Regular character tables of symmetric groups

Jørn B. Olsson

Matematisk Afdeling Universitetsparken 5, 2100 Copenhagen, Denmark olsson@math.ku.dk

Submitted: Apr 17, 2002; Accepted: Apr 15, 2003; Published: Apr 23, 2003 MR Subject Classification: 20C30

Abstract

We generalize a well-known result on the determinant of the character tables of finite symmetric groups.

It is a well-known fact that if X_n is the character table of the symmetric group S_n , then the absolute value of the determinant of X_n equals a_n , which is defined as the product of all parts of all partitions of n. It also equals b_n , which is defined as the product of all factorials of all multiplicities of parts in partitions of n. Proofs of this may be found in [6], [5]. We sketch a proof below.

In this brief note we present generalizations of this to certain submatrices of X_n (called regular/singular character tables). We get such character tables for each choice of an integer $\ell \geq 2$. This is a perhaps slightly surprising consequence of results in [4]. The above result is obtained when we choose $\ell \geq n$.

If μ is a partition of n we write $\mu \vdash n$ and then z_{μ} denotes the order of the centralizer of an element of (conjugacy) type μ in S_n . Suppose $\mu = (1^{m_1}, 2^{m_2}, ...)$, is written in exponential notation. Then we may factor $z_{\mu} = a_{\mu}b_{\mu}$, where

$$a_{\mu} = \prod_{i \ge 1} i^{m_i}, \quad b_{\mu} = \prod_{i \ge 1} m_i!$$

We define

$$a_n = \prod_{\mu \vdash n} a_\mu, \quad b_n = \prod_{\mu \vdash n} b_\mu.$$

Proposition 1: We have that $|\det(X_n)| = a_n = b_n$.

Proof: (See also [6].) By column orthogonality for the irreducible characters of S_n , $X_n^t X_n$ is a diagonal matrix with the integers $z_{\mu}, \mu \vdash n$ on the diagonal. It follows that in the

above notation $\det(X_n)^2 = \prod_{\mu \vdash n} z_\mu = a_n b_n$. By [2], Corollary 6.5 we have $|\det(X_n)| = a_n$. The result follows.

Another proof of the fact that $a_n = b_n$ for all n may be found in [3].

We choose an integer $\ell \geq 2$, which is fixed from now on. Several concepts below, like regular, singular, defect etc. refer to the integer ℓ .

A partition is called *regular* if no part is repeated ℓ or more times and is called *class regular*, if no part is divisible by ℓ . A partition which is not regular (class regular) is called *singular* (class singular). We let p(n) be the number of partitions of n. The number $p^*(n)$ of regular partitions of n equals the number of class regular partitions of n and then $p'(n) = p(n) - p^*(n)$ is the number of (class)singular partitions of n. The irreducible characters and the conjugacy classes of X_n are labelled canonically by the partitions of n. An irreducible character is called *regular* (singular), if the partition labelling it is regular (singular). A conjugacy class is called *regular* (singular), if the partition labelling it is class regular (class singular). The *regular character table* X_n^{reg} contains the values of regular characters on regular classes and the *singular character table* X_n^{sing} is defined analogously.

Let

$$a_n^{\text{creg}} = \prod_{\mu \text{ class regular}} a_\mu, \ b_n^{\text{creg}} = \prod_{\mu \text{ class regular}} b_\mu$$

and define a_n^{csing} and b_n^{csing} correspondingly such that a_n and b_n are factored into a "regular" and a "singular" component, $a_n = a_n^{\text{creg}} a_n^{\text{csing}}$, $b_n = b_n^{\text{creg}} b_n^{\text{csing}}$.

Our main results are:

Theorem 2: The regular character table satisfies: $|\det(X_n^{\text{reg}})| = a_n^{\text{creg}}$.

Theorem 3: The singular character table satisfies: $|\det(X_n^{\text{sing}})| = b_n^{\text{csing}}$.

Remark: In the case where $\ell = p$ is a prime number, we have that the absolute value of the determinant of the *Brauer character table* of S_n in characteristic p is also a_n^{creg} .

When $\mu \vdash n$, say $\mu = (i^{m_i(\mu)})$ we define the *defect* of μ by

$$d_{\mu} = \sum_{i,j\geq 1} \left\lfloor \frac{m_i(\mu)}{\ell^j} \right\rfloor,$$

where $|\cdot|$ means "integral part of."

