A note on graph coloring extensions and list-colorings

Maria Axenovich
Department of Mathematics Iowa State University, Ames, IA 50011, USA
axenovic@math.iastate.edu

Submitted: Oct 24, 2002; Accepted: Feb 10, 2003; Published: Mar 23, 2003
MR Subject Classifications: 05C15

Abstract

Let G be a graph with maximum degree $\Delta \geq 3$ not equal to $K_{\Delta+1}$ and let P be a subset of vertices with pairwise distance, $d(P)$, between them at least 8 . Let each vertex x be assigned a list of colors of size Δ if $x \in V \backslash P$ and 1 if $x \in P$. We prove that it is possible to color $V(G)$ such that adjacent vertices receive different colors and each vertex has a color from its list. We show that $d(P)$ cannot be improved. This generalization of Brooks' theorem answers the following question of Albertson positively: If G and P are objects described above, can any coloring of P in at most Δ colors be extended to a proper coloring of G in at most Δ colors?

We say that a vertex-coloring of a graph $G=(V, E)$ is proper if the colors used on adjacent vertices are distinct. For an assignment of a color set (typically called a list) $l(x)$ to each vertex $x \in V$, we say that vertices are colored from their lists by a coloring c if $c(x) \in l(x)$ for each $x \in V ; c$ is called a list-coloring of G. A coloring c of $V(G)$ extends a coloring c^{\prime} of vertices in P if it is a proper coloring with $c(x)=c^{\prime}(x)$ for each $x \in P$. We denote by $d_{G}(x)$ the degree of x in a graph G and by $G[X]$ the subgraph of G induced by a set of vertices X.

The classic Brooks' theorem states that any simple connected graph G with maximum degree Δ can be colored properly in at most Δ colors unless $G=K_{\Delta+1}$ or G is an odd cycle. Recently, Albertson posed the following question. Take a graph described above, precolor a fixed set of vertices P in Δ colors arbitrarily. Under what condition on P can we extend that coloring to a proper coloring of G in at most Δ colors? He asks whether this condition is a large distance between the vertices in P. Albertson noticed though, that the maximum degree of a graph should be at least three. Indeed, it is easy to see that one cannot obtain a proper coloring of a path with an even number of vertices in two colors if the end-points are precolored in the same color. Here, we show that if the maximum degree is at least three, then there is a positive answer to Albertson's question when the pairwise distance, $d(P)$, between vertices of P is at least 8 ; moreover, this distance is optimal. The color extension problem is closely related to the concept of a list-coloring
of graphs. Indeed, we can reformulate Albertson's question the following way. For set $S=\{1, \cdots, \Delta\}$, let the vertices of P be assigned lists of single colors from S and let every other vertex be assigned list S. Can G be properly list-colored from these lists if $d(P)$ is large enough? We answer this question by presenting a more general result. Our main tool is a corollary of the theorem about list-coloring of hypergraphs by Kostochka, Stiebitz and Wirth [4] which was also investigated independently by Borodin. The listcoloring version of Brooks' theorem was considered much earlier by Vizing [5]. We need a couple of definitions first. A block containing an edge e is a maximum 2-connected subgraph containing that edge or an edge e itself if such 2-connected subgraph does not exist. A separating vertex in a block is a vertex whose deletion disconnects the graph, i.e., a cutvertex of a graph. An end-block is a block with exactly one separating vertex. A Gallai tree is a graph all of whose blocks are either complete graphs, odd cycles, or single edges.

Theorem 1 (Kostochka, Stiebitz, Wirth). Let $G=(V, E)$ be a connected graph. For each $x \in V$, let $l(x)$ be an assigned list of colors, $|l(x)| \geq d(x)$. If G is not list-colorable from these lists then it is a Gallai tree and $|l(x)|=d(x)$ for each $x \in V$.

Figure 1 depicts graphs illustrating the exactness of our results. Next we give a formal description of graph G_{1} from the figure.

A general construction Consider Δ copies of $K_{\Delta+1} \backslash e$, say $B_{1}, \cdots, B_{\Delta}$, where the deleted edge of B_{i} is $u_{i} v_{i}$ for each $i=1, \cdots, \Delta$. Let B be a complete graph on vertices $w_{1}, \cdots, w_{\Delta}$. Then G_{1} is formed from a disjoint union of $B, B_{1}, \cdots, B_{\Delta}$ and edges $u_{1} w_{1}$, $u_{2} w_{2}, \cdots, u_{\Delta} w_{\Delta}$. It is easy to see that the maximum degree of G_{1} is Δ and G_{1} is not equal to $K_{\Delta+1}$. Assign a list $\{1\}$ to each vertex in P and a list $\{1, \cdots, \Delta\}$ to every other vertex. Then, under any Δ-coloring c of $B_{i} \mathrm{~s}$ from the corresponding lists, $c\left(u_{i}\right)=c\left(v_{i}\right)=1$. Thus $c\left(w_{i}\right) \neq 1$ for all $i=1, \cdots, \Delta$. Since we need Δ colors for B, all different from 1 , we need at least $\Delta+1$ colors altogether to color G_{1}.

