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Abstract

We generalize a well-known result on the determinant of the character tables of
finite symmetric groups.

It is a well-known fact that if X, is the character table of the symmetric group 5,,, then
the absolute value of the determinant of X, equals a,, which is defined as the product
of all parts of all partitions of n. It also equals b,,, which is defined as the product of all
factorials of all multiplicities of parts in partitions of n. Proofs of this may be found in
6], [5]. We sketch a proof below.

In this brief note we present generalizations of this to certain submatrices of X, (called
regular/singular character tables). We get such character tables for each choice of an
integer ¢ > 2. This is a perhaps slightly surprising consequence of results in [4]. The
above result is obtained when we choose ¢ > n.

If p is a partition of n we write u = n and then z, denotes the order of the centralizer
of an element of (conjugacy) type p in S,. Suppose p = (1™ ,2™2 ...), is written in
exponential notation. Then we may factor 2, = a,b,, where

Ay = Himiv by = Hmi!

1>1 1>1
We define
a, = Hau, b, = Hbu'
pEn puEn

Proposition 1: We have that | det(X,,)| = a, = b,.

Proof: (See also [6].) By column orthogonality for the irreducible characters of S,,, X! X,
is a diagonal matrix with the integers z,, u = n on the diagonal. It follows that in the
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above notation det(X,)* = Hukn 2y = apby. By [2], Corollary 6.5 we have | det(X,)| = a,.
The result follows.

Another proof of the fact that a,, = b, for all n may be found in [3].

We choose an integer ¢ > 2, which is fixed from now on. Several concepts below, like
regular, singular, defect etc. refer to the integer ¢.

A partition is called regular if no part is repeated ¢ or more times and is called class
regular, if no part is divisible by ¢. A partition which is not regular (class regular) is called
singular (class singular). We let p(n) be the number of partitions of n. The number p*(n)
of regular partitions of n equals the number of class regular partitions of n and then
P (n) = p(n) — p*(n) is the number of (class)singular partitions of n. The irreducible
characters and the conjugacy classes of X,, are labelled canonically by the partitions of n.
An irreducible character is called regular (singular), if the partition labelling it is regular
(singular). A conjugacy class is called regular (singular), if the partition labelling it is class
regular (class singular). The reqular character table X'°® contains the values of regular
characters on regular classes and the singular character table X8 is defined analogously.

Let
aie I e o= II b

@ class regular @ class regular

and define aS™& and 0S¢ correspondingly such that a,, and b,, are factored into a “regular”
7 ” __ ,cre csin __ Jcreg jcsin,
and a “singular” component, a, = a; ¢ a;>"8, b, = b’ bPTE.
ur main resu re:
O a sults are

Theorem 2: The regular character table satisfies: | det(X}®)| = alree.
Theorem 3: The singular character table satisfies: | det(X518)| = pesine.

Remark: In the case where ¢ = p is a prime number, we have that the absolute value of
the determinant of the Brauer character table of S, in characteristic p is also a; ®.

When g b= n, say g = (i™W) we define the defect of u by

d=3 {ngu)J ,

,5>1

where [-] means “integral part of.”

We start the proof of Theorems 2 and 3 with a key result which may be of independent
interest. It generalizes the identity a, = b, above and is obtained by modifying an idea
implicit in [6], see also [7], Exercise 26, p.48 and p.59. An unpublished note of John
Graham communicated to the author by Gordon James has been useful. The case where
¢ is a prime is implicit in [5], where proofs are based on modular representation theory.

Theorem 4: We have that bS*8 /aSr®® = (°", where

Cp = Z d,.

p class regular
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Proof: Consider the set 7 of triples

T = {(u,i,5)|u class regular, i, j > 1,m;(n) > j}.

creg __ N creg S
o= I i we= 1 s

(ws1,5)ET (s5,9)ET

We claim that

Indeed, for a fixed class regular x and a fixed non-zero block ™" in p, the elements
(wyi,1), (py4,2), -+, (i, 3, m;(u)) are precisely the ones in 7 starting with p and i. These
elements give a contribution ™" to a® and a contribution m;(p)! to b,

We define an involution ¢ on 7 as follows. If (u,4,7) € 7 then ¢ does not divide
1, since p is class regular. Also note that p contains at least j parts equal to i. Write
Jj ="', where v is a non-negative integer and ¢ 1 j'. We refer then to j' as the ¢'-part of
J. Let p( 5y be obtained from p by replacing j parts equal to 7 in u by €7 parts equal to
J'. Then t(p,4,7) is defined as (p ), J', €7), an element of 7. It is easily checked that ¢?
is the identity.