We start the proof of Theorems 2 and 3 with a key result which may be of independent interest. It generalizes the identity $a_n = b_n$ above and is obtained by modifying an idea implicit in [6], see also [7], Exercise 26, p.48 and p.59. An unpublished note of John Graham communicated to the author by Gordon James has been useful. The case where ℓ is a prime is implicit in [5], where proofs are based on modular representation theory.

Theorem 4: We have that $b_n^{\text{creg}}/a_n^{\text{creg}} = \ell^{c_n}$, where

$$c_n = \sum_{\mu \text{ class regular}} d_{\mu}.$$

Proof: Consider the set \mathcal{T} of triples

$$\mathcal{T} = \{(\mu, i, j) | \mu \text{ class regular}, i, j \ge 1, m_i(\mu) \ge j \}.$$

We claim that

$$a_n^{\text{creg}} = \prod_{(\mu,i,j)\in\mathcal{T}} i, \quad b_n^{\text{creg}} = \prod_{(\mu,i,j)\in\mathcal{T}} j.$$

Indeed, for a fixed class regular μ and a fixed non-zero block $i^{m_i(\mu)}$ in μ , the elements $(\mu, i, 1), (\mu, i, 2), \dots, (\mu, i, m_i(\mu))$ are precisely the ones in \mathcal{T} starting with μ and i. These elements give a contribution $i^{m_i(\mu)}$ to a_n^{creg} and a contribution $m_i(\mu)!$ to b_n^{creg} .

We define an involution ι on \mathcal{T} as follows. If $(\mu, i, j) \in \mathcal{T}$ then ℓ does not divide i, since μ is class regular. Also note that μ contains at least j parts equal to i. Write $j = \ell^v j'$, where v is a non-negative integer and $\ell \nmid j'$. We refer then to j' as the ℓ' -part of j. Let $\mu_{(i,j)}$ be obtained from μ by replacing j parts equal to i in μ by $\ell^v i$ parts equal to j'. Then $\iota(\mu, i, j)$ is defined as $(\mu_{(i,j)}, j', \ell^v i)$, an element of \mathcal{T} . It is easily checked that ι^2 is the identity.

This shows that

$$a_n^{\operatorname{creg}} = \prod_{(\mu,i,j)\in\mathcal{T}} i = \prod_{(\mu,i,j)\in\mathcal{T}} j',$$

where as above j' is the ℓ' -part of j. Thus $b_n^{\text{creg}}/a_n^{\text{creg}} = \ell^c$, where c is the sum of the exponents of the powers ℓ^v of ℓ , occuring as factors in the integers of the product $\prod_{\mu \ class,i\geq 1} m_i(\mu)!$. If m is a positive integer, then there are $\lfloor m/\ell \rfloor$ numbers among $1, \dots, m$ which are divisible by ℓ , $\lfloor m/\ell^2 \rfloor$ numbers divisible by ℓ^2 , etc., giving a total exponent $\sum_{j\geq 1} \lfloor m/\ell^j \rfloor$ of ℓ in m!. Applying this fact to each $m_i(\mu)$, we get our result.

Let χ_{λ} denote the irreducible character of S_n , labelled by the partition $\lambda \vdash n$, and χ_{λ}^0 the restriction of χ_{λ} to the regular classes of S_n . In [4], Section 4, it was shown that there exist integers $d_{\lambda\rho}$ such that for each irreducible character χ_{λ} we have

$$\chi_{\lambda}^{0} = \sum_{\rho \text{ regular}} d_{\lambda\rho} \chi_{\rho}^{0}. \qquad (1)$$

It follows from (1) that for any λ the character

$$\psi_{\lambda} = \chi_{\lambda} - \sum_{\rho \text{ regular}} d_{\lambda\rho} \chi_{\rho} \qquad (2)$$

vanishes on all regular classes.

Proof of Theorem 2: The matrix form of (1) above may be stated as

$$Y_n = D_n X_n^{\text{reg}},$$

where Y_n is the $p(n) \times p^*(n)$ -submatrix of X_n containing the values of all irreducible characters on regular classes, and $D_n = (d_{\lambda\rho})$ is the "decomposition matrix". Consider the corresponding "Cartan matrix" $C_n = (D_n)^t D_n$. (For an explanation of the terms decomposition matrix and Cartan matrix we refer to [4].)