Theorem 2. Let G be a graph with maximum degree $\Delta \geq 3$, not equal to $K_{\Delta+1}$. Let $P \subseteq V, d(P) \geq 8$. Let vertices in P and $V \backslash P$ be assigned arbitrary lists of sizes 1 and Δ respectively. Then G can be properly colored from these lists.

Proof of Theorem 2. For each $x \in V$, let $l(x)$ be an assigned list of colors. The general idea of the proof is to list color all copies of $K_{\Delta+1} \backslash e$ in G which share a vertex of degree $\Delta-1$ with P and then use Theorem 1 to list-color the rest. Let G have copies B_{1}, \cdots, B_{t} of $K_{\Delta+1} \backslash e$ with $u_{i} v_{i}$ be the deleted edge, $u_{i} \in P$ for each $i=1, \cdots, t$. Note that all $B_{i} \mathrm{~s}$ are vertex disjoint.

First we treat the case when $\Delta \geq 4$. When $\Delta=3$ we need some more details to be considered separately. We shall color vertices of all B_{i} s from their lists. For each $i=1, \cdots, t$ we delete $l\left(u_{i}\right)$ from the lists of vertices in $B_{i}-\left\{u_{i}, v_{i}\right\}$ obtaining lists of size at least $\Delta-1$. The degree of each vertex in $B_{i}-u_{i}$ is $\Delta-1$; moreover, the new lists have size at least $\Delta-1$ on $V\left(B_{i}\right)-\left\{u_{i}, v_{i}\right\}$ and Δ on v_{i}. Thus, by Theorem 1 we can properly

Figure 1: Two graphs with maximum degree Δ, which are not properly colorable from the list $\{1, \cdots, \Delta\}$ assigned to all vertices of $V \backslash P$ and the list $\{1\}$ assigned to all vertices of P.
color $B_{i}-u_{i}$ from the above lists, obtaining a proper coloring of B_{i} from the original lists. Let a_{i} be a color of v_{i} under some such coloring for each $i=1, \cdots, t$.

Now, we consider a new graph G_{1} obtained from G by deleting $V\left(B_{i}\right)-\left\{u_{i}, v_{i}\right\}$. Let $P_{1}=P \cup\left\{v_{1}, \cdots, v_{t}\right\}$. Note that G_{1} does not have copies of $K_{\Delta+1} \backslash e$ sharing a vertex of degree $\Delta-1$ with P_{1}, and each vertex u_{i} or v_{i} for $i=1, \cdots, t$ is adjacent to at most one vertex in G_{1}. Now, we need to color G_{2} induced by $V\left(G_{1}\right) \backslash P_{1}$. We assign the new lists to $V\left(G_{2}\right)$ as follows.

$$
l_{2}(x)= \begin{cases}l(x) \backslash l\left(u_{i}\right) & \text { if } x u_{i} \in E(G), x v_{i} \notin E(G), \\ l(x) \backslash\left\{a_{i}\right\} & \text { if } x v_{i} \in E(G), x u_{i} \notin E(G), \\ l(x) \backslash\left(\left\{a_{i}\right\} \cup l\left(u_{i}\right)\right) & \text { if } x u_{i}, x v_{i} \in E(G) \\ l(x) \backslash l(p) & \text { if } x p \in E(G), p \in P \backslash\left\{u_{1}, \cdots, u_{t}\right\} .\end{cases}
$$

Note that if $x \in V\left(G_{2}\right)$ is adjacent to more than one vertex of P_{1}, these vertices must be u_{i} and v_{i} for some i, so only one of the above cases can hold. Assume that G_{2} is not properly colorable from the lists l_{2}. Then, by Theorem 1 it is a Gallai tree with $d_{G_{2}}(x)=\left|l_{2}(x)\right|$ for each $x \in V\left(G_{2}\right)$. Thus, $d_{G_{2}}(x)=\Delta, \Delta-1$ or $\Delta-2$ when x is not adjacent to any vertex in P_{1}, when it is adjacent to one or two such vertices respectively. Thus each vertex in G_{2} has degree at least 2.

We may assume that G_{2} is connected since we can color the connected components separately. Let B be an end-block with a separating vertex x (if such exists) of $G_{2} . B$ is a complete graph, or an odd cycle; moreover, $|V(B)| \geq 3$. If $B=G_{2}$ there must be an edge between $V(B)$ and P_{1} since G is connected, if $B \neq G_{2}$ there is an edge between $V(B)$ and P_{1} since $d_{B}(x)<d_{G_{2}}(x)$. Let $u v$ be an edge of B. If $u p, v q \in E(G)$ with $p, q \in P_{1}$, then either $p=q$ or $\{p, q\}=\left\{u_{i}, v_{i}\right\}$ for some i, otherwise the distance condition will be violated. Moreover, since $d_{G_{1}}\left(u_{i}\right) \leq 1$ and $d_{G_{1}}\left(v_{i}\right) \leq 1$ for each $i=1, \cdots, t$, we have that all vertices of $B-x$ (or B if $G_{2}=B$) are adjacent to the same vertex $p \in P$, and
$p \notin\left\{u_{1}, \cdots, u_{t}\right\} \cup\left\{v_{1}, \cdots, v_{t}\right\}$. Therefore $d_{G_{2}}(v)=\Delta-1$ for each $v \in V(B-x)$, (or for each $v \in V(B)$ if $G_{2}=B$), i.e., $B=K_{\Delta}$. But then $V(B) \cup\{p\}$ induces $K_{\Delta+1} \backslash e$ if $B \neq G_{2}$, a contradiction to the way we constructed G_{1} or, if $B=G_{2}, V(B) \cup\{p\}$ induces $K_{\Delta+1}$ a contradiction to the condition of the theorem.

