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Abstract

Let G be a graph with maximum degree ∆ ≥ 3 not equal to K∆+1 and let P be
a subset of vertices with pairwise distance, d(P ), between them at least 8. Let each
vertex x be assigned a list of colors of size ∆ if x ∈ V \P and 1 if x ∈ P . We prove
that it is possible to color V (G) such that adjacent vertices receive different colors
and each vertex has a color from its list. We show that d(P ) cannot be improved.
This generalization of Brooks’ theorem answers the following question of Albertson
positively: If G and P are objects described above, can any coloring of P in at most
∆ colors be extended to a proper coloring of G in at most ∆ colors?

We say that a vertex-coloring of a graph G = (V, E) is proper if the colors used on
adjacent vertices are distinct. For an assignment of a color set (typically called a list) l(x)
to each vertex x ∈ V , we say that vertices are colored from their lists by a coloring c if
c(x) ∈ l(x) for each x ∈ V ; c is called a list-coloring of G. A coloring c of V (G) extends a
coloring c′ of vertices in P if it is a proper coloring with c(x) = c′(x) for each x ∈ P . We
denote by dG(x) the degree of x in a graph G and by G[X] the subgraph of G induced by
a set of vertices X.

The classic Brooks’ theorem states that any simple connected graph G with maximum
degree ∆ can be colored properly in at most ∆ colors unless G = K∆+1 or G is an odd
cycle. Recently, Albertson posed the following question. Take a graph described above,
precolor a fixed set of vertices P in ∆ colors arbitrarily. Under what condition on P can we
extend that coloring to a proper coloring of G in at most ∆ colors? He asks whether this
condition is a large distance between the vertices in P . Albertson noticed though, that
the maximum degree of a graph should be at least three. Indeed, it is easy to see that one
cannot obtain a proper coloring of a path with an even number of vertices in two colors
if the end-points are precolored in the same color. Here, we show that if the maximum
degree is at least three, then there is a positive answer to Albertson’s question when the
pairwise distance, d(P ), between vertices of P is at least 8; moreover, this distance is
optimal. The color extension problem is closely related to the concept of a list-coloring
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of graphs. Indeed, we can reformulate Albertson’s question the following way. For set
S = {1, · · · , ∆}, let the vertices of P be assigned lists of single colors from S and let
every other vertex be assigned list S. Can G be properly list-colored from these lists if
d(P ) is large enough? We answer this question by presenting a more general result. Our
main tool is a corollary of the theorem about list-coloring of hypergraphs by Kostochka,
Stiebitz and Wirth [4] which was also investigated independently by Borodin. The list-
coloring version of Brooks’ theorem was considered much earlier by Vizing [5]. We need
a couple of definitions first. A block containing an edge e is a maximum 2-connected
subgraph containing that edge or an edge e itself if such 2-connected subgraph does not
exist. A separating vertex in a block is a vertex whose deletion disconnects the graph, i.e.,
a cutvertex of a graph. An end-block is a block with exactly one separating vertex. A
Gallai tree is a graph all of whose blocks are either complete graphs, odd cycles, or single
edges.

Theorem 1 (Kostochka, Stiebitz, Wirth). Let G = (V, E) be a connected graph. For
each x ∈ V , let l(x) be an assigned list of colors, |l(x)| ≥ d(x). If G is not list-colorable
from these lists then it is a Gallai tree and |l(x)| = d(x) for each x ∈ V .

Figure 1 depicts graphs illustrating the exactness of our results. Next we give a formal
description of graph G1 from the figure.

A general construction Consider ∆ copies of K∆+1 \ e, say B1, · · · , B∆, where the
deleted edge of Bi is uivi for each i = 1, · · · , ∆. Let B be a complete graph on vertices
w1, · · · , w∆. Then G1 is formed from a disjoint union of B, B1, · · · , B∆ and edges u1w1,
u2w2, · · · , u∆w∆. It is easy to see that the maximum degree of G1 is ∆ and G1 is not equal
to K∆+1. Assign a list {1} to each vertex in P and a list {1, · · · , ∆} to every other vertex.
Then, under any ∆-coloring c of Bis from the corresponding lists, c(ui) = c(vi) = 1. Thus
c(wi) 6= 1 for all i = 1, · · · , ∆. Since we need ∆ colors for B, all different from 1, we need
at least ∆ + 1 colors altogether to color G1.

Theorem 2. Let G be a graph with maximum degree ∆ ≥ 3, not equal to K∆+1. Let
P ⊆ V , d(P ) ≥ 8. Let vertices in P and V \ P be assigned arbitrary lists of sizes 1 and
∆ respectively. Then G can be properly colored from these lists.

Proof of Theorem 2. For each x ∈ V , let l(x) be an assigned list of colors. The general
idea of the proof is to list color all copies of K∆+1 \ e in G which share a vertex of degree
∆−1 with P and then use Theorem 1 to list-color the rest. Let G have copies B1, · · · , Bt

of K∆+1 \ e with uivi be the deleted edge, ui ∈ P for each i = 1, · · · , t. Note that all Bis
are vertex disjoint.

First we treat the case when ∆ ≥ 4. When ∆ = 3 we need some more details to
be considered separately. We shall color vertices of all Bis from their lists. For each
i = 1, · · · , t we delete l(ui) from the lists of vertices in Bi − {ui, vi} obtaining lists of size
at least ∆−1. The degree of each vertex in Bi −ui is ∆−1; moreover, the new lists have
size at least ∆− 1 on V (Bi)−{ui, vi} and ∆ on vi. Thus, by Theorem 1 we can properly
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Figure 1: Two graphs with maximum degree ∆, which are not properly colorable from
the list {1, · · · , ∆} assigned to all vertices of V \P and the list {1} assigned to all vertices
of P .

color Bi−ui from the above lists, obtaining a proper coloring of Bi from the original lists.
Let ai be a color of vi under some such coloring for each i = 1, · · · , t.

