG with the property that for some
fixed positive integer ¢ < ¢ and all positive integers [ there is an injective map ¢ :
V — {0,1,...,t = L,t+1+4+1,...,q + I} such that the induced edge labeling map
g E—{14+10,2+1,...,q+1} defined by g*(e) = |g(u) — g(v)| is a bijection. Kaneria,
Gohil, and Makadia [1585] prove every semismooth graceful graph is a (k,d)-graceful;
graphs obtained by joining two semismooth graceful graphs with an arbitrary path is a
semismooth graceful graph; and the notions of graceful labeling and odd-even graceful
labelings are equivalent. (A graph G with ¢ edges is odd-even graceful if there is an
injection f from the vertices of G to {1,3,5,...,2q + 1} such that, when each edge uv is
assigned the label |f(u) — f(v)], the resulting edge labels are {2,4,6,...,2¢}). Kaneria,
Meghpara and Khoda [1592] prove: a smooth graceful labeling for a graph is also an
a-labeling for the graph; a graph that has an a-labeling is a semismooth graceful graph;
graphs that admit an a-labeling are semismooth graceful graphs; if m is even and H has
an a-labeling, then the path union P(m - H) is a smooth graceful graph; and the path
union P(m - H) has an a-labeling.

Nurvazly, Chasanah, and Wiranto [2316] showed that the corona of the ladder L, and
K, and of L3 and K,,, which they call millipedes, admits graceful, p, and odd-even graceful
labelings. In [3074] Sudha and Kanniga proved that tensor product of a star and P is
odd-even graceful. (The tensor product G ® H of graphs G and H, has the vertex set
V(G) x V(H) and any two vertices (u,u') and (v,v’) are adjacent in G ® H if and only
if «' is adjacent with v" and w is adjacent with v.) In [3372] Venkatesh, Mahalakshmi,
and Amirthavahini use C), ; to denote the dragon obtained by joining an end point of P
with a vertex of C,, and C7, , to denote the graph obtained by taking one-point union of ¢
copies of C,, ; at the common vertex v. They proved that the graph C;, , admits a graceful
labeling, an odd graceful labeling, and odd-even graceful labeling for all values of ¢t with
n =4,k =1, and that sz,l admits vertex cordial labeling for all values of n and ¢, except
n = 2 mod 4 (see Section 3.7). Nurvazly and Sugeng [2315] proved that ©(C3)™ graphs
(n copies of C3 that share an edge) have odd-even graceful labelings. Anitha, Selvam,
and Thirusangu [215] provide k-graceful and odd-even graceful labelings for the extended
duplicate graph of the kite graph.

For a graph G let G, G, ... G™ be n > 2 copies of G. The graph obtained by
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joining vertices u,v of G with same vertices of the graph GU*V by two edges, for all
1=1,2,...,n—1is called the double path union of n copies of the graph G. Such graphs
can obtained in @ different ways, where p = |V(G)| and are denoted by D(n - G).
Kaneria, Teraiya and Meghpara [1620] prove the double path unions of Cyy,, Ky, ,, and
P,,, have a-labelings.

Hegde [1213] calls a (k,d)-graceful graph (k, d)-balanced if it has a (k, d)-graceful la-
beling f with the property that there is some integer m such that for every edge uv either
f(u) <mand f(v) >m, or f(u) >m and f(v) < m. He proves that if a graph is (1,1)-
balanced then it is (k, d)-graceful for all k£ and d and that a graph is (1, 1)-balanced graph
if and only if it is (k, k)-balanced for all k. He conjectures that all trees are (k, d)-balanced
for some values of k£ and d.

Slater [3004] has extended the definition of k-graceful graphs to countable infinite
graphs in a natural way. He proved that all countably infinite trees, the complete graph
with countably many vertices, and the countably infinite Dutch windmill is k-graceful for
all k.

In [1237] Hegde and Shivarajkumar extend the idea of k-graceful labeling of undirected
graphs to directed graphs as follows. A simple directed graph D with n vertices and e
edges is labeled by assigning each vertex a distinct element from the set Z,.,; and assigning
the edge zy from vertex x to vertex y the label 0(x,y) = 6(y) — 6(z) mod(e + k), where
0(y) and (z) are the values assigned to the vertices y and x respectively. A labeling is a
k-graceful labeling if all §(z,y) are distinct and belong to {k,k+1,...,k+e—1}. If a
digraph D admits a k-graceful labeling then D is called a k-graceful digraph. They provide
some values of k£ for which the unidirectional cycles admit a k-graceful labeling; give a
necessary and sufficient condition for the outspoken unicyclic wheel to be k-graceful; and
prove that to provide a list of values of k£ for which the unicyclic wheel is k-graceful is
NP-complete.

More specialized results on k-graceful labelings can be found in [1836], [1860], [1864],
[3001], [621], [623], and [622].

Graceful-type labelings methods have been used for cryptographical password con-
struction for network data [3424], [3423], [3425], and [3132].

3.5 Skolem-Graceful Labelings

A number of authors have invented analogues of graceful graphs by modifying the per-
missible vertex labels. For instance, Lee (see [1890]) calls a graph G with p vertices and ¢
edges Skolem-graceful if there is an injection from the set of vertices of G to {1,2,...,p}
such that the edge labels induced by | f(z)— f(y)| for each edge xy are 1,2, ..., q. A neces-
sary condition for a graph to be Skolem-graceful is that p > ¢+1. Lee and Wui [1920] have
shown that a connected graph is Skolem-graceful if and only if it is a graceful tree. Yao,
Cheng, Zhongfu, and Yao [3530] have shown that a tree of order p with maximum degree
at least p/2 is Skolem-graceful. Although the disjoint union of trees cannot be graceful,
they can be Skolem-graceful. Lee and Wui [1920] prove that the disjoint union of 2 or 3
stars is Skolem-graceful if and only if at least one star has even size. In [720] Choudum
and Kishore show that the disjoint union of k copies of the star K 9, is Skolem graceful if
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k < 4p+ 1 and the disjoint union of any number of copies of K 5 is Skolem graceful. For
k > 2, let St(ni,ns,...,ng) denote the disjoint union of k stars with ny, no, ..., ng edges.
Lee, Wang, and Wui [1913] showed that the 4-star St(nq, ns, ng, ny) is Skolem-graceful for
some special cases and conjectured that all 4-stars are Skolem-graceful. Denham, Leu,
and, Liu [801] proved this conjecture. Kishore [1704] has shown that a necessary condition
for St(ni,na,...,ni) to be Skolem graceful is that some n; is even or (k = 0) or 1 (mod
4) (see also [3564] . He conjectures that each one of these conditions is sufficient. Yue,
Yuan-sheng, and Xin-hong [3564] show that for k at most 5, a k-star is Skolem-graceful if
at one star has even size or k =0 or 1 (mod 4). Choudum and Kishore [718] proved that
all 5-stars are Skolem graceful.

Lee, Quach, and Wang [1876] showed that the disjoint union of the path P, and the
star of size m is Skolem-graceful if and only if n = 2 and m is even or n > 3 and m > 1.
It follows from the work of Skolem [2993] that nP,, the disjoint union of n copies of P, is
Skolem-graceful if and only if n = 0 or 1 (mod 4). Harary and Hsu [1186] studied Skolem-
graceful graphs under the name node-graceful. Frucht [986] has shown that P, U P, is
Skolem-graceful when m + n > 5. Bhat-Nayak and Deshmukh [559] have shown that
P,, UP,, U P,, is Skolem-graceful when n; < ny < ns, ne =t(n; +2)+ 1 and n, is even
and when ny < ny < ng, ny = t(n; +3) + 1 and n; is odd. They also prove that the
graphs of the form P, U P,, U---U P, where ¢ > 4 are Skolem-graceful under certain
conditions. In [806] Deshmukh states the following results: the sum of all the edges on
any cycle in a Skolem graceful graph is even; Cs U K3, if and only if n = 1 or 2; Cs U K,
if and only if n = 2 or 4.

Youssef [3542] proved that if G is Skolem-graceful, then G + K, is graceful. In [3546]
Youssef shows that that for all n > 2, P, U.S,, is Skolem-graceful if and only if n > 3 or
n = 2 and m is even. Yao, Cheng, Zhongfu, and Yao [3530] have shown that if a tree T
has an edge ujuy such that the two components T and T3 of T'— ujus have the properties
that dr, (u1) > |T1|/2 and T, is a caterpillar or have the properties that dr, (u1) > |T1|/2
and dr, (ug) = |T5|/2, then T is Skolem-graceful.

A graph G = (V, E) is said to be (k,d)-Skolem graceful if there exists a bijection f
from V(G) to {12,...,|V|} such that the induced edge labeling g; defined by gs(uv) =
|f(u)— f(v)| is a bijection from E to {k,k+d, ..., k+(¢—1)d} where k and d are positive
integers. Such a labeling is called a (k, d)-Skolem graceful labeling of G. In [2381] Pereira,
Singh, and Arumugam present a few basic results on (k, d)-Skolem graceful graphs and
prove that nKs is (2, 1)-Skolem graceful if and only if n = 0 or 3 (mod 4), which produces
the Langford sequence L(2,n).

Mendelsohn and Shalaby [2134] defined a Skolem labeled graph G(V, E) as one for
which there is a positive integer d and a function L: V — {d,d+1,...,d+m}, satisfying
(a) there are exactly two vertices in V' such that L(v) = d+1i, 0 < ¢ < m; (b) the distance
in G between any two vertices with the same label is the value of the label; and (c) if G” is
a proper spanning subgraph of GG, then L restricted to G’ is not a Skolem labeled graph.
Note that this definition is different from the Skolem-graceful labeling of Lee, Quach,
and Wang. A hooked Skolem sequence of order n is a sequence S, Sg, . . ., Sop+1 such that
Son, = 0 and for each j € {1,2,...,n}, there exists a unique i € {1,2,...,2n —1,2n+ 1}

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 82



such that s; = s;+; = j. Mendelsohn [2133] established the following: any tree can be
embedded in a Skolem labeled tree with O(v) vertices; any graph can be embedded as
an induced subgraph in a Skolem labeled graph on O(v?) vertices; for d = 1, there is
a Skolem labeling or the minimum hooked Skolem (with as few unlabeled vertices as
possible) labeling for paths and cycles; for d = 1, there is a minimum Skolem labeled
graph containing a path or a cycle of length n as induced subgraph. In [2133] Mendelsohn
and Shalaby prove that the necessary conditions in [2134] are sufficient for a Skolem
or minimum hooked Skolem labeling of all trees consisting of edge-disjoint paths of the
same length from some fixed vertex. Graham, Pike, and Shalaby [1146] obtained various
Skolem labeling results for grid graphs. Among them are P, x P, and P, X P, have Skolem
labelings if and only if n = 0 or 1 mod 4; and P,, x P, has a Skolem labeling for all m
and n at least 3.

In [2395] Pike, Sanaei, and Shalaby introduce pseudo-Skolem sequences, which are
similar to Skolem-type sequences in their structures and applications. They use known
Skolem-type sequences to constructions of such sequences and discuss applications of these
sequences to Skolem labelingsre graphs such that H is bipartite, and give formulas for the
gamma-number of rail-siding graphs and caterpillars.

In [748] Clark and Sanaei present (hooked) vertex Skolem labelings for generalized
Dutch windmills whenever such labelings exist. They present a novel technique for show-
ing that generalized Dutch windmills with more than two cycles cannot be Skolem labelled
and that those composed of two cycles of lengths m and n, n > m cannot be Skolem
labelled if and only if n —m = 3 or 5 (mod 8) and m is odd.

3.6 0Odd-Graceful Labelings

Gnanajothi [1104, p. 182] defined a graph G with ¢ edges to be odd-graceful if there is an
injection f from V(G) to {0,1,2,...,2¢—1} such that, when each edge xy is assigned the
label |f(z) — f(y)]|, the resulting edge labels are {1,3,5,...,2¢ — 1}. She proved that the
class of odd-graceful graphs lies between the class of graphs with a-labelings and the class
of bipartite graphs by showing that every graph with an a-labeling has an odd-graceful
labeling and every graph with an odd cycle is not odd-graceful. She also proved the
following graphs are odd-graceful: P,; C, if and only if n is even; K,, ,,; combs P, ® K;
(graphs obtained by joining a single pendent edge to each vertex of P, ); books; crowns
C, ® K, (graphs obtained by joining a single pendent edge to each vertex of C),) if and only
if n is even; the disjoint union of copies of Cy; the one-point union of copies of Cy; C), x K>
if and only if n is even; caterpillars; rooted trees of height 2; the graphs obtained from
P, (n > 3) by adding exactly two leaves at each vertex of degree 2 of P,; the graphs
obtained from P, x P, by deleting an edge that joins to end points of the P, paths; the
graphs obtained from a star by adjoining to each end vertex the path P; or by adjoining to
each end vertex the path P,. She conjectures that all trees are odd-graceful and proves the
conjecture for all trees with order up to 10. Barrientos [442] has extended this to trees of
order up to 12. Eldergill [868] generalized Gnanajothi’s result on stars by showing that the
graphs obtained by joining one end point from each of any odd number of paths of equal
length is odd-graceful. He also proved that the one-point union of any number of copies
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of Cg is odd-graceful. Kathiresan [1665] has shown that ladders and graphs obtained
from them by subdividing each step exactly once are odd-graceful. Barrientos [445] and
[442] has proved the following graphs are odd-graceful: every forest whose components are
caterpillars; every tree with diameter at most five is odd-graceful; and all disjoint unions
of caterpillars. He conjectures that every bipartite graph is odd-graceful. In [2268] Neela
and Selvaraj partially resolved a Barrientos’s conjecture by showing that the following
graphs are odd-graceful: finite unions of paths, stars, and caterpillars; finite unions of
ladders; finite unions of paths, bistars and caterpillars; finite unions of graphs obtained
by the one end point union of an odd number of paths of uniform length; and the coronas
Kn ©7rK;. Gao, Zhang, and Xu [1031] proved that P, x P, (m = 2, 3 or 4), generalized
crown graphs C,, ® K, and gears are odd graceful.

Seoud, Diab, and Elsakhawi [2769] have shown that a connected complete r-partite
graph is odd-graceful if and only if » = 2 and that the join of any two connected graphs
is not odd-graceful. Yan [3511] proved that P,, x P, is odd-graceful labeling. Vaidya and
Shah [3304] prove that the splitting graph and the shadow graph of bistar are odd-graceful.
(The shadow graph Dy(G) of a connected graph G is constructed by taking 2 copies G4
and G5 of G and joining each vertex u in GG; to the neighbors of the corresponding vertex v
in Go. Li, Li, and Yan [1927] proved that K, , is odd-graceful. Liu, Wang, and Lu [1972]
that proved that a class of bicyclic graphs with a common edge is odd-graceful. Moussa
and Badr [2199] proved tha ladders and subdivisions of ladders with pendent edges are
odd-graceful.

Sekar [2736] has shown the following graphs are odd-graceful: the graph obtained by
identifying an end point of P, with every vertex of C,, where n > 3 and m is even; P,
when a > 2 and b is odd (see §2.7); Pop and b > 2; Py, and b > 2; P, when a and
b are even and @ > 4 and b > 4; Py41 4r+2; Pir—1,4,; all n-polygonal snakes with n even;
ol (see §2.2 for the definition); graphs obtained by beginning with Cy and repeatedly
forming the one-point union with additional copies of Cg in succession; graphs obtained
by beginning with Cy and repeatedly forming the one-point union with additional copies
of Cy in succession; graphs obtained from even cycles by identifying a vertex of the cycle
with the endpoint of a star; Cs,, and Cs,, (see §2.7); the splitting graph of P, (see §2.7)
the splitting graph of C,,,n even; lobsters, banana trees, and regular bamboo trees (see
§2.1).

Yao, Cheng, Zhongfu, and Yao [3530] have shown the following: if a tree 7" has an
edge ujus such that the two components T} and Ty of T' — ujus have the properties that
dr, (u1) > |T1]|/2 and Ty is a caterpillar, then T is odd-graceful; and if a tree T has a
vertex of degree at least |T|/2, then T is odd-graceful. They conjecture that for trees
the properties of being Skolem-graceful and odd-graceful are equivalent. Recall a banana
tree is a graph obtained by starting with any number os stars and connecting one end-
vertex from each to a new vertex. Zhenbin [3593] has shown that graphs obtained by
starting with any number of stars, appending an edge to exactly one edge from each star,
then joining the vertices at which the appended edges were attached to a new vertex are
odd-graceful.

Solairaju and Chithra [3018] defined a graph G with ¢ edges to be edge-odd graceful
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if there is an bijection f from the edges of the graph to {1,3,5,...,2¢ — 1} such that,
when each vertex is assigned the sum of all the edges incident to it mod 2¢, the resulting
vertex labels are distinct. They prove they following graphs are odd-graceful: paths with
at least 3 vertices; odd cycles; ladders P, x P, (n > 3); stars with an even number of
edges; and crowns C,, ® Kj. In [3019] they prove the following graphs have edge-odd
graceful labelings: P, (n > 1) with a pendent edge attached to each vertex (combs); the
graph obtained by appending 2n + 1 pendent edges to each endpoint of P, or Ps; and the
graph obtained by subdividing each edge of the star K .

For a graph G, Kulli and Muddebihai [1772] define the lict graph of G as the graph
whose vertex set is the union of the edges of G and the set of cutpoints of G where two
vertices are adjacent if and only if the corresonding members of G are adjacent or the
corresponding members of G are incident. They define the litact graph of G as the graph
whose vertex set is the union of the edges of G and the set of cutpoints of G' where two
vertices are adjacent if and only if the corresonding members of G are adjacent or the
corresponding members of G are adjacent or incident. Mirajkar and Sthavarmath [2153]
provided edge-odd graceful labeling for the lict graph of P, for n > 1 and odd, the lict
graph of the one-point of C,, and P;, and the litact graph of P, for n > 4.

A subdivided shell graph is obtained by subdividing the edges in the path of the shell
graph. Let Gy, G, ..., G, be n subdivided shell graphs of any order. The graph SSG(n)
is obtained by adding an edge to apexes of G; and G;;1,i = 1,2,...,n— 1. Jeba Jesintha
and Ezhilarasi Hilda [1392] that SSG(2) is odd graceful. In [1386] and [1391] Jeba Jesintha
and Ezhilarasi Hilda proved that the subdivided uniform shell bow graphs (that is, double
shells in which each shell has the same order) are odd graceful and shell butterfly graphs
are edge-odd graceful. Daoud [780] provided necessary and sufficient conditions for C,, x
P, and C,, x C}, to be edge-odd graceful.

Gao [1024] has proved the following graphs are odd-graceful: the union of any number
of paths; the union of any number of stars; the union of any number of stars and paths;
C,,UP,; C,,uUC,; and the union of any number of cycles each of which has order divisible
by 4.

If f is an odd-graceful labeling of a bipartite graph G with bipartition (V3, V) such
that max{f(u) : v € Vi} < min{f(v) : v € Va}, Zhou, Yao, Chen, and Tao [3601]
say that f is a set-ordered odd-graceful labeling of G. They proved that every lobster
is odd-graceful and adding leaves to a connected set-ordered odd-graceful graph is an
odd-graceful graph.

In [2758] Seoud and Abdel-Aal determined all odd-graceful graphs of order at most
6 and proved that if G is odd-graceful then G U K, ,, is odd-graceful. In [2777] Seoud
and Helmi proved: if G has an odd-graceful labeling f with bipartition (V;, V5) such that
max{f(x) : f(x) is even, z € Vi} < min{f(z) : f(z) is odd, = € Va}, then G has
an a-labeling:; if G has an a-labeling, then G ® K, is odd-graceful; and if G; has an
a-labeling and G5 is odd-graceful, then G; U G5 is odd-graceful. They also proved the
following graphs have odd-graceful labelings: dragons obtained from an even cycle; graphs
obtained from a gear graph by attaching a fixed number of pendent edges to each vertex
of degree 2 on rim of the wheel of the graph; C,, ® K,; graphs obtained from an even
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cycle by attaching a fixed number of pendent edges to every other vertex; graphs obtained
by identifying an endpoint of a star S,, (n > 3) with a vertex of an even cycle; the graphs
consisting of two even cycles of the same order that share a common vertex with any
number of pendent edges attached at the common vertex; and the graphs obtained by
joining two even cycles of the same order by an edge. Seoud, El Sonbaty, and Abd El
Rehim [2770] proved that the conjunction P,, A P, for all n,m > 2 and the conjunction
Ky A\ F, for n even are odd-graceful. Jeba Jesintha and Ezhilarasi Hilda [1384] proved the
disjoint union of two subdivided shell graphs is odd-graceful and the one vertex union of
three subdivided shells are odd-graceful.

In [2196] and [2197] Moussa proved that C,, U P, is odd-graceful in some cases and
gave algorithms to prove that for all m > 2 the graphs Py,_1.,, 7 = 1,2,3 and Pir41.m,
r = 1,2 are odd-graceful. (P,,, is the graph obtained by identifying the endpoints of m
paths each of length n). He also presented an algorithm that showed that closed spider
graphs and the graphs obtained by joining one or two copies of P,, to each vertex of the
path P, are odd-graceful. Moussa and Badr [2195] proved that C,, ® P, is odd-graceful if
and only if m is even (see also [272]). Badr, Moussa, and Kathiresan [272] proved ladders
are odd graceful.

Moussa [2198] defines the tensor product, P, A P,, of P, and P, as the graph with

. . . y l y 1 > . .
vertices v, i = 1,...,n; j = 1,...,m and edges vJvj"", v} '], ... v]_wit! for j odd
SO ) . _
and vjvy vy g, ..., vl vi~! for j even. He proves that P, A P, is odd-graceful.

In [3] Abdel-Aal generalized the notions of shadow graphs and splitting graphs are
follows. The m-shadow graph D,,(G) of a connected graph G is constructed by taking m
copies of G1,Gs,...,G,, of G, and joining each vertex u in G; to the neighbors of the
corresponding vertex v in G; for 1 < 4,7 < m. The m-splitting graph Spl,,(G) of a graph
G is obtained by adding to each vertex v of G m new vertices, v*,v?,...,v™, such that
v', 1 <4< mis adjacent to every vertex that is adjacent to v in G;. Thus the 2-shadow
graph is the shadow graph D,(G) and the 1-splitting graph of G is the splitting graph of
G. Abdel-Aal proved the following graphs are odd-graceful: D,,(P,), D,,(P, ® K5) (the
symmetric product of P, and K5), D (K,.s), Splan(P,), Splm (K1), and Sply, (P ® Ks).

Vaidya and Bijukumar [3261] proved the following are odd-graceful: graphs obtained
by joining two copies of C,, by a path; graphs that are two copies of an even cycle that
share a common edge; graphs that are the splitting graph of a star; and graphs that are
the tensor product of a star and P,. Jeba Jesintha, Jaya Glory, and Elakiya Solai [1393]
proved that the path unions of caterpillars are odd graceful.

Acharya, Germina, Princy, and Rao [40] proved that every bipartite graph G can be
embedded in an odd-graceful graph H. The construction is done in such a way that if
G is planar and odd-graceful, then so is H. Varkey and Sunoj [3344] investigate some
new families of odd graceful graphs generated from various graph operations on the given
graph.

In [688] Chawathe and Krishna extend the definition of odd-gracefulness to countably
infinite graphs and show that all countably infinite bipartite graphs that are connected
and locally finite have odd-graceful labelings.

Solairaju and Chithra [3018] defined a graph G with ¢ edges to be edge-odd graceful
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if there is an bijection f from the edges of the graph to {1,3,5,...,2¢ — 1} such that,
when each vertex is assigned the sum of all the edges incident to it mod 2¢, the resulting
vertex labels are distinct. They prove they following graphs are odd-graceful: paths with
at least 3 vertices; odd cycles; ladders P, x P, (n > 3); stars with an even number of
edges; and crowns C,, ® Kj. In [3019] they prove the following graphs have edge-odd
graceful labelings: P, (n > 1) with a pendent edge attached to each vertex (combs); the
graph obtained by appending 2n + 1 pendent edges to each endpoint of P, or Ps; and the
graph obtained by subdividing each edge of the star K .

Singhun [2981] proved the following graphs have edge-odd graceful labelings: W,;
W, ® Ky; and W, ® K,,,, when n is odd, m is even, and n divides m. Seoud and Salim
[2792] present edge-odd graceful labelings for the following families of graphs: W, for
n=1,2 and 3 (mod 4); C,, ® Ky,,,_1; even helms; P, ® Kj,,; and K, . They also provide
two theorems about non edge-odd graceful graphs. Susanti, Ernantol, and Surodjo [3150]
found edge-odd graceful labelings for some classes of prism related graphs.

In [3042] Sridevi, Navaeethakrishnan, Nagarajan, and Nagarajan call a graph G with ¢
edges odd-even graceful if there is an injection f from the vertices of G to {1,3,5,...,2¢+
1} such that, when each edge uv is assigned the label |f(u) — f(v)|, the resulting edge
labels are {2,4,6,...,2¢}. They proved that P,, combs P, ® K, stars K, K1 2.5, Kyn,
and bistars B,, ,, are odd-even graceful.

Sudha and Babu [3071] say a graph G with g edges is even-even graceful if there is an
injection f from the edges of G to {2,4,6,...,2q} such that, the induced map f* from
V(GQ) to {0,2,...,2k — 2} defined by f*(z) = X(f(zy) (mod 2k) where k = max(p, q) is
injective and each value is f*(x) is even. They proved that dumbbells, stars, C,, X P,
and K + C,, are even-even graceful.

Behera, Mishra, and Nayak [527] proved the following: bistars B,, are even-even
graceful, combs are even-even graceful, the trees obtained by joining and even number
of pendent edges to the endpoint of a path are even-even graceful, the graphs obtained
by identifying the center of a star and a vertex of C5 are odd-even graceful, the graphs
obtained by identifying the center of a star and a vertex of (3 and two pendent edges
at the other two verticies are odd-even graceful, and the graphs obtained by identifying
the center of a star with a vertex of C),, and the endpoints of the star with the opposite
vertices of (), is odd-even graceful.

In [782] Daoud zele introduced vertex odd graceful labelings as follows. Let G be a
graph with ¢ edges. A function f is called a vertex odd gracefulabeling of G if f E(G) —
{1,2,3,...,2q} is an injection and the induced function f* V(G) — {1,3,...,2¢ — 1}
defined as f*(u) = 3_,,cm) f(uv) (mod 2g) is also an injection. A graph which admits
a vertex odd graceful labeling is called a verter odd graceful graph. Necessary and sufficient
conditions for prisme, tori, wheels, fans and books to be vertex odd graceful are given.

3.7 Cordial Labelings

Cahit [640] has introduced a variation of both graceful and harmonious labelings. Let
f be a function from the vertices of G to {0,1} and for each edge zy assign the label
|f(z) — f(y)|. Call f a cordial labeling of G if the number of vertices labeled 0 and the
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number of vertices labeled 1 differ by at most 1, and the number of edges labeled 0 and
the number of edges labeled 1 differ at most by 1. Cahit [641] proved the following: every
tree is cordial; K, is cordial if and only if n < 3; K,,,, is cordial for all m and n; the

friendship graph C’:,(,t) (i.e., the one-point union of ¢ 3-cycles) is cordial if and only if ¢ # 2
(mod 4); all fans are cordial; the wheel W, is cordial if and only if n # 3 (mod 4) (see also
[853]); maximal outerplanar graphs are cordial; and an Eulerian graph is not cordial if its
size is congruent to 2 (mod 4). Kuo, Chang, and Kwong [1780] determine all m and n for
which mK,, is cordial. Youssef [3546] proved that every Skolem-graceful graph (see 3.5
for the definition) is cordial. Liu and Zhu [1981] proved that a 3-regular graph of order n
is cordial if and only if n £ 4 (mod 8). In [1319] Imran, Cancan, Ali, Nadeem, Mushtaq,
Aslam, Riaz, proved various comb related graphs are cordial. Kastrati, Myrvold, Panjer,
and Williams [1661] proved that a forest is cordial if and only if it does not have 4k + 2
components and every vertex has odd-degree.

A k-angular cactus is a connected graph all of whose blocks are cycles with k vertices.
In [641] Cahit proved that a k-angular cactus with ¢ cycles is cordial if and only if kt # 2
(mod 4). This was improved by Kirchherr [1702] who showed any cactus whose blocks
are cycles is cordial if and only if the size of the graph is not congruent to 2 (mod 4).
Kirchherr [1703] also gave a characterization of cordial graphs in terms of their adjacency
matrices. Ho, Lee, and Shee [1254] proved: P, x Cy,, is cordial for all m and all odd n;
the composition G and H is cordial if G is cordial and H is cordial and has odd order
and even size (see §2.3 for definition of composition); for n > 4 the composition C,[K>] is
cordial if and only if n # 2 (mod 4); the Cartesian product of two cordial graphs of even
size is cordial. Ho, Lee, and Shee [1253] showed that a unicyclic graph is cordial unless
it is Cyy2 and that the generalized Petersen graph (see §2.7 for the definition) P(n, k) is
cordial if and only if n # 2 (mod 4). Khan [1684] proved that a graph that consisting of
a finite number of cycles of finite length joined at a common cut vertex is cordial if and
only if the number of edges is not congruent to 2 mod 4.

Du [853] determines the maximal number of edges in a cordial graph of order n and
gives a necessary condition for a k-regular graph to be cordial. Riskin [2628] proved that
Mébius ladders M,, (see §2.3 for the definition) are cordial if and only if n > 3 and n # 2
(mod 4). (See also [2772].) Diab and Nada [836] show that P, ® P,, is cordial; except for
n and m both equal to 2 (mod 4), C,, ® C,, is cordial; and when n = 2 (mod 4) and m
is odd, C,, ® C, is not cordial. In [2686] Salehi, Mukhin, and Saputro showed that @Q,, is
cordial for all n > 1.

Seoud and Abdel Maqusoud [2760] proved that if G is a graph with n vertices and
m edges and every vertex has odd degree, then G is not cordial when m + n = 2 (mod
4). They also prove the following: for m > 2, C, x P, is cordial except for the case
Cirs2 X Po; P? is cordial for all n; P3 is cordial if and only if n # 4; and P? is cordial if and
only if n # 4,5, or 6. Seoud, Diab, and Elsakhawi [2769] have proved the following graphs
are cordial: P, + P, for all m and n except (m,n) = (2,2); C,, +C,, if m #Z 0 (mod 4) and
n # 2 (mod 4); C,, + Ky, for n # 3 (mod 4) and odd m except (n,m) = (3,1); C,, + K,,
when n is odd, and when n is even and m is odd; K, n; K22m; the n-cube; books B, if
and only if n # 3 (mod 4); B(3,2,m) for all m; B(4,3,m) if and only if m is even; and
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B(5,3,m) if and only if m # 1 (mod 4) (see §2.4 for the notation B(n,r,m)). In [3014]
Solairaju and Arockiasamy prove that various families of subgraphs of grids P,, x P, are
cordial.

Diab [829], [830], and [832] proved the following graphs are cordial: C, + P, if and
only if (m,n) # (3,3),(3,2), or (3,1); P, + K1, if and only if (m,n) # (1,2); P, UK,
if and only if (m,n) # (1,2); Cp, U Ky 5 Cyp + K, for all m and n except m = 3 (mod
4) and n odd, and m = 2 (mod 4) and n even; C,, U K,, for all m and n except m = 2
(mod 4); P, + Kp; P, UK,; P2 U P2 except for (m,n) = (2,2) or (3,3); P2+ P,, except
for (m,n) = (3,1),(3,2),(2,2),(3,3), and (4,2); P2U P, except for (n,m) = (2,2), (3, 3),
and (4,2); P2+ C,, if and only if (n,m) # (1,3),(2,3), and (3,3).P, + K,,; Cp, + K1, for
all n > 3 and all m except n = 3 (mod 4); C,, + K1, for n = 3 (mod 4) (n # 3) and even
m > 2; and C,, x C,, if and only if 2mn is not congruent to 2 (mod 4).

