On hypergraphs with every four points spanning at most two triples

Dhruv Mubayi
Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL 60607*

Submitted: Jan 10, 2003; Accepted: Aug 25, 2003; Published: Sep 8, 2003
MR Subject Classifications: 05C35, 05C65, 05D05
Keywords: Hypergraph Turán numbers

Abstract

Let \mathcal{F} be a triple system on an n element set. Suppose that \mathcal{F} contains more than $(1 / 3-\epsilon)\binom{n}{3}$ triples, where $\epsilon>10^{-6}$ is explicitly defined and n is sufficiently large. Then there is a set of four points containing at least three triples of \mathcal{F}. This improves previous bounds of de Caen [1] and Matthias [7].

Given an r-graph \mathcal{F}, the Turán number $\operatorname{ex}(n, \mathcal{F})$ is the maximum number of edges in an n vertex r-graph containing no member of \mathcal{F}. The Turán density $\pi(\mathcal{F})=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, \mathcal{F})}{\binom{n}{r}}$. When $\pi(\mathcal{F}) \neq 0$, and $r>2$, determining $\pi(\mathcal{F})$ is a notoriously hard problem, even for very simple r-graphs \mathcal{F} (see [5] for a survey of results). Determining the Turán density of complete r-graphs is a fundamental question about set-systems. In fact, this is not known in any nontrivial case when $r \geq 3$.

Perhaps the most well-known problem in this area is to determine $\pi(\mathcal{K})$, where \mathcal{K} is the complete 3 -graph on four vertices (the smallest nontrivial complete r-graph). It is known that $5 / 9 \leq \pi(\mathcal{K}) \leq(3+\sqrt{17}) / 12=0.59359$. ., where the lower bound is due to Turán and the recent upper bound is due to Chung and $\mathrm{Lu}[2]$. However, even the Turán density of $H(4,3)$, the 3 -graph on four vertices with three edges, is not known. One could argue that this problem is even more basic, since $H(4,3)$ is the smallest (in the sense of both vertices and edges) 3 -graph with positive Turán density (for applications of $\pi(H(4,3))$ to computer science, see $[9,6])$.

[^0]The upper bound $\pi(H(4,3)) \leq 1 / 3$ was proved by de Caen [1], and this was improved to $1 / 3-10^{-10}$ by Matthias [7]. Frankl and Füredi [4] gave a fairly complicated recursive construction yielding $\pi(H(4,3)) \geq 2 / 7$. In an attempt to improve de Caen's bound, the author and Rödl [8] proved that $\pi\left(\left\{C_{5}, H(4,3)\right\}\right) \leq 10 / 31$, where C_{5} is the 3-graph 123, 234, 345, 451, 512.

In this note, we present a short argument that improves the best upper bound slightly.
Theorem $1 \pi(H(4,3)) \leq 1 / 3-\left(0.45305 \times 10^{-5}\right)$.
Proof: Let \mathcal{H} be a triple system on n vertices containing no copy of $H(4,3)$. Suppose that \mathcal{H} has $\alpha\binom{n}{3}$ edges. We will prove that $\alpha \leq 1 / 3-\left(0.45305 \times 10^{-5}\right)+o(1)$. The result then follows by taking the limit as $n \rightarrow \infty$.

Let $d_{x, y}$ denote the number of triples containing both x and y. For $i=1,2$, let q_{i} denote the number of sets of four vertices that induce exactly i edges. Then

$$
\alpha\binom{n}{3}(n-3)=|\mathcal{H}|(n-3)=q_{1}+2 q_{2} \quad \text { and } \quad \sum_{x, y}\binom{d_{x, y}}{2}=q_{2}
$$

Using these equalities, $\sum_{x, y} d_{x, y}=3 \alpha\binom{n}{3}$, and convexity of binomial coefficients, we obtain

$$
\begin{equation*}
\alpha\binom{n}{3}(n-3) \geq q_{1}+3 \alpha^{2}\binom{n}{3}(n-2)-3 \alpha\binom{n}{3} . \tag{1}
\end{equation*}
$$

Since $q_{1} \geq 0$, dividing (1) by n^{4} and taking the limit as $n \rightarrow \infty$ gives de Caen's bound $\alpha \leq 1 / 3$.

The improvement arises by proving that a positive proportion of quadruples contribute to q_{1}. By (1) this immediately lowers the bound of $1 / 3$. Our primary tool is a result of Frankl and Füredi [4] stating that every m vertex triple system, $m \equiv 0(\bmod 6)$, such that every four points span 0 or 2 edges, has at most $10(\mathrm{~m} / 6)^{3}$ edges (their result is quite a bit stronger, but this version suffices for our purposes). We will use this on subhypergraphs of \mathcal{H} to lower bound q_{1}. This technique, called supersaturation, was developed by Erdős and Simonovits [3] (although frequently used in earlier papers as well).