Column orthogonality shows that

$$(Y_n)^t Y_n = (X_n^{\operatorname{reg}})^t C_n X_n^{\operatorname{reg}} = \Delta(z_\mu).$$

Here Δ is a diagonal matrix. Taking determinants we see that

$$\det(X_n^{\operatorname{reg}})^2 \det(C_n) = \prod_{\mu \text{ class regular}} z_{\mu} = a_n^{\operatorname{creg}} b_n^{\operatorname{creg}} \qquad (3).$$

By Proposition 6.11 in [4] (see also [1], Theorem 3.3) we have that $det(C_n) = \ell^{c_n}$. It follows then from Theorem 4 that

$$\det(C_n) = b_n^{\text{creg}} / a_n^{\text{creg}}.$$
 (4)

From (3) and (4) we conclude $|\det(X_n^{\text{reg}})| = a_n^{\text{creg}}$, which proves the theorem.

Proof of Theorem 3: We assume that the rows and columns of X_n are ordered such that the regular characters and classes are the first. Then the submatrix consisting of the intersection of the first $p^*(n)$ rows and the first $p^*(n)$ columns in X_n is exactly X_n^{reg} . In fact X_n has a block form

$$X_n = \left[\begin{array}{cc} X_n^{\text{reg}} & A_n \\ B_n & X_n^{\text{sing}} \end{array} \right].$$

We do some row operations on X_n to get a new matrix \bar{X}_n as follows: For each singular partition λ' and each regular partition ρ , subtract $d_{\lambda'\rho}$ times the row labelled by ρ from the row labelled by λ' . Thus in \bar{X}_n the row labelled by the singular partition λ' contains the values of the character $\psi_{\lambda'}$ on all conjugacy classes. Since $\psi_{\lambda'}$ vanishes on regular classes \bar{X}_n looks like this:

$$\bar{X}_n = \left[\begin{array}{cc} X_n^{\text{reg}} & A_n \\ 0 & Q_n \end{array} \right]$$

for a suitable square p'(n)-matrix Q_n . We have then $\det(X_n) = \det(\bar{X}_n) = \det(X_n^{\text{reg}}) \det(Q_n)$, whence by Theorem 2

$$\det(Q_n) = a_n^{\text{csing}}.$$
 (5)

We now have that if λ', λ'' are singular partitions, then since $\psi_{\lambda'}$ vanishes on regular classes

$$\langle \psi_{\lambda'}, \chi_{\lambda''} \rangle = \sum_{\mu} \frac{1}{z_{\mu}} \psi_{\lambda'}(x_{\mu}) \chi_{\lambda''}(x_{\mu}) = \sum_{\mu' \text{ class singular}} \frac{1}{z_{\mu'}} \psi_{\lambda'}(x_{\mu'}) \chi_{\lambda''}(x_{\mu'}).$$

Here x_{μ} is an element in the conjugacy class labelled by μ . On the other hand by (2) $\langle \psi_{\lambda'}, \chi_{\lambda''} \rangle = \delta_{\lambda'\lambda''}$. Translating these equations in terms of matrices

$$Q_n \Delta(\frac{1}{z_{\mu'}}) (X_n^{\text{sing}})^t = E.$$

The electronic journal of combinatorics 10 (2003), #N3

Here again Δ is a diagonal matrix and E is a p'(n)-square identity matrix. Taking determinants

$$\det(X_n^{\text{sing}}) \ \det(Q_n) = \prod_{\mu' \text{ class singular}} z_{\mu'} = a_n^{\text{csing}} \ b_n^{\text{csing}}$$
(6)

Now Theorem 3 follows from (5) and (6).

It should be remarked that Theorems 2 and 3 also hold, if we replace the irreducible characters χ_{λ} by the Young characters η_{λ} .

Acknowledgements: The author thanks C. Bessenrodt and M. Schocker for discussions. This research was supported by the Danish Natural Science Foundation.

References

- [1] C. Bessenrodt, J.B.Olsson, A note on Cartan matrices for symmetric groups, preprint 2001. To appear in Arch. Math.
- [2] G. James, The representation theory of the symmetric groups, Lecture notes in mathematics 682, Springer-Verlag 1978.
- [3] M.S. Kirdar, T.H.R. Skyrme, On an identity relating to partitions and repetitions of parts. Canad. J. Math. 34 (1982), 194-195.
- [4] B. Külshammer, J.B. Olsson, G.R. Robinson, Generalized blocks for symmetric groups. Invent. Math. 151 (2003), 513-552.
- [5] J. Müller, On a remarkable combinatorial property, J. Combin. Theory Ser. A 101 (2003), 271-280.
- [6] F.W. Schmidt, R. Simion, On a partition identity. J. Combin. Theory Ser. A 36 (1984), 249-252.
- [7] R.P. Stanley, Enumerative combinatorics. Vol. 1. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, 1997.