In [831] Diab proved the graphs W,, +W,, are cordial if and only if one of the following
conditions is not satisfied: (i) (n,m) = (3,3), (ii)) n = 3 and m =1 (mod 4), (ili) n =1
(mod 4) and m = 3 (mod 4); the graphs W,, U W,, are cordial if and only if one of the
following conditions is not satisfied: (i) n = 3 and m = 1 (mod 4), (ii)) n = 1 (mod 4)
and m = 3 (mod 4); the graphs W,, + P,, are cordial if and only if one of the following
conditions is not satisfied: (i) (n,m) = (3,1),(3,2) and (3,3), (ii) » = 3 (mod 4) and
m = 1. They also prove that W,, U P,, and W,, U C,,, are cordial for all m and n and
W, + C,, is cordial if and only if (m,n) # (3,3) and (3,4). In [833] Diab showed that the
second power of (), is cordial if and only if n = 3 or n is even and greater than 4. He also
investigated the cordiality of the join and union of pairs of second power of cycles and
graphs consisting of one second power of cycle with one cycle and one path.

In [2239] Nada, Diab, Elrokh, and Sabra proved that P, ® C,, is cordial if and only if
ged(n,m) # 1 or 3 (mod 4); in [2238] they proved C, ® P,, is cordial for all n > 3 and
m > 1. Nada, Elrokh, and Elshafey [2241] provided necessary and sufficient conditions
for F? = K, + P?, F?+ F%, and F? + F?2 to be cordial.

The generalized Jahangir graph Jp,, m > 3, n > 1 is a graph on mn + 1 vertices,
consisting of a cycle C,,, with one additional vertex that is adjacent to n vertices of C,,,
at distance m to each other on C,,. Gajjar and Des [1000] proved J,, , is cordial for all
m > 3 and n > 1, except for Ji 4,_1.

Youssef [3548] has proved the following: If G and H are cordial and one has even
size, then G U H is cordial; if G and H are cordial and both have even size, then G + H
is cordial; if G and H are cordial and one has even size and either one has even order,
then G + H is cordial; C,, U C,, is cordial if and only if m +n # 2 (mod 4); mC, is
cordial if and only if mn # 2 (mod 4); C,, + C,, is cordial if and only if (m,n) # (3,3)
and {m (mod 4),n (mod 4)} # {0,2}; and if P¥ is cordial, then n > k + 1 + vk — 2.
He conjectures that this latter condition is also sufficient. He confirms the conjecture for
k=5,6,7,8, and 9. Elirokh and Rabie [874] proved P!+ Pa and P}U P2 are cordial for
alln,m > 7, and C}+ C% and C?UCL are cordial for all n,m except (n,m) = (7,7).

Lee and Liu [1854] have shown that the complete n-partite graph is cordial if and only
if at most three of its partite sets have odd cardinality (see also [853]). Lee, Lee, and
Chang [1829] prove the following graphs are cordial: the Cartesian product of an arbitrary
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number of paths; the Cartesian product of two cycles if and only if at least one of them
is even; and the Cartesian product of an arbitrary number of cycles if at least one of
them has length a multiple of 4 or at least two of them are even. Ali Al-Shamiri, Elrokh,
El-Mashtawye, and Tallah [160] showed that the Cartesian product of a path and a cycle
is cordial under some conditions and that the Cartesian product of two paths is cordial.
Elrokh, Elmshtaye, and Abd El-hay [818] provided necessary and sufficient conditions for
cone and lemniscate graphs to be cordial.

Shee and Ho [2875] have investigated the cordiality of the one-point union of n copies
of various graphs. For ol ), the one-point union of n copies of C,,, they prove:

(i) If m = 0 (mod 4), then C5 is cordial for all n:

(ii) If m =1 or 3 (mod 4), then C is cordial if and only if n % 2 (mod 4);

(iii) If m =2 (mod 4), then Ci is cordial if and only if n is even.

For K" ), the one-point union of n copies of K,,, Shee and Ho [2875] prove:

(i) If m = 0 (mod 8), then K is not cordial for n = 3 (mod 4);

(i) If m = 4 (mod 8), then K\ is not cordial for n = 1 (mod 4):

(iii) If m =5 (mod 8), then K is not cordial for all odd n;

(iv) 4" is cordial if and only if n # 1 (mod 4);

(v) K, " is cordial if and only if n is even;

(vi) K, n is cordial if and only if n > 2;

(vii) K. " 1s cordial if and only if n #Z 2 (mod 4);

(V111) @ g cordial if and only if n has the form p? or p? + 1.

For W, , the one-point union of n copies of the wheel W,,, with the common vertex being
the center, Shee and Ho [2875] show:

(i) If m =0 or 2 (mod 4), then W is cordial for all n;

(i) If m = 3 (mod 4), then W is cordial if n # 1 (mod 4);

(iii) If m = 1 (mod 4), then W is cordial if n # 3 (mod 4). For all n and all m > 1
Shee and Ho [2875] prove E%"), the one-point union of n copies of the fan F,, = P,, + K;
with the common point of the fans being the center, is cordial (see also [1950]). The flag
Fl,, is obtained by j Jommg one vertex of (), to an extra vertex called the root. Shee and
Ho [2875] show all F 1) , the one-point union of n copies of FI,, with the common point
being the root, are cordial. In his 2001 Ph.D. thesis Selvaraju [2739] proves that the
one-point union of any number of copies of a complete bipartite graph is cordial. Benson
and Lee [536] have investigated the regular windmill graphs K and determined precisely
which ones are cordial for m < 14.

Diab and Mohammedm [835] proved the following: the join of two fans F, + F, is
cordial if and only if n,m > 4; F,, U F,, is cordial if and only if (n,m) # (1,1) or (2,2);
F, + P, is cordial if and only if (n,m) # (1,2), (2,1), (2,2), (2,3), or (3,2); F,, U P, is
cordial if and only if (n,m) # (1,2); F,, + C,, is cordial if and only if (n,m) # (1,3), (2,3)

r (3,3); and F,, U C,, is cordial if and only if (n,m) # (2,3). Hefnawy, Elsid, and Euat
Tallah [1208] gave necessary and sufficient conditions for a cordial labeling of thesum of
the second power of the path P? + K, and P U K ,.
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Andar, Boxwala, and Limaye [187], [188], and [191] have proved the following graphs
are cordial: helms; closed helms; generalized helms obtained by taking a web (see 2.2 for
the definitions) and attaching pendent vertices to all the vertices of the outermost cycle in
the case that the number cycles is even; flowers (graphs obtained by joining the vertices
of degree one of a helm to the central vertex); sunflower graphs (that is, graphs obtained
by taking a wheel with the central vertex vy and the n-cycle vy, v, ..., v, and additional
vertices wy, wo, . . ., w, where w; is joined by edges to v;, v;11, where 7+ 1 is taken modulo
n); multiple shells (see §2.2); and the one point unions of helms, closed helms, flowers,
gears, and sunflower graphs, where in each case the central vertex is the common vertex.

In [2487], [2488], [2489], [2494], and [2490] Prajapati and Gajjar provided results about
the existence of cordial labelings of graphs obtained from paths, cycles, flower graphs,
sunflower graphs, flower snarks, lotus inside a circle graphs, helms, closed helms, armed
helms (W,, & P,), and webs by the duplication of vertices and edges. In [872] Elrokh and
Elkom proved that certain classes any four-leaved rose graphs (the one-point union of four
cycles of the same length) are cordial.

Du [854] proved that the disjoint union of n > 2 wheels is cordial if and only if n is
even or n is odd and the number of vertices of in each cycle is not 0 (mod 4) or n is odd
and the number of vertices of in each cycle is not 3 (mod 4). Prajapati and Gajjar [2486]
prove W, is not cordial if n # 4,7 (mod 8) and C,, is not cordial if n # 4,7 (mod 8).

Let O be the family of all cordial graphs of odd order and odd size for which there
is no cordial labeling g such that e,(0) — e,(1) = 1. Barrientos and Minion [473] proved
that if G is a cordial graph such that G ¢ O, then the corona K; ® G is cordial. They
use this result to prove that H ® G is cordial when GG and H are cordial and G has even
order and even size or G ¢ O. In addition, H ® G is cordial when G is a cordial graph of
odd order and even size and H is any graph of order m and size n € {m — 1,m, m + 1}.
If H is bipartite such that the difference of the cardinalities of its partite sets is at most
one, and G is a cordial graph of even order and odd size that admits a cordial labeling
g such that e;(0) — e,(1) = 1, then the corona H ® G is cordial. Barrientos and Minion
proved the cordiality of certain circulant graphs; they also proved that for every positive
integer k, the k-splitting of a cordial graph of even size, results in a cordial graph. They
provide sufficient conditions to prove that any super subdivision of a graph G is cordial.
They study the cordiality of the join of two cordial graphs, proving that G + H is cordial
when G and H have even order and even size, or both have odd order and even size, or
both graphs have odd order, odd size, and the dominating weight in both graphs is not
1, or G has even order, odd size, and the dominating weight on both graphs is not the
same, or both G and H have odd order, but only one has odd size, and the dominating
weight is 0. They also prove that when G is a cordial graph of odd order and even size,
the one-point union of ¢ copies of GG is cordial.

In [473] Barrientos and Minion provide necessary conditions for the cordiality of coro-
nas of cordial graphs, prove the cordiality of a family of circulant graphs, prove that any
splitting graph of a cordial graph of even order and even size is cordial, determine a con-
dition that a graph must satisfy in order that any super subdivision of it is cordial, prove
the cordiality of the joint of two cordial graphs, and determine when a one-point union
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of a cordial graph is cordial.

For positive integers m and n divisible by 4 Venkatesh [3370] constructs graphs ob-
tained by appending a copy of C), to each vertex of C), by identifying one vertex of C),
with each vertex of C,, and iterating by appending a copy of C,, to each vertex of degree
2 in the previous step. He proves that the graphs obtained by successive iterations are
cordial.

Elumalai and Sethurman [879] proved: cycles with parallel cords are cordial and n-
cycles with parallel Py-chords (see §2.2 for the definition) are cordial for any odd positive
integer k at least 3 and any n # 2 (mod 4) of length at least 4. They call a graph H an
even-multiple subdivision graph of a graph G if it is obtained from G by replacing every
edge uv of G' by a pair of paths of even length starting at « and ending at v. They prove
that every even-multiple subdivision graph is cordial and that every graph is a subgraph
of a cordial graph. In [3464] Wen proves that generalized wheels C,, + mK; are cordial
when m is even and n # 2 (mod 4) and when m is odd and n # 3 (mod 4). Kuppusamy
and Guruswamy [1781] show that the subdivision graph of K5, is graceful for n > 1 and
the subdivision graph of the shell graph C(n,n — 3) is graceful for n > 4.

Vaidya, Ghodasara, Srivastav, and Kaneria investigated graphs obtained by joining
two identical graphs by a path. They prove: graphs obtained by joining two copies of
the same cycle by a path are cordial [3272]; graphs obtained by joining two copies of the
same cycle that has two chords with a common vertex with opposite ends of the chords
joining two consecutive vertices of the cycle by a path are cordial [3272]; graphs obtained
by joining two rim verticies of two copies of the same wheel by a path are cordial [3274];
and graphs obtained by joining two copies of the same Petersen graph by a path are
cordial [3274]. They also prove that graphs obtained by replacing one vertex of a star by
a fixed wheel or by replacing each vertex of a star by a fixed Petersen graph are cordial
[3274]. In [3313] Vaidya, Ghodasara, Srivastav, and Kaneria investigated graphs obtained
by joining two identical cycles that have a chord are cordial and the graphs obtained by
starting with copies G1,Gs,...,G, of a fixed cycle with a chord that forms a triangle
with two consecutive edges of the cycle and joining each G; to Gy (1 =1,2,...,n—1)
by an edge that is incident with the endpoints of the chords in G; and G;,; are cordial.
Vaidya, Dani, Kanani, and Vihol [3267] proved that the graphs obtained by starting with
copies G1,Gho, ..., G, of a fixed star and joining each center of GG; to the center of G,
(1=1,2,...,n— 1) by an edge are cordial.

Ghodasara, Rokad, and Jadav [1086] prove that the path union of P, x P, is cordial.
They also prove that the graph obtained by joining two copies of P, x P, by a path is
cordial. Ghodasara and Jadav [1079] prove: the graph obtained by joining a finite number
of copies of P, x P, by path is cordial; the star of P, x P, is cordial; and the path union of
the star of P, x P, is cordial. Rokad and Patadiya [2645] proved that the shadow graph,
splitting graph, and the degree splitting graph of a star are cordial graphs. They also
showed that the jewel graph and the jellyfish graph are cordial.

Ghodasara and Rokad prove [1087] the star of K,,,, (n > 2) is cordial, the path union
of K, (n > 2) is cordial, and the graph obtained by joining two copies of K,,,, (n > 2)
by a path is cordial [1087]. In [1088] the same authors prove that a vertex switching
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of any non-apex vertex of a wheel graph, a vertex switching of any internal vertex of
a flower graph, a vertex switching of any non-apex vertex of a gear graph, and a vertex
switching of any non-apex vertex of a shell graph are cordial graphs. In [1089] they proved
that a barycentric subdivision of a shell graph, a barycentric subdivision of K, ,, and a
barycentric subdivision of a wheel are cordial. Ghodasara and Sonchhatra [1090] prove
that the graph obtained by joining two copies of the same fan by a path is cordial. They
also prove that the star of a fan is cordial and the graph obtained by joining two copies
of the star of the same fan by a path is cordial [1090]. Elrokh, Nada, and El-Shafey [873]
showed that P, ® FT% (F, is the fan graph with m + 1 vertices) is cordial for all k£ > 1
and m > 4.

Vaidya, Kanani, Srivastav, and Ghodasara [3282] proved: graphs obtained by subdi-
viding every edge of a cycle with exactly two extra edges that are chords with a common
endpoint and whose other end points are joined by an edge of the cycle are cordial; graphs
obtained by subdividing every edge of the graph obtained by starting with C, and adding
exactly three chords that result in two 3-cycles and a cycle of length n — 3 are cordial;
graphs obtained by subdividing every edge of a Petersen graph are cordial. Sankar and
Sethuramam zske [2709] showed that the subdivision graph S(K»,n) is graceful and cor-
dial, for n > 1 and the shell graph S(C(n,n — 3)) is graceful and cordial for n > 4.

Recall the shell C'(n,n—3) is the cycle C,, with n—3 cords sharing a common endpoint.
Vaidya, Dani, Kanani, and Vihol [3268] proved that the graphs obtained by starting with
copies G1,Go,...,G, of a fixed shell and joining common endpoint of the chords of G;
to the common endpoint of the chords of G;y; (i = 1,2,...,m — 1) by an edge are
cordial. Vaidya, Dani, Kanani, and Vihol [3283] define C,(C,) as the graph obtained
by subdividing each edge of C,, and connecting the new n vertices to form a copy of C,
inscribed the original C,,. They prove that C,,(C,,) is cordial if n # 2 (mod 4); the graphs
obtained by starting with copies G, G, . . ., Gy, of C,,(C,,) the graph obtained by joining a
vertex of degree 2 in G; to a vertex of degree 2 in G411 (i = 1,2,...,n—1) by an edge are
cordial; and the graphs obtained by joining vertex of degree 2 from one copy of C,(C,,)
to a vertex of degree 2 to another copy of C,(C,) by any finite path are cordial. Vaidya
and Shah [3309] and [3310] proved that following graphs are cordial: the shadow graph of
the bistar B, ,, the splitting graph of B, ,, the degree splitting graph of B, ,, alternate
triangular snakes, alternate quadrilateral snakes, double alternate triangular snakes, and
double alternate quadrilateral snakes. In [3312] Vaidya and Shah give cordial labelings of
the degree splitting graph of paths, shells, helms, and gears.

A graph C(2n,n — 2) is called an alternate shell if C'(2n,n — 2) is obtained from
the cycle Cy, (v, v1,vs,...,02,-1) by adding n — 2 chords between the vertex vy and
the vertices wvg; 1, for 1 < i < n — 2. Sethuraman and Sankar [2831] proved that some
graphs obtained by merging alternate shells and joining certain vertices by a path have
a-labelings.

Vaidya, Srivastav, Kaneria, and Ghodasara [3314] proved that a cycle with two chords
that share a common vertex and the opposite ends of which join two consecutive vertices
of the cycle is cordial. For a graph G Vaidya, Ghodasara, Srivastav, and Kaneria [3273]
introduced the graph G* called the star of G as the graph obtained by replacing each
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vertex of the star K, by a copy of G and prove that C,* admits cordial labeling. Vaidya
and Dani [3263] proved that the graphs obtained by starting with n copies Gy, Ga, ..., G,
of a fixed star and joining each center of G; to the center of G;,; by an edge as well as
each of the centers to a new vertex x; (1 < i < n—1) by an edge admit cordial labelings.
An arbitrary supersubdivison H of a graph G is the graph obtained from G by replacing
every edge of G by K3 ,,, where m may vary for each edge arbitrarily. Vaidya and Kanani
[3275] proved that arbitrary supersubdivisions of paths and stars admit cordial labelings.
Vaidya and Dani [3264] prove that arbitrary supersubdivisions of trees, K,, ,,, and P, x P,
are cordial. They also prove that an arbitrary supersubdivision of the graph obtained by
identifying an end vertex of a path with every vertex of a cycle C, is cordial except when
n is odd, m; (1 < i < n) are odd, and m; (n+1 < ¢ < mn) of the Ks,,, are even. Recall
for a graph G and a vertex v of G Vaidya, Srivastav, Kaneria, and Kanani [3315] define
a vertex switching G, as the graph obtained from G by removing all edges incident to
v and adding edges joining v to every vertex not adjacent to v in G. They proved that
the graphs obtained by the switching of a vertex in €, admit cordial labelings. They
also show that the graphs obtained by the switching of any arbitrary vertex of cycle C,
with one chord that forms a triangle with two consecutive edges of the cycle are cordial.
Moreover they prove that the graphs obtained by the switching of any arbitrary vertex
in cycle with two chords that share a common vertex the opposite ends of which join two
consecutive vertices of the cycle are cordial.

The middle graph M(G) of a graph G is the graph whose vertex set is V/(G) U E(G)
and in which two vertices are adjacent if and only if either they are adjacent edges of G
or one is a vertex of G and the other is an edge incident with it. Vaidya and Vihol [3317]
prove that the middle graph M (G) of an Eulerian graph is Eulerian with |E(M(G))| =
S (d(v;)* +2e) /2. They prove that middle graphs of paths, crowns C,, ® K7, stars, and
tadpoles (that is, graphs obtained by appending a path to a cycle) admit cordial labelings.

Vaidya and Dani [3266] define the duplication of an edge e = wv of a graph G by a
new vertex w as the graph G’ obtained from G by adding a new vertex w and the edges
wv and wu. They prove that the graphs obtained by duplication of an arbitrary edge
of a cycle and a wheel admit a cordial labeling. Starting with k copies of fixed wheel

W, W Wi, ..., Wi, Vaidya, Dani, Kanani, and Vihol [3270] define G =< W\" :
WT(LQ) c oW S as the graph obtained by joining the center vertices of each of W and
1) £0 a new vertex x; where 1 < ¢ < k—1. They prove that < wwP o wiE s

are cordial graphs. Kaneria and Vaidya [1623] define the indezx of cordiality of G as n
if the disjoint union of n copies of GG is cordial but the disjoint union of fewer than n
copies of GG is not cordial. They obtain several results on index of cordiality of K,,. In the
same paper they investigate cordial labelings of graphs obtained by replacing each vertex
of K, by a graph G. Kaneria, Jariya, and Karavadiya [1586] proved that the index of
cordiality for K, is at most 6 for n at most 105; the index of cordiality for K, is at most
4, when n can be expressed as sum of square of two integers; and it is at most 8 when a
particular different condition on the edge labels are met. See also [1354].

In [191] Andar et al. define a t-ply graph P,(u,v) as a graph consisting of ¢ internally
disjoint paths joining vertices u and v. They prove that P;(u,v) is cordial except when it
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is Eulerian and the number of edges is congruent to 2 (mod 4). In [192] Andar, Boxwala,
and Limaye prove that the one-point union of any number of plys with an endpoint as
the common vertex is cordial if and only if it is not Eulerian and the number of edges is
congruent to 2 (mod 4). They further prove that the path union of shells obtained by
joining any point of one shell to any point of the next shell is cordial; graphs obtained by
attaching a pendent edge to the common vertex of the cords of a shell are cordial; and
cycles with one pendent edge are cordial.

For a graph G and a positive integer ¢, Andar, Boxwala, and Limaye [189] define the
t-uniform homeomorph P,(G) of G as the graph obtained from G by replacing every edge
of G by vertex disjoint paths of length t. They prove that if G is cordial and ¢ is odd,
then P;(G) is cordial; if ¢ = 2 (mod 4) a cordial labeling of G can be extended to a cordial
labeling of P,(G) if and only if the number of edges labeled 0 in G is even; and when ¢t = 0
(mod 4) a cordial labeling of G can be extended to a cordial labeling of P;(G) if and only
if the number of edges labeled 1 in G is even. In [190] Ander et al. prove that P,(Ky,) is
cordial for all ¢ > 2 and that P,(Ks,1) is cordial if and only if ¢ = 0 (mod 4) or ¢ is odd
and n # 2 (mod 4), or t =2 (mod 4) and n is even.

In [192] Andar, Boxwala, and Limaya show that a cordial labeling of G can be extended
to a cordial labeling of the graph obtained from G by attaching 2m pendent edges at each
vertex of G. For a binary labeling g of the vertices of a graph G and the induced edge
labels given by g(e) = |g(u) — g(v)| let v4(j) denote the number of vertices labeled with j
and e,(j) denote the number edges labeled with j. Let i(G) = min{|e,(0) —ey4(1)|} taken
over all binary labelings g of G with |v,(0) — v,(1)] < 1. Andar et al. also prove that
a cordial labeling g of a graph G with p vertices can be extended to a cordial labeling
of the graph obtained from G by attaching 2m + 1 pendent edges at each vertex of G
if and only if G does not satisfy either of the conditions: (1) G has an even number of
edges and p = 2 (mod 4); (2) G has an odd number of edges and either p = 1 (mod 4)
with e,(1) = €,4(0) +i(G) or n = 3 (mod 4) and €,(0) = €,(1) + i(G). Andar, Boxwala,
and Limaye [193] also prove: if g is a binary labeling of the n vertices of graph G with
induced edge labels given by g(e) = |g(u) — g(v)| then g can be extended to a cordial
labeling of G ® Ko, if and only if n is odd and i(G) = 2 (mod 4); K, ® Ky, is cordial
if and only if n # 4 (mod 8); K,, ® Ks,, 41 is cordial if and only if n # 7 (mod 8); if
g is a binary labeling of the n vertices of graph G with induced edge labels given by
g(e) = |g(u) — g(v)| then g can be extended to a cordial labeling of G ® Cy if t # 3 mod
4, n is odd and e,(0) = e,(1). For any binary labeling g of a graph G with induced edge
labels given by g(e) = |g(u) — g(v)| they also characterize in terms of i(G) when g can be
extended to graphs of the form G ® Ky,11.

For graphs G1, G, ..., G, (n > 2) that are all copies of a fixed graph G, Shee and Ho
[2876] call a graph obtained by adding an edge from G; to Gy fori=1,...,n—1 a path
union of G (the resulting graph may depend on how the edges are chosen). Among their
results they show the following graphs are cordial: path-unions of cycles; path-unions of
any number of copies of K,, when m = 4,6, or 7; path-unions of three or more copies of
K5; and path-unions of two copies of K, if and only if m — 2,m, or m 4 2 is a perfect
square. They also show that there exist cordial path-unions of wheels, fans, unicyclic
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graphs, Petersen graphs, trees, and various compositions.

Lee and Liu [1854] give the following general construction for the forming of cordial
graphs from smaller cordial graphs. Let H be a graph with an even number of edges and
a cordial labeling such that the vertices of H can be divided into ¢ parts Hq, Hs, ..., H;
each consisting of an equal number of vertices labeled 0 and vertices labeled 1. Let
G be any graph and Gi,Go,...,G; be any t subsets of the vertices of G. Let (G, H)
be the graph that is the disjoint union of G and H augmented by edges joining every
vertex in G; to every vertex in H; for all i. Then G is cordial if and only if (G, H)
is. From this it follows that: all generalized fans F,, = K,, + P, are cordial; the
generalized bundle B,,,, is cordial if and only if m is even or n # 2 (mod 4) (Bun
consists of 2n vertices vy, v, ..., Uy, U, Us, ..., U, With an edge from v; to u; and 2m
vertices T1,To, ..., Tm, Y1, Y2, - - -, Ym With z; joined to v; and y; joined to wu;); if m is odd
the generalized wheel W, ,, = K,, + C, is cordial if and only if n # 3 (mod 4). If m is
even, W, , is cordial if and only if n # 2 (mod 4); a complete k-partite graph is cordial
if and only if the number of parts with an odd number of vertices is at most 3.

Sethuraman and Selvaraju [2840] have shown that certain cases of the union of any
number of copies of K, with one or more edges deleted and one edge in common are
cordial. Youssef [3552] has shown that the kth power of C, is cordial for all n when
k =2 (mod 4) and for all even n when £ = 0 (mod 4). Ramanjaneyulu, Venkaiah, and
Kothapalli [2576] give cordial labelings for a family of planar graphs for which each face is
a 3-cycle and a family for which each face is a 4-cycle. Acharya, Germina, Princy, and Rao
[40] prove that every graph G can be embedded in a cordial graph H. The construction
is done in such a way that if GG is planar or connected, then so is H.

Recall from §2.7 that a graph H is a supersubdivision of a graph G, if every edge uv
of G is replaced by K>, (m may vary for each edge) by identifying u and v with the two
vertices in K, that form the partite set with exactly two members. Vaidya and Kanani
[3275] prove that supersubdivisions of paths and stars are cordial. They also prove that
supersubdivisions of (), are cordial provided that n and the various values for m are odd.

Raj and Koilraj [2552] proved that the splitting graphs of P, Cy, Ky, 5, W, nKs, and
1) 72
K

the graphs obtained by starting with k copies of stars Ky ,, K75, ..., kag and joining the

central vertex of K fpn_ Y and K fp,)L to a new vertex z,_; for each 2 < p < k are cordial.

Seoud, El Sonbaty, and Abd El Rehim [2770] proved the following graphs are cordial:
Ky 1, when mn is even; P, + K, if n is even or n is odd and (m # 2); the conjunction
graph Py A C), is cordial if n is even; and the join of the one-point union of two copies of
C,, and K;.

Recall < Ki,,,...,Ki1, > is the graph obtained by starting with the stars
Ky, ..., K, and joining the center vertices of K ,, and K ,,,, to a new vertex v; where
1 < i < k— 1. Kaneria, Jariya, and Meghpara [1590] proved that < Ky ,,,..., Ky, >
is cordial and every graceful graph with |vs(odd) — vg(even)| < 1 is cordial. Kaneria,
Meghpara, and Makadia [1618] proved that the cycle of complete graphs C(t - K,,,,) and
the cycle of wheels C(t-W,,) are cordial. Kaneria, Makadia, and Meghpara [1605] proved
that the cycle of cycles C(t - C),) is cordial for ¢ > 3. Kaneria, Makadia, and Meghpara
[1606] proved that a star of K, and a cycle of n copies of K, are cordial. Kaneria, Viradia,
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Jariya, and Makadia [1625] proved that the cycle of paths C(t - P,) is cordial, product
cordial (see Section 7.6), and total edge product cordial.

Jeba Jesintha and Subashini proved the following graphs are cordial: the cycle of vertex
switching of cycles [1395]; the path union of vertex switching of wheels in increasing order
[1404]; the path union of jelly fish graphs is cordial and cycle of jelly fish graphs [1405]; the
star of fixed trees of diameter three tree [1397]; and the path union of vertex switching of
cycles in increasing order [1399]. In [1414] Jeba Jesintha, Vinodhini, and Lakshmi, proved
that a star glued with subdivided shell graph and super subdivision of circular ladders
(C,, x K3) admit cordial labelings.

Cordial labelings and variations of them for fractal graphs are given in [2721] and
2720).

Cahit [646] calls a graph H -cordial if it is possible to label the edges with the numbers
from the set {1, —1} in such a way that, for some k, at each vertex v the sum of the labels
on the edges incident with v is either k& or —k and the inequalities |v(k) —v(—k)| < 1 and
le(1) — e(—1)| < 1 are also satisfied, where v(i) and e(j) are, respectively, the number of
vertices labeled with ¢ and the number of edges labeled with j. He calls a graph H,,-cordial
if it is possible to label the edges with the numbers from the set {£1,+2,...,+n} in such
a way that, at each vertex v the sum of the labels on the edges incident with v is in the
set {+1,£2,...,£n} and the inequalities |v(i) — v(—i)| < 1 and |e(i) — e(—i)| < 1 are
also satisfied for each ¢ with 1 < ¢ < n. Among Cahit’s results are: K, , is H-cordial
if and only if n > 2 and n is even; and K,,,,m # n, is H-cordial if and only if n = 0
(mod 4), m is even and m > 2,n > 2. Unfortunately, Ghebleh and Khoeilar [1078] have
shown that other statements in Cahit’s paper are incorrect. In particular, Cahit states
that K, is H-cordial if and only if n = 0 (mod 4); W, is H-cordial if and only if n = 1
(mod 4); and K, is Hy-cordial if and only if n = 0 (mod 4) whereas Ghebleh and Khoeilar
instead prove that K, is H-cordial if and only if n = 0 or 3 (mod 4) and n # 3; W, is
H-cordial if and only if n is odd; K, is Hs-cordial if n = 0 or 3 (mod 4); and K, is
not Ho-cordial if n = 1 (mod 4). Ghebleh and Khoeilar also prove every wheel has an
Hj-cordial labeling. In [954] Freeda and Chellathurai prove that the following graphs are
Hs-cordial: the join of two paths, the join of two cycles, ladders, and the tensor product
P, ® P,. They also prove that the join of W, and W,, where n + m = 0 (mod 4) is
H-cordial. Cahit generalizes the notion of H-cordial labelings in [646].

A graph G(V, E) is called Hy-cordial if it has an H-cordial labeling f such that for
each edge e and each vertex v of G have the label 1 < |f(e)] < k, 1 < |f(v)] < k and
(i) —vp(=i))] < 1, |es(i)) —ep(—i)] < 1 for each ¢ with 1 < ¢ < k. Ratilal and
Parmar [2606] investigated Hj-cordial labelings of triangular snakes, double triangular
snakes, triple triangular snakes, alternate triangular snakes, double alternate triangular
snakes, irregular triangular snakes, quadrilateral snakes, double quadrilateral snakes, al-
ternate quadrilateral snakes, and irregular quadrilateral snakes. Joshi and Parmar [1557]
investigated the H-, Ho- and Hjs-cordiality of the following snakes: triangular, double
triangular, triple trianglar, quadrilateral, double quadrilateral, alternate trigular, dou-
ble alternate trigular, irregular triangular, quadrilateral, double quadrilateral, alternate
quadrilateral, and irregular quadrilateral. Joshi and Pamar [1557] investigated Hy-cordial
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labeling of p-triangular, m-polygonal snakes, double m-polygonal snakes, alternate m-
polygonal snakes, double alternate m-polygonal snakes, irregular m-polygonal snakes,
and double irregular m-polygonal snakes.