This shows that

affeg = H 1= H jla
(wsi3)€T (w,i3)€T

where as above j' is the ¢-part of j. Thus b8 /a*¢ = (¢ where ¢ is the sum of
the exponents of the powers ¢V of ¢, occuring as factors in the integers of the prod-
uct [, gassis1 mi(p)!. If m is a positive integer, then there are |m/¢] numbers among
1,--+,m which are divisible by ¢, |m/¢%] numbers divisible by ¢?, etc., giving a total
exponent . |m/¢ | of £ in m!. Applying this fact to each m;(u), we get our result.

Let x» denote the irreducible character of S, labelled by the partition A F n, and x§
the restriction of x, to the regular classes of S,,. In [4], Section 4, it was shown that there
exist integers dy, such that for each irreducible character y, we have

X(/)\: Z d/\pxg- (1)

p regular

It follows from (1) that for any A the character

Yr = Xx— Z drpXp (2)

p regular

vanishes on all regular classes.

Proof of Theorem 2: The matrix form of (1) above may be stated as
Y, = D, X",

where Y,, is the p(n) x p*(n)-submatrix of X,, containing the values of all irreducible
characters on regular classes, and D,, = (dy,) is the “decomposition matrix”. Consider
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the corresponding “Cartan matrix” C,, = (D,)'D,. (For an explanation of the terms
decomposition matrix and Cartan matrix we refer to [4].)
Column orthogonality shows that

(Y2)'Yo = (X358) CLX0® = A(z,).
Here A is a diagonal matrix. Taking determinants we see that

det(X[%)*det(C,) = [ 2z =al=bge (3).

@ class regular

By Proposition 6.11 in [4] (see also [1], Theorem 3.3) we have that det(C,) = ¢°. It
follows then from Theorem 4 that

det(C,) = b8 Jqsr°s.  (4)

From (3) and (4) we conclude | det(X})| = a¢"*8, which proves the theorem.

Proof of Theorem 3: We assume that the rows and columns of X,, are ordered such that
the regular characters and classes are the first. Then the submatrix consisting of the
intersection of the first p*(n) rows and the first p*(n) columns in X, is exactly X . In
fact X,, has a block form

Xreg An

Xn = l Bnn Xzing :|
We do some row operations on X,, to get a new matrix X,, as follows: For each singular
partition A" and each regular partition p, subtract dy, times the row labelled by p from
the row labelled by X. Thus in X,, the row labelled by the singular partition A’ contains
the values of the character 1), on all conjugacy classes. Since 1, vanishes on regular

classes X, looks like this:
X, = { XyE A, }

0 Q@n

for a suitable square p'(n)-matrix Q,,. We have then det(X,,) = det(X,,) = det(X:®) det(Q,,),
whence by Theorem 2 .
det(Q,) = ay 8. (5)
We now have that if X', \” are singular partitions, then since 1), vanishes on regular
classes

n

1 1
< Py, X >= Z Z—iﬂ,\/(%)XA"(%) = Z ;wx(%')x,\”(%/)-
P

' class singular

Here z, is an element in the conjugacy class labelled by p. On the other hand by (2)
< W, Xar >= Oy . Translating these equations in terms of matrices

1

QA (—)(X™) = E.

/

m
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Here again A is a diagonal matrix and E is a p’(n)-square identity matrix. Taking
determinants

det(X5m) det(Qu) = [ aw =aSU bt (6)

n

' class singular
Now Theorem 3 follows from (5) and (6).

It should be remarked that Theorems 2 and 3 also hold, if we replace the irreducible
characters y, by the Young characters n,.
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