Now we treat the case when $\Delta=3$. Assume, without loss of generality, that there are indices $1 \leq s^{\prime}<s \leq t$, vertices $w_{i}, i=1, \cdots, s$ and triangles $T_{i}=w_{i} w_{i}^{\prime} w_{i}^{\prime \prime}, i=s^{\prime}+1, \cdots, s$ such that w_{i} is adjacent to both u_{i} and v_{i} for $i=1, \cdots, s^{\prime}$, and $w_{i}^{\prime} u_{i}, w_{i}^{\prime \prime} v_{i} \in E(G)$ for $i=s^{\prime}+1, \cdots, s$. Note that all these w_{i} 's are distinct. For each $i=1, \cdots, s^{\prime}$ let L_{i} be induced by $V\left(B_{i}\right)$ and w_{i}, for each $i=s^{\prime}+1, \cdots, s$, let L_{i} be induced by $V\left(B_{i}\right)$ and $V\left(T_{i}\right)$, and, finally, for each $i=s+1, \cdots, t$ let $L_{i}=B_{i}$. We properly color each $L_{i}, i=1, \cdots, t$ from the original lists $l(x)$ and assume that w_{i} gets the color b_{i} for $i=1, \cdots, s$ and v_{i} gets the color a_{i} for $i=s+1, \cdots, t$.

We create G_{1} from G by deleting vertices of $L_{i}-w_{i}$ for all $i=1, \cdots, s$ and vertices of $B_{i}-\left\{u_{i}, v_{i}\right\}$ for $i=s+1, \cdots, t$. Let $P_{1}=\left(P \cap V\left(G_{1}\right)\right) \cup\left\{w_{1}, \cdots, w_{s}\right\} \cup\left\{v_{s+1}, \cdots, v_{t}\right\}$. Now, consider G_{2}, the subgraph of G_{1} induced by $V\left(G_{1}\right) \backslash P_{1}$. Note that each vertex in G_{2} has at most one neighbor in P_{1}, otherwise we violate the distance condition. Again, we create new lists for $l_{2}(x)$ for each vertex x of G_{2} as follows.

$$
l_{2}(x)= \begin{cases}l(x) \backslash l\left(u_{i}\right) & \text { if } x u_{i} \in E(G) \\ l(x) \backslash\left\{a_{i}\right\} & \text { if } x v_{i} \in E(G) \\ l(x) \backslash\left\{b_{i}\right\} & \text { if } x w_{i} \in E(G), \\ l(x) \backslash l(p) & \text { if } x p \in E(G), p \in P, p \neq u_{i}, v_{i}, \text { or } w_{i} \text { for any } i \in\{1, \cdots, t\}\end{cases}
$$

Assume now that G_{2} is not colored properly from the lists l_{2}. Then, by Theorem 1 , we have $d_{G_{2}}(x)=\left|l_{2}(x)\right|=3$ or 2 . If G_{2} is a block B, then it must be an odd cycle with all vertices adjacent to some vertices in P_{1}. It is easy to see that then all the vertices of G_{2} must be adjacent to the same $p \in P_{1}$. In this case, we have $B \cup p$ induce K_{4}, a contradiction. If G_{2} has a cut-vertex, let B be an end-block with a separating vertex x. B must be an odd cycle, either with all vertices in $B-x$ being adjacent to the same vertex in P and resulting in $K_{4} \backslash e$, or with $V(B)-x=\{y, z\}$, where y and z are adjacent to u_{i} and v_{i} respectively for some i. In this case we get $B=K_{3}$ and $V\left(B_{i}\right) \cup V(B)$ induce a graph isomorphic to some L_{j}, a contradiction to the way we constructed G_{2}.

Acknowledgments The author is indebted to T.I. Axenovich, the Institute of Cytology and Genetics of Russian Academy of Sciences for support and hospitality, and to D. Fon Der Flaass for useful comments.

References

[1] Albertson, M., Open questions in Graph Color Extensions, Southeastern Conference on Graph theory, Combinatorics and Computing, Boca Raton, March 2002.
[2] Albertson, M., You can't paint yourself into a corner, JCTB, 78 (1998), 189-194.
[3] Brooks, R. L., On colouring the nodes of a network, Proc. Cambridge Philos. Soc. 37 (1941), 194-197.
[4] Kostochka, A. V., Stiebitz, M., Wirth, B., The colour theorems of Brooks and Gallai extended, Discrete Math. 162 (1996), 299-303.
[5] Vizing, V. G., Coloring graph vertices in prescribed colors, Diskr. Anal. (1976), 3-10 (in Russian).