Cahit and Yilmaz [650] call a graph Ej-cordial if it is possible to label the edges
with the numbers from the set {0,1,2,...,k — 1} in such a way that, at each vertex v,
the sum of the labels on the edges incident with v modulo £ satisfies the inequalities
lv(i) —v(j)| < 1 and |e(i) —e(j)| < 1, where v(s) and e(t) are, respectively, the number of
vertices labeled with s and the number of edges labeled with ¢. Cahit and Yilmaz prove
the following graphs are Ej-cordial: P, (n > 3); stars S, if and only if n # 1 (mod 3);
K, (n = 3); C, (n > 3); friendship graphs; and fans F, (n > 3). They also prove that
Sn (n > 2) is Ej-cordial if and only if n # 1 (mod k) when £ is odd or n # 1 (mod
2k) when k is even and k # 2. Ni, Liu, and Lu [2271] demonstrate the Es-cordiality of
Wy, Py x Py, Kp,,, and trees.

Bapat and Limaye [424] provide Ej-cordial labelings for: K, (n > 3); snakes whose
blocks are all isomorphic to K, where n = 0 or 2 (mod 3); the one-point union of any
number of copies of K, where n =0 or 2 (mod 3); graphs obtained by attaching a copy
of K, where n =0 or 3 (mod 3) at each vertex of a path; and K,, ® K,. Sridharan and
Umarani [3045] proved: for odd n > 1 and k > 2, P, ® K; is Fj-cordial; for n even
and n # k/2, P, ® K; is Ej-cordial; and certain cases of fans are Ej-cordial. Youssef
[3549] gives a necessary condition for a graph to be Ej-cordial for certain k. He also gives
some new families of Ej-cordial graphs and proves Lee’s [1886] conjecture about the edge-
gracefulness of the disjoint union of two cycles. Venkatesh, Salah, and Sethuraman [3375]
proved that Cs,,.; snakes and C3 41 are FEy-cordial. Liu, Liu, and Wu [1980] provide two
necessary conditions for a graph G to be Fj-cordial and prove that every P, (n > 3) is
E,-cordial if p is odd. They also discuss the Fy-cordiality of a graph G under the condition
that some subgraph of G has a 1-factor. Liu and Liu [1979] proved that a graph with
no isolated vertex is Fs-cordial if and only if it does not have order 4n + 2. Bapat and
Limaye [425] prove that helms, one point unions of helms, and path unions of helms are
FEs-cordial. Jinnah and Beena [1547] prove the graphs P, (n > 3),C,, where n # 4 mod
8, and K,, (n > 3) are Ey-cordial graphs. They also prove that every graph of order at
least 3 is a subgraph of an F,-cordial graph.

Hovey [1258] introduced a simultaneous generalization of harmonious and cordial la-
belings. For any Abelian group A (under addition) and graph G(V, E) he defines G to be
A-cordial if there is a labeling of V' with elements of A such that for all @ and b in A when
the edge ab is labeled with f(a) 4+ f(b), the number of vertices labeled with a and the
number of vertices labeled b differ by at most one and the number of edges labeled with
a and the number labeled with b differ by at most one. In the case where A is the cyclic
group of order k, the labeling is called k-cordial. With this definition we have: if G(V, F)
is a graph with |E| > |V| — 1 then G(V, E) is harmonious if and only if G is |E|-cordial;
G is cordial if and only if G is 2-cordial.

Hovey obtained the following: caterpillars are k-cordial for all k; all trees are k-cordial
for k = 3,4, and 5; odd cycles with pendent edges attached are k-cordial for all k; cycles
are k-cordial for all odd k; for k even, Coppq; is k-cordial when 0 < j < % + 2 and when

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 98



k < j < 2k; Cgm1)k 18 not k-cordial; K, is 3-cordial; and, for k even, K, is k-cordial
if and only if m = 1.

Hovey advances the following conjectures: all trees are k-cordial for all k; all connected
graphs are 3-cordial; and Coyp45 is k-cordial if and only if j # &, where k and j are even
and 0 < j < 2k. The last conjecture was verified by Tao [3189]. Tao’s result combined
with those of Hovey show that for all positive integers k£ the n-cycle is k-cordial with the
exception that k is even and n = 2mk + k. Tao also proved that the crown with 2mk + j
vertices is k-cordial unless j = k is even, and for 4 < n < k the wheel W, is k-cordial
unless &k =5 (mod 8) and n = (k4 1)/2. In [3231] Tuczyriski, Wenus, and Wesek proved
a conjecture of Cichacz, Gorlich, and Tuza [745] that all hypertrees are 2-cordial. They
also proved that all hypertree are 3-cordial.

In [2372] Patrias and Pechenik initiated the study of classes of finite Abelian groups
A for which particular graphs are A-cordial. Their results include: P, and P, are
not Z,™-cordial, all paths are A-cordial when A is an Abelian group of odd order, if A is
an Abelian group of order n and P, is A-cordial, then all paths are A-cordial, and P, is
A-cordial when A = 75 x Z;, and n = | A|.

They conjecture that for a finite abelian group A, all paths are A-cordial if and only
if A has an element of order greater than 2. Cichacz [737] proved that all cycle graphs
are A-cordial for any Abelian group A of odd order. In [1654] and [1655] Chidambaram,
Athisayanathan, and Ponraj proved that hypercubes, books, C, x Ky, and P, x Kj
and the splitting graphs of paths, cycles, and wheels are {1,—1,4, —i}-cordial. Since
the group {1, —1,4, —i} is cyclic, this is same as 4-cordial. In [2538] Radha, Venkatesan,
Vitaldas, and Perumal prove that triangular ladders, alternate triangular snakes, alternate
quadrilateral snakes, and double triangular snakes admit {1, —1,4, —i} cordial labelings.

Erickson [895]et al. showed that the friendship graph F), is Z3,,-cordial and conjectured
that F,, is Z,,-cordial except when n is even and not divisible by 4 and m = 3n/d, where
d is odd.

In [3555] Youssef and Al-Kuleab proved the following: if G is a (p1, ¢1) k-cordial graph
and G is a (pg, g2) k-cordial graph with p; or p, = 0 (mod k) and ¢; or go = 0 (mod k),
then G + H is k-cordial; if G is a (p1,q1) 4-cordial graph and G is a (ps,qe) 4-cordial
graph with p; or po Z 2 (mod 4) and ¢; or ¢o = 0 (mod k), then G+ H is 4-cordial; and
Ky np 1s 4-cordial if and only if (m,n,p) mod 4 # (0,2,2) or (2,2,2).

In [819] ELrokh, Ismail, El-hay, and Elmshtaye define a cubic roots cordial labeling f
of the vertices of a graph G with 1,w, and w?, where w? = 1, with induced edge labeling
[*: E(GQ) to {1,w,w?} defined by f*(uv) = f(u)f(v) if both the number of vertices and
the number edges labeled with x and the number of vertices and the number edges labeled
with y differ by at most 1. Since {1,w,w?} is isomorphic the group Zs, cubic roots cordial
is the same as 3-cordial. They prove the all nontrivial cases of paths, cycles, fans, and
G U H where GG and H paths or cycles admit a cubic roots cordial. They also prove that
wheels W,, are cubic roots cordial except when n = 2 mod 3 and n is even.

In [3547] Youssef obtained the following results: Cy, with one pendent edge is not
(2k + 1)-cordial for k > 1; K, is 4-cordial if and only if n < 6; C? is 4-cordial if and only
if n # 2 (mod 4); and K,,,, is 4-cordial if and only if n # 2 (mod 4); He also provides
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some necessary conditions for a graph to be k-cordial. Driscol zele [849] proved that all
trees are 7-cordial.

Modha and Kanani [2178] prove that following graphs have a 5-cordial labeling: the
shadow graph of a path and a cycle, graphs obtained by one point duplication and duplica-
tion of an edge by a vertex in cycle, and the graph obtained by the barycentric subdivision
of wheel. In [2171] Modha and Kanani proved prisms, webs, flowers, and closed helms
admit 5-cordial labelings. In [2172] they proved that fans are k-cordial for all k£ and dou-
ble fans are k-cordial for all odd k& and n = (k + 1)/2. In [2174] they proved that the
following graphs are k-cordial: W,, for odd k, n = mk +7,m > 0,1 < 7 < k — 1 except
for j = (k — 1)/2; the total graphs of paths (recall T'(P,) has vertex set V(P,) U E(P,)
with two vertices adjacent whenever they are neighbors in P,); the square C? for odd
k < n; the path union of n copies of C} where k is odd; and ), with one pendent edge
for odd k < n. Rathod and Kanani [2602] proved P2 is k-cordial for all k and cycles with
a single pendent edge are k-cordial for all even k. In [2599] Rathod and Kanani proved
the middle graph, total graph, and splitting graph of a path are 4-cordial and P? and
triangular snakes are 4-cordial. Modha and Kanani [2175] proved: W, is k-cordial for all
odd k£ and for all n = mk+7, m >0, 1 < j < k — 1 except for j = k — 1; the path
union of copies of C}, is k-cordial for odd k; the total graph of P, is k-cordial for all k; the
square C? is k-cordial for odd k odd and n > k; and the graphs obtained by appending
an edge to C,, is k-cordial for odd k and n > k. Modha and Kanani [2177] prove the
following graphs are k-cordial: P, x Cy, P, X Cxy1, P, X Cpi3 for all odd k and m > 2,
and P, x Cy,_; for all odd k,m > 2 and m # tk. Rathod and Kanani [2602] [2604] prove
that following graphs are 4-cordial: the splitting graph of K ,; triangular books; and
the one point union any number of copies of the fan f3; braid graphs; triangular ladders;
and irregular quadrilateral snakes obtained from the path P, with consecutive vertices
Uy, U, - . . , Uy, and new vertices vy, v, ..., U, o, Wy, W, and edges u;v;, w2, v;w; for all
1 < ¢ < n—2. Rathod and Kanani [2603] prove wheels, fans, friendship graphs, double
fans, and helms are 5-cordial. Driscoll, Krop, and Nguyen [842] proved that all trees are
6-cordial. In [1577], [1578], and [2173] Kanani and Modha prove that fans, friendship
graphs, ladders, double fans, double wheels, wheels, helms, closed helms, and webs are
7-cordial graphs and wheels, fans and friendship graphs, gears, double fans, and helms
are 4-cordial graphs. In [2724] Sathish Narayanan and Vijayaragavan obtained 3-divisor
cordial labelings for graphs derived from paths.

Cichacz, Gorlich and Tuza [745] extended the definition of k-cordial labeling for hy-
pergraphs. They presented various sufficient conditions on a hypertree H (a connected
hypergraph without cycles) to be k-cordial. From their theorems it follows that every
k-uniform hypertree is k-cordial, and every hypertree with odd order or size is 2-cordial.
Modha and Kanani [2176] prove the following graphs are k-cordial for all k: bistars,
restricted square graphs B?m, the one-point union of C3 and K, ,, and P, ©® K.

In [2836] Sethuraman and Selvaraju present an algorithm that permits one to start
with any non-trivial connected graph G and successively form supersubdivisions (see §2.7
for the definition) that are cordial in the case that every edge in G is replaced by Ks,,
where m is even. Sethuraman and Selvaraju [2835] also show that the one-vertex union
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of any number of copies of K,,, is cordial and that the one-edge union of k copies of
shell graphs C'(n,n — 3) (see §2.2) is cordial for all n > 4 and all k. They conjectured
that the one-point union of any number of copies of graphs of the form C(n;,n; — 3) for
various n; > 4 is cordial. This was proved by Yue, Yuansheng, and Liping in [3567].
Riskin [2630] claimed that K, is (Z3 X Z3)-cordial if and only if n is at most 3 and K, ,, is
(Zy x Zs)-cordial if and only if (m,n) # (2,2). (Many authors use Vj to denote Zy X Zs.)
However, Pechenik and Wise [2375] report that the correct statement for K, , is K,
is (Zy x Zy)-cordial if and only if m and n are not both congruent to 2 mod 4. Seoud
and Salim [2788] gave an upper bound on the number of edges of a graph that admits
a (Zy @ Zy)-cordial labeling in terms the number of vertices. Rathod and Kanani [2601]
prove the following graphs are (Zs X Z)-cordial for all n and m: C, ©mK;, C, ® K, and
graphs obtained by appending a single edge to one vertex of C),. In Rathod and Kanani
[2605] and [2600] proved the following graphs are (Zy x Zs)-cordial: alternate triangular
snakes, alternate double triangular snakes, alternate triple triangular snakes, quadrilateral
snakes, alternate quadrilateral snakes, double quadrilateral snakes, and double alternate
quadrilateral snakes.

In [2375] Pechenik and Wise investigate Z5 X Zs-cordiality of complete bipartite graphs,
paths, cycles, ladders, prisms, and hypercubes. They proved that all complete bipartite
graphs are Z3 X Z,-cordial except K, ,, where m,n = 2 mod 4; all paths are Zy x Z,-cordial
except P, and Ps; all cycles are Z, x Zs-cordial except Cy, Cs, C, where k = 2 mod 4; and
all ladders P, x P, are Zy X Zs-cordial except Cy. They also introduce a generalization of
A-cordiality involving digraphs and quasigroups, and show that there are infinitely many
Q-cordial digraphs for every quasigroup @. Jinnah and Nair [1548] proved that all trees
except P, and Ps are Z5 X Zs-cordial and the graphs obtained by subdividing the pendent
edges of C),, ® Ky are Zy x Zy -cordial for all n.

Cairnie and Edwards [653] have determined the computational complexity of cordial
and k-cordial labelings. They prove the conjecture of Kirchherr [1703] that deciding
whether a graph admits a cordial labeling is NP-complete. As a corollary, this result
implies that the same problem for k-cordial labelings is NP-complete. They remark that
even the restricted problem of deciding whether connected graphs of diameter 2 have a
cordial labeling is also NP-complete.

For a (p, q) graph G and a bijection f from V(G) to {1,2,...,p} Ponraj, Annathurai,
and Kala [2414] introduced a new graph labeling as follows. For each edge wv assign
the remainder when f(u) is divided by f(v) or when f(v) is divided by f(u) depending
on whether f(u) > f(v) or f(v) > f(u). The function f is called a remainder cordial
labeling of G if |n. —n,| < 1 where 7. and 7, respectively denote the number of edges
labeled with even integers and the number of edges labeled with odd integers. A graph
G with a remainder cordial labeling is called a remainder cordial graph. In [2414] and
[2419] they proved that the following graphs are remainder cordial: paths, cycles, stars,
bistars, crowns, combs, Ks,,, S(K1.,), S(By.), P?, wheels, subdivisions of wheels, K,
and the graph obtained by subdividing the pendent edges of the bistar B, ,. They also
proved the following star related graphs are remainder cordial: K, U B, ,, P, U K,
P,UB,,, K1, US(Ky,), KinUS(Bun), P2UK),, P,>UBy,,, and S(K;,)US(B,).
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They conjecture that K, is remainder cordial if and only if n < 3. Ponraj, Annathurai,
and Kala [2415] generalize remainder cordial labelings as follows. Let f be a function
from V(G) to {1,2,...,k} where 2 < k < |V(G)|. For each edge uv assign the remainder
when f(u) is d1v1ded by f(v) or when f(v) is divided by f(u) depending on whether

f(u) = f(v) or f(v) = f(u). The function f is called a k-remainder cordial labeling of
G if |vs(3) — Uf(j)| 1, for i,5 € {1,...,k} where vs(x) denote the number of vertices
labeled with x and |n. — n,| < 1 where 7, and 7, respectively denote the number of edges
labeled with even integers and the number of edges labeled with odd integers. A graph
that admits a k-remainder cordial labeling is called a k-remainder cordial graph. In [2415],
[216], [217], and [2420] they proved the following. Every graph is a subgraph of a connected
k-remainder cordial graph for £ > 4. Note that when k& = 2, the number of edges with
label 0 is ¢ so there does not exists a 2-remainder cordial labeling. They further investigate
the 3-remainder cordial labeling behavior of paths, cycles, stars, combs, crowns, wheels,
fans, squares of paths, subdivisions of wheels, subdivisions of stars, subdivisions of combs,
armed crowns, and K, © K. They further proved that W, is 3-remainder cordial if and
only if n =1 (mod 3), K3, is 3-remainder cordial if and only if n € {1,2,3,4,5,6,7,9},
and K, is 3-remainder cordial if and only if n < 3. In [2416], [2417], and [2418] Ponrayj,
Annathurai, and Kala proved the following graphs are 4-remainder cordial: complete
graphs, paths, cycles, crowns, stars, bistars, books, subdivisions of stars, subdivisions of
bistars, subdivisions of jelly fish, flowers, sunflowers, lotuses inside a circle, friendship
graphs, webs, triangular snakes, durer graphs, planar grids, mongolian tents, prisms,
dragon graphs C,,@QP, (the graph obtained by identifying an endpoint of P, with one
vertex of C,,), crossed prisms CPy,, and Ky + mK; (m = 0,1,3 (mod 4). They also
investigate the 4-remainder cordial labeling of L, ® mK;, L, ® K5, L, ® mK;, P, ® K,
P, ®2K,, C, ® Ky, and S(P, ® K3).

In Bapat [283] introduces the following new labeling. A graph G(V, E) has a L-cordial
labeling if there is a bijection f from E(G) to {1,2,...,|E|} that assigns 0 to a vertex
v if the largest label on the edges incident to v is even and assigns 1 to v otherwise and
this assignment satisfies the condition that the number of vertices labeled with 0 and the
number of vertices labeled with 1 differ by at most 1. A graph that admits an L-cordial
labeling is called as L-cordial graph. He shows that stars, path, cycles, and triangular
snakes are L-cordial graphs

In [683] Chartrand, Lee, and Zhang introduced the notion of uniform cordiality as
follows. Let f be a labeling from V(G) to {0,1} and for each edge zy define f*(zy) =
|f(z) — f(y)]. Fori=0 and 1, let v;(f) denote the number of vertices v with f(v) =i
and e;(f) denote the number of edges e with f*(e) = i. They call a such a labeling f
friendly if |vo(f) — v1(f)] < 1. A graph G for which every friendly labeling is cordial is
called uniformly cordial. They prove that a connected graph of order n > 2 is uniformly
cordial if and only if n =3 and G = K3, or nis even and G = K ,,_;.

In [2628] Riskin introduced two measures of the noncordiality of a graph. He defines
the cordial edge deficiency of a graph G as the minimum number of edges, taken over all
friendly labelings of G, needed to be added to G such that the resulting graph is cordial.
If a graph G has a vertex labeling f using 0 and 1 such that the edge labeling f. given
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by fe(xy) = |f(x) — f(y)| has the property that the number of edges labeled 0 and the
number of edges labeled 1 differ by at most 1, the cordial vertex deficiency defined as oco.
Riskin proved: the cordial edge deficiency of K, (n > 1) is [§] — 1; the cordial vertex
deficiency of K, is j — 1 if n = 5% + ¢, when ¢ is —2,0 or 2, and oo otherwise. In [2628]
Riskin determines the cordial edge deficiency and cordial vertex deficiency for the cases
when the Md&bius ladders and wheels are not cordial. In [2629] Riskin determines the
cordial edge deficiencies for complete multipartite graphs that are not cordial and obtains
a upper bound for their cordial vertex deficiencies.

Recall a graph G the graph G*, called the star of G, is the graph obtained by replacing
each vertex G with the star K ,. In [1619] Kaneria, Patadiya and Teraiya introduced a
balanced cordial labeling for a graph by saying that a cordial labeling f is a vertex balanced
cordial if it satisfies the conditionvy(0) = vy(1); f is a balanced cordial if it satisfies the
conditions e;(0) = ef(1) and v;(0) = v¢(1). Kaneria, Teraiya, and Patadiya [1622] proved
the path union P(t-Cy,) is a balanced cordial if ¢ is odd and it is vertex balanced cordial
if t is even; C(t - Cy,) is a balanced cordial if ¢ = 0 (mod 4) and it is a vertex balanced
cordial if £ = 1,3 (mod 4); and Cf}, is balanced cordial. They proved P, x Cy; is balanced
cordial; (s, x Cy is balanced cordial; and G; ® (G5 is cordial when (G is cordial and Gy
is a balanced cordial. Kaneria and Teraiya [1621] prove if G is a balanced cordial, then
so is G*; if G is a balanced cordial, then so is P, X G; and if GG is a balanced cordial,
then so is G .

An integer cordial labeling of a graph G*(p, ¢) is an injective map g : V' — [Z£, ..., £]*
or [—[2],...,|5]] as p is even or odd, which induces an edge labeling g : £ — {0, 1}
defined by g(uv) = 1 if g(u) 4+ g(v) > 0 and 0 otherwise such that the number of edges
labeled 1 and the number of edges labeled 0 differ by at most 1. If a graph has inte-
ger cordial labeling it is called an integer cordial graph. In [1128] Gondalia and Rokad
investigated the existence of integer cordial labelings of star and bistar related graphs.

For a a planar graph G with an with integer cordial labeling g and the face labeling
g * * from the faces of G defined by g * *(f) = 1 if g(vy) + g(v2) + ... + g(v,) = 0 and
g * x(f) = 0 otherwise, where vy, v, ..., v, are the vertices of face f. Such a labeling is
called a face integer cordial labeling of graph G if the number of faces labeled with 0 and
the number of faces labeled with 1 differ by at most 1. Parameswari, Saradha Pritha,
and Rajeswari [2341] proved that the lilly graph, 2K, + 2P, (n > 2), admits an integer
cordial lableling and the vanessa graph, 2F, + K, (n > 2), admits an integer cordial
labeling and a face integer cordial lableling. Sheriff, Abbas, and Raj [2883] proved that
wheels, fans, friendship graphs, triangular snakes, double triangular snakes, the star of
cycles, the degree splitting graph of bistars are face integer cordial graphs.

For a simple connected graph G(V, E), Sahaya, Maya, and Nicholas [2672] introduced
the concept of product integer cordial labeling of as an injective mapping f : V —
{1,2,...,]V]} such that the induced edge labeling f* on E defined f*(uv) = 1 or 0
according as f(u)f(v) even or odd respectively, has the property that the number of
edges labeled with 1 and the the number of edges labeled with 0 differ by at most 1.
They proved that the following graphs admit product integer cordial labelings: paths,
friendship graphs, C,, if and only if n is odd, and K,,, if and only if one of m and n is
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1. In [2846] Shah and Parmar proved that nontrivial triangular snakes, double triangu-
lar snakes, triple triangular snakes, and alternate triangular snakes graph admits integer
cordial labelings. In [2847] Shah and Parmar proved that m-triangular snakes, quadri-
lateral snakes, double quadrilateral snakes, m-quadrilateral snakes, pentagonal snakes,
double pentagonal snakes, and m-pentagonal snakes are integer cordial graphs. They also
proved that triangular snake graph, double triangular snakes, alternate triangular snakes,
m-triangular snakes, quadrilateral snakes, double quadrilateral snakes, m-quadrilateral
snakes, pentagonal snakes, double pentagonal snakes, and m-pentagonal snakes graph are
integer cordial graphs. In [2848] Shah and Parmar proved that alternate m-triangular
snakes, quadrilateral snakes, alternate m-quadrilateral snakes, pentagonal snakes, alter-
nate m-pentagonal snakes, irregular triangular snakes, irregular quadrilateral snakes, and
irregular pentagonal snakes are integer cordial graphs.

If f is a binary vertex labeling of a graph G Lee, Liu, and Tan [1855] defined a partial
edge labeling of the edges of G by f*(uv) = 0 if f(u) = f(v) = 0 and f*(uwv) = 1 if
f(u) = f(v) = 1. They let eg(G) denote the number of edges uv for which f*(uv) = 0
and e;(G) denote the number of edges uv for which f*(uv) = 1. They say G is balanced if
it has a friendly labeling f such that if |eq(f) — e1(f)| < 1. In the case that the number
of vertices labeled 0 and the number of vertices labeled 1 are equal and the number of
edges labeled 0 and the number of edges labeled 1 are equal they say the labeling is
strongly balanced. They prove: P, is balanced for all n and is strongly balanced if n is
even; K,, , is balanced if and only if m and n are even, m and n are odd and differ by at
most 2, or exactly one of m or n is even (say n = 2t) and t = —1,0,1 (mod |m — n|); a
k-regular graph with p vertices is strongly balanced if and only if p is even and is balanced
if and only if p is odd and k = 2; and if GG is any graph and H is strongly balanced, the
composition G[H] (see §2.3 for the definition) is strongly balanced. In [1735] Kong, Lee,
Seah, and Tang show: C,, x P, is balanced if m and n are odd and is strongly balanced if
either m or n is even; and C,, ® K is balanced for all m > 3 and strongly balanced if m
is even. They also provide necessary and sufficient conditions for a graph to be balanced
or strongly balanced. Lee, Lee, and Ng [1826] show that stars are balanced if and only
if the number of edges of the star is at most 4. Kwong, Lee, Lo, and Wang [1787] define
a graph G to be uniformly balanced if |eq(f) — e1(f)| < 1 for every vertex labeling f
that satisfies if |vg(f) — v1(f)| < 1. They present several ways to construct families of
uniformly balanced graphs. Kim, Lee, and Ng [1697] prove the following: for any graph
G, mG is balanced for all m; for any graph GG, mG is strongly balanced for all even m;
if G is strongly balanced and H is balanced, then G U H is balanced; mK,, is balanced
for all m and strongly balanced if and only if n = 3 or mn is even; if H is balanced and
G is any graph, the G x H is strongly balanced; if one of m or n is even, then P,,[P,]
is balanced; if both m and n are even, then P,,[P,] is balanced; and if G is any graph
and H is strongly balanced, then the tensor product G ® H is strongly balanced. (The
tensor product G ® H of graphs G and H, has the vertex set V(G) x V(H) and any two
vertices (u,u’) and (v,v’) are adjacent in G ® H if and only if «’ is adjacent with v and
u is adjacent with v.)

A graph G is k-balanced if there is a function f from the vertices of G to {0,1,2,... k—
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1} such that for the induced function f* from the edges of G to {0,1,2,..., k—1} defined
by f*(uwv) = |f(u) — f(v)| the number of vertices labeled i and the number of edges
labeled j differ by at most 1 for each i and j. Seoud, El Sonbaty, and Abd El Rehim
[2770] proved the following: if |E| > 2k + 1 and |V| < k then G(V, E) is not k-balanced;
if |E] >3k+1, (k>2)and 3k—1 > |V| > 2k + 1 then G(V, E) is not k-balanced;
r-regular graphs with 3 < r < n — 1 are not r-balanced; if G; has m vertices and G5
has n vertices then Gy + G5 is not (m + n)-balanced for m,n > 5; P; x P, with edge
set E is 3n-balanced and |F|-balanced; L,, x P (L, = P, x P») with vertex set V' and
edge set E is |V]-balanced and k-balanced for k& > |E| but not n-balanced for n > 2; the
one-point union of two copies of K, is 2n-balanced, |V|-balanced, and |E|-balanced not
is 3-balanced when n > 4. They also proved that the composition graph P,[P] is not
n-balanced for n > 3, is not 2n-balanced for n > 5, and is not |E|-balanced.

A graph whose edges are labeled with 0 and 1 so that the absolute difference in the
number of edges labeled 1 and 0 is no more than one is called edge-friendly. We say an
edge-friendly labeling induces a partial vertex labeling if vertices which are incident to
more edges labeled 1 than 0, are labeled 1, and vertices which are incident to more edges
labeled 0 than 1, are labeled 0. Vertices that are incident to an equal number of edges
of both labels are called unlabeled. Call a procedure on a labeled graph a label switching
algorithm if it consists of pairwise switches of labels. Krop, Lee, and Raridan [1762] prove
that given an edge-friendly labeling of K,,, we show a label switching algorithm producing
an edge-friendly relabeling of K, such that all the vertices are labeled.

In 2017 [286] Bapat introduced a new labeling as follows. A function f from the
vertices of a graph G(E,V) to {0,1,2,...,|V| — 1} is called an ezstended vertex edge
additive cordial labeling if the induced function f* from the edges of G to {0,1} defined
by f*(uwv) = f(u) 4+ f(v) (mod 2) for all edges uv of G has the property that the number
of edges labeled 0 and the number of edges labeled 1 differ by at most 1. Bapat [286]
proved paths, stars, Ky, K3, K4, P, © C3, and P, © Cy admit extended vertex edge
additive cordial labeling.

Let G(p, q) a simple finite connected graph. Given a bijective function f from E(G) to
{0,1,...,q— 1} Bapat [287] calls a bijective function f* from F(G) to {0,1,2,...,¢—1}
an extended edge vertex cordial (eevc) labeling if the induced function f* from V(G) to
{0,1} defined by f*(u) = X f(uv) mod 2 where the sum is taken over all edges incident
to u has the property that the number of vertices labeled with 0 differs from the number
labeled with 1 by at most 1. He shows that P, (n # 2 mod 4), C, (n # 2 mod 4),
Ki, (n # 1 mod 4), graphs obtained by joining the centers of two copies of Kj 2,41 by
an edge, and triangular snakes have eevc labelings.

Murali, Thirusangu, Madura Meenakshi [2208] say a graph G = (V, E) is bicondi-
tional cordial if there is a function f : V' — {0,1} such that the induced edge function
f*: E — {0,1} defined by f*(uv) = 1 if (u) = f(v) and 0 if f(u) # f(v) and the
number of vertices labeled with 0 and the number labeled with 1 differ by at most 1
and the number of edges labeled with 0 and the number labeled with 1 differ by at most
1. Kalaimathi and Balamurugan [1564] prove the existence of the biconditional cordial
labeling for complete bipartite graphs, books with triangular pages, sunflower graphs and
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web graphs. Nedumaran, Thirusangu, and Celin Mary [2266] proved that the graph con-
sisting of k copies of a double star admits a biconditional cordial labeling. Kalaimathi,
Balamurugan, and Rao [1565] proved the existence of the biconditional cordial labelings
for super subdivisions of ladders and grids P, x P,.

A total cordial labeling of a graph G is a cordial labeling of vertex set and edge set
such that the number of vertices and edges labeled with 0 and the number of vertices
and edges labeled with 1 differ by at most 1. Elrokh, Al-Shamiri, Nada, and El-hay [870]
provided necessary and sufficient conditions for the existence of cordial and total cordial
labelings for the corona product of paths and the one-point union C? and C2.

3.8 The Friendly Index—Balance Index

Recall a function f from V(G) to {0,1} where for each edge zy, f*(zy) = |f(z) —
f(@)], vi(f) is the number of vertices v with f(v) = 4, and e;(f) is the num-
ber of edges e with f*(e) = ¢ is called friendly if |vo(f) — vi(f)] < 1. Lee
and Ng [1863] define the friendly index set of a graph G as FI(G)= {leo(f) —
e1(f)| where f runs over all friendly labelings f of G}. They proved: for any graph G
with ¢ edges FI(G) C {0,2,4,...,q} if ¢ is even and FI(G)C {1,3,...,q} if ¢ is odd;
for 1 < m < n, FI(Kpn)= {(m—2i)% 0 < i < [m/2]} if m + n is even; and
FI(Kpn)= {i(i +1)] 0 < ¢ < m} if m +n is odd. In [1866] Lee and Ng prove the
following: FI(Cs,) = {0,4,8,...,2n} when n is even; FI(Cs,) = {2,6,10,...,2n} when n
is odd; and FI(Cy,41) = {1,3,5,...,2n—1}. Elumalai [878] defines a cycle with a full set
of chords as the graph PC), obtained from C,, = vy, v1, v, ...,v,_1 by adding the cords
VIUn_1, V2Un—2, - - - , Un—2)/2, V(n+2)/2 When n is even and v1v,_1, VaUp_2, . . ., U(n—3)/2; V(n+3)/2
when n is odd. Lee and Ng [1865] prove: FI(PCyi1) = {3m —2,3m —4,3m —6,...,0}
when m is even and FI(PCsy,,y1) = {3m — 2,3m — 4,3m — 6,...,1} when m is odd;
FI(PCy) = {1,3}; for m > 3, FI(PCy,) = {3m —5,3m — 7,3m —9,...,1} when m is
even; FI(PCy,,) = {3m —5,3m —7,3m —9,...,0} when m is odd.