Claim: Suppose that $\delta>0$ and $12 \leq m \equiv 0(\bmod 6)$ satisfy

$$
\begin{equation*}
\frac{\delta\left(m^{2}-6 m\right)}{18(m-1)(m-2)}+\frac{5 m^{2}}{18(m-1)(m-2)} \leq \alpha \tag{2}
\end{equation*}
$$

Then at least $\delta\binom{n}{m}$ sets of m vertices of \mathcal{H} have greater than $10(m / 6)^{3}$ edges.
Proof of Claim: Otherwise, using the precise upper bound of [1] which states that $\operatorname{ex}(m, H(4,3)) \leq\left(m /(3(m-2))\binom{m}{3}\left(<10(m / 6)^{3}\right.\right.$ for $\left.m \geq 12\right)$, we obtain

$$
|\mathcal{H}|<\frac{\delta\binom{n}{m} \frac{m}{3(m-2)}\binom{m}{3}+(1-\delta)\binom{n}{m} 10(m / 6)^{3}}{\binom{n-3}{m-3}} \leq \alpha\binom{n}{3} .
$$

This contradiction proves the Claim.

For each m-set S to which the Claim applies, [4] implies that S contains a 4 -element set with precisely one edge. Consequently,

$$
q_{1} \geq \frac{\delta\binom{n}{m}}{\binom{n-4}{m-4}}=\frac{\delta}{\binom{m}{4}}\binom{n}{4} .
$$

Using this lower bound in (1) yields

$$
\alpha\binom{n}{3}(n-3) \geq \frac{\delta}{\binom{m}{4}}\binom{n}{4}+3 \alpha^{2}\binom{n}{3}(n-2)-3 \alpha\binom{n}{3}
$$

Dividing by $n\binom{n}{3}$ and taking the limit as $n \rightarrow \infty$ we get

$$
\alpha \geq \frac{\delta}{4\binom{m}{4}}+3 \alpha^{2}
$$

Choose $m=18$ and $\delta=68 \alpha / 3-15 / 2$. Then (2) is satisfied (with equality) and therefore

$$
\alpha \geq \frac{136 \alpha}{(18)_{4}}-\frac{45}{(18)_{4}}+3 \alpha^{2} .
$$

Solving this quadratic, we obtain $\alpha \leq 0.3333288028=1 / 3-\left(0.45305 \times 10^{-5}\right)$.

Remarks:

- In order to simplify the presentation, we have not optimized the constants in the proof. Moreover, the upper bound is certainly far from being sharp. The value of Theorem 1 lies only in presenting a short proof that improves the previous best upper bound for this basic problem.
- It is mentioned in [4] that Erdős and Sós made the following conjecture: if \mathcal{H} is an n vertex 3 -graph where $N(x)=\{y z: x y z \in \mathcal{H}\}$ is bipartite for every vertex x, then $|\mathcal{H}|<$ $n^{3} / 24$. There exist triple systems \mathcal{H} satisfying this property with $|\mathcal{H}|>(1 / 4-o(1))\binom{n}{3}$, so Erdős and Sós' conjecture, if true, would be asymptotically sharp. Since $H(4,3)$ has a vertex x where $N(x)$ is a triangle, $|\mathcal{H}| \leq \operatorname{ex}(n, H(4,3))$. As far as we know, this is the best known upper bound for \mathcal{H}. Thus Theorem 1 improves the upper bound for this problem as well.

Conjecture 2 For infinitely many n, the construction from [4] has the most edges among n vertex triple systems with no copy of $H(4,3)$. In particular, $\pi(H(4,3))=2 / 7$.

Acknowledgments

I thank Z. Füredi and a referee for informing me about [7].

References

[1] D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combinatoria 16 (1983) 5-10.
[2] F. Chung, L. Lu, An Upper Bound for the Turán Number $t_{3}(n, 4)$, J. Combin. Theory Ser. A 87 (1999), 381-389.
[3] P. Erdős, M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica, 3, (1983), 181-192.
[4] P. Frankl, Z. Füredi, An exact result for 3-graphs. Discrete Math. 50 (1984), no. 2-3, 323-328.
[5] Z. Füredi, Turán type problems. Surveys in combinatorics, 1991 (Guildford, 1991), 253-300, London Math. Soc. Lecture Note Ser., 166, Cambridge Univ. Press, Cambridge, 1991.
[6] Z. Füredi, R. H. Sloan, K. Takata, Gy. Turán, On set systems with a threshold property, submitted.
[7] U. Matthias, Hypergraphen ohne vollständige r-partite Teilgraphen (Doctoral Thesis, Heildelberg, 1994).
[8] D. Mubayi, V. Rödl, On the Turán number of triple systems, Journal of Combinatorial Theory, Ser. A, 100, (2002), 136-152.
[9] R. H. Sloan, K. Takata, Gy. Turán, On frequent sets of Boolean matrices, Annals of Math. and Artif. Int. 24 (1998), 193-206.

[^0]: *Research supported in part by the National Science Foundation under grant DMS-9970325