Now, we consider a new graph G1 obtained from G by deleting V (Bi) − {ui, vi}. Let
P1 = P ∪ {v1, · · · , vt}. Note that G1 does not have copies of K∆+1 \ e sharing a vertex of
degree ∆− 1 with P1, and each vertex ui or vi for i = 1, · · · , t is adjacent to at most one
vertex in G1. Now, we need to color G2 induced by V (G1) \ P1. We assign the new lists
to V (G2) as follows.

l2(x) =




l(x) \ l(ui) if xui ∈ E(G), xvi /∈ E(G),

l(x) \ {ai} if xvi ∈ E(G), xui /∈ E(G),

l(x) \ ({ai} ∪ l(ui)) if xui, xvi ∈ E(G),

l(x) \ l(p) if xp ∈ E(G), p ∈ P \ {u1, · · · , ut}.

Note that if x ∈ V (G2) is adjacent to more than one vertex of P1, these vertices must
be ui and vi for some i, so only one of the above cases can hold. Assume that G2 is
not properly colorable from the lists l2. Then, by Theorem 1 it is a Gallai tree with
dG2(x) = |l2(x)| for each x ∈ V (G2). Thus, dG2(x) = ∆, ∆ − 1 or ∆ − 2 when x is not
adjacent to any vertex in P1, when it is adjacent to one or two such vertices respectively.
Thus each vertex in G2 has degree at least 2.

We may assume that G2 is connected since we can color the connected components
separately. Let B be an end-block with a separating vertex x (if such exists) of G2. B is a
complete graph, or an odd cycle; moreover, |V (B)| ≥ 3. If B = G2 there must be an edge
between V (B) and P1 since G is connected, if B 6= G2 there is an edge between V (B)
and P1 since dB(x) < dG2(x). Let uv be an edge of B. If up, vq ∈ E(G) with p, q ∈ P1,
then either p = q or {p, q} = {ui, vi} for some i, otherwise the distance condition will
be violated. Moreover, since dG1(ui) ≤ 1 and dG1(vi) ≤ 1 for each i = 1, · · · , t, we have
that all vertices of B − x (or B if G2 = B) are adjacent to the same vertex p ∈ P , and
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p /∈ {u1, · · · , ut} ∪ {v1, · · · , vt}. Therefore dG2(v) = ∆ − 1 for each v ∈ V (B − x), (or
for each v ∈ V (B) if G2 = B), i.e., B = K∆. But then V (B) ∪ {p} induces K∆+1 \ e if
B 6= G2, a contradiction to the way we constructed G1 or, if B = G2, V (B)∪{p} induces
K∆+1 a contradiction to the condition of the theorem.

Now we treat the case when ∆ = 3. Assume, without loss of generality, that there are
indices 1 ≤ s′ < s ≤ t, vertices wi, i = 1, · · · , s and triangles Ti = wiw

′
iw

′′
i , i = s′+1, · · · , s

such that wi is adjacent to both ui and vi for i = 1, · · · , s′, and w′
iui, w

′′
i vi ∈ E(G) for

i = s′ + 1, · · · , s. Note that all these wi’s are distinct. For each i = 1, · · · , s′ let Li be
induced by V (Bi) and wi, for each i = s′+1, · · · , s, let Li be induced by V (Bi) and V (Ti),
and, finally, for each i = s + 1, · · · , t let Li = Bi. We properly color each Li, i = 1, · · · , t
from the original lists l(x) and assume that wi gets the color bi for i = 1, · · · , s and vi

gets the color ai for i = s + 1, · · · , t.
We create G1 from G by deleting vertices of Li −wi for all i = 1, · · · , s and vertices of

Bi − {ui, vi} for i = s + 1, · · · , t. Let P1 = (P ∩ V (G1)) ∪ {w1, · · · , ws} ∪ {vs+1, · · · , vt}.
Now, consider G2, the subgraph of G1 induced by V (G1) \ P1. Note that each vertex in
G2 has at most one neighbor in P1, otherwise we violate the distance condition. Again,
we create new lists for l2(x) for each vertex x of G2 as follows.

l2(x) =




l(x) \ l(ui) if xui ∈ E(G),

l(x) \ {ai} if xvi ∈ E(G),

l(x) \ {bi} if xwi ∈ E(G),

l(x) \ l(p) if xp ∈ E(G), p ∈ P, p 6= ui, vi, or wi for any i ∈ {1, · · · , t}.
Assume now that G2 is not colored properly from the lists l2. Then, by Theorem 1,

we have dG2(x) = |l2(x)| = 3 or 2. If G2 is a block B, then it must be an odd cycle with
all vertices adjacent to some vertices in P1. It is easy to see that then all the vertices
of G2 must be adjacent to the same p ∈ P1. In this case, we have B ∪ p induce K4, a
contradiction. If G2 has a cut-vertex, let B be an end-block with a separating vertex x. B
must be an odd cycle, either with all vertices in B − x being adjacent to the same vertex
in P and resulting in K4 \ e, or with V (B) − x = {y, z}, where y and z are adjacent to
ui and vi respectively for some i. In this case we get B = K3 and V (Bi)∪ V (B) induce a
graph isomorphic to some Lj , a contradiction to the way we constructed G2.
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