Salehi and Lee [2681] determined the friendly index for various classes of trees. Among
their results are: for a tree with ¢ edges that has a perfect matching, the friendly index is
the odd integers from 1 to ¢ and for n > 2, FI(P,)={n — 1 —2i| 0 < i|(n—1)/2]. Law
[1821] determined the full friendly index sets of spiders and disproved a conjecture by
Salehi and Lee [2681] that the friendly index set of a tree forms an arithmetic progression.
In [1869] Lee, Ng, and Lau determine the friendly index sets of several classes of spiders.
Gao, Sun, and Lee [1029] determined the full friendly index of P,, x P, with the extra
mn 4+ 1 —m —n edges u; — u@1)g4+1)- Sun, Gao, and Lee [3131] determined the full
friendly index and friendly index for the twisted product of Mdébius ladders. Sinha and
Kaur [2967] determined the full edge friendly index of stars, wheels, 2-regular graphs, and
mP,. In [2896] Shiu determined the full edge-friendly index sets of complete bipartite
graphs. Salehi and McGinn [2684] obtained partial results about the friendly index set of
@, and strenghten a conjecture about the friendly index set of @), made in [2686]. Teffilial
and Devaraj [3195] found the friendly index set of the graphs obtained by identifying the
central vertex of a fan with the endpoint of a path (umbrella), the graphs obtained by
identifying the central vertex of a star with the endpoint of a path, the graphs obtained
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by identifying the endpoints of copies of P, (globe), the splitting graph of a star, and
Py +mK;. Lee, Low, Ng, and Wang [1857] determined the friendly index sets for various
classes of disjoint unions of stars. Gao, Ruo-Yuan, Lee, Ren, and Sun [1028] determined
FFI(G), FI(G) and FPCI(G) for a class of cubic graphs G.

Lee and Ng [1865] define PC(n,p) as the graph obtained from the cycle C, with
consecutive vertices vg, vy, Vs, ...,v,_1 by adding the p cords joining v; to v,_; for 1 <
p|n/2] — 1. They prove FI(PC(2m+1,p)) = {2m+p—1,2m+p—3,2m+p—>5,...,1}
if p is even and FI(PC(2m + 1,p)) = {2m+p—1,2m +p —3,2m +p —5,...,0} if
p is odd; FI(PC(2m,1)) = {2m — 1,2m — 3,2m — 5,...,1}; for m > 3, and p > 2,
FI(PC(2m,p)) = {2m +p —4,2m + p — 6,2m + p — 8,...,0} when p is even, and
FI(PC(2m,p)) = {2m +p —4,2m +p—6,2m +p — 8,...,1} when p is odd. More
generally, they show that the integers in the friendly index of a cycle with an arbitrary
nonempty set of parallel chords form an arithmetic progression with a common difference
2. Shiu and Kwong [2901] determine the friendly index of the grids P, X P;. The maximum
and minimum friendly indices for C,,, x P, were given by Shiu and Wong in [2932].

In [1867] Lee and Ng prove: forn > 2, FI(Cy, x P2) = {0,4,8,...,6n—8,6n} if n is even
and FI(Cy, x P,) = {2,6,10,...,6n—8,6n} if n is odd; FI(C3 x Py) = {1, 3,5}; for n > 2,
FI(Comy1 X Py) = {6n—1}U{6n—5—2k| where & > 0 and 6n—5—2k > 0}; FI(My,) (here
My, is the Mobius ladder with 4n steps) = {6n—4—4k| where k > 0 and 6n—4—4k > 0};
FI(Mypi2) = {6n+3}U{6n—5—2k| where £ > 0 and 6n—5—2k > 0}. In [1788] Kwong,
Lee, and Ng completely determine the friendly index of all 2-regular graphs. As a corollary,
they show that C,, U C,, is cordial if and only if m +n = 0,1 or 3 (mod 4). Ho, Lee,
and Ng [1251] determine the friendly index sets of stars and various regular windmills. In
[3464] Wen determines the friendly index of generalized wheels C,,+mK; for all m > 1. In
[2680] Salehi and De determine the friendly index sets of certain caterpillars of diameter
4 and disprove a conjecture of Lee and Ng [1866] that the friendly index sets of trees form
an arithmetic progression. The maximum and minimum friendly indices for for C,, x P,
were given by Shiu and Wong in [2932]. Salehi and Bayot [2677] have determined the
friendly index set of P, x P,. In [1867] Lee and Ng determine the friendly index sets for
two classes of cubic graphs, prisms d Mobius ladders. Sinha and Kaur [2967] investigate
the full region index sets of friendly labelings of cycles, wheels fans, and P x P,.

For positive integers a < b < ¢, Lee, Ng, and Tong [1872] define the broken wheel
W (a, b, c) with three spokes as the graph obtained from K, with vertices u, us, ug, ¢ by
inserting vertices 11,12, ...,%1,4—1 along the edge ujug, x21,%22,...,T2,—1 along the
edge ugus, 31,232, ..., 23,1 along the edge ugu;. They determine the friendly index set
for broken wheels with three spokes.

Lee and Ng [1865] define a parallel chord of C, as an edge of the form wvv,_;
(1 < m— 1) that is not an edge of C,. For n > 6, they call the cycle C,, with con-
secutive vertices vy, vy, ..., v, and the edges v1v,_1,V2Up—2, ..., V(n—2)/2V(n+2)/2 for n even
and vVaUn_1, V3Un_2, ..., Vin—1)/2Vn+3)/2 for n odd, C, with a full set of parallel chords.
They determine the friendly index of these graphs and show that for any cycle with an
arbitrary non-empty set of parallel chords the numbers in its friendly index set form an
arithmetic progression with common difference 2.
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For a graph G(V, E) and a graph H rooted at one of its vertices v, Ho, Lee, and Ng
[1250] define a root-union of (H,v) by G as the graph obtained from G by replacing each
vertex of G with a copy of the root vertex v of H to which is appended the rest of the
structure of H. They investigate the friendly index set of the root-union of stars by cycles.

For a graph G(V, E), the total graph T(G) of G, is the graph with vertex set V U F
and edge set E U {(v,uv)| v € Vuv € E}. Note that the total graph of the n-star
is the friendship graph and the total graph of P, is a triangular snake. Lee and Ng
[1862] use SP(1™,m) to denote the spider with one central vertex joining n isolated
vertices and a path of length m. They show: FI(K; + 2nK>) (friendship graph with 2n
triangles) = {2n,2n —4,2n —8,...,0} if n is even; {2n,2n —4,2n —38,...,2} if n is odd;
FI(K1+(2n+1)Ky) = {2n+1,2n—1,2n—3,...,1}; for n odd, FI(T(P,)) = {3n—7,3n—
11,3n —15,...,2} where z=0if n =1 (mod 4) and z = 2 if n = 3 (mod 4); for n even,
FI(T(P,)) ={3n—7,3n—11,3n—15,...,n+1}U{n—1,n—3,n—>5,...,1}; form <n—1
and m+mn even, FI(T(SP(1",m))) = {3(m+n)—4,3(m+n)—8,3(m+n)—12,..., (m+n)
(mod 4)}; for m +n odd, FI(T'(SP(1",m))) = {3(m +n) —4,3(m +n) —8,3(m+n) —
12,....om+n+2U{m+nm+n—2m+n—4,... 1}; for n > m and m + n even,
FI(T(SP(1",m))) = {|4k —=3(m+n)| |(n—m+2)/2 < k < m+n}; forn > m and m+n
odd, FI(T'(SP(1",m))) = {|4k = 3(m +n)| [(n —m +3)/2 < k < m +n}.

Kwong and Lee [1784] determine the friendly index any number of copies of C5 that
share an edge in common and the friendly index any number of copies of Cy that share
an edge in common. Lau, Gao, Lee, and Sun determine the friendly index sets and the
cordiality of the edge-gluing of a complete graph K,, and n copies of cycles Cj5.

For a planar graph G(V, E) Sinha and Kaur [2986] extended the notion of an index
set of a friendly labeling to regions of a planar graph and determined the full region index
sets of friendly labeling of cycles, wheels fans, and grids P, x Ps.

An edge-friendly labeling f of a graph G induces a function f* from V(G) to {0,1}
defined as the sum of all edge labels mod 2. The edge-friendly index set, 1;(G), of f
is the number of vertices of f labeled 1 minus the number of vertices labeled 0. The
edge-friendly index set of a graph G, EFI(G), is {|I;(G)|} taken over all edge-friendly
labelings f of G. The full edge-friendly index set of a graph G, FEFI(G), is {I;(G)}
taken over all edge-friendly labelings f of G. Sinha and Kaur [2985] determined the full
edge-friendly index sets of stars, 2-regular graphs, wheels, and mP,. In [2987] Sinha and
Kaur extended the notion of index set of an edge-friendly labeling to regions of a planar
graph and determined the full region index set of edge-friendly labelings of cycles, wheels,
fans P, + K, double fans P, + K, and grids P,, x P, (m > 2,n > 3). Sinha and Kaur
[2966] investigate the full edge-friendly index sets of double stars, fans generalized fans,
and P, x P5. In [2895] Shiu determined the extreme values of edge-friendly indices of
complete bipartite graphs.

In [1698] Kim, Lee, and Ng define the balance index set of a graph G as {|eo(f)—e1(f)|}
where f runs over all friendly labelings f of G. Zhang, Lee, and Wen [1826] investigate
the balance index sets for the disjoint union of up to four stars and Zhang, Ho, Lee,
and Wen [3576] investigate the balance index sets for trees with diameter at most four.
Kwong, Lee, and Sarvate [1792] determine the balance index sets for cycles with one

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 108



pendent edge, flowers, and regular windmills. Lee, Ng, and Tong [1871] determine the
balance index set of certain graphs obtained by starting with copies of a given cycle and
successively identifying one particular vertex of one copy with a particular vertex of the
next. For graphs G and H and a bijection 7 from G to H, Lee and Su [1892] define
Perm(G, 7, H) as the graph obtaining from the disjoint union of G and H by joining each
v in G to 7(v) with an edge. They determine the balanced index sets of the disjoint union
of cycles and the balanced index sets for graphs of the form Perm(G, 7, H) where G and
H are regular graphs, stars, paths, and cycles with a chord. They conjecture that the
balanced index set for every graph of the form Perm(G, 7, H) is an arithmetic progression.
Lee, Ho, and Su [1842] investigated the balance index sets of k-level wheel graphs.

Wen [3463] determines the balance index set of the graph that is constructed by
identifying the center of a star with one vertex from each of two copies of C), and provides
a necessary and sufficient for such graphs to be balanced. In [1895] Lee, Su, and Wang
determine the balance index sets of the disjoint union of a variety of regular graphs of the
same order. Kwong [1782] determines the balanced index sets of rooted trees of height at
most 2, thereby settling the problem for trees with diameter at most 4. His method can
be used to determine the balance index set of any tree. The homeomorph Hom(G, p) of a
graph G is the collection of graphs obtained from G by adding p (p > 0) additional degree
2 vertices to its edges. For any regular graph G, Kong, Lee, and Lee [1728] studied the
changes of the balance index sets of Hom(G,p) with respect to the parameter p. They
derived explicit formulas for their balance index sets provided new examples of uniformly
balanced graphs. In [601] Bouchard, Clark, Lee, Lo, and Su investigate the balance index
sets of generalized books and ear expansion graphs. In [2652] Rose and Su provided
an algorithm to calculate the balance index sets of a graph. Hua and Raridan [1267]
determine the balanced index sets of all complete bipartite graphs with a larger part of
odd cardinality and a smaller part of even cardinality.

In[2902] Shiu and Kwong made a major advance by introducing an easier approach
to find the balance index sets of a large number of families of graphs in a unified and
uniform manner. They use this method to determine the balance index sets for r-regular
graphs, amalgamations of r-regular graphs, complete bipartite graphs, wheels, one point
unions of regular graphs, sun graphs, generalized theta graphs, m-ary trees, spiders, grids
P,, x P,, and cylinders C,, x P,. They provide a formula that enables one to determine
the balance index sets of many biregular graphs (that is, graphs with the property that
there exist two distinct positive integers r and s such that every vertex has degree r or

s).

A labeling f from the vertices of a graph G to {0, 1} is said to be vertez-friendly if the
number of vertices labeled with 0 and the number labeled with 1 differ by at most 1. The
vertex balance index set of G is |eo(f) — e1(f)| taken over all vertex-friendly labelings f.
Adiga, Subbaraya, Shrikanth and Sriraj [60] completely determined the vertex balance
index set of K,,, Ky, ,, C, X P», and complete binary trees.

Manico and Pedrano [2075] prove that if the number of edges in a vertex-friendly of
a graph G is even, then the vertex balance index of GG contains only even numbers, and
if the number of edges in a vertex-friendly graph G is odd, then the the vertex balance
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index of G contains only odd numbers. Furthermore, they provide the vertex balance
index set of triangular snakes, quadrilateral snakes, double triangular snakes), and double
quadrilateral snakes.

In [2901] Shiu and Kwong define the full friendly index set of a graph G as {eo(f) —
e1(f)} where f runs over all friendly labelings of G. The full friendly index for P, x P, is
given by Shiu and Kwong in [2901]. The full friendly index of C,, x C,, is given by Shiu
and Ling in [2918]. In [2983] and [2984] Sinha and Kaur investigated the full friendly
index sets complete graphs, cycles, fans, double fans, wheels, double stars, P3 x P,, and
the tensor product of P, and P,. Shiu and Ho [2898] investigated the full friendly index
sets of cylinder graphs C,, x P, (m > 3),C,,, X P3 (m > 4), and C3 x P, (n > 4). These
results, together with previously proven ones, completely determine the full friendly index
of all cylinder graphs. Shiu and Ho [2899] study the full friendly index set and the full
product-cordial index set of odd twisted cylinders and two permutation Petersen graphs.
Gao [1017] determined the full friendly index set of P, x P,, but he used the terms
“edge difference set” instead of “full friendly index set” and “direct product” instead of
“Cartesian product.” The twisted cylinder graph is the permutation graph on 4n (n > 2)
vertices, P(2n; o), where o = (1,2)(3,4) --- (2n—1,2n) (the product of n transpositions).
Shiu and Lee [2916] determined the full friendly index sets of twisted cylinders.

In [714] and [1785] Chopra, Lee, and Su and Kwong and Lee introduce a dual of
balance index sets as follows. For an edge labeling f using 0 and 1 they define a partial
vertex labeling f* by assigning 0 or 1 to f*(v) depending on whether there are more
0-edges or 1l-edges incident to v and leaving f*(v) undefined otherwise. For i = 0 or
1 and a graph G(V, E), let ef(i) = [{uv € E : f(uv) = i}| and vs(i) = {v € V :
f*(v) = i}|. They define the edge-balance index of G as EBI(G) = {|vs(0) — vs(1)] :
the edge labeling f satisfies |e;(0) —ef(1)| < 1}. Among the graphs whose edge-balance
index sets have been investigated by Lee and his colleagues are: fans and wheels [714];
generalized theta graphs [1785]; flower graphs [1786] and [1786]; stars, paths, spiders,
and double stars [1903]; (p,p + 1)-graphs [1897]; prisms and Mobius ladders [3437]; 2-
regular graphs, complete graphs [3436]; and the envelope graphs of stars, paths, and
cycles [724]. (The envelope graph of G(V, E) is the graph with vertex set V(G) U E(G)
and set F(G) U{(u, (u,v)): U €V, (u,v) € E)}).

Lee, Kong, Wang, and Lee [1729] found the EBI(K, ) for m = 1,2,3,4,5 and m = n.
Krop, Minion, Patel, and Raridan [1764] did the case for complete bipartite graphs with
both parts of odd cardinality. Dao, Hua, Ngo, and Raridan [779] determined the edge-
balanced index sets for complete even bipartite graphs. Krop and Sikes [1766] determined
EBI(Km—24) for 1 < a < (m —3)/4 and m odd.

For a graph GG and a connected graph H with a distinguished vertex s, the L-product
of G and (H,s), G x (H,s), is the graph obtained by taking |V (G)| copies of (H,s)
and identifying each vertex of G with s of a single copy of H. In [716] and [605] Chou,
Galiardi, Kong, Lee, Perry, Bouchard, Clark, and Su investigated the edge-balance index
sets of L-product of cycles with stars. Bouchard, Clark, and Su [604] gave the exact values
of the edge-balance index sets of L-product of cycles with cycles.

Chopra, Lee, and Su [717] prove that the edge-balance index of the fan P3; + K;
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is {0,1,2} and edge-balance index of the fan P, + Ky, n > 4, is {0,1,2,...,n — 2}.
They define the broken fan graphs BF'(a,b) as the graph with V(BF(a,b)) = {c} U
{v1, ..., 0.} U{uy, ..., up} and E(BF(a,b)) ={(c,v;)| i=1,...,a} U{(c,u;)| 1,...,b} U
E(P,)UE(F,) (a > 2 and b > 2). They prove the edge-balance index set of BF(a,b) is
{0,1,2,...,a+ b —4}. In [1893] Lee, Su, and Todt give the edge-balance index sets of
broken wheels. See also [3057] and [3219]. In [1827] Lee, Lee, and Su present a technique
that determines the balance index sets of a graph from its degree sequence. In addition,
they give an explicit formula giving the exact values of the balance indices of generalized
friendship graphs, envelope graphs of cycles, and envelope graphs of cubic trees.

3.9 k-equitable Labelings

In 1990 Cahit [642] proposed the idea of distributing the vertex and edge labels among
{0,1,...,k — 1} as evenly as possible to obtain a generalization of graceful labelings
as follows. For any graph G(V, E) and any positive integer k, assign vertex labels from
{0,1,...,k—1} so that when the edge labels induced by the absolute value of the difference
of the vertex labels, the number of vertices labeled with ¢ and the number of vertices
labeled with j differ by at most one and the number of edges labeled with ¢ and the
number of edges labeled with j differ by at most one. Cahit has called a graph with
such an assignment of labels k-equitable. Note that G(V, E) is graceful if and only if it
is |E| + l-equitable and G(V, E) is cordial if and only if it is 2-equitable. Cahit [641]
has shown the following: C), is 3-equitable if and only if n # 3 (mod 6); the triangular
snake with n blocks is 3-equitable if and only if n is even; the friendship graph Cén) is
3-equitable if and only if n is even; an Eulerian graph with ¢ = 3 (mod 6) edges is not
3-equitable; and all caterpillars are 3-equitable [641]. Cahit [641] claimed to prove that
W, is 3-equitable if and only if n # 3 (mod 6) but Youssef [3544] proved that W, is
3-equitable for all n > 4. Youssef [3542] also proved that if G is a k-equitable Eulerian
graph with ¢ edges and k = 2 or 3 (mod 4) then ¢ # k (mod 2k). Cahit conjectures
[641] that a triangular cactus with n blocks is 3-equitable if and only if n is even. In [642]
Cahit proves that every tree with fewer than five end vertices has a 3-equitable labeling.
He conjectures that all trees are k-equitable [643]. In 1999 Speyer and Szaniszlé [3039)]
proved Cahit’s conjecture for k& = 3. Coles, Huszar, Miller, and Szaniszlo [751] proved
caterpillars, symmetric generalized n-stars (or symmetric spiders), and complete n-ary
trees are 4-equitable. Vaidya and Shah [3303] proved that the splitting graphs of Kj,
and the bistar B, , and the shadow graph of B, , are 3-equitable. Rokad [2643] found
3-equitable labelings of the ring sum of different graphs.

Vaidya, Dani, Kanani, and Vihol [3267] proved that the graphs obtained by starting
with copies G1,Ghs,...,G, of a fixed star and joining each center of G; to the center of
Git1 (1 =1,2,...,n—1) by an edge are 3-equitable. Recall the shell C'(n,n—3) is the cycle
C, with n — 3 cords sharing a common endpoint called the apezr. Vaidya, Dani, Kanani,
and Vihol [3268] proved that the graphs obtained by starting with copies G1, G, ..., G,
of a fixed shell and joining each apex of G; to the apex of G;4; (i =1,2,...,n—1) by an
edge are 3-equitable. For a graph G and vertex v of GG, Vaidya, Dani, Kanani, and Vihol
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[3269] prove that the graphs obtained from the wheel W,,, n > 5, by duplicating (see 3.7
for the definition) any rim vertex is 3-equitable and the graphs obtained from the wheel
W, by duplicating the center is 3-equitable when n is even and not 3-equitable when n is
odd and at least 5. They also show that the graphs obtained from the wheel W,,, n # 5,
by duplicating every vertex is 3-equitable.

Vaidya, Srivastav, Kaneria, and Ghodasara [3314] prove that cycle with two chords
that share a common vertex with opposite ends that are incident to two consecutive
vertices of the cycle is 3-equitable. Vaidya, Ghodasara, Srivastav, and Kaneria [3273]
prove that star of cycle C * is 3-equitable for all n. Vaidya and Dani [3263] proved
that the graphs obtained by starting with n copies G1,Ga,...,G, of a fixed star and
joining the center of G; to the center of GG;; by an edge and each center to a new vertex
x; (1 <i < n—1) by an edge have 3-equitable labeling. Vaidya and Dani [3266] prove
that the graphs obtained by duplication of an arbitrary edge of a cycle or a wheel have
3-equitable labelings.

The Mycielski graph of a graph G is obtained from G by adding to each vertex v a
new vertex u that is adjacent to the neighbors of v and a adding a new vertex w that is
adjacent to every u. In [2707] Sangeeta, Parthiban, Selvaraju proved the non-existence of [2707] new
3-equitable labelings for non-trivial cases of the total graphs of fans, the middle graph of
ladders, the degree splitting graphs of friendship graphs, and the Mycielskian graphs of
paths.

Recall G =< W,V : W@ . W > 1s the graph obtained by joining the center
vertices of each of W,” and Wy(fﬂ to a new vertex x; where 1 <7 < k—1. Vaidya, Dani,
Kanani, and Vihol [3270] prove that < wi e wP ek ) > is 3-equitable. Vaidya

and Vihol [3318] prove that any graph G can be embedded as an induced subgraph of a
3-equitable graph thereby ruling out any possibility of obtaining any forbidden subgraph
characterization for 3-equitable graphs.

The shadow graph Do(G) of a connected graph G is constructed by taking two copies
of G, G and G” and joining each vertex u' in G’ to the neighbors of the corresponding
vertex u” in G”. Vaidya, Vihol, and Barasara [433] prove that the shadow graph of C,, is
3-equitable except for n = 3 and 5 while the shadow graph of P, is 3-equitable except for
n = 3. They also prove that the middle graph of P, is 3-equitable and the middle graph
of C,, is 3-equitable for n even and not 3-equitable for n odd.

Bhut-Nayak and Telang have shown that crowns C, ® K, are k-equitable for £ =
n,...,2n — 1 [564] and C, ® K, is k-equitable for all n when k = 2,3,4,5, and 6 [565].

In [2759] Seoud and Abdel Magsoud prove: a graph with n vertices and ¢ edges in
which every vertex has odd degree is not 3-equitable if n = 0 (mod 3) and ¢ = 3 (mod
6); all fans except Pp + K, are 3-equitable; all double fans P, + K, except Py + K, are
3-equitable; P? is 3-equitable for all n except 3; K71, is 3-equitable if and only if n =0
or 2 (mod 3); Ki2,, n > 2, is 3-equitable if and only if n = 2 (mod 3); Ky, 3 < m < n,
is 3-equitable if and only if (m,n) = (4,4); and Ky 0, 3 < m < n, is 3-equitable if
and only if (m,n) = (3,4). They conjectured that C? is not 3-equitable for all n > 3.
However, Youssef [3550] proved that C? is 3-equitable if and only if n is at least 8. Youssef
[3550] also proved that C, + K is 3-equitable if and only if n is even and at least 6 and
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determined the maximum number of edges in a 3-equitable graph as a function of the
number of its vertices. For a graph with n vertices to admit a k-equitable labeling, Seoud
and Salim [2788] proved that the number of edges is at most k[(n/k)|? + k — 1.

Bapat and Limaye [422] have shown the following graphs are 3-equitable: helms
H,, n > 4; flowers (see §2.2 for the definition); the one-point union of any number
of helms; the one-point union of any number of copies of Ky4; Ky-snakes (see §2.2 for the
definition); Cj-snakes where ¢t = 4 or 6; Cs-snakes where the number of blocks is not
congruent to 3 modulo 6. A multiple shell MS{n{', ... ni} is a graph formed by t; shells
each of order n;, 1 <@ < r, that have a common apex. Bapat and Limaye [423] show that
every multiple shell is 3-equitable and Chitre and Limaye [706] show that every multiple
shell is 5-equitable. In [707] Chitre and Limaye define the H-union of a family of graphs
G4, G, . .., Gy, each having a graph H as an induced subgraph, as the graph obtained by
starting with G; U G5 U - - - U G; and identifying all the corresponding vertices and edges
of H in each of G1,...,G,. In [707] and [708] they proved that the K,-union of gears and
helms H,, (n > 6) are edge-3-equitable.

Szaniszl6 [3180] has proved the following: P, is k-equitable for all k; K, is 2-equitable
if and only if n = 1,2, or 3; K, is not k-equitable for 3 < k < n; S,, is k-equitable for
all k; Ky, is k-equitable if and only if n = k — 1 (mod k), or n =0,1,2,..., k/2] — 1
(mod k), or n = |k/2] and k is odd. She also proves that C,, is k-equitable if and only if
k meets all of the following conditions: n # k; if k = 2,3 (mod 4), then n # k — 1 and
n # k (mod 2k). Coles, Huszar, Miller, and Szaniszl6 [751] proved that all caterpillars,
symmetric generalized n-stars (or symmetric spiders), and complete n-ary trees for all are
4-equitable.

Vickrey [3360] has determined the k-equitability of complete multipartite graphs. He
shows that for m > 3 and k > 3, K,,, is k-equitable if and only if K, , is one of the
following graphs: K, 4 for k = 3; K31 for all k; or K,,,, for £ > mn. He also shows that
when £ is less than or equal to the number of edges in the graph and at least 3, the only
complete multipartite graphs that are k-equitable are Ky, 4121 and Ky yr—1,11. Partial
results on the k-equitability of K,,,, were obtained by Krussel [1767].

In [3557] Youssef and Al-Kuleab proved the following: C? is 3-equitable if and only
if n is even and n > 12; gear graphs are k-equitable for k = 3,4,5,6; ladders P, x P,
are 3-equitable for all n > 2; C,, x P is 3-equitable if and only if n #Z (mod 6); M&bius
ladders M,, are 3-equitable if and only if n # (mod6); and the graphs obtained from
P, x P, (n > 2) where by adding the edges w;v;11 (1 < i < n — 1) to the path vertices
Uy, Uy - ooy Uy AN VY, Vg, .oy Uy

In [1993] Lépez, Muntaner-Batle, and Rius-Font prove that if n is an odd integer and
F is optimal k-equitable for all proper divisors k of |E(F')|, then nF is optimal k-equitable
for all proper divisors k of |E(F')|. They also prove that if m — 1 and n are odd, then
then nC,, is optimal k-equitable for all proper divisors k of |E(F)|.

As a corollary of the result of Cairnie and Edwards [653] on the computational com-
plexity of cordially labeling graphs it follows that the problem of finding k-equitable
labelings of graphs is NP-complete as well.

Seoud and Abdel Magsoud [2760] call a graph k-balanced if the vertices can be labeled
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from {0,1,...,k — 1} so that the number of edges labeled i and the number of edges
labeled j induced by the absolute value of the differences of the vertex labels differ by at
most 1. They prove that P? is 3-balanced if and only if n = 2,3,4, or 6; for k > 4, P?
is not k-balanced if k <n—2orn+1< k < 2n—3; for k > 4, Pﬁ is k-balanced if
k> 2n —2; for k,m,n > 3, K,,, is k-balanced if and only if k£ > mn; for m <n, K,
is k-balanced if and only if (i) m =1, n=1or 2, and k =3; (ii) m=1and k =n + 1
orn+2;or (i) k= (m+1)(n+1).

In [3550] Youssef gave some necessary conditions for a graph to be k-balanced and
some relations between k-equitable labelings and k-balanced labelings. Among his results
are: C, is 3-balanced for all n > 3; K, is 3-balanced if and only if n < 3; and all trees
are 2-balanced and 3-balanced. He conjectures that all trees are k-balanced (k > 2).

Bloom has used the term k-equitable to describe another kind of labeling (see [3482]
and [3483]). He calls a graph k-equitable if the edge labels induced by the absolute value
of the difference of the vertex labels have the property that every edge label occurs exactly
k times. Bloom calls a graph of order n minimally k-equitable if the vertex labels are 1,
2,..., n and it is k-equitable. Both Bloom and Wojciechowski [3482], [3483] proved that
C, is minimally k-equitable if and only if & is a proper divisor of n. Barrientos and Hevia
[453] proved that if G is k-equitable of size ¢ = kw (in the sense of Bloom), then §(G) < w
and A(G) < 2w. Barrientos, Dejter, and Hevia [452] have shown that forests of even size
are 2-equitable. They also prove that for k = 3 or k = 4 a forest of size kw is k-equitable
if and only if its maximum degree is at most 2w and that if 3 divides mn + 1, then the
double star S, ,, is 3-equitable if and only if ¢/3 < m < [(¢ — 1)/2]. (Simn is P> with m
pendent edges attached at one end and n pendent edges attached at the other end.) They
discuss the k-equitability of forests for £ > 5 and characterize all caterpillars of diameter 2
that are k-equitable for all possible values of k. Acharya and Bhat-Nayak [50] have shown
that coronas of the form Cy, ® K; are minimally 4-equitable. In [434] Barrientos proves
that the one-point union of a cycle and a path (dragon) and the disjoint union of a cycle
and a path are k-equitable for all k that divide the size of the graph. Barrientos and Havia
[453] have shown the following: C,, X K5 is 2-equitable when n is even; books B,, (n > 3)
are 2-equitable when n is odd; the vertex union of k-equitable graphs is k-equitable; and
wheels W,, are 2-equitable when n # 3 (mod 4). They conjecture that W,, is 2-equitable
when n = 3 (mod 4) except when n = 3. Their 2-equitable labelings of C,, x K» and the
n-cube utilized graceful labelings of those graphs.

M. Acharya and Bhat-Nayak [51] have proved the following: the crowns Cs, ® K;
are minimally 2-equitable, minimally 2n-equitable, minimally 4-equitable, and minimally
n-equitable; the crowns (3, ® K; are minimally 3-equitable, minimally 3n-equitable,
minimally n-equitable, and minimally 6-equitable; the crowns C5, ® K; are minimally
5-equitable, minimally 5n-equitable, minimally n-equitable, and minimally 10-equitable;
the crowns Cy,.; ® K; are minimally (2n + 1)-equitable; and the graphs Py,.1 are k-
equitable.

In [436] Barrientos calls a k-equitable labeling optimal if the vertex labels are con-
secutive integers and complete if the induced edge labels are 1,2,...,w where w is the
number of distinct edge labels. Note that a graceful labeling is a complete 1-equitable
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labeling. Barrientos proves that C,, ® nK; (that is, an m-cycle with n pendent edges
attached at each vertex) is optimal 2-equitable when m is even; C3 ® nk; is complete
2-equitable when n is odd; and that C5 ® nK; is complete 3-equitable for all n. He also
shows that C,, ® K is k-equitable for every proper divisor k of the size 2n. Barrientos
and Havia [453] have shown that the n-cube (n > 2) has a complete 2-equitable labeling
and that K,,, has a complete 2-equitable labeling when m or n is even. They conjecture
that every tree of even size has an optimal 2-equitable labeling.

3.10 Hamming-graceful Labelings

Mollard, Payan, and Shixin [2184] introduced a generalization of graceful graphs called
Hamming-graceful. A graph G = (V, E) is called Hamming-graceful if there exists an
injective labeling g from V' to the set of binary |E|-tuples such that {d(g(v), g(u))| uv €
E} ={1,2,...,|E|} where d is the Hamming distance. Shixin and Yu [2939] have shown
that all graceful graphs are Hamming-graceful; all trees are Hamming-graceful; C), is
Hamming-graceful if and only if n = 0 or 3 (mod 4); if K, is Hamming-graceful, then n
has the form k% or k? + 2; and K,, is Hamming-graceful for n = 2, 3,4,6,9,11, 16, and 18.
They conjecture that K, is Hamming-graceful for n of the forms k? and k? + 2 for k > 5.
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4 Variations of Harmonious Labelings

4.1 Sequential and Strongly c-harmonious Labelings

Chang, Hsu, and Rogers [674] and Grace [1143], [1144] have investigated subclasses of
harmonious graphs. Chang et al. define an injective labeling f of a graph G with ¢
vertices to be strongly c-harmonious if the vertex labels are from {0,1,...,¢ — 1} and
the edge labels induced by f(x) + f(y) for each edge zy are ¢,...,c+ g — 1. Strongly
1-harmoinious labelings are more simply called strongly harmonious. Grace called such
a labeling sequential. In the case of a tree, Chang et al. modify the definition to permit
exactly one vertex label to be assigned to two vertices whereas Grace allows the vertex
labels to range from 0 to ¢ with no vertex label being used twice. For graphs other than
trees, we use the term c-sequential labelings interchangeably with strongly c-harmonious
labelings. By taking the edge labels of a sequentially labeled graph with ¢ edges modulo
q, we obviously obtain a harmoniously labeled graph. It is not known if there is a graph
that can be harmoniously labeled but not sequentially labeled. Grace [1144] proved that
caterpillars, caterpillars with a pendent edge, odd cycles with zero or more pendent edges,
trees with a-labelings, wheels W, 1, and P? are sequential. Liu and Zhang [1963] finished
off the crowns Cy, ® K;. (The case Cs, 11 ® K was a special case of Grace’s results. Liu
[1976] proved crowns are harmonious.)

Baca and Youssef [390] investigated the existence of harmonious labelings for the
corona graphs of a cycle and a graph GG. They proved that if G+ K is strongly harmonious
with the 0 label on the vertex of K, then C,, ® GG is harmonious for all odd n > 3. By
combining this with existing results they have as corollaries that the following graphs are
harmonious: C,, ® C,, for odd n > 3 and m # 2 (mod 3); C, ® K, for odd n > 3; and
Cp © Ky 44 for odd n > 3.

Bu [618] also proved that crowns are sequential as are all even cycles with m pendent
edges attached at each vertex. Figueroa-Centeno, Ichishima, and Muntaner-Batle [934]
proved that all cycles with m pendent edges attached at each vertex are sequential. Wu
[3488] has shown that caterpillars with m pendent edges attached at each vertex are
sequential. exactly one path of fixed length to each vertex of some path is sequential.

Singh has proved the following: C,, ® K> is sequential for all odd n > 1 [2972]; C,, ® P3
is sequential for all odd n [2973]; Ky ® C,, (each vertex of the cycle is joined by edges to
the end points of a copy of Ks) is sequential for all odd n [2973]; helms H,, are sequential
when n is even [2973]; and K, + K,, K, + K,, and ladders are sequential [2975].
Santhosh [2710] has shown that C,, ©® Py is sequential for all odd n > 3. Both Grace
[1143] and Reid (see [1006]) have found sequential labelings for the books Bs,. Jungreis
and Reid [1561] have shown the following graphs are sequential: P,, x B, (m,n) # (2, 2);
Cum X P, (m,n) # (1,2); Cynaa X Pop; Copyq X Py; and Cy X Cy,, (n > 1). The graphs
Cimao X Copniq and Cspyq X O,y fail to satisfy a necessary parity condition given by
Graham and Sloane [1147]. The remaining cases of C,, x P, and C,, x C, are open.
Gallian, Prout, and Winters [1007] proved that all graphs C, x P, with a vertex or an
edge deleted are sequential. Zhu and Liu [3602] give necessary and sufficient conditions
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for sequential graphs, provide a characterization of non-tree sequential graphs by way of
by vertex closure, and obtain characterizations of sequential trees.

Gnanajothi [1104] [pp. 68-78] has shown the following graphs are sequential: K, ;
mC,,, the disjoint union of m copies of C, if and only if m and n are odd; books with
triangular pages or pentagonal pages; and books of the form By,.;, thereby answering
a question and proving a conjecture of Gallian and Jungreis [1006]. Sun [3127] has also
proved that B, is sequential if and only if n # 3 (mod 4). Ichishima and Oshima [1313]
pose determining whether or not mK; is sequential as a problem.

Yuan and Zhu [3565] have shown that m(C,, is sequential when m and n are odd.
Although Graham and Sloane [1147] proved that the Mdbius ladder Mj is not harmonious,
Gallian [1001] established that all other Mobius ladders are sequential (see §2.3 for the
definition of Mébius ladder). Chung, Hsu, and Rogers [674] have shown that K, ,, + K7,
which includes S,, + K7, is sequential. Seoud and Youssef [2798] proved that if G is
sequential and has the same number of edges as vertices, then G + K, is sequential for all
n. Recall that ©(C,,)™ denotes the book with n m-polygonal pages. Lu [2039] proved that
O(Camy1)?™ is 2mn-sequential for all n and m = 1,2, 3,4, and ©(C,,)? is (m—2)-sequential
if m>3and m=23,4,7 (mod 8).

Zhou and Yuan [3599] have shown that for every c-sequential graph G with p vertices
and ¢ edges and any positive integer m the graph (G + K,,) + K, is also c-sequential
when ¢ —p+1 < m < ¢—p+ c. Zhou [3598] has shown that the analogous results
hold for strongly c-harmonious graphs. Zhou and Yuan [3599] have shown that for every
c-sequential graph G with p vertices and ¢ edges and any positive integer m the graph
(G + K,,) + K, is c-sequential when ¢ —p+1<m<qg—p+ec

Shee [1881] proved that every graph is a subgraph of a sequential graph. Acharya,
Germina, Princy, and Rao [40] prove that every connected graph can be embedded in
a strongly c-harmonious graph for some ¢. Miao and Liang [2135] use C,(d;1,j; Py) to
denote a cycle C,, with path P} joining two nonconsecutive vertices x; and z; of the
cycle, where d is the distance between z; and x; on C,. They proved that the graph
Cy(d;i, j; Pr) is strongly c-harmonious when k& = 2,3 and integer n > 6. Lu [2038]
provides three techniques for constructing larger sequential graphs from some smaller
one: an attaching construction, an adjoining construction, and the join of two graphs.
Using these, he obtains various families of sequential or strongly c-indexable graphs.

For 1 < s < ng, let C,(i : i1,49,...,1s) denote an n-cycle with consecutive vertices
x1,Z,..., T, to which the s chords x;x;,, ;x4y, . .., x;x;, have been added. Liang [1938]
proved a variety of graphs of the form C,,(i : iy, 1s, ..., 1) are strongly c-harmonious.

Youssef [3547] observed that a strongly c-harmonious graph with ¢ edges is c-cordial
for all ¢ > ¢ and a strongly k-indexable graph is k-cordial for every k. The converse of
this latter result is not true.

In [1310] Ichishima and Oshima show that the hypercube @,, (n > 2) is sequential if
and only if n > 4. They also introduce a special kind of sequential labeling of a graph
G with size 2t + s by defining a sequential labeling f to be a partitional labeling if G is
bipartite with partite sets X and Y of the same cardinality s such that f(z) <t+s—1
for all x € X and f(y) >t — s for all y € Y, and there is a positive integer m such that
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the induced edge labels are partitioned into three sets [m, m—+t—1],[m+t,m+t+s— 1],
and [m +t + s,m + 2t + s — 1] with the properties that there is an involution 7, which
is an automorphism of G such that 7 exchanges X and Y, z7(z) € E(G) for all z € X,
and {f(z) + f(r(z))| v € X} = [m+t,m+t+ s —1]. They prove if G has a partitional
labeling, then G x @), has a partitional labeling for every nonnegative integer n. Using
this together with existing results and the fact that every graph that has a partitional
labeling is sequential, harmonious, and felicitous (see §4.5) they show that the following
graphs are partitional, sequential, harmonious, and felicitous: for n > 4, hypercubes Q,;
generalized books Sy, X Q,; and generalized ladders Py, 1 X Q.

In [1311] Ichishma and Oshima proved the following: if G is a partitional graph, then
G x K, is partitional, sequential, harmonious and felicitous; if G is a connected bipartite
graph with partite sets of distinct odd order such that in each partite set each vertex has
the same degree, then G x K5 is not partitional; for every positive integer m, the book
B,, is partitional if and only if m is even; the graph Bs,, x @, is partitional if and only if
(m,n) # (1,1); the graph K, » X @, is partitional if and only if (m,n) # (2, 1); for every
positive integer n, the graph K,, 3 X @, is partitional when m = 4, 8,12, or 16. As open
problems they ask which m and n is K, , x K, partitional and for which [,m and n is
K., x Q, partitional?

Ichishma and Oshima [1311] also investigated the relationship between partitional
graphs and strongly graceful graphs (see §3.1 for the definition) and partitional graphs
and strongly felicitous graphs (see §4.5) for the definition). They proved the following. If
(G is a partitional graph, then G x K5 is partitional, sequential, harmonious and felicitous.
Assume that G is a partitional graph of size 2t + s with partite sets X and Y of the same
cardinality s, and let f be a partitional labeling of G such that A\; = max{f(z):z € X}
and Ao = max{f(y):ye Y} If \y+1=m+2t+s— Ay, where m = min{f(x)+ f(y) :
zy € E(G)} = min{f(y) : y € Y}, then G has a strong a-valuation. Assume that G
is a partitional graph of size 2t + s with partite sets X and Y of the same cardinality
s, and let f be a partitional labeling of G such that A\; = max{f(z) : * € X} and
A= max{f(y) :y e Y} A\ +1=m+2t+s— Ay, where m = min{f(z) + f(y) :
xy € E(G)} = min{f(y) : y € Y}, then G is strongly felicitous. Assume that G is
a partitional graph of size 2t + s with partite sets X and Y of the same cardinality s,
and let f be a partitional labeling of G such that p; = f(x;) = min{f(z) : z € X}
and po = f(y1) = min{f(y) :y € Y}. Ilf t+s =m+ 1 and py + g2 = m, where
m = min{f(z) + f(y) : xy € E(G)} and 21y, € E(G), then G has a strong a-valuation
and strongly felicitous labeling.

Vaidya and Lekha [3292] proved the following graphs are odd sequential: PB,, C,
for n = 0 (mod4), crowns C,, () K; for even n, the graph obtained by duplication of
arbitrary vertex in even cycles, path unions of stars, arbitrary super subdivisions in P,,
and shadows of stars. They also introduced the concept of a bi-odd sequential labeling
of a graph G as one for which both G and its line graph L(G) admit odd sequential
labeling. They proved P, and C,, for n = (mod 4) are bi-odd sequential graphs and trees
are bi-odd sequential if and only if they are paths. They also prove that P, is the only
graph with the property that it and its complement are odd sequential.
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Arockiaraj, Mahalakshmi, and Namasivayam [230] proved that the subdivision graphs
of the following graphs have odd sequential labelings (they call them odd sum labelings):
triangular snakes; quadrilateral snakes; slanting ladders SL,, (n > 1) (the graphs obtained
from two paths ujus . .. u, and vjvs ... v, by joining each u; with v;11); C, © Ky, H, ® K1,
C,,QC,, (the graph obtained by attaching paths P, to C,, by identifying the endpoints of
the paths with each successive pairs of vertices of C,,,); P,, X P,; and graphs obtained by
the duplication of a vertex of a path and the duplication of a vertex of a cycle. Arockiaraj,
Mahalakshmi, and Namasivayam [232] investigate the odd sum labeling behavior of paths,
combs, cycles, crowns, and ladders under duplication of an edge. In [233] they investigated
the odd sum property of shadow graphs, edge duplication graphs and vertex identification
graphs. In [1132] Gopi proved the following graphs are odd sum graphs: graphs H,
obtained from two copies of P, (n > 3) with vertices vy, vy, ..., v, and uy,us, ..., u,
by joining v(,41y/2 and wy1)/2 if n is odd and vy, and w492 if n is even; graphs
obtained from H, by attaching a fixed number of pendent edges at each vertex, graphs
obtained from P, (n > 4) by attaching a two pendent edges at each interior vertex; and
graphs obtained from P,, (m > 4) by identifying an endpoint of the star S, (n > 2)
with each vertex of P,,. In [1136] Gopi and Irudaya Mary proved that slanting ladders,
shadow graphs of stars and bistars and mirror graphs and duplicate vertex graphs of paths
with at least four verticies are odd sum graphs. In [1131] Gopi proved that alternative
quadrilateral snakes A(D(Q,)) (n > 4) are odd sum graphs.

Arockiaraj and Mahalakshmi [229] proved the following graphs have odd sequential
labelings (odd sum labelings): P, (n > 1), C, if and only if n = 0 (mod4); Cs, ®
Ky; P, x Py, (n>1); P, ® K if mis even or m is odd and n = 1 or 2; the balloon
graph P,,(C,,) obtained by identifying an end point of P,, with a vertex of C,, if either
n =0 (mod4) or n =2 (mod4) and m # 1 (mod 3); quadrilateral snakes Q,; P,, ® C),
if m>1andn =0 (mod4); P, ® Qs; bistars; Cy, x P; the trees T, obtained from n
copies of T}, by joining an edge uu’ between every pair of consecutive paths where u is a
vertex in ith copy of the path and v’ is the corresponding vertex in the (7 4+ 1)th copy of
the path; H,,-graphs obtained by starting with two copies of P, with vertices vy, vy, ..., v,
and uy, ug, . . ., u, and joining the vertices v(,41)/2 and u(,41)/2 if n is odd and the vertices
Upj241 and Uy o if n; and H,, © mK;.

Arockiaraj and Mahalakshmi [231] proved the splitting graphs of following graphs have
odd sequential labelings (odd sum labelings): P,; C, if and only if n =0 (mod4); P, ®
Ky; Oy, © Ky; K, if and only if n < 2; P, x P, (n > 1); slanting ladders SL,, (n > 1);
the quadrilateral snake @),,; and H,-graphs.

Among the strongly 1-harmonious (also called strongly harmonious) graphs are: fans
F, with n > 2 [674]; wheels W,, with n # 2 (mod 3) [674]; K,,, + K1 [674]; French
windmills K" [1263], [1634]: the friendship graphs C{™ if and only if n = 0 or 1 (mod 4)
[1263], [1634], [3509]; C\! [3128]; and helms [2555).

Seoud, Diab, and Elsakhawi [2769] have shown that the following graphs are strongly
harmonious: K,,, with an edge joining two vertices in the same partite set; K, ,; the
composition P,[Ps] (see §2.3 for the definition); B(3,2,m) and B(4,3,m) for all m (see
§2.4 for the notation); P? (n > 3); and P2 (n > 3). Seoud et al. [2769] have also

n
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proved: By, is strongly 2n-harmonious; P, is strongly |n/2]-harmonious; ladders Lo 1
are strongly (k + 1)-harmonious; and that if G is strongly c-harmonious and has an equal
number of vertices and edges, then G + K, is also strongly c-harmonious.

Baca and Youssef [390] investigated the existence of harmonious labelings for the
corona graphs of a cycle and a graph G, and for the corona graph of K, and a tree. They
prove: if join of a graph G of order p and K, G + K, is strongly harmonious with the 0
label on the vertex of K7, then the corona of C,, with G, C,, ® G, is harmonious for all
odd n > 3; if T' is a strongly c-harmonious tree of odd size ¢ and ¢ = %1 then the corona
of Ky with T, Ko ® T, is also strongly c-harmonious; if a unicyclic graph G of odd size
q is a strongly c-harmonious and ¢ = q;zl then the corona of Ky with G, Ky ® G, is also
strongly c-harmonious.

Seenivasan and Lourdusamy [2734] define an absolutely harmonious labeling f as an
injection from the vertex set of a graph G with ¢ edges to the set {0,1,2,...,q — 1}, if
when each edge uv is assigned f(u) + f(v), the resulting edge labels can be arranged as
ag, a1,0z, . ..,aq1 where a; = q—1ior ¢+ for 0 <i < g—1. When G is a tree one of the
vertex labels may be assigned to exactly two vertices. A graph that admits absolutely
harmonious labeling is called an absolutely harmonious graph. Observe that a strongly
harmonious graph is an absolutely harmonious graph. They prove the following graphs
are absolutely harmnious: P, (n > 3), P, ® K,,, C, ® K,,, the banana tree obtained
by joining a vertex of degree 1 of each of any number of copies of K;, to an isolated
vertex, ladders, triangular snakes, quadrilateral snakes, mK,, K, if and only if n = 3
or 4. They also prove that if G is an absolutely harmonious graph, then there exists
a partition (V4,V3) of the vertex set V(G), such that the number of edges connecting
the vertices of V] to the vertices of V; is exactly [¢/2] snd that if every vertex of an
absolutely harmonious graph with ¢ edges is even then ¢ = 1 or 2. As corollaries of the
latter condition, they have that C,, when n = 1 or 2 (mod 4), C,, x C,, when m and n
are odd, and mK3, m > 2 are not absolutely harmonious.

Sethuraman and Selvaraju [2839] have proved that the graph obtained by joining two
complete bipartite graphs at one edge is graceful and strongly harmonious. They ask
whether these results extend to any number of complete bipartite graphs.

For a graph G(V, E') Gayathri and Hemalatha [1060] define an even sequential harmo-
nious labeling f of G as an injection from V to {0,1,2,...,2|F|} with the property that
the induced mapping f* from E to {2,4,6,...,2|E|} defined by f*(uv) = f(u) + f(v)
when f(u)+ f(v) is even, and f(uv) = f(u)+ f(v)+1 when f(u)+ f(v) is odd, is an in-
jection. They prove the following have even sequential harmonious labelings (all cases are
the nontrivial ones): P,, P, C,( n > 3), triangular snakes, quadrilateral snakes, Mobius
ladders, P, x P, (m > 2,n > 2), K, ,; crowns C,,, ® K3, graphs obtained by joining the
centers of two copies of Kj, by a path; banana trees (see §2.1), P2 closed helms (see
§2.2), C5 ©nk; (n > 2); D® K;, where D is a dragon (see §2.2); (K;, : m) (m,n > 2)
(see §4.5); the wreath product P, * Ky (n > 2) (see §4.5); combs P, ® K;; the one-point
union of the end point of a path to a vertex of a cycle (tadpole); the one-point union
of the end point of a tadpole and the center of a star; the graphs PC),, obtained from
Cn = v, V1, 02, ...,V,—1 by adding the cords v1v,_1,V2Up—2, ..., Vn-2)/2, Vnt2)/2 When n
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is even and v1Un_1, VaUn_2, . . ., V(n—3)/2, U(n+3)/2 When n is odd (that is, cycles with a full
set of cords); P, ® nKj; the one-point union of a vertex of a cycle and the center of a
star; graphs obtained by joining the centers of two stars with an edge; graphs obtained by
joining two disjoint cycles with an edge (dumbbells); graphs consisting of two even cycles
of the same order sharing a common vertex with an arbitrary number of pendent edges
attached at the common vertex (butterflies).

In [1296] Ichishima, Muntaner-Batle, and Oshima define the harmonious number,
n(G), of a graph G with ¢ edges as the smallest positive integer n for which there exists
an injective function f from V(G) to Z,,1 such that each uv of G is labeled f(u) + f(v)
(mod ¢) and the resulting edge labels are distinct, or +00 if there exists no such integer
n. If such functions exist, they are called harmonious numberings. The strong harmo-
nious number, ns(G), of a graph G is defined to be either the smallest positive integer
n such that n = n(G) with the additional property that there exists an integer A such
that min{ f(u), f(v)} < A < max{f(u), f(v)} for each edge in G or +oco if there ex-
ists no such integer n. They provide a necessary condition for a graph to have a finite
harmonious number and sufficient conditions for a graph to have an infinite (strong) har-
monious number. In addition, they examine the relations between harmonious numbers,
gamma-numbers, alpha-numbers, and super edge magic deficiencies (see §5.2). They de-
termine the formulas for the (strong) harmonious numbers of some 2-regular graphs and
all complete bipartite graphs.

In her PhD thesis [2235] (see also [1061]) Muthuramakrishnan defined a labeling f
of a graph G(V, E) to be k-even sequential harmonious if f is an injection from V' to
{k—1,k,k+1,...,k+2q— 1} such that the induced mapping f* from E to {2k, 2k +
2,2k +4,...,2k + 2q — 2} defined by f*(uv) = f(u) + f(v) if f(u) + f(v) is even and
fH(uv) = f(u)+ f(v)+1if f(u)+ f(v) is odd are distinct. A graph G is called a k-even
sequential harmonious graph if it admits a k-even sequential harmonious labeling. Among
the numerous graphs that she proved to be k-even sequential harmonious are: paths,
cycles, Ky, P? (n = 3), crowns C,, ® Ky, C,,@QP, (the graph obtained by identifying
an endpoint of P, with one vertex of C,,), double triangular snakes, double quadrilateral
snakes, bistars, grids P,,, x P,, (m,n > 2), P,[P], Cs6nK; (n > 2), flags Fl,, (the cycle C,,
with one pendent edge), dumbbell graphs (two disjoint cycles joined by an edge) butterfly
graphs B,, (two even cycles of the same order sharing a common vertex with an arbitrary
number of pendent edges attached at the common vertex), Ky +nkKj, K, + 2K, banana
trees, sparklers P,,QK ,, (m,n > 2), (graphs obtained by identifying an endpoint of P,
with the center of a star), twigs (graphs obtained from P, (n > 3) by attaching exactly
two pendent edges at each internal vertex of P,), festoon graphs P,, ® nK; (m > 2), the
graphs T, ,,; obtained from a path P, by appending m edges at one endpoint of P, and
n edges at the other endpoint of P, L, ® K; (L, is the ladder P, x P,), shadow graphs
of paths, stars and bistars, and split graphs of paths and stars. Muthuramakrishnan also
defines k-odd sequential harmonious labeling of graphs in the natural way and obtains a
handful of results.

In [521] Beatress and Sarasija introduced a new harmonious-like labeling as follows.
A graph G(V, E) with n vertices and m edges is said to be a square harmonius graph if

THE ELECTRONIC JOURNAL OF COMBINATORICS (2023), #DS6 121



there exists an injection f from V(G) to {1,2,...,m?+1} such that the induced mapping
f* from E(G) to {1,4,9,...,m?} defined by f*(uv) = (f(u) + f(v)) mod(m? + 1) is a
bijection. Such a function f is called a square harmonious labeling of G. They prove
that P, (n > 3), Ky, (n > 2), bistars, combs, P, ® pK; (n > 2), and C5QpK; (p > 2)
are square harmonious graphs. Lawas and Lim [1822] proved that stars have a square
harmonious labelings.

In [475] Barrientos and Youssef generalize the concepts of harmonious and (k,d)-
arithmetic graphs by relaxing the injectivity constraint of the corresponding labelings.
They call these labelings semi harmonious and semi (k, d)-arithmetic. They showed
the existence of a semi harmonious labeling for several types of cycle-related graphs and
characterized the cycles that admit semi harmonius labelings. They proved that if G is
semi (k, d)-arithmetic, then it is also semi (rk, rd)-arithmetic for every r > 1 and that nG
is both semi (k,d)-arithmetic and semi (k + d, d)-arithmetic. They further showed that
any graph whose components are complete bipartite graphs is semi (k, d)-arithmetic for
any ordered pair (k,d) of positive integers, and if G; is a semi (k;, d)-arithmetic graph of
size g; for each i = 1,2, then G U Gy is semi (k;, d)-arithmetic.

4.2 (k,d)-arithmetic Labelings

Acharya and Hegde [44] have generalized sequential labelings as follows. Let G be a
graph with ¢ edges and let k£ and d be positive integers. A labeling f of G is said to be
(k, d)-arithmetic if the vertex labels are distinct nonnegative integers and the edge labels
induced by f(z) + f(y) for each edge zy are k,k + d,k + 2d,...,k + (¢ — 1)d. They
obtained a number of necessary conditions for various kinds of graphs to have a (k, d)-
arithmetic labeling. The case where K = 1 and d = 1 was called additively graceful by
Hegde [1209]. Hegde [1209] showed: K, is additively graceful if and only if n = 2,3, or
4; every additively graceful graph except K, or Ko contains a triangle; and a unicyclic
graph is additively graceful if and only if it is a 3-cycle or a 3-cycle with a single pendent
edge attached. Jinnah and Singh [1549] noted that P? is additively graceful. Hegde
[1210] proved that if G is strongly k-indexable, then G and G+ K,, are (kd, d)-arithmetic.
Acharya and Hegde [46] proved that K, is (k,d)-arithmetic if and only if n > 5 (see also
[624]). They also proved that a graph with an a-labeling is a (k, d)-arithmetic for all k&
and d. Bu and Shi [624] proved that K, , is (k,d)-arithmetic when k£ is not of the form
id for 1 <i<n—1. Foralld > 1 and all » > 0, Acharya and Hegde [44] showed the
following: Ky, pn1 is (d + 2r,d)-arithmetic; Cyzqq is (2dt + 2r, d)-arithmetic; Cyio is not
(k,d)-arithmetic for any values of k and d; Cyry3 is ((2¢ + 1)d + 2r, d)-arithmetic; Wy o
is (2dt + 2r, d)-arithmetic; and Wy, is ((2t + 1)d + 2r, d)-arithmetic. They conjecture that
Cu41 is (2dt + 2r, d)-arithmetic for some r and that Cy 3 is (2dt + d + 2r, d)-arithmetic
for some r. Hegde and Shetty [1229] proved the following: the generalized web W (¢, n)
(see §2.2 for the definition) is ((n — 1)d/2, d)-arithmetic and ((3n — 1)d/2, d)-arithmetic
for odd n; the join of the generalized web W (¢,n) with the center removed and K, where
n is odd is ((n — 1)d/2,d)-arithmetic; every T,-tree (see §3.2 for the definition) with
q edges and every tree obtained by subdividing every edge of a T)-tree exactly once is
(k+ (¢ —1)d, d)-arithmetic for all k£ and d. Lu, Pan, and Li [2041] proved that K} ,, UK,
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is (k,d)-arithmetic when k& > (¢ —1)d + 1 and d > 1.

Yu [3560] proved that a necessary condition for Cy;11 to be (k,d)-arithmetic is that
k = 2dt + r for some r > 0 and a necessary condition for Cy 43 to be (k,d)-arithmetic is
that & = (2t + 1)d + 2r for some r > 0. These conditions were conjectured by Acharya
and Hegde [44]. Singh proved that the graph obtained by subdividing every edge of the
ladder L, is (5,2)-arithmetic [2971] and that the ladder L, is (n,1)-arithmetic [2974].
He also proves that P,, x C,, is ((n — 1)/2, 1)-arithmetic when n is odd [2974]. Acharya,
Germina, and Anandavally [38] proved that the subdivision graph of the ladder L, is
(k, d)-arithmetic if either d does not divide k or k = rd for some r > 2n and that P,, x P,
and the subdivision graph of the ladder L,, are (k, k)-arithmetic if and only if & is at least
3. Lu, Pan, and Li [2041] proved that S,, U K, , is (k, d)-arithmetic when k& > (¢—1)d+1
and d > 1.

A graph is called arithmetic if it is (k, d)-arithmetic for some k£ and d. Singh and
Vilfred [2979] showed that various classes of trees are arithmetic. Singh [2974] has proved
that the union of an arithmetic graph and an arithmetic bipartite graph is arithmetic. He
conjectures that the union of arithmetic graphs is arithmetic. He provides an example to
show that the converse is not true.

Germina and Anandavally [1072] investigated embedding of graphs in arithmetic
graphs. They proved: every graph can be embedded as an induced subgraph of an
arithmetic graph; every bipartite graph can be embedded in a (k, d)-arithmetic graph for
all £ and d such that d does not divide k; and any graph containing an odd cycle cannot
be embedded as an induced subgraph of a connected (k, d)-arithmetic with k& < d.

In [3531] Yao, Liu, and Yao give necessary and sufficient conditions for a tree to
have the following mutually equivalent labelings: set-ordered odd-graceful, (k, d)-graceful,
super edge-magic total, odd-elegant (see §4.4), harmonious, (k,d)-arithmetic, and edge-
antimagic (see §6.1).

4.3 (k,d)-indexable Labelings

Acharya and Hegde [44] call a graph with p vertices and ¢ edges (k, d)-indezxable if there is
an injective function from V' to {0,1,2,...,p— 1} such that the set of edge labels induced
by adding the vertex labels is a subset of {k, k+d, k+2d, ..., k+q(d—1)}. When the set of
edgesis {k, k+d, k+2d, ..., k+q(d—1)} the graph is said to be strongly (k, d)-indexable. A
(k, 1)-graph is more simply called k-indezable and strongly 1-indexable graphs are simply
called strongly indexable. Notice that strongly indexable graphs are a stronger form of
sequential graphs and for trees and unicyclic graphs the notions of sequential labelings
and strongly k-indexable labelings coincide. Hegde and Shetty [1234] have shown that
the notions of (1, 1)-strongly indexable graphs and super edge-magic total labelings (see
§5.2) are equivalent.

Zhou [3598] has shown that for every k-indexable graph G with p vertices and ¢ edges
the graph (G + K, ,x) + K is strongly k-indexable. Acharaya and Hegde prove that the
only nontrivial regular graphs that are strongly indexable are K5, K3, and Ky x K3, and
that every strongly indexable graph has exactly one nontrivial component that is either
a star or has a triangle. Acharya and Hegde [44] call a graph with p vertices indezable
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if there is an injective labeling of the vertices with labels from {0,1,2,...,p — 1} such
that the edge labels induced by addition of the vertex labels are distinct. They conjecture
that all unicyclic graphs are indexable. This conjecture was proved by Arumugam and
Germina [242] who also proved that all trees are indexable. Bu and Shi [625] also proved
that all trees are indexable and that all unicyclic graphs with the cycle C'3 are indexable.
Hegde [1210] has shown the following: every graph can be embedded as an induced
subgraph of an indexable graph; if a connected graph with p vertices and ¢ edges (¢ > 2)
is (k,d)-indexable, then d < 2; P, x P, is indexable for all m and n; if G is a connected
(1, 2)-indexable graph, then G is a tree; the minimum degree of any (k, 1)-indexable graph
with at least two vertices is at most 3; a caterpillar with partite sets of orders a and b
is strongly (1, 2)-indexable if and only if |a — b| < 1; in a connected strongly k-indexable
graph with p vertices and ¢ edges, £ < p— 1; and if a graph with p vertices and ¢ edges is
(k,d)-indexable, then ¢ < (2p —3 — k + d)/d. As a corollary of the latter, it follows that
K, (n >4) and wheels are not (k, d)-indexable.

Lee and Lee [1825] provide a way to construct a (k,d)-strongly indexable graph from
two given (k, d)-strongly indexable graphs. Lee and Lo [1856] show that every given (1,2)-
strongly indexable spider can extend to an (1,2)-strongly indexable spider with arbitrarily
many legs.

Seoud, Abd El Hamid, and Abo Shady [2757] proved the following graphs are in-
dexable: P,, x P, (m,n > 2); the graphs obtained from P, + K by inserting one vertex
between every two consecutive vertices of P, ; the one-point union of any number of copies
of K ,; and the graphs obtained by identifying a vertex of a cycle with the center of a star.
They showed P, is strongly [n/2]-indexable; odd cycles C), are strongly [n/2]-indexable;
K(mny (m,n > 2) is indexable if and only if m or n is at most 2. For a simple indexable
graph G(V, E) they proved |E| < 2|V| — 3. Also, they determine all indexable graphs of
order at most 6.

Hegde and Shetty [1233] also prove that if G is strongly k-indexable Eulerian graph
with g edges then ¢ = 0,3 (mod 4) if &k is even and ¢ = 0,1 (mod 4) if k is odd. They
further showed how strongly k-indexable graphs can be used to construct polygons of
equal internal angles with sides of different lengths.

Germina [1069] has proved the following: fans P, + K; are strongly indexable if and
only if n = 1,2,3,4,5,6; P, + Ky is strongly indexable if and only if n < 2; the only
strongly indexable complete m-partite graphs are K, and K1 1 ,; ladders P, x P, are [% |-
strongly indexable, if n is odd; K,, X P is a strongly indexable if and only if n = 3; C,,, x P,
is 2-strongly indexable if m is odd and n > 2; K, ,, + K is not strongly indexable for n > 2;
for G; = K ,,, 1 <i < n, the sequential join G = (G1+G2)U(Ge+G3)U- - -U(Gp—1+Gy)
is strongly indexable if and only if, either i =n=1ori=2andn=1or¢=1,n = 3;
P, UP, is strongly indexable if and only if n < 3; P,U P, is not strongly indexable; P,U P,
is [”T%W—Strongly indexable; mC), is k-strongly indexable if and only if m and n are odd;
K, U Ky ,41 is strongly indexable; and mkK; ,, is (3"‘2’1 -strongly indexable when m is
odd.

Acharya and Germina [33] proved that every graph can be embedded in a strongly
indexable graph and gave an algorithmic characterization of strongly indexable unicyclic
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graphs. In [35] they provide necessary conditions for an Eulerian graph to be strongly
k-indexable and investigate strongly indexable (p, ¢)-graphs for which ¢ = 2p — 3.

Hegde and Shetty [1229] proved that for n odd the generalized web graph W (¢, n) with
the center removed is strongly (n —1)/2-indexable. Hegde and Shetty [1234] define a level
joined planar grid as follows. Let u be a vertex of P,, x P, of degree 2. For every pair
of distinct vertices v and w that do not have degree 4, introduce an edge between v and
w provided that the distance from u to v equals the distance from u to w. They prove
that every level joined planar grid is strongly indexable. For any sequence of positive
integers (aj,as,...,a,) Lee and Lee [1824] show how to associate a strongly indexable
(1,1)-graph. As a corollary, they obtain the aforementioned result Hegde and Shetty on
level joined planar grids.

Section 5.2 of this survey includes a discussion of a labeling method called super edge-
magic. In 2002 Hegde and Shetty [1234] showed that a graph has a strongly k-indexable
labeling if and only if it has a super edge-magic labeling.

4.4 Elegant Labelings

In 1981 Chang, Hsu, and Rogers [674] defined an elegant labeling f of a graph G with
q edges as an injective function from the vertices of G to the set {0,1,...,¢} such that
when each edge xy is assigned the label f(z)+ f(y) (mod (¢+1)) the resulting edge labels
are distinct and nonzero. An injective labeling f of a graph G with ¢ vertices is called
strongly k-elegant if the vertex labels are from {0,1,...,q} and the edge labels induced
by f(z)+ f(y) (mod (¢ + 1)) for each edge xy are k, ...,k + q— 1. Note that in contrast
to the definition of a harmonious labeling, for an elegant labeling it is not necessary to
make an exception for trees.

Whereas the cycle C), is harmonious if and only if n is odd, Chang et al. [674] proved
that C,, is elegant when n = 0 or 3 (mod 4) and not elegant when n = 1 (mod 4). Chang
et al. further showed that all fans are elegant and the paths P, are elegant for n # 0 (mod
4). Cahit [639] then showed that P, is the only path that is not elegant. Balakrishnan,
Selvam, and Yegnanarayanan [416] have proved numerous graphs are elegant. Among
them are K,,, and the mth-subdivision graph of K, for all m. They prove that the
bistar B, , (K. with n pendent edges at each endpoint) is elegant if and only if n is
even. They also prove that every simple graph is a subgraph of an elegant graph and
that several families of graphs are not elegant. Deb and Limaye [792] have shown that
triangular snakes (see §2.2 for the definition) are elegant if and only if the number of
triangles is not equal to 3 (mod 4). In the case where the number of triangles is 3
(mod 4) they show the triangular snakes satisfy a weaker condition they call semi-elegant
whereby the edge label 0 is permitted. In [793] Deb and Limaye define a graph G with
q edges to be near-elegant if there is an injective function f from the vertices of G' to
the set {0,1,...,¢} such that when each edge zy is assigned the label f(z)+ f(y) (mod
(¢ + 1)) the resulting edge labels are distinct and not equal to ¢. Thus, in a near-elegant
labeling, instead of 0 being the missing value in the edge labels, ¢ is the missing value.
Deb and Limaye show that triangular snakes where the number of triangles is 3 (mod
4) are near-elegant. For any positive integers o < [ < v where § is at least 2, the
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theta graph 0, . consists of three edge disjoint paths of lengths «, 8, and v having the
same end points. Deb and Limaye [793] provide elegant and near-elegant labelings for
some theta graphs where o = 1,2, or 3. Seoud and Elsakhawi [2771] have proved that
the following graphs are elegant: K ., .5 Ki1mn; Ko + K, K5+ K,,; and K, with
an edge joining two vertices of the same partite set. Elumalai and Sethuraman [881]
proved P,", P2 + K,, Sy + Sn, Sm + K, C3 X Py, and even cycles Cy, with vertices
ag, a1, . .., Aa2,—1,a0 and 2n — 3 chords agas, agas, . . ., agaz,—2 (n = 2) are elegant. Zhou
[3598] has shown that for every strongly k-elegant graph G with p vertices and ¢ edges
and any positive integer m the graph (G + K,,) + K, is also strongly k-elegant when
g—p+1<m<qg—p+k.

If f is a strongly k-elegant labeling of a bipartite graph GG with partite sets V; and V5,
and max f(u) < min f(v) for all w in V; and v in V5, f is said to be a set-ordered strongly
k-elegant labeling of G. Su, Wang, and Yao [3058] proved that if a connected (p, ¢)-graph
admits a strongly k-elegant labeling, then ¢ < 2p—3 and if a graph is a set-ordered strongly
k-elegant, then ¢ = p — 1. They constructed several classes of large-scale trees that have
strongly k-elegant labelings through graph operations that connect edges between two
vertices or identify two vertices to form a new graph and proved that caterpillars with
p vertices admits a set-ordered strongly k-elegant labelings. They further showed that a
graph admits a strongly k-elegant labeling if and only if it has a super edge-magic total
labeling (SEMT)-see Section 5.2.

Sethuraman and Elumalai [2814] proved that every graph is a vertex induced subgraph
of a elegant graph and present an algorithm that permits one to start with any non-trivial
connected graph and successively form supersubdivisions (see §2.7) that have a strong form
of elegant labeling. Acharya, Germina, Princy, and Rao [40] prove that every (p, ¢)-graph
G can be embedded in a connected elegant graph H. The construction is done in such a
way that if G is planar and elegant (harmonious), then so is H.

In [2813] Sethuraman and Elumalai define a graph H to be a K ,,,-star extension of a
graph G with p vertices and ¢ edges at a vertex v of G where m > p — 1 — deg(v) if H is
obtained from G by merging the center of the star K ,,, with v and merging p—1—deg(v)
pendent vertices of K, with the p — 1 — deg(v) nonadjacent vertices of v in G. They
prove that for every graph G with p vertices and ¢ edges and for every vertex v of G and
every m > 2071 — 1 — ¢, there is a K ,,-star extension of G that is both graceful and
harmonious. In the case where m > 2P~! — ¢, they show that G has a K ,,-star extension
that is elegant. Sethuraman and Selvaraju [2840] have shown that certain cases of the
union of any number of copies of K, with one or more edges deleted and one edge in
common are elegant.

In [893] Ephremnath and Elumlai say a graph G is a cycle with a chord Hamiltonian
path if G is obtained from the cycle vy, v1,...,v,-1,v90 (n = 6) by adding the chords
V1Up—1, UyUp_2, ..., Va0 Where « = = (n —2)/2 if n is even and a = (n+3)/2, f =
(n —1)/2 if n is odd. They proved that C, (n > 6) with a chord Hamiltonian path is
harmonious and elegant.

Gallian extended the notion of harmoniousness to arbitrary finite Abelian groups as
follows. Let G be a graph with ¢ edges and H a finite Abelian group (under addition) of
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order q. Define GG to be H-harmonious if there is an injection f from the vertices of G to
H such that when each edge zy is assigned the label f(x)+ f(y) the resulting edge labels
are distinct. When G is a tree, one label may be used on exactly two vertices. Beals,
Gallian, Headley, and Jungreis [516] have shown that if H is a finite Abelian group of
order n > 1 then C,, is H-harmonious if and only if H has a non-cyclic or trivial Sylow
2-subgroup and H is not of the form Zy x Zy x --- x Zy. Thus, for example, C'5 is not
Zyo-harmonious but is (Z; X Zy X Z3)-harmonious. In [867] Ehard, Glock, and Joos apply
rainbow colorings to graph decompositions and harmonious labeling of graphs.

Analogously, the notion of an elegant graph can be extended to arbitrary finite Abelian
groups. Let G be a graph with ¢ edges and H a finite Abelian group (under addition)
with ¢ + 1 elements. We say GG is H-elegant if there is an injection f from the vertices
of G to H such that when each edge zy is assigned the label f(z)+ f(y) the resulting
set of edge labels is the non-identity elements of H. Beals et al. [516] proved that if
H is a finite Abelian group of order n with n # 1 and n # 3, then C,_; is H-elegant
using only the non-identity elements of H as vertex labels if and only if H has either a
non-cyclic or trivial Sylow 2-subgroup. This result completed a partial characterization of
elegant cycles given by Chang, Hsu, and Rogers [674] by showing that C,, is elegant when
n = 2 (mod 4). Mollard and Payan [2183] also proved that C, is elegant when n = 2
(mod 4) and gave another proof that P, is elegant when n # 4. In 2014 Ollis [2320] used
harmonious labelings for Z,, given by Beals, Gallian, Headley, and Jungreis in [516] to
construct new Latin squares of odd order.

A function f is said to be an odd-elegant labeling of a graph G with ¢ edges if f is an
injection from the vertices of G' to the integers from 0 to 2¢ — 1 such that the induced
mapping f*(uv) = f(u)+ f(v) (mod 2¢) from the edges of G to the odd integers between
1 to 2¢ — 1 is a bijection. Zhou, Yao, and Chen [3600] proved that every lobster is odd-
elegant. In [3422] Wang, Xu, Ma, and Zhang gave a new type of graphical passwords
based on odd-elegant labeled graphs. See also [3423] and [3583].

For a graph G(V, E) and an Abelian group H Valentin [3335] defines a polychrome
labeling of G by H to be a bijection f from V to H such that the edge labels induced
by f(uv) = f(v) + f(u) are distinct. Valentin investigates the existence of polychrome
labelings for paths and cycles for various Abelian groups.

4.5 Felicitous Labelings

Another generalization of harmonious labelings are felicitous labelings. An injective func-
tion f from the vertices of a graph G with ¢ edges to the set {0,1,..., ¢} is called felicitous
if the edge labels induced by f(x) + f(y) (mod ¢q) for each edge xy are distinct. (Recall
a harmonious labeling only allows the vertex labels 0,1,...,¢ — 1.) This definition first
appeared in a paper by Lee, Schmeichel, and Shee in [1881] and is attributed to E. Choo.
labeling of the graph. Balakrishnan and Kumar [413] proved the conjecture of Lee, Schme-
ichel, and Shee [1881] that every graph is a subgraph of a felicitous graph by showing the
stronger result that every graph is a subgraph of a sequential graph. Among the graphs
known to be felicitous are: C,, except when n = 2 (mod 4) [1881]; K,,, when m,n > 1
[1881]; Py U Cypyq [1881]; Po U Oy, [3199]; P U Coyyq [1881]; Sy, U Copyq [1881]; K, if
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and only if n < 4 [2813]; P, + K,, [2813]: the friendship graph C{" for n odd [1881];
P,UC5 [2877]; P,UC, 3 [3199]; and the one-point union of an odd cycle and a caterpillar
[2877]. Shee [2873] conjectured that P,, U C,, is felicitous when n > 2 and m > 3. Lee,
Schmeichel, and Shee [1881] ask for which m and n is the one-point union of n copies of
C,, felicitous. They showed that in the case where mn is twice an odd integer the graph is
not felicitous. In contrast to the situation for felicitous labelings, we remark that Cjy;, and
K,,,, where m,n > 1 are not harmonious and the one-point union of an odd cycle and a
caterpillar is not always harmonious. Lee, Schmeichel, and Shee [1881] conjectured that
the n-cube is felicitous. This conjecture was proved by Figueroa-Centeno and Ichishima
in 2001 [929].

Balakrishnan, Selvam, and Yegnanarayanan [415] obtained numerous results on fe-
licitous labelings. The wreath product, G * H, of graphs G and H has vertex set
V(G) x V(H) and (g1, h1) is adjacent to (g2, ho) whenever gigo € E(G) or g1 = go
and hihy € E(H). They define H, , as the graph with vertex set {uy,...,us;v1,...,0,}
and edge set {u;v;] 1 <1i < j < n}. They let (K, : m) denote the graph obtained by
taking m disjoint copies of K ,, and joining a new vertex to the centers of the m copies
of K;,. They prove the following are felicitous: H,,,; Pn * Kg; (K1, : m); (K1 : m)
when m # 0 (mod 3), or m = 3 (mod 6), or m = 6 (mod 12); (K 9, : m) for all m and
n>2; (Kigyr:2n+1) whenn > t; PP when k =n—1andn # 2 (mod 4), or k = 2t and
n >3 and k < n — 1; the join of a star and K,,; and graphs obtained by joining two end
vertices or two central vertices of stars with an edge. Yegnanarayanan [3533] conjectures
that the graphs obtained from an even cycle by attaching n new vertices to each vertex
of the cycle is felicitous. This conjecture was verified by Figueroa-Centeno, Ichishima,
and Muntaner-Batle in [934]. In [2836] Sethuraman and Selvaraju [2840] have shown that
certain cases of the union of any number of copies of K, with 3 edges deleted and one
edge in common are felicitous. Sethuraman and Selvaraju [2836] present an algorithm
that permits one to start with any non-trivial connected graph and successively form
supersubdivisions (see §2.7) that have a felicitous labeling. Krisha and Dulawat [1757]
give algorithms for finding graceful, harmonious, sequential, felicitous, and antimagic (see
§5.7) labelings of paths. A linear cactus P,,(K,) is a connected graph in which all the
blocks are isomorphic to a complete graph K, and block-cutpoint is a path P, 1. Go-
mathi [1125] proved the follow graphs are felicitous: P,,(Ky), splitting graphs of (B, ),
planar graphs Pl,, ,,, and Co;11®S,,. Gomathi and Nagarajan [1120] proved the following
graphs are felicitous: a vertex switching of C,, (n > 4), a vertex switching of C,, (n > 4)
with one chord, a vertex duplication of C,,, and the square of the book B, , (n > 2).
Ezhilarasi Hilda and Jeba Jesintha [1247] proved that all shell flower graphs are felicitous.

In [3078] Sudhakar, Ranjani, Swathy, and Balaji provided a technique for coding a
secret messages by applying an even felicitous labeling for the union of two star graphs
using a GMJ (Graph Message Jumbled) code. They include two illustrations for convert-
ing plain text into cipher text (picture coding) and a method for a felicitous labeling of a
graph. In [3077] Manshath, Hariprabakaran, Veerasamy, and Balaji used a GMJ code to
create a confidential message by applying an even felicitous labeling to a bistar.

Figueroa-Centeno, Ichishima, and Muntaner-Batle [935] define a felicitous graph to be
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strongly felicitous if there exists an integer k so that for every edge wv, min{ f(u), f(v)}
< k < max{f(u), f(v)}. For a graph with p vertices and ¢ edges with ¢ > p — 1 they
show that G is strongly felicitous if and only if G has an a-labeling (see §3.1). They also
show that for graphs G; and Gy with strongly felicitous labelings f; and f> the graph
obtained from G; and G9 by identifying the vertices u and v such that fi(u) =0 = fo(v)
is strongly felicitous and that the one-point union of two copies of C,,, where m > 4 and m
is even is strongly felicitous. As a corollary they have that the one-point union of n copies
of Cy,, where m is even and at least 4 and n = 2 (mod 4) is felicitous. They conjecture
that the one-point union of n copies of C,, is felicitous if and only if mn = 0,1, or 3
(mod 4). In [939] Figueroa-Centeno, Ichishima, and Muntaner-Batle prove that 2C,, is
strongly felicitous if and only if n is even and at least 4. They conjecture [939] that mC,,
is felicitous if and only if mn # 2 (mod 4) and that C,, U C, is felicitous if and only if
m+n # 2 (mod 4).

As consequences of their results about super edge-magic labelings (see §5.2) Figueroa-
Centeno, Ichishima, Muntaner-Batle, and Oshima [939] have the following corollaries: if
m and n are odd with m > 1 and n > 3, then m(),, is felicitous; 3C,, is felicitous if and
only if n # 2 (mod 4); and C5 U P, is felicitous for all n.

For a graph G with ¢ edges Shainy and Balaji [2879] call a one-to-one function f
from V(G) to {0,1,2,...,2¢— 1} a even felicitous if the edge labels generated by (f(r) +
f(s))mod(2q — 1) for each edge are even and distinct. They proved that stars, bistars,
the union two stars, and the union of three stars are even felicitous graph.

In [2074] Manickam, Marudai, and Kala prove the following graphs are felicitous: the
one-point union of m copies of C), if mn = 1,3 mod 4; the one-point union of m copies of
Cy; mC,, if mn = 1,3 (mod 4); and mCj. These results partially answer questions raised
by Figueroa-Centeno, Ichishima, Muntaner-Batle, and Oshima in [935] and [939].

Chang, Hsu, and Rogers [674] have given a sequential counterpart to felicitous la-
belings. They call a graph with ¢ edges strongly c-elegant if the vertex labels are from
{0,1,..., ¢} and the edge labels induced by addition are {c, c+1, ..., c+qg—1}. (A strongly
1-elegant labeling has also been called a consecutive labeling.) Notice that every strongly
c-elegant graph is felicitous and that strongly c-elegant is the same as (¢, 1)-arithmetic in
the case where the vertex labels are from {0,1,...,q}. Chang et al. [674] have shown:
K, is strongly 1l-elegant if and only if n = 2,3,4; C, is strongly 1-elegant if and only if
n = 3; and a bipartite graph is strongly l-elegant if and only if it is a star. Shee [2874]
has proved that K,, ,, is strongly c-elegant for a particular value of ¢ and obtained several
more specialized results pertaining to graphs formed from complete bipartite graphs.

Seoud and Elsakhawi [2773] have shown: K,,, (m < n) with an edge joining two
vertices of the same partite set is strongly c-elegant for ¢ = 1,3,5,...,2n + 2; Kj ., is
strongly c-elegant for ¢ = 1,3,5,...,2m when m = n, and for ¢ = 1,3,5,..., m+n+1
when m # n; K11 m.m is strongly c-elegant for ¢ = 1,3,5,...,2m+1; P, + K, is strongly
|n/2]-elegant; C,, + K, is strongly c-elegant for odd m and all n for ¢ = (m —1)/2, (m —
1)/2+2,...,2m when (m —1)/2 is even and for c = (m —1)/2,(m —1)/2+2,...,2m —
(m—1)/2 when (m — 1)/2 is odd; ladders Lox1 (k > 1) are strongly (k + 1)-elegant; and
B(3,2,m) and B(4,3,m) (see §2.4 for notation) are strongly l-elegant and strongly 3-
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elegant for all m; the composition P,[Ps] (see §2.3 for the definition) is strongly c-elegant
for ¢ = 1,3,5,...,5n — 6 when n is odd and for ¢ = 1,3,5,...,5n — 5 when n is even;
P, is strongly |n/2|-elegant; P2 is strongly c-elegant for ¢ = 1,3,5,...,q where ¢ is the
number of edges of P?; and P3 (n > 3) is strongly c-elegant for ¢ = 1,3,5,...,6k—1 when
n=4k; c=1,3,5,...,6k+1 whenn =4k +1; c=1,3,5,...,6k + 3 when n = 4k + 2;
c=1,3,5,...,6k +5 when n = 4k + 3.

In [464] Barrientos and Minion study a technique to transform an a-labeling of some
snakes whose cells are squares into a felicitous labeling and the felicitous labeling into a
harmonious labeling. They prove that all quadrilateral snakes, all snake polyominoes, and
all hybrid quadrilateral snakes are both, felicitous (see §4.5) and harmonious. A hybrid
quadrilateral snake is a snake obtained with n copies of Cy where the ¢th copy of Cjy is
attached to the (i+1)th copy via vertex amalgamation or edge amalgamation. Barrientos
and Minion [464] prove that all hybrid quadrilateral snakes admit a-labelings.

4.6 0Odd Harmonious and Even Harmonious Labelings

Liang and Bai [1940] introduced odd harmonious labelings by defining a function f to be
an odd harmonious labeling of a graph G with g edges if f is an injection from the vertices
of G to the integers from 0 to 2¢ — 1 such that the induced mapping f*(uv) = f(u)+ f(v)
from the edges of G' to the odd integers between 1 to 2¢ — 1 is a bijection. A function
f is said to be a strongly odd harmonious labeling of a graph G with ¢ edges if f is an
injection from the vertices of GG to the integers from 0 to ¢ such that the induced mapping
f*(uv) = f(u) + f(v) from the edges of G to the odd integers between 1 to 2g — 1 is a
bijection. Liang and Bai [1940] have shown the following: odd harmonious graphs are
bipartite; if a (p, ¢)-graph is odd harmonious, then 2,/q < p < 2¢ — 1; if a (p, ¢)-graph
with degree sequence (dy,ds,...,d,) is odd harmonious, then ged(dy,ds,...,d,) divides
q*; P, (n > 1) is odd harmonious and strongly odd harmonious; C,, is odd harmonious if
and only if n = 0 mod 4; K, is odd harmonious if and only if n = 2; K, », . n, is odd
harmonious if and only if k¥ = 2; K is odd harmonious if and only if n = 2; P,, X P, is
odd harmonious; the tadpole graph obtained by identifying the endpoint of a path with a
vertex of an n-cycle is odd harmonious if n = 0 mod 4; the graph obtained by appending
two or more pendent edges to each vertex of Cy, is odd harmonious; the graph obtained
by subdividing every edge of the cycle of a wheel (gear graphs) is odd harmonious; the
graph obtained by appending an edge to each vertex of a strongly odd harmonious graph
is odd harmonious; and caterpillars and lobsters are odd harmonious. They conjecture
that every tree is odd harmonious.

Liang and Bai [1940] also showned that the kCj-snake graph is an odd harmonious
graph. Abdel-Aal [4] generalize this result by showing that the kC,-snake with string
1,1,...,1 for n = 0 (mod 4) are odd harmonious. He also showed that the kCj snake
with m pendent edges is odd harmonius and that all subdivisions of 2m-triangular snakes
are odd harmonious. Alyani, Firmansah, Giyarti, and Sugeng [171] constructed odd
harmonious labelings for kC),-snakes for n = 4 and n = 8 and gave odd harmonious
labelings for a variation of kC)-snakes. An n hair-kC, snake is a graph obtained by
attaching n leaves to vertices of degree two in a kCj-snake graph. Mumtaz and Silaban
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[2204] proved that n hair-kCy-snakes are odd harmonious. A k(G) snake graph is a [2204] new
graph obtained from a path on k edges by replacing each edge by a graph isomorphic to
G. Asumpta, Purwanto, and Chandra [262] showed that the snake graph k(G) is odd [262] new
harmonious when G is a gear graph based on W3 and when G is Ky, (m > 2).

Renuka and Palanivelu [2615] proved that the one vertex union of some classes of [2615] new
complete bipartite graphs, the one vertex union of paths, and extended bistars and their
subdivisions are odd harmonious. They further proved that the collection of paths passing
through another path at a selected common mid vertex and each vertex of ladder appended
by an edge are strongly odd harmonious and that the subdivision of the Cartesian product
of two paths is strongly odd harmonious.

Abdel-Aal also proved that a necessary condition for odd harmonious Eulerian graphs
with ¢ edges is ¢ = 0 (mod 4) and that the following graphs are odd harmonious:
Cp x Py (n>2m= 0 (mod 4); Cyp ® Cy; S, ® K,y; two copies of an even n-cycle
sharing a common edge is an odd harmonious graph when n = 0 (mod 4); two copies of
an even n-cycle sharing a common vertex is odd harmonious when n = 0 (mod 4); and
graphs obtained from K, (n > 2) by adding r pendent edges to one of the two vertices
of degree n and s pendent edges to the other vertex of degree n. In [2203] Mumtaz, John,
and Silaban proved that the grid-like graph of order 2mn+mm+n and size 4mn obtained
by arranging m-rows connected rows of nC)-snake graphs is odd harmonious.

Vaidya and Shah [3300] prove that the shadow graphs (see §3.8 for the definition) of
path P, and star K7, are odd harmonious. They also show that the splitting graphs (see
§2.7 for the definition) ) of path P, and star K, are odd harmonious. In [3301] Vaidya
and Shah proved the following graphs are odd harmonious: the shadow graph and the
splitting graph of bistar B, ,,; the arbitrary supersubdivision of paths; graphs obtained by
joining two copies of cycle C,, for n = 0(mod 4) by an edge; and the graphs H,, ,,, where
V(Hpyn) = {vi,v2,...,0n,u1, Uz, ...,0,} and E(H,,) ={vu;: 1 <i<n, n—i+1<
j < n}. In [3511] Yan proves that P,, x P, is strongly odd harmonious. Koppendrayer
[1730] has proved that every graph with an a-labeling is odd harmonious. Li, Li, and Yan
[1927] proved that K, ,, is odd strongly harmonious. Saputri, Sugeng, and Froncek [2716]
proved that the graph obtained by joining C,, to Cj by an edge (dumbbell graph D,, 4 2)
is odd harmonious for n = k = 0 (mod 4) and n = k = 2 (mod 4), and C,, x P,, is odd
harmonious if and only if n = 0 (mod 4). They also observe that C,, ® K; with n =0
(mod 4) is odd harmonious. Pujiwatia, Halikinb, and Wijayac [2530] proved double stars
and even cycles odd harmonious. Sugeng, Surip, and Rismayati [3092] proved that the
m-shadow of C},, and nontivial gears are odd harmonious graphs.

Jeyanthi [1484] proved that the shadow and splitting graphs of K3, Cy,, the double
quadrilateral snakes DQ(n) (n > 2), and the graph H,, with vertex set V(H,,) =
{vi,v2, ..., Up, us, us, ..., u,} and the edge set E(H,,) = {viu; : 1 <i<nn—i+1<
j < n} are odd harmonious. Jeyanthi and Philo [1484] proved that the shadow graphs
Dy(Ks,,) and Dy(H,, ) are odd harmonious and the splitting of graphs of K, and H, ,
are odd harmonious. They also showed that the shadow graph Ds(C,,) is odd harmonious
if n = 0 (mod 4), the splitting of C,, is odd harmonious if n = 0 (mod 4), and the
double quadrilateral snake DQ(n) is odd harmonious for n > 2. In [1488] Jeyanthi
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and Philo prove that super subdivision of cycles, ladders, C4, @ K ,,, and uniform fire
crackers are odd harmonious graphs. Jeyanthi and Philo [1494] proved that the graph
P,1(1,2,3,...,n) obtained from a path of n vertices vy, v, ..., v,_1 by appending a path
of length n — i at each v; and certain one point unions of the end points of paths are odd
harmonious.

Philo, Jeyanthi, and Davazz [2869] proved that the following graphs are odd harmo-
nious: the path union of r copies of K, ,; the path union of copies of complete bipartite
graphs; the graphs obtained from ¢ copies of K, ,, by joining each one to the next one with
an islolated vertex (the join sum) ; the one point union of ¢ copies of complete bipartite
graphs (not necessarily the same); the graphs obtained by replacing each vertex of K,
except the apex vertex, with the graph K, ,,; and the one point union of isomorphic path
graphs of K,,,. Let w;1,u;2,...,%m and v;1,v;9,...,0,, be the vertices of r copies of
Kn. The circle formation [2869] of r copies of K, ,, is the graph obtained by joining the
ith copy of K, (1 < i < r) by joining the vertices u;,, to w111 for 1 <i <r —1 and
joining the vertex u,,, to uy;. Philo, Jeyanthi, and Davazz [2869] proved that he circle
formation of r copies of K,,, when r = 0(mod4) is odd harmonious.

Suptri, Sugeng, and Fronéek [2716] proved that that dumbbell graphs D,, ;2 are odd
harmonious if and only if n,k = 2(mod 4). In [1490] Jeyanthi and Philo proved that
the graphs obtained by attaching m pendant vertices to each vertex of paths of odd
length, the splitting graph of combs, slanting ladders, graphs obtained from m copies of
(K1, @ K1) by joining one leaf of ith copy of (K, : K1,) with the center of (i + 1)th
copy of (K1, : Ki,) where 1 < ¢ < m — 1, and H-super subdivisions of P, and Cj,
admit odd harmonious labeling. Moveover, they observe that all strongly odd harmonious
graphs admit a mean labeling, an odd mean labeling, an odd sequential labeling, all
odd sequential graphs are odd harmonious, and all odd harmonious graphs are even
sequential harmonious. They also proved the n-splitting graphs for paths, stars, and
symmetric product between paths and null graphs are odd harmonious graphs for all n.
Selvaraju, Balaganesan, and Renuka [2740] proved that quadrilateral snakes and k-regular
caterpillars are odd harmonious. Abdel-Aall and Seoud [5] proved that the m-shadow
graphs for paths and complete bipartite graphs are odd harmonious graphs for all m.

For a T-tree T" with vertices vy, vg, ..., v,, the graph T'6F,, is obtained from 7" and n
copies of P, by identifying a pendant vertex of ith copy of P,, with vertex v; of T'. For C,
with consecutive vertices vy, vs, ..., v,, the graph C,0P,, is obtained from C,, and n copies
of P, by identifying a pendant vertex of ith copy of P,, with vertex v; of C,,. Jeyanthi and
Philo [1496] proved that T,-trees, T6F,,, T62P,,, regular bamboo trees, C,,6 P, C,,62P,,,
and subdivided grid graphs are odd harmonious.

Recall a subdivided shell graph is obtained by subdividing the edges in the path of the
shell graph. Let G1,Gs, ..., G, be n subdivided shell graphs of any order. The graph
SSG(n) is obtained by adding an edge to apexes of G; and G;41,i = 1,2,...,(n—1). Jeba
Jesintha and Ezhilarasi Hilda [1392] proved that the subdivided shell graph and SSG(2)
are odd harmonious.

The following definitions are taken from [1495]. The m-shadow graph D,,(G) of a
connected graph G is constructed by taking m-copies of G, G1,G5,Gs,. .. ,G,y, and joining
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each vertex u in G; to the neighbors of the corresponding vertex v in G;, 1 < j < m.
The m-splitting graph Spl,,(G) of a graph G is obtained by adding to each vertex v of G
m new vertices, v!,v?,...,v™ such that v*, 1 < i < m, is adjacent to every vertex that
is adjacent to v in G. Note that the 2-shadow graph is the shadow graph Dy(G) and the
1-splitting graph is splitting graph. The m-mirror graph M,,(G) is defined as the disjoint
union of m copies of G, Gy, Go, ..., G,,, together with additional edges joining each vertex
of G; to its corresponding vertex in G;11, 1 < ¢ < m — 1. The graph m is obtained
from the gear graph arising from the wheel W, as follows: Join the vertices v; and v; o
with the new vertices vfﬂ for1 <j<mand2<17<n—2and join v, and vy with vg;_1.
The graph Kj,,(r, s) is obtained from K, , (n > 2) by adding r and s pendent edges to
the two vertices of degree n. The graph G = (C,, : Ky, : C,) is obtained from K,,, with
the partite set {u,v} by identifying the vertex u with a vertex of ), and the vertex v
with a vertex of C,. Let P, be a path on n vertices denoted by (1,1),(1,2),...,(1,n)
and with n — 1 edges denoted by ey, e, ..., e, 1 where e; is the edge joining the vertices
(1,4) and (1,7 + 1). The step ladder graph S(T;,) has (n? + 3n — 2)/2 vertices denoted by
(1,1),(1,2),...,(1,n),(2,1),(2,2),...,(2,n),(3,1),(3,2), ..., 3,n—1),(4,1),...,(4,n—
2),...,(n,1),(n,2) and n® + n + 2 edges. In any ordered pair (i,7), 7 denotes the row
(counted from bottom to top) and j denotes the column(from left to right) in which the
vertex occurs.

The cocktail party graph, H,,, (m,n > 2), is the graph with a vertex set V =
{v1,v9, ..., Vmn} partitioned into n independent sets V = {I1,I5,...,I,} each of size
m such that v;u; € E for all 4,5 € {1,2,...,mn} wherei € I,,, j € 1,, p#q.

Jeyanthi and Philo [1487] proved that following graphs are odd harmonious: D,,(FP,)
for all m,n > 2; Spl,,(P,) for m,n > 2; D,,(H,,) for all m > 2 and n > 1; Spl,,,(H,.»)
for all m > 2 and n > 1; D,,,(K, ;) for all r,s > 1; Spl,,,(K, ) for all m > 2 and r,s > 1;
D (P, © Ky) for all m,n > 2; Spl,,(P, ® K3), m,n > 2; and Spl,,,(C,,) if and only if
n =0 (mod 4).

Jeyanthi and Philo [1495] proved that following graphs are odd harmonious: W,,,,
for n =0 (mod 4), m > 1; D,,(P, ® K;) (the authors use the notion C, for the comb
P,® Ky) for all m > 2 and n > 1; Spl,,(Ka (1, 5)); (Cy 2 Koy 2 Cp) for n,r =0 (mod 4)
and m > 2; and the graphs obtained by arranging vertices into a finite number of rows
(at least 2) with ¢ vertices in the ith row and in every row the jth vertex in that row is
joined to the jth vertex and j + 1st vertex of the next row (a pyramid) for n > 2. They
also prove that if G is a strongly odd harmonious tree, then M,,(G) is odd harmonious.

Let Ps, be a path of length 2n— 1 with 2n vertices, denoted by (1, 1), (1,2),...,(1,2n)
and with 2n —1 edges, denoted by ey, es, ..., es,_1 Where ¢; is the edge joining the vertices
(1,4) and (1,i+1). On each edge e; fori =n+1,n+2,...,2n— 1, we erect a ladder with
2n+1—i steps including the edge e;. The double sided step ladder graph 2.5(75,,) has ver-
tices denoted by (1,1),(1,2),...,(1,2n),(2,1),(2,2),...,(2,2n),(3,2),(3,3),...,(3,2n —
1),(4,3),(4,4),...,(4,2n — 2),...,(n+ 1,n),(n + 1,n 4+ 1). In any ordered pair (3, j),
i denotes the row (counted from bottom to top) and j denotes the column (from left
to right) in which the vertex occurs. Jeyanthi and Philo [1493] proved that the path
union of ¢ copies of S(7},), the double sided step ladder 2S5(Tsx,), the path union of
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t copies of 28(Thxn), S(t.Cyn), S(t.Cy), C4t, Cs', and Cg" are odd harmonious graphs.
Jeyanthi and Philo [1489] proved that path union of r copies of K,,,, the path union
of r copies of Ky, 1 <0 <y KG s Kl o) (mams)... (memy): the join sum of graph
(Kpn; Koy« o s Ko (t copies ), (K ng; Kimgngi - - -y Kinym, ), the circle formation of r
copies of K,,, when » = 0 (mod 4), S(t.K,,) and P.(t.n.K,,) are odd harmonious
graphs. Jeyanthi and Philo [1492] proved that the subdivided shell graphs, disjoint union
of two subdivided shell graphs, subdivided shell flower graphs, and subdivided uniform
shell bow graphs are odd harmonious. Jeyanthi, Philo, and Youssef [1497] proved that
the path union of ¢ copies of P, x P,, the path union of ¢ copies of P,,, x F,, where
1 <7 < t, the vertex union of t copies of P,, x P,, the vertex union of ¢ different copies
of P, X P, where 1 < i < t, the one point union of path of P!(t.n.P,, x P,,), and the
super subdivision of grid graph P,, x P, are odd harmonious graphs.

Recall from Section 2.7 that for even n > 2 a plus graph of size n (denoted by Pl,,) is the
graph obtained by starting with paths Py, Py, ..., P, 9, Py, Py, Pu_o, ..., Py, Py arranged
vertically parallel with the vertices in the paths forming horizontal rows and edges joining
the vertices of the rows. Jeyanthi [1486] proved that following graphs are odd harmonious:
Pl,, where n = 0 (mod 2), n # 2; path unions of finitely many copies of Pl,, where n =0
(mod 2), n # 2; open stars of plus graphs S(t.Pl,) where n = 0 (mod 2), n # 2 and ¢
odd; graphs obtained by joining C,,, m =0 (mod 4) and a plus graph Pl,, n = 0 (mod
2), n # 2 with a path of arbitrary length; the graph obtained by replacing all vertices of
K4, except the apex vertex, by the path union of n copies of the graph Pl,,.

In [1488] Jeyanthi and Philo prove that super subdivision of cycles, ladders, Cy,, K1 1,
and uniform fire crackers are odd harmonious graphs. They also proved the (m,n)-
firecracker graph obtained by the concatenation of m n-stars by linking one leaf from
each is odd harmonius; the arbitrary super subdivision of cycles C,, are odd harmonious;
and the super subdivision of ladders are odd harmonious. Jeyanthi and Philo [1495] proved
that the m-mirror graph M,,(G) (m > 2), m-splitting graph of K, ,(r,s) (obtained from
Ks,, (n > 2) by adding  and s (r,s > 1) pendent edges to the two vertices of degree
1), Win,any obtained from the gear graph of W, by joining the vertices v; and v;;» with
the new vertices ’U{_H for 1 <j<mand2<i<n—2 and joining v, and vy with v{ for
1<j<m, (Cy : Koy i Cy) obtained from Ko, with one partite set V) = {u,v} and
C, by identifying the vertex u of V; with a vertex of C), and the other vertex v of V; with
a vertex of C,, and the pyramid graph PY,(n > 2) are odd harmonious graphs. They
also proved that G is a strongly odd harmonious tree, then M,,(G) is an odd harmonious.

The edge comb product of two graphs G and H is the graph formed by taking one
copy of G and |E(G)| copies of H, then attaching the i-th copy of H at the edge e to the
i-th edge of G. In [949] Sarasvati, Halikin, and Wijaya showed that graphs constructed
by the edge comb product of P, and C; and the shadow of C); are odd harmonious.
Firmansah and Tasari [950] gave odd harmonious labelings for a line amalgamation of
double quadrilateral graphs and the graphs obtained by connecting two copies of double
quadrilateral graph by an edge. Firmansah and Giyarti [946] proved that graphs obtaned
by the edge amalgamation of double quadrilateral graphs are odd harmonious. Febriana
and Sugeng [947] proved that squid graphs (obtained from C), by add pendant edges to
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one vertex of C,,) are odd harmonious if and only if n is even and double squid graphs
(obtained from two copies of C,, that share one common vertex and adding pendant edges
to the common vertex) are odd harmonious if and only n > 4 is even. In [943], [942],
[945] Firmansah proved that multiple net snake graphs and a variation of the double
quadrilateral windmill graphs, layered graphs, and some classes of string graphs are odd
harmonious graphs. Firmansah, Tasari, and Yuwono [948] proved that the zinnia flower
graph and its variations are odd harmonious graphs.

In [1488] Jeyanthi and Philo modified the notion of odd harmonious by defining an
odd harmonious labelings as a function f to be an odd harmonious labeling of a graph G
with ¢ edges if f is an injection from the vertices of G to the integers from 0 to 2¢ — 1
such that the induced mapping f*(uv) = f(u) + f(v) mod (2¢q) from the edges of G to
the odd integers between 1 to 2¢ — 1 is a bijection. Using this definition they proved that
an m-cycle and an n-cycle sharing a common vertex is an odd harmonious if and only
if either both m, n = 0 (mod 4) or both m, n = 2 (mod 4) and the same holds for
an m-cycle and an n-cycle sharing a common edge. They also proved that any two even
cycles sharing a common vertex and a common edge are odd harmonious graphs.

Sarasija and Binthiya [2717] say a function f is an even harmonious labeling of a
graph G with ¢ edges if f : V — {0,1,...,2¢} is injective and the induced function
[ E—4{0,2,...,2(¢q—1)} defined as f*(uv) = f(u)+ f(v) (mod 2q) is bijective. Notice
that for an even harmonious labeling of a connected graph all the vertex labels must have
the same parity. Moveover, in the case of even harmonious labelings for connected graphs
there is no loss of generality to assume that all the vertex labels are even integers and
the duplicate vertex is 0. They proved the following graphs are even harmonious: non-
trivial paths; complete bipartite graphs; odd cycles; bistars B, ,; Kz + K,; P?; and
the friendship graphs F, ;. Lopez, Muntaner-Batle and Rious-Font [1992] proved that
every super edge-magic graph (see Section 5.2 for the definition of super edge-magic)
with p vertices and ¢ edges where ¢ > p — 1 has an even harmonious labeling. In [3554]
Youssef provided a necessary condition for some regular graphs to be even harmonious,
showed that the disjoint union of two k-sequential graphs is even 2k-sequential under
some conditions, and showed that in some cases G is k-sequential implies mG is even
2k-sequential for all positive integer m.

Because 0 and 2q are equal modulo 2¢ the following retricted form of even harmonious
labelings is of interest. A function f is said to be a properly even harmonious labeling of
a graph G with ¢ edges if f is an injection from the vertices of G to the integers from 0
to 2¢ — 1 and the induced function f* from the edges of G to {0,2,...,2q — 2} defined by
[*(zy) = f(x)+ f(y)(mod 2q) is bijective. In their definition of properly even harmonious
in [1008] Gallian and Schoenhard incorrectly required that the vertex labels should be the
even integers from 0 to 2¢ — 2. For connected graphs the two definitions are equivalent
but for disconnected graph they are not. They used vertex labels from 0 to 2g — 1 for
their results on disconnected graphs.

A graph with a properly even harmonious labeling is said to be properly even harmo-
nious. Gallian and Schoenhard [1008] say a properly even harmonious labeling of a graph
with ¢ edges is strongly even harmonious if it satisfies the additional condition that for
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any two adjacent vertices with labels v and v, 0 < u+ v < 2¢.

Jared Bass [513] has observed that for connected graphs any harmonious labeling of
a graph with ¢ edges yields an even harmonious labeling by simply multiplying each
vertex label by 2 and adding the vertex labels modulo 2¢q. Thus we know that every
connected harmonious graph is an even harmonious graph and every connected graph
that is not a tree that has a harmonious labeling also has a properly even harmonious
labeling. Conversely, a properly even harmonious labeling of a connected graph with ¢
edges (assuming that the vertex labels are even) yields a harmonious labeling of the graph
by dividing each vertex label by 2 and adding the vertex labels modulo q.

Gallian and Schoenhard [1008] proved the following: wheels W,, and helms H,, are
properly even harmonious when n is odd; nP, is even harmonious for n odd; nPs is
properly even harmonious if and only if n is even; K, is even harmonious if and only if
n < 4; (O, is not even harmonious when n is odd; C,, U P53 is properly even harmonious
when odd n > 3; C4UP, is even harmonious when n > 2; C,;UF,, is even harmonious when
n > 2; S, U P, is even harmonious when n > 2; K, U S, is properly even harmonious;
P,,UP, is properly even harmonious for all m > 2 and n > 2; C5U P? is even harmonious
when n > 2; C4 U Pg is even harmonious when n > 2; the disjoint union of two or
three stars where each star has at least two edges and one has at least three edges is
properly even harmonious; P2 U P, is even harmonious for m > 2 and 2 < n < 4m — 5;
the one-point union of two complete graphs each with at least 3 vertices is not even
harmonious; 5,, U P, is strongly even harmonious if n > 2; and S,,, U S, U---U S, is
strongly even harmonious for ny > ng > -+ = n;y and t < % + 2. They conjecture that
Spy U Sy, U---US, is strongly even harmonious if at least one star has more than 2
edges. They also note that Cy, Cg, C1a, Cig, U, Coy are even harmonious and conjecture
that Cy, is even harmonious for all n. This conjecture was proved by Youssef [3552] who
also proved that if a connected even harmonious graph with ¢ edges where ¢ is even and
each vertex has degree divisible by 2* (k > 1), then ¢ is divisible by 2¥*1. As a corollary
of the latter he gets that C3, 4o 1s not even harmonious. Hall, Hillesheim, Kocina, and
Schmit [1172] proved that nCsy, 1 is properly even harmonious for all n and m.

In [1009] and [1010] Gallian and Stewart investigated properly even harmonious la-
belings of unions of graphs. They use P,,** to denote the graph obtained from the
path P,, by appending ¢ edges to an endpoint; Cat,,™* to denote a caterpillar of path
length m with ¢ pendent edges; and C,,™ to denote an m-cycle with ¢ pendent edges.
They proved the following graphs are properly even harmonious: npF,, if n is even and
m = 2; P,UK,,» fornoddandn >1, m >1; P,US,, US,, for n > 2 and m; + my is
odd; C,, U S,,, US,,, for n odd and my, my > 3; P, ™" U P,*%; the union of any number
of caterpillars; C,, U Cat,™ for m > 1 odd, n > 1;Cy U Cat,,™; the union of Cy and
a hairy cycle; Ky U C,,™ for some cases; W, U C,,™ for some cases; C,; U (P, + E)
forn > 1; Ky U (P, + K,,) for n = 1,2 (mod 4); C3 U (P, + K,,,) for n = 1,2 (mod 4);
WU (P, + K,,) forn =1,2 (mod 4); WyUP, forn =1,2 (mod 4); K,;UP, forn > 1 and
n=1,2(mod 4); K4UP2 UP2 U---UP? form; >2, n>1; WyUP2 UP? U---UP2
for m; > 2, n > 1; C,, U P? for m = 3 (mod 4) and n > 1; and 2P,, U2P,. They also
prove that nP; is even harmonious if n > 1 is odd and P2 LU Pﬁm u---U Pnz% is strongly
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even harmonious for m > 2, n > 1.

Gallian and Stewart [1011] call an injective labeling f of a graph G with ¢ edges even
2a-sequential if the vertex labels are from {0,1,...,2¢ — 1} and the edge labels induced
by f(u) + f(v) for each edge uv are 2a,2a + 2,...,2a + 2q — 2. When G is a tree, the
allowable vertex labels are 0,1,...,2¢. For connected a-sequential graphs, a connected
2a-sequential graph can be obtained by multiplying all the vertex labels by 2. Notice
that the vertex labels in resulting graph belong to {0,2,...,2¢ — 2} (or {0,2,...,2q}
for trees) and the edges labels are from 2a to 2a 4+ 2¢ — 2. Moreover, a connected a-
sequential graph can be obtained from a connected even 2a-sequential graph with even
vertex labels by dividing all the vertex labels by 2. Likewise, a 2a-sequential labeling of
a connected graph with odd vertex labels induces an a-sequential labeling of the graph
by subtracting 1 from each vertex label and dividing by 2. Thus for connected graphs,
a-sequential is equivalent to 2a-sequential. They prove that if GG is even 2a-sequential the
following graphs are properly even harmonious: G U P2 for m > 2, G U B, for n > 1,
n=1,2 (mod 4), GUC,,™ for some cases, G U Cat,,"™ for m > 1, and G U Wy, ;.

For n and k odd and m,n,k,t > 1, Mbianda and Gallian (see [2111]) proved the
following graphs have properly even harmonious labelings: mP5 for even m; 2P,,U2P,US;
2P, U2P, U Py; 2P,, U2P, UCY; 2P, U2P, U Cy; 2P,, U2P, U2Ky; 2P,, U2P, U2W/y;
2P, U2P, U2Cy; F, UKy (F, = P, + K is the fan); F,, U2Ky; F, UWy; F, U2Wy;
W, UKy W, U2K; W, UWy; W, U2Wy; (Cp+ K UKy; (Cp+ K1) UWy; (G, + K1) U2Ky;
(Cp+K1)U2Wy; and (C,,+ K)UKy ((C,,+ K3) is the double cone). Gallian [1005] proved
the following graphs have properly even harmonious labelings (in all cases m,n > 1): mP,
for m even; 2P,, U2P, U2C53; 2P,, U2P, U2CYy; 2P, U2P, UC3U Cy; F,, U Py; F,, U2P;;
F,UCy; and F,, U2C,.

Binthiya and Sarasija [571] prove the following graphs are even harmonious: C, ®
mK; (nodd), P,omK, (n > 1o0dd), Co,QKs, P, (n even) with n— 1 copies of mK, the
shadow graph Dy(K,), the splitting graph spl(K;,,), and the graph obtained from the
P, (n even) with n— 1 copies of K,, incident with first n — 1 vertices of P,. Vargheese and
Arun [3342] prove that the triangular books, the disjoint union of two triangular book
graphs, total graphs T'(P,), the disjoint union of 7'(P,) and a triangular book, and the
graph obtained by joining the centers of two disjoint copies of K, to an isolated vertex
are even harmonious.

Lasim, Halikin, and Wijaya [1799] showed how to build new harmonious, odd harmo-
nious, even harmonious labelings based on the existing such labelings.

In [520] Beatress and Sarasija introduced the notion of even-odd harmonious graphs
as follows. Let G be a graph with m vertices and n edges. An injective mapping from the
vertices of G to {1,3,5,...,2m —1} is called an even-odd harmonious labeling of G if the
induced edge mapping f* from the edges of G to {0,2,4,...,2(n — 1)} is a bijection and
[*(uv) = (f(u)* + f*(v)) mod 2n for all edges uv. They proves that the bistars, cycles
with one pendent edge, crowns, K ,,,, P,*> (n = 4), and nP, are even-odd harmonious
graphs. Kalaimathi and Balamurugan [1563] proved caterpillars, lobsters, coconut trees,
spider trees, and star graphs admit even-odd harmonious labelings. Zala, Chotaliya, and
Chaurasiya [3570] proved H-graphs, combs, and bistars graph have even-odd harmonious
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labelings. Ganeshwari and Sudhana [1013] proved that paths, cycles, stars, bistars, combs,
P2 C3Q@pK; and Cy,_ QK are even-odd average harmonious graphs.
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5 Magic-type Labelings
5.1 Magic Labelings

Motivated by the notion of magic squares in number theory, magic labelings were intro-
duced by Sedlacek [2732] in 1963.2 Responding to a problem raised by Sedldcek, Stewart
[3053] and [3054] studied various ways to label the edges of a graph in the mid 1960s.
Stewart calls a connected graph semi-magic if there is a labeling of the edges with integers
such that for each vertex v the sum of the labels of all edges incident with v is the same
for all v. (Berge [538] used the term “regularisable” for this notion.) A semi-magic label-
ing where the edges are labeled with distinct positive integers is called a magic labeling.
Stewart calls a magic labeling supermagic if the set of edge labels consists of consecutive
positive integers. The classic concept of an n X n magic square in number theory cor-
responds to a supermagic labeling of K, ,. Stewart [3053] proved the following: K, is
magic for n = 2 and all n > 5; K,,,, is magic for all n > 3; fans F;, are magic if and only
if n is odd and n > 3; wheels W,, are magic for n > 4; and W,, with one spoke deleted
is magic for n = 4 and for n > 6. Stewart [3053] also proved that K, , is semi-magic if
and only if m = n. In [3054] Stewart proved that K, is supermagic for n > 5 if and only
if n > 5 and n # 0 (mod 4). Sedlacek [2733] showed that Mobius ladders M,, (see §2.3
for the definition) are supermagic when n > 3 and n is odd and that C,, x P, is magic,
but not supermagic, when n > 4 and n is even. Shiu, Lam, and Lee [2908] have proved:
the composition of C,, and K, (see §2.3 for the definition) is supermagic when m > 3
and n > 2; the complete m-partite graph K, , _, is supermagic when n > 3, m > 5 and
m # 0 (mod 4); and if G is an r-regular supermagic graph, then so is the composition of
G and K, for n > 3. Ho and Lee [1249] showed that the composition of K,, and K, is
supermagic for m = 3 or 5 and n = 2 or n odd. Baca, Hollander, and Lih [335] have found
two families of 4-regular supermagic graphs. Shiu, Lam, and Cheng [2905] proved that
for n > 2, mK,, is supermagic if and only if n is even or both m and n are odd. Ivanco
[1338] gave a characterization of all supermagic regular complete multipartite graphs. He
proved that @), is supermagic if and only if n = 1 or n is even and greater than 2 and
that C,, x C,, and C5,, x Cs, are supermagic. He conjectures that C,, x (), is supermagic
for all m and n. Trenklér [3224] has proved that a connected magic graph with p vertices
and g edges other than P; exits if and only if 5p/4 < ¢ < p(p—1)/2. In [3129] Sun, Guan,
and Lee give an efficient algorithm for finding a magic labeling of a graph. In [3467] Wen,
Lee, and Sun show how to construct a supermagic multigraph from a given graph G by
adding extra edges to G.

Sudarsana, Suryanto, Lusianti, and Putri [3067] show how magic graph labelings can
be used to increase the security level of encrypted text on social media. Angel Sherin
and Maheswari [196] and Ali Ahmed and Baskar Babujee [121] used magic labeling of
graph to devise encryption and decryption schemes. In [1118] Lakshmi, Sudhakar, and
Sudhakar provided a cryptographic technique for data encryption and decryption using

2A comprehensive expository treatment of magic labelings is given by Baca, Miller, Ryan, and Se-
manicova-Fenovéikovain [370].
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magic labelings of graphs.

In [1748] Kovér provides a general technique for constructing supermagic labelings of
copies of certain kinds of regular supermagic graphs. In particular, he proves: if G is a
supermagic r-regular graph (r > 3) with a proper edge r coloring, then nG is supermagic
when 7 is even and supermagic when r and n are odd; if G is a supermagic r-regular
graph with m vertices and has a proper edge r coloring and H is a supermagic s-regular
graph with n vertices and has a proper edge s coloring, then G x H is supermagic when
r is even or n is odd and is supermagic when s or m is odd.

Kovar, Kravéenko, Krbecek, and Silber [1750] affirmatively answered a question by
Madaras about existence of supermagic graphs with arbitrarily many different degrees.
Their construction provided graphs with all degrees even. They asked if there exists a
supermagic graph with d different odd degrees for any positive integer d. This question
was answered affirmatively by Froncek and Qiu with a construction based on the use of
3-dimensional magic rectangles.

In [848] Drajnové, Ivanco, and Semanicova proved that the maximal number of edges
in a supermagic graph of order n is 8 for n = 5 and @ for 6 < n £ 0 (mod 4), and
@ —1for 8 <n =0 (mod 4). They also establish some bounds for the minimal num-
ber of edges in a supermagic graph of order n. Ivanco, and Semanicova [1348] proved that
every 3-regular triangle-free supermagic graph has an edge such that the graph obtained
by contracting that edge is also supermagic and the graph obtained by contracting one of
the edges joining the two n-cycles of C,, X K3 (n > 3) is supermagic.

Ivanco [1340] proved: the complement of a d-regular bipartite graph of order 8k is
supermagic if and only if d is odd; the complement of a d-regular bipartite graph of order
2n where n is odd and d is even is supermagic if and only if (n,d) # (3,2); if G; and G»
are disjoint d-regular Hamiltonian graphs of odd order and d > 4 and even, then the join
G @ G4 is supermagic; and if Gy is d-regular Hamiltonian graph of odd order n, G5 is
d — 2-regular Hamiltonian graph of order n and 4 < d = 0 (mod 4), then the join G; & Gy
is supermagic.

For k > 2 and graphs G and H, the graph G ®* H defined as (G ®* ' H) ® H (where
G O' H=G® H) is called the k-multilevel corona of G with H. Marbun and Salman
[2078] proved (W,,oF 1) ® C,, is W,-edge magic.

In [552] Bezegova and Ivanco [554] extended the notion of supermagic regular graphs
by defining a graph to be degree-magic if the edges can be labeled with {1,2,...,|E(G)|}
such that the sum of the labels of the edges incident with any vertex v is equal to
(1 + |E(G))/deg(v). They used this notion to give some constructions of supermagic
graphs and proved that for any graph G there is a supermagic regular graph which con-
tains an induced subgraph isomorphic to G. In [554] they gave a characterization of
complete tripartite degree-magic graphs and in [555] they provided some bounds on the
number of edges in degree-magic graphs. They say a graph G is conservative if it admits
an orientation and a labeling of the edges by {1,2,...,|E(G)|} such that at each vertex
the sum of the labels on the incoming edges is equal to the sum of the labels on the out-
going edges. In [553] Bezegovd and Ivanco introduced some constructions of degree-magic
labelings for a large family of graphs using conservative graphs. Using a connection be-
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tween degree-magic labelings and supermagic labelings they also constructed supermagic
labelings for the disjoint union of some regular non-isomorphic graphs. Among their re-
sults are: If G is a d-regular graph where ¢ is even and at least 6, and each component
of G is a complete multipartite graph of even size, then G is a supermagic graph; for
any o-regular supermagic graph H, the union of disjoint graphs H and G is supermagic;
if G is a d-regular graph with § = 0 (mod 8) and each component is a circulant graph,
then G is a supermagic graph; for any d-regular supermagic graph H, the union of dis-
joint graphs H and G is a supermagic graph; and that the complement of the union of
disjoint cycles C,,, ..., C,, is supermagic when £ = 1 (mod 4) and 11 < n; = 3 (mod
8) for all i = 1,..., k. In [1333] Inpoonjal gave necessary and suficient conditions for the
existence of degree-magic labelings of graphs obtained by taking the join and composition
of complete tripartite graphs.

A graph G is said to be (F, H)-sim-(super)magic if there exists a bijection f” that
is simultaneously F-(super) magic and H-(super) magic. In [258], Ashari, Salman, and
Simanjuntak consider (K3, H)-sim-(super) magic graphs where H is isomorphic to three
classes of graphs with varied symmetry: a cycle which is symmetric (both vertex-transitive
and edge-transitive), a star which is edge-transitive but not vertex-transitive, and a path
which is neither vertex-transitive nor edge-transitive. They provide forbidden subgraphs
for the existence of (K5, H)-sim-(super) magic graphs and classify classes of (Ky, H)-
sim-(super) magic graphs. They also derive sufficient conditions for edge-(super) magic
graphs to be (K,, H)-sim-(super) magic and utilize such conditions to characterize some
(K3, H)-sim-(super) magic graphs.

Let G’ be a copy of a simple graph G and for each vertex v; of G let u; be the vertex
of G’ corresponding with v;. The double graph has vertex set V(G) U V(G') and edge
set E(G)U E(G") U{uw; | vy € V(G); v; € V(G') and wu; € E(G)}. Ivanco [1341]
establishes sufficient conditions for generalized double graphs to be degree-magic and
constructs supermagic labelings of some graphs generalizing double graphs.

Sedlacek [2733] proved that graphs obtained from an odd cycle with consecutive ver-
tices wy, Ug, - .« Uy, U1, Uy - - -, U1 (M 2= 2) by joining each u; to v; and v;1; and uy to
Umt1, Um t0 v1 and vy to vy, are magic. Trenklér and Vetchy [3227] have shown that if
G has order at least 5, then G™ is magic for all n > 3 and G? is magic if and only if G
is not P5 and G does not have a 1-factor whose every edge is incident with an end-vertex
of G. Avadayappan, Jeyanthi, and Vasuki [263] have shown that k-sequential trees are
magic (see §4.1 for the definition).

Seoud and Abdel Magsoud [2759] proved that K ,,, is magic for all m and n and
that P? is magic for all n. However, Serverino has reported that P2 is not magic for
n = 2,3, and 5 [1076]. Jeurissan [1378] characterized magic connected bipartite graphs.
Ivanco [1339] proved that bipartite graphs with p > 8 vertices, equal sized partite sets,
and minimum degree greater than p are magic. Baca [296] characterizes the structure
of magic graphs that are formed by adding edges to a bipartite graph and proves that a
regular connected magic graph of degree at least 3 remains magic if an arbitrary edge is
deleted. In [3014] Solairaju and Arockiasamy prove that various families of subgraphs of
grids P,, x P, are magic. Dayanand and Ahmed [787] investigate super magic properties
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of several classes of connected and disconnected graphs. They show that there can be
arbitrarily large gaps among the possible valences for certain super magic graphs. They
also prove that the disjoint union of multiple copies of a super magic linear forest is super
magic if the number of copies is odd and that the super magic labeling is complementary
edge antimagic as well. The broom B, ; is a graph obtained by attaching n — ¢ pendent
edges to an end point vertex of the path P,. Marimuthu, Raja, and Raja Durga [2089]
prove that B, ,_; is E-super vertex magic if and only if n > 3 is odd and B, ; is not
E-super vertex magic for n > 4 and t > 3. In [2270] Nemani and Joshi defined a new
class of graph called the cartoon flower and showed that a E-super vertex magic labeling
does not exist for the class of cartoon flower graphs. They also define the wounded
cartoon flower graphs and establish some sufficient conditions for the graph not to be
FE-super vertex magic. They give examples of some wounded cartoon flowers that admit
an E-super vertex magic labeling and some others that do not. In [1775] Kumar and
Marimuthu proved that semi-regular bipartite graphs are not E-super vertex-magic and
gave an upper bound for the maximum degree of an E-super vertex-magic graph. They
also ontained upper and lower bounds of any vertex degree d of a E-super vertex-magic
graph.

A vertex magic total labeling is said to be a V-super vertex magic labeling if f(V(G)) =
{1,2,3,...,|V|}. A graph G is called V-super vertex magic if it admits a V-super vertex
magic labeling. In [3401] Vimal Kumar and Vijayalakshmi establish the V-super vertex
magic labelings of some classes of parity graphs (that is, for every two induced paths
between the same two vertices both paths have odd length, or both have even length).

A T-supermagic labeling of a graph G(V, E) with |F| = k is a bijection from E to
an Abelian group I' of order k such that the sum of labels of all incident edges of every
vertex © € V is equal to the same element p € I'. An existence of a Zy,,,-supermagic
labeling of Cartesian product of two cycles, C,, x C,, for n odd was proved recently. This
along with an earlier result by Ivanc¢ [1338] proved the existence of a Zs,,,-supermagic
labeling of C,,, x C), for every m,n > 3 and conjectured that such labeling is possible for
all Cy, x Cy. In [977] Froncek and McKeown present a simple unified labeling method for
Froncek [972] proved this conjecture for all m,n odd that not relatively prime.

Ponnappan, Nagaraj, and Prabakaran [2403] say a vertex magic labeling f of a
graph G(V, E) is an odd vertex magic if f maps V to {1,3,5,...,2|V]| — 1} and FE to
{1,2,3,4,...,|V|+|E|} —{1,3,5,...,2|V| =1} if |E| > |V|—1) and otherwise f maps £
to {2,4,6,...,2|E|} and V to {1,2,3,4,....|V|+|E|} —{2,4,6,...,2|E|}. They prove
that P, (n > 3), C, and mCj5 are odd vertex magic if and only if n is odd, (3, t)-kites are
vertex magic if and only if ¢ is even, and C,, ® K; are not odd vertex for all n.

A triplet [H, ¢, t] is called a supermagic frame of G if ¢ is a homomorphism of H onto
Gandt: E(H)— {1,2,...,|E(H)|} is an injective mapping such that the sum of ¢(uw)
over all u € ¢~!(v) is independent of the vertex v € V(G). In 2000, Ivanco proved that
if there is a supermagic frame of a graph G, then G is supermagic. Singhun, Boonklurb,
and Charnsamorn [2982] construct a supermagic frame of m > 2 copies of the Cartesian
product of cycles and show that m copies of the Cartesian product of cycles is supermagic.

A prime-magic labeling is a magic labeling for which every label is a prime. Sedlacek
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[2733] proved that the smallest magic constant for prime-magic labeling of K33 is 53
while Baca and Hollander [331] showed that the smallest magic constant for a prime-
magic labeling of K, 4 is 114. Letting o,, be the smallest natural number such that no, is
equal to the sum of n? distinct prime numbers we have that the smallest magic constant
for a prime-magic labeling of K, , is 0,. Baca and Hollaédnder [331] conjecture that for
n > 5, K,, has a prime-magic labeling with magic constant ¢,. They proved the
conjecture for 5 < n < 17 and confirmed the conjecture for n =5, 6 and 7.

Characterizations of regular magic graphs were given by Doob [847] and necessary and
sufficient conditions for a graph to be magic were given in [1378], [1543], and [805]. Some
sufficient conditions for a graph to be magic are given in [845], [3223], and [2202]. Bertault,
Miller, Pé-Rosés, Feria-Puron, and Vaezpour [549] provided a heuristic algorithm for
finding magic labelings for specific families of graphs. The notion of magic graphs was
generalized in [846] and [2693].

Let m,n,ay,aq,...,a, be positive integers where 1 < a; < |n/2] and the a; are dis-
tinct. The circulant graph Cy(ay,as, ..., a,) is the graph with vertex set {vy, va, ..., vy}
and edge set {vViq, | 1 <4 < n, 1 <j < m} where addition of indices is done modulo
n. In [2748] Semanicova characterizes magic circulant graphs and 3-regular supermagic

circulant graphs. In particular, if G = C,(aq,as,...,a,) has degree r at least 3 and
d = ged(ag,n/2) then G is magic if and only if r = 3 and n/d = 2 (mod 4), a;/d =1
(mod 2), or r > 4 (a necessary condition for C, (a1, as,...,a,) to be 3-regular is that n

is even). In the 3-regular case, C,(a1,n/2) is supermagic if and only n/d = 2 (mod 4),
a;/d =1 (mod 2) and d =1 (mod 2). Semanicova also notes that a bipartite graph that
is decomposable into an even number of Hamilton cycles is supermagic. As a corollary
she obtains that C),(a1,as, ..., as) is supermagic in the case that n is even, every a; is
odd, and ged(agj_1,a2j,n) =1fori=1,2,...,2kand j =1,2,... k.

Ivanco, Kovar, and Semanicova-Fenovckova [1344] characterize all pairs n and r for
which an r-regular supermagic graph of order n exists. They prove that for positive
integers r and n with n > r 4+ 1 there exists an r-regular supermagic graph of order n if
and only if one of the following statements holds: » = 1andn =2;3 <r =1 (mod 2) and
n=2 (mod 4); and 4 <r =0 (mod 2) and n > 5. The proof of the main result is based
on finding supermagic labelings of circulant graphs. The authors construct supermagic
labelings of several circulant graphs.

In [1338] Ivanco completely determines the supermagic graphs that are the disjoint
unions of complete k-partite graphs where every partite set has the same order.

Trenklér [3225] extended the definition of supermagic graphs to include hypergraphs
and proved that the complete k-uniform n-partite hypergraph is supermagic if n # 2 or
6 and k > 2 (see also [3226]). In [3094] Sugiyama gave a generalized definition of magic
graphs, for which any number of digits can be used to label a vertex and edge, and de-
scribed the construction of such magic graphs and their properties. He determined the
minimum and maximum magic sums for regular graphs, including polygons and polyhe-
drons, and provided techniques for transforming and synthesizing magic graphs using an
affine transform.

For connected graphs of size at least 5, Ivanco, Lastivkova, and Semanicova [1345]
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provide a forbidden subgraph characterization of the line graphs that can be magic. As a
corollary they obtain that the line graph of every connected graph with minimum degree
at least 3 is magic. They also prove that the line graph of every bipartite regular graph
of degree at least 3 is supermagic.

For any non-trivial abelian group A under addition, a graph G is said to be strong
A-magic if there exists a labeling f of the edges of G with non-zero elements of A such
that the vertex labeling f* defined as f*(v) = )_ f(uv) taken over all edges uv incident at
v is a constant, and the constant is same for all possible values of |V(G)|. Stella Arputha
Mary, Navaneethakrishnan, and Nagarajan [3052] provide strong Z,;-magic labelings for
various graphs and strong Z,,-magic labelings for those graphs.

In [2608] Razzaq, Rizvi, and Ali introduce the concept of an H-group magic total
labeling of a graph G over a finite Abelian group A as a bijection A : V(G) U E(G) — A
such that for any subgraph H'(V',E’) of G isomorphic to H, the sum ) ., A(v) +
Y e Ae) is equal to magic constant £'. A graph is called H-group magic if it admits
an H-group magic total labeling. They determine the H-group magic total labelings of
fan graphs over the finite Abelian group A = Z3 x Z;, where t > 3 and show that disjoint
union of isomorphic as well as non-isomorphic copies of fan graphs are H-group magic
over A = Zs X Zy.

For a graph G(V, E) and a set of positive integers S with |S| = |V|, Godinho, Singh,
and Arumugam [1112] say G is S-magic if there exists a bijection ¢ : V' — S such that
> ¢(u) over all u € N(v) is a constant k for all v € V. They proved that if G is S-magic,
then the corresponding magic constant is unique. They proved that several families of
graphs are S-magic and that several families are not S-magic. They also determined the
set of all S-magic constants for certain classes of graphs for different label sets S.

For a natural number h, Salehi [2675] defines a graph G to be h-magic if there is a
labeling o from the edges of G' to the nonzero integers in Z, such that for each vertex
v in G the sum of all « values of edges incident to v is a constant (called the magic
sum indez) that is independent of the choice of v. If the constant is 0, G is called a
zero-sum h-magic graph. The null set of graph G is the set of all natural numbers h for
which G' admits a zero-sum h-magic labeling. In [2675] Salehi determines the null sets
for K,,, Kpmn, Cn, books, and cycles with a P, chord. Lin and Wang [1951] determine
the null sets of generalized wheels and generalized fans, and construct infinitely many
examples of Z,-magic graphs with magic sum zero and present some open problems.

In 2020, Kamatchi, Paramasivam, Prajeesh, Sabeel, and Arumugam [1569] introduced
the notion group vertex magic graphs as follows. For a simple undirected graph G and
an additive Abelian group A with identity 0, a mapping f from the vertices of G to the
nonzero elements of A is said to be an A-vertex magic labeling of G if there exists a 1 in A
such that w(v) = > f(u) taken over all u € N(v) is u for all vertices v of G. If G admits
such a labeling it is called an A-vertex magic graph. If G is an A-vertex magic for every
non-trivial Abelian group A, G is called a group vertex magic graph. They obtained some
necessary conditions for a graph to be group vertex magic and gave a characterization of
trees with diameter at most 4 that are Zy x Zs-vertex magic. In [1656] Karthik, Sabeel,
and Paramasivama provided some necessary conditions for the group vertex magicness
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of graphs with at least one pendant edge and for the group vertex magicness of product
graphs. They also characterized group vertex magicness of trees of diameter up to 5 for all
infinite Abelian groups with finitely many elements of finite order. Sabeel, Paramasivam,
Prajeesh, Kamatchi, and Arumugam [2665] characterized the Z; x Zs-vertex magicness
of any tree with diameter 5. They further characterized A-vertex magic trees of diameter
at most 5 for any finite abelian group A and proved that A-vertex magic graphs do not
possess any forbidden structures. They gave a method for constructing larger A-vertex
magic graphs from the existing ones. Balamoorthy, Bharanedhar, and Kamatchi [277]
obtained various results about the A-vertex magicness for graphs formed using joins,
tensor products, and lexicographic products of graphs. Kavitha and Stella Arputha Mary
[1678] say a vertex magic labeling of V} (Zs X Zs) is a hefty Vj-magic if its magic number
is 1. They proved regular graphs, K, (n > 3). vertex transitive graphs, and C,, x C,
are hefty V,-magic graphs and connected acyclic graphs are not Vj-magic graphs. Stella
Arputha Mary, Navaneetha Krishnan, and Nagarajan [2108] proved that triangular snakes,
books, the one-point union of the apexes of ¢ fans, and the splitting graph of paths, are
Zy,-magic graphs. In [1945] Liao and and Liu provided characterizations of unicyclic
graphs with diameter at most 4 that are A-vertex magic and a characterization of bicyclic
graphs of diameter 3 thatb are group vertex magic.

In 1976 Sedlacek [2733] defined a connected graph with at least two edges to be pseudo-
magic if there exists a real-valued function on the edges with the property that distinct
edges have distinct values and the sum of the values assigned to all the edges incident to
any vertex is the same for all vertices. Sedlacek proved that when n > 4 and n is even,
the Mobius ladder M,, is not pseudo-magic and when m > 3 and m is odd, C,, x Ps is
not pseudo-magic.

A wvertex magic total labeling of a graph with p vertices and ¢ edges is a bijection
from the union of the vertex set and edge set to the consecutive integers 1,2,...,p+ ¢q
with the property that for every vertex wu, the sum of the label of v and the labels of
the edges incident with w is a constant k. A vertex magic total labeling is said to be a-
vertex multiple magic if the set of the labels of the vertices is {a, 2a, ..., na} and is b-edge
multiple magic b-edge multiple magic if the set of labels of the edges is {b,20, ..., mb}.
Nagaraj, Ponnappan, and Prabakaran [2251] provide properties of a-vertex multiple magic
graphs and b-edge multiple magic graphs. In [3579] Zhang and Wang verify the existence
of E-super vertex magic total labeling for odd regular graphs containing a particular 3-
factor. Listiana, Darmaji, and Slamin [1959] investigated the existence of vertex magic
total labelings of directed sun graphs S,, = C,, ® K; and mS,,.

Kong, Lee, and Sun [1736] used the term “magic labeling” for a labeling of the edges
with nonnegative integers such that for each vertex v the sum of the labels of all edges
incident with v is the same for all v. In particular, the edge labels need not be distinct.
They let M(G) denote the set of all such labelings of G. For any L in M(G), they let
s(L) = max{L(e) | e € E'} and define the magic strength of G as m(G) = min{s(L) | L €
M(G)}. To distinguish these notions from others with the same names and notation,
which we will introduced in the next section for labelings from the set of vertices and
edges, we call the Kong, Lee, and Sun version the edge magic strength and use em(G)
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for min{s(L): L in M(G)} instead of m(G). Kong, Lee, and Sun [1736] use DS(k) to
denote the graph obtained by taking two copies of K and connecting the k pairs of
corresponding leafs. They show: for k > 1, em(DS(k)) = k — 1; em(P, + K;) = 1 for
k=1or2 em(P, + K;) = k if k is even and greater than 2, and 0 if k£ is odd and
greater than 1; for k > 3, em(W(k)) = k/2 if k is even and em(W(k)) = (kK — 1)/2
if kis odd; em(Py x Py) = 1, em(Py x P,) = 2if n > 3, em(P,, x P,) = 3 if m or
n is even and greater than 2; em(C’én)) = 1if n = 1 (Dutch windmill, — see §2.4), and
em(Cén)) = 2n — 1 if n > 1. They also prove that if G and H are magic graphs then
G x H is magic and em(G x H) = max{em(G),em(H)} and that every connected graph
is an induced subgraph of a magic graph (see also [891] and [932]). They conjecture that
almost all connected graphs are not magic.

In [1284] Ichishima, Lépez, Muntaner-Batle, and Takahashi introduce the parameter
I(n) as the minimum size of a graph G of order n for which all graphs of order n and size
at least [(n) have us(G) = 400, and provide lower and upper bounds for [(G). Imran,
Baig, and Fenovcikova, [1318] established that for n = 0 (mod 4), pus(Cp, x K3) < 3n/2—1.
Ichishima, Loépez, Muntaner-Batle, and Takahashi, improve this bound by showing that
is(n) + 1 when > 4 is even. Enomoto, Lladé, Nakamigawa, and Ringel [891] posed the
conjecture that every nontrivial tree is super edge-magic. They propose a new approach
to attack this conjecture. They believe that their approach may also help to resolve the
conjecture by Graham and Sloane that every nontrivial tree is harmonious [1147]. Huang,
Hanif, Siddiqui, and Nadeem, [1273] showed the super edge-magicness of certain types of
generalized combs and disjoint unions of generalized combs and stars.

Recall a lexicographic product of two graphs GG; and G5 is a graph that arises from G,
by replacing each vertex of G; by a copy of the G and each edge of G; with K, ,, where
n is the order of G3. Sun and Lee [3130] show that the Cartesian, conjunctive, normal,
lexicographic, and disjunctive products of two magic graphs are magic and the sum of
two magic graphs is magic. They also determine the edge magic strengths of the products
and sums in terms of the edge magic strengths of the components graphs. In [1878] Lee,
Saba, and Sun show that the edge magic strength of P¥ is 0 when k and n are both odd.

In [136] Akka and Warad define the super magic strength of a graph G, sms(G) as the
minimum of all magic constants ¢(f) where the minimum is taken over all super magic
labeling f of G if there exist at least one such super magic labeling. They determine
the super magic strength of paths, cycles, wheels, stars, bistars, P?, < Kj, : 2 > (the
graph obtained by joining the centers of two copies of K, by a path of length 2), and

For a simple graph G(V, E) a bijection f from VUE to {1,2,...,|V|+|E|} is said to be
edge-magic total labeling of G, if there exists an integer k such that f(u)+ f(uv)+ f(v) = k
for every edge uv € E. If, in addition, f(V) = {1,2,...,|V|}, f is said to be an super
edge-magic total labeling. Deeothi [795] investigated the super edge-magic total strength
of the family of unicyclic graphs having an odd cycle a varying number of pendant vertices
adjacent to each vertex.

A Halin graph ia a planar 3-connected graphs that consist of a tree and a cycle
connecting the end vertices of the tree. Let G be a (p,q)-graph in which the edges are
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labeled k, k+1,...,k+ ¢ — 1, where & > 0. In [1896] Lee, Su, and Wang define a graph
with p vertices to be k-edge-magic for every vertex v the sum of the labels of the incident
edges at v are constant modulo p. They investigate some classes of Halin graphs that
are k-edge-magic. Lee, Su, and Wang [1898] investigated some classes of cubic graphs
that are k-edge-magic andb provided a counterexample to a conjecture that any cubic
graph of order p = 2 (mod 4) is k-edge-magic for all k. Shiu and Lau [2912] gave some
necessary conditions for families of wheels with certain spokes missing to admit k-edge-
magic labelings.

Lau, Alikhani, Lee, and Kocay [1802] (see also [159]) show that maximal outerplanar
graphs of orders p = 4,5, 7 are k-edge magic if and only if £ = 2 (mod p) and determined all
maximal outerplanar graphs that are k-edge magic for k£ = 3 and 4. They also characterize
all (p,p — h)-graphs that are k-edge magic for h > 0 and conjecture that a maximal
outerplanar graph of prime order p is k-edge magic if and only if £ = 2 (mod p).

S. M. Lee and colleagues [1917] and [1849] call a graph G k-maygic if there is a labeling
from the edges of G to the set {1,2,...,k — 1} such that for each vertex v of G the sum
of all edges incident with v is a constant independent of v. The set of all k£ for which G
is k-magic is denoted by IM(G) and called the integer-magic spectrum of G. In [1917]
Lee and Wong investigate the integer-magic spectrum of powers of paths. They prove:
IM(P?) is {4,6,8,10,...}; for n > 5, IM(P?2) is the set of all positive integers except 2; for
all odd d > 1, IM(PY,) is the set of all positive integers except 1; IM(P}) is the set of all
positive integers; for all odd n > 5, IM(P?) is the set of all positive integers except 1 and
2; and for all even n > 6, IM(P?) is the set of all positive integers except 2. For k > 3 they
conjecture: IM(PF) is the set of all positive integers when n = k + 1; the set of all positive
integers except 1 and 2 when n and k are odd and n > k; the set of all positive integers
except 1 and 2 when n and k are even and k > n/2; the set of all positive integers except
2 when n is even and k is odd and n > k; and the set of all positive integers except 2
when n and k are even and k < n/2. In [1894] Lee, Su, and Wang showed that besides the
natural numbers there are two types of the integer-magic spectra of honeycomb graphs.
Fu, Jhuang and Lin [989] determine the integer-magic spectra of graphs obtained from
attaching a path of length at least 2 to the end vertices of each edge of a cycle.

In [1849] Lee, Lee, Sun, and Wen investigated the integer-magic spectrum of various
graphs such as stars, double stars (trees obtained by joining the centers of two disjoint
stars K ,,, and K, with an edge), wheels, and fans. In [2678] Salehi and Bennett report
that a number of the results of Lee et al. are incorrect and provide a detailed accounting
of these errors as well as determine the integer-magic spectra of caterpillars. Shiu and
Low [2929] determined the integer-magic spectra and null sets of the Cartesian product
of two trees.

Lee, Lee, Sun, and Wen [1849] use the notation C,,QC,, to denote the graph obtained
by starting with C,, and attaching paths P, to (), by identifying the endpoints of the
paths with each successive pairs of vertices of C,,. They prove that IM(C,,@QC,,) is the
set of all positive integers if m or n is even and IM(C,,QC,,) is the set of all even positive
integers if m and n are odd.

Lee, Valdés, and Ho [1905] investigate the integer magic spectrum for special kinds
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of trees. For a given tree T they define the double tree DT of T as the graph obtained
by creating a second copy 1™ of T" and joining each end vertex of T' to its corresponding
vertex in 7. They prove that for any tree T, IM(DT') contains every positive integer
with the possible exception of 2 and IM(DT') contains all positive integers if and only if
the degree of every vertex that is not an end vertex is even. For a given tree T they define
ADT, the abbreviated double tree of T', as the the graph obtained from DT by identifying
the end vertices of T" and T*. They prove that for every tree T', IM(ADT) contains every
positive integer with the possible exceptions of 1 and 2 and IM(ADT') contains all positive
integers if and only if 7" is a path.

Lee, Salehi, and Sun [1880] have investigated the integer-magic spectra of trees with
diameter at most four. Among their findings are: if n > 3 and the prime power factor-
ization of n — 1 = pi'py?---pi¥, then IM(K;,) = )N U poN U .-+ UpN (here p;N
means all positive integer multiples of p;); for m,n > 3, the double star IM(DS(m,m))
(that is, stars K, and K, that have an edge in common) is the set of all natural num-
bers excluding all divisors of m — 2 greater than 1; if the prime power factorization of
m—n = pi'py? - --p,* and the prime power factorization of n — 2 = pi*p3? - - - pi*, (the ex-
ponents are permitted to be 0) then IM(DS(m,n)) = A;UA,U---UA, where 4; = p; TN
ifr; >s;,>20and A;, =0 if s; = r; > 0; for myn > 3, IM(DS(m,n)) = 0 if and only
if m —n divides n — 2; if m,n > 3 and |m — n| = 1, then DS(m,n) is not magic. Lee
and Salehi [1879] give formulas for the integer-magic spectra of trees of diameter four but
they are too complicated to include here.

For a graph G(V,E) and a function f from the V to the positive integers, Salehi
and Lee [2682] define the functional extension of G by f, as the graph H with
V(H) = Ww| ve V(G)andi = 1,2,..., f(u)} and E(H) = U{uu,| ww € E(G),i =
1,2,...,f(u);j = 1,2,..., f(v)}. They determine the integer-magic spectra for Py, Pj,
and P4.

A reverse edge magic (REM) labeling of a graph G(V, E) with p vertices and ¢ edges
is a bijection f : V(G)UE(G) — {1,2,...,p+q} such that k = f(uv) — (f(u)+ f(v)) is a
constant k for any edge uv € E(G). A REM labeling f is called reverse super edge magic
(RSEM) labeling if f(V(G)) = {1,2,3,...,p} and f(E(G)) = {p+1,p+2,p+3,...,p+q}.
Reddy and Sharief Basha [2609] find some new classes of RSEM labeling and investigate
the connection between the RSEM labeling and different classes of labelings.

More specialized results about the integer-magic spectra of amalgamations of stars
and cycles are given by Lee and Salehi in [1879].

Table 5 summarizes the state of knowledge about magic-type labelings. In the table,
SM means semi-magic, M means magic, and SPM means supermagic. A question mark
following an abbreviation indicates that the graph is conjectured to have the corresponding
property. The table was prepared by Petr Kovar and Tereza Kovarova.
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Table 5: Summary of Magic Labelings

Graph Types Notes
K, M ifn=2 n>5[305
SPM forn>5iff n>5
n # 0 (mod 4) [3054]
Kon SM if n > 3 [3053]
Kon M if n > 3 [3053]
fans f, M iff n is odd, n > 3 [3053]
not SM if n > 2 [1076]
wheels W, M if n > 4 [3053]
SM if n =5 or 6 [1076]
wheels with one M if n=4,n>6 [3053]
spoke deleted
null graph with n vertices
Mébius ladders M, SPM if n > 3, n is odd [2733]
Cy X Py not SPM for n > 4, n even [2733]
CoK ] SPM if m >3, n>2[2908]
Kn,n,....n SPM n >3, p>>5and
———
p # 0 (mod 4) [2908]
composition of r-regular | SPM if n > 3 [2908]
SPM graph and K,
Ki[K,] SPM if k=3 or5 n=2orn odd [1249]
mK, , SPM for n > 2 iff n is even or
both n and m are odd [2905]
Qn SPM iff n=1orn > 2 even [133§]
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Table 5 — Continued from previous page

Graph Types Notes

Con X C,, SPM m =n or m and n are even [133§]
Cr % C,, SPM? for all m and n [1338]

connected (p, ¢)-graph M iff 5p/4 < q < p(p —1)/2 [3224]
other than P,

G M G| > 5,0 > 3 [3227]

G? M G # P5 and G does not,

have a 1-factor whose every edge
is incident with an
end-vertex of G [3227]

Ky mn M for all m, n [2759]
P? M for all n except 2, 3, 5 [2759], [1076]
G x H M iff G and H are magic [1736]

5.2 Edge-magic Total and Super Edge-magic Total Labelings

In 1970 Kotzig and Rosa [1743] defined a magic valuation of a graph G(V, E) as a bijection
f from VUE to {1,2,...,|V U E|} such that for all edges zy, f(x)+ f(y) + f(zy) is
constant (called the magic constant). This notion was rediscovered by Ringel and Lladé
[2626] in 1996 who called this labeling edge-magic. To distinguish between this usage from
that of other kinds of labelings that use the word magic we will use the term edge-magic
total labeling as introduced by Wallis [3407] in 2001. (We note that for 2-regular graphs
a vertex-magic total labeling is an edge-magic total labeling and vice versa.) Kotzig and
Rosa proved: K,,, has an edge-magic total labeling for all m and n; C), has an edge-
magic total labeling for all n > 3 (see also [1108], [2638], [542], and [891]); and the disjoint
union of n copies of P, has an edge-magic total labeling if and only if n is odd. They
further state that K, has an edge-magic total labeling if and only if n = 1,2,3,5, or 6
(see [1744], [755], and [891]) and ask whether all trees have edge-magic total labelings.
Wallis, Baskoro, Miller, and Slamin [3411] enumerate every edge-magic total labeling of
complete graphs. They also prove that the following graphs are edge-magic total: paths,
crowns, complete bipartite graphs, and cycles with a single edge attached to one vertex.
Enomoto, Llado, Nakamigana, and Ringel [891] prove that all complete bipartite graphs
are edge-magic total. They also show that wheels WW,, are not edge-magic total when n = 3
(mod 4) and conjectured that all other wheels are edge-magic total. This conjecture was
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proved when n = 0,1 (mod 4) by Phillips, Rees, and Wallis [2393] and when n = 6 (mod
8) by Slamin, Baca, Lin, Miller, and Simanjuntak [2996]. Fukuchi [995] verified all cases
of the conjecture independently of the work of others. Slamin et al. further show that
all fans are edge-magic total. In 2002 Lee and Kong [1845] conjectured that odd star
forests are super edge magic. In 2019 Cerioli, Fernandes, Lee, Lintzmayer, Mota, and
da Silva [657] proved this conjecture for odd symmetric star forests and proved that odd
uniform forests of catterpillars are edge-magic. Afzal, Ather, Baig, and Maheshwari [63]
analyzed pyramidion ladders and C,-books for their super edge-magicness and gave some
methods for finding new super edge-magic graphs from existing ones. In [785] Darmaji
and Saputro use G(+)Pn,(+)H (m > 2) to denote the graph obtained by taking one copy
of the graphs G, H, and P,,, then connecting one endpoint of P,, to all vertices of G' and
the other endpoint of P, to all vertices of H. For any super edge-magic total graphs G,
they provide some graphs H such that G(+)P,,(+)H is also super edge-magic total. They
further show how to construct a super edge-magic total graph from a super edge-magic
total graph by considering a super edge-magic labeling of the original graph. In [1291]
Ichishima and Muntaner-Batle study the super edge-magicness of graphs of order n with
degree sequences: 4,2,2,...,2. They also investigate the super edge-magic properties of
certain families of graphs.

In [1650] Kanwal, Riasat, Imtiaz, Iftikhar, Javed, and Ashraf define a fork as the graph
obtained by starting with three paths of length ¢ with vertices x; ;, 22, 23,1 < j <, a
single new edge x2 adjacent to zo 1, an edge joining z;; and x5, and an edge joining x93
and z3 ;. They gave super edge-magic total labelings and deficiencies of forks, the disjoint
union of a fork with a star, a bistar, and a path, and of trees obtained by starting with
two copies of Py and adding an edge joining the middle vertex of each path. The super
edge-magic total labeling strengths of forks and the trees are also determined. Girija
and Karthikeyan [1103] proved that 3 copies of the jelly fish graphs are super edge magic
graphs.

Inspired by Kotzig-Rosa’s notion, Enomoto, Lladé, Nakamigawa, and Ringel [891]
called a graph G(V, F) with an edge-magic total labeling that has the additional property
that the vertex labels are 1 to |V| a super edge-magic total labeling (SEMT). Kanwal and
Kanwal [1649] determined super edge-magic total labelings and deficiencies for forests
formed by two sided generalized combs, stars, combs, and banana trees. A two-sided
generalized comb C’bz,b, where b is odd, is obtained from a path P,,; by attaching two
paths P41)/2 to each of the vertices of degree two and one vertex of degree one of P, ;.
In [1645] Kanwal, Azam, and Iftikhar investigate the SEMT strength of generalized comb
and the SEMT labeling and deficiency of forests composed of two components, where
one of the components for each forest is a generalized comb and other component is star,
bistar, comb, or path. In [1647] Kanwal, Imtiaz, Iftikhar, Ashraf, Arshad, Irfan, and
Sumbal z studied the super edge-magic deficiency of paths, caterpillars, and the disjoint
union of a 2-sided generalized comb with a bistar. They also provide the super edge-magic
total strength for a 2-sided generalized comb. Javed, Riasat, and Kanwal [1366] study
super edge-magic total labeling and deficiencies of forests consisting of combs, generalized
combs, and stars. Their results provide the evidence to support a conjecture proposed
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by Figueroa-Centeno, Ichishima, and Muntaner-Bartle [937]. Cerioli, Fernandes, Lee,
Lintzmayer [656] proved certain forests of stars admit a super edge-magic labeling and
that certain forests of caterpillars admit an edge-magic labeling.

Baskoro, Sudarsana, and Cholily [512] provided some constructions of new super edge-
magic graphs from some old ones by attaching 1, 2, or 3 pendent vertices and edges. In
[1700] Kim introduces a new construction of new super edge-magic graphs by attaching
any number pendent vertices and edges under some conditions. In [785] Darmaji and
Saputro define a graph G(+)P,,(+)H where m > 2 as a graph obtained by taking one
copy of the graphs G and H and P,,, then connect an end point of P, to all vertices of
G and the other end P, to all vertices of H. For any super edge-magic total graphs G,
they provide some graphs H such that G(+)P,,(+)H is also super edge-magic total. They
further show how to construct a super edge-magic total graph from a super edge-magic
total graph by considering a super edge-magic labeling of the origin graph. One such
instance is (P, UmK;) + 2K;.

Ringel and Llado [2626] prove that a graph with p vertices and ¢ edges is not edge-
magic total if ¢ is even and p + ¢ = 2 (mod 4) and each vertex has odd degree. Ringel
and Llado conjecture that trees are edge-magic total. In [502] Baskar Babujee and Rao
show that the path with n vertices has an edge-magic total labeling with magic constant
(5n + 2)/2 when n is even and (5n + 1)/2 when n is odd. For stars with n vertices they
provide an edge-magic total labeling with magic constant 3n. In [904] Eshghi and Azimi
discuss a zero-one integer programming model for finding edge-magic total labelings of
large graphs.

Santhosh [2713] proved that for n odd and at least 3, the crown C, ® P, has an
edge-magic total labeling with magic constant (27n + 3)/2 and for n odd and at least 3,
C,, ® P; has an edge-magic total labeling with magic constant (39n + 3)/2. Ngurah and
Adiwijaya [2286] investigated whether various classes of chain graphs formed from ladders,
triangular ladders, diagonal ladders, Cy, and K, have an edge-magic or super edge-magic
labelings. Baig and Afzal [274] investigated the super edge-magicness of special classes of
graphs having maximum magic constant k£ = 3p.

In [955] Freyberg introduced a generalization of edge-magic total labeling that allows
multiple labels on the vertices or edges of a graph. He used this new labeling as a tool to
construct face-magic labelings of some infinite families of graphs. He then considered the
question “Given a graph G, for which a,b,c € {0,1} does G admit a face-magic labeling
of type (a,b,c)? He completely answered this question for two families of chained cycles,
ladders and subdivided ladders, fans and subdivided fans, and wheels and subdivided
wheels. See [956] for some corrections for these results. Freyberg [957] provided (1,1, 1)-
face-magic labelings for square tilings, hexagon tilings on a torus, and a special class of
triangle tilings on a cylinder.

Ahmad, Baig, and Imran [100] define a zig-zag triangle as the graph obtained from the

path x1,xs, ..., x, by adding n new vertices yi, 4o, . . ., ¥, and new edges Y11, YnTn_1; TiY;
for 1 <@ < n; yix;_1y;wiq for 2 < i < n — 1. They define a graph Cb,, as one obtained
from the path xy,xs,...,2, adding n — 1 new vertices y1,¥s,...,¥,—1 and new edges

yiTiy1 for 1 < ¢ < n — 1. The graph Cb} is obtained from the Cb, by joining a new
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edge z1y;. They prove that zig-zag triangles, graphs that are the disjoint union of a star
and a banana tree, certain disjoint unions of stars, and for n > 4, Cb} U Cb,_, are super
edge-magic total. Baig, Afzal, Imran, and Javaid [275] investigate the existence of super
edge-magic labeling of volvox and pancyclic graphs.

The super edge-magic deficiency of a graph G, denoted by ps(G), is either the minimum
nonnegative integer n such that GUn K is super edge-magic or 400 if there exists no such
n. Krisnawati, Ngurah, Hidayat, and Alghofari [1759] investigated the super edge-magic
deficiency of forests whose components are subdivided stars or paths. Imran, Afzal, and
Baig investigate the super edge-magic deficiency of volvox and dumbbell type graphs in
[1316]. Kanwal, Iftikhar, and Azam [1646] found super edge magic total labelings and
deficiencies of forests consisting of two components, where one of the components for each
forest is a generalized comb and the other component is a star, bistar, comb, or path.
They also investigated the super edge magic total strength of generalized combs.

Let G be a graph with p vertices with V(G) = {v1,va,...,v,} and let S,, be the star
with m leaves. If in GG, every vertex v; is identified to the center vertex of S,,,, for some
m; = 0, 1 <1< n, where S = K, then the graph obtained is denoted by G, m,,...m,)-
Let M(G) = {(m1,ma,...,mp) | Gimyms,..m,) is a super edge-magi