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Abstract

We generalize a well-known result on the determinant of the character tables of
finite symmetric groups.

It is a well-known fact that ifXn is the character table of the symmetric group Sn, then
the absolute value of the determinant of Xn equals an, which is defined as the product
of all parts of all partitions of n. It also equals bn, which is defined as the product of all
factorials of all multiplicities of parts in partitions of n. Proofs of this may be found in
[6], [5]. We sketch a proof below.

In this brief note we present generalizations of this to certain submatrices of Xn (called
regular/singular character tables). We get such character tables for each choice of an
integer ` ≥ 2. This is a perhaps slightly surprising consequence of results in [4]. The
above result is obtained when we choose ` ≥ n.

If µ is a partition of n we write µ ` n and then zµ denotes the order of the centralizer
of an element of (conjugacy) type µ in Sn. Suppose µ = (1m1 , 2m2, ...), is written in
exponential notation. Then we may factor zµ = aµbµ, where

aµ =
∏
i≥1

imi , bµ =
∏
i≥1

mi!

We define
an =

∏
µ`n

aµ, bn =
∏
µ`n

bµ.

Proposition 1: We have that | det(Xn)| = an = bn.

Proof: (See also [6].) By column orthogonality for the irreducible characters of Sn, X
t
nXn

is a diagonal matrix with the integers zµ, µ ` n on the diagonal. It follows that in the
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above notation det(Xn)2 =
∏

µ`n zµ = anbn. By [2], Corollary 6.5 we have | det(Xn)| = an.
The result follows.

Another proof of the fact that an = bn for all n may be found in [3].

We choose an integer ` ≥ 2, which is fixed from now on. Several concepts below, like
regular, singular, defect etc. refer to the integer `.

A partition is called regular if no part is repeated ` or more times and is called class
regular, if no part is divisible by `. A partition which is not regular (class regular) is called
singular (class singular). We let p(n) be the number of partitions of n. The number p∗(n)
of regular partitions of n equals the number of class regular partitions of n and then
p′(n) = p(n) − p∗(n) is the number of (class)singular partitions of n. The irreducible
characters and the conjugacy classes of Xn are labelled canonically by the partitions of n.
An irreducible character is called regular (singular), if the partition labelling it is regular
(singular). A conjugacy class is called regular (singular), if the partition labelling it is class
regular (class singular). The regular character table Xreg

n contains the values of regular
characters on regular classes and the singular character table Xsing

n is defined analogously.
Let

acreg
n =

∏
µ class regular

aµ, bcregn =
∏

µ class regular

bµ

and define acsing
n and bcsing

n correspondingly such that an and bn are factored into a “regular”
and a “singular” component, an = acreg

n acsing
n , bn = bcregn bcsing

n .
Our main results are:

Theorem 2: The regular character table satisfies: | det(Xreg
n )| = acreg

n .

Theorem 3: The singular character table satisfies: | det(Xsing
n )| = bcsing

n .

Remark: In the case where ` = p is a prime number, we have that the absolute value of
the determinant of the Brauer character table of Sn in characteristic p is also acreg

n .

When µ ` n, say µ = (imi(µ)) we define the defect of µ by

dµ =
∑
i,j≥1

⌊
mi(µ)

`j

⌋
,

where b·c means “integral part of.”
We start the proof of Theorems 2 and 3 with a key result which may be of independent

interest. It generalizes the identity an = bn above and is obtained by modifying an idea
implicit in [6], see also [7], Exercise 26, p.48 and p.59. An unpublished note of John
Graham communicated to the author by Gordon James has been useful. The case where
` is a prime is implicit in [5], where proofs are based on modular representation theory.

Theorem 4: We have that bcregn /acreg
n = `cn, where

cn =
∑

µ class regular

dµ.

the electronic journal of combinatorics 10 (2003), #N3 2



Proof: Consider the set T of triples

T = {(µ, i, j)|µ class regular, i, j ≥ 1, mi(µ) ≥ j}.

We claim that
acreg

n =
∏

(µ,i,j)∈T

i, bcregn =
∏

(µ,i,j)∈T

j.

Indeed, for a fixed class regular µ and a fixed non-zero block imi(µ) in µ, the elements
(µ, i, 1), (µ, i, 2), · · · , (µ, i,mi(µ)) are precisely the ones in T starting with µ and i. These
elements give a contribution imi(µ) to acreg

n and a contribution mi(µ)! to bcregn .
We define an involution ι on T as follows. If (µ, i, j) ∈ T then ` does not divide

i, since µ is class regular. Also note that µ contains at least j parts equal to i. Write
j = `vj′, where v is a non-negative integer and ` - j′. We refer then to j′ as the `′-part of
j. Let µ(i,j) be obtained from µ by replacing j parts equal to i in µ by `vi parts equal to
j′. Then ι(µ, i, j) is defined as (µ(i,j), j

′, `vi), an element of T . It is easily checked that ι2

is the identity.
This shows that

acreg
n =

∏
(µ,i,j)∈T

i =
∏

(µ,i,j)∈T

j′,

where as above j′ is the `′-part of j. Thus bcregn /acreg
n = `c, where c is the sum of

the exponents of the powers `v of `, occuring as factors in the integers of the prod-
uct

∏
µ class,i≥1mi(µ)!. If m is a positive integer, then there are bm/`c numbers among

1, · · · , m which are divisible by `, bm/`2c numbers divisible by `2, etc., giving a total
exponent

∑
j≥1bm/`jc of ` in m!. Applying this fact to each mi(µ), we get our result.

Let χλ denote the irreducible character of Sn, labelled by the partition λ ` n, and χ0
λ

the restriction of χλ to the regular classes of Sn. In [4], Section 4, it was shown that there
exist integers dλρ such that for each irreducible character χλ we have

χ0
λ =

∑
ρ regular

dλρχ
0
ρ. (1)

It follows from (1) that for any λ the character

ψλ = χλ −
∑

ρ regular

dλρχρ (2)

vanishes on all regular classes.

Proof of Theorem 2: The matrix form of (1) above may be stated as

Yn = DnX
reg
n ,

where Yn is the p(n) × p∗(n)-submatrix of Xn containing the values of all irreducible
characters on regular classes, and Dn = (dλρ) is the “decomposition matrix”. Consider
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the corresponding “Cartan matrix” Cn = (Dn)tDn. (For an explanation of the terms
decomposition matrix and Cartan matrix we refer to [4].)

Column orthogonality shows that

(Yn)tYn = (Xreg
n )tCnX

reg
n = ∆(zµ).

Here ∆ is a diagonal matrix. Taking determinants we see that

det(Xreg
n )2 det(Cn) =

∏
µ class regular

zµ = acreg
n bcregn (3).

By Proposition 6.11 in [4] (see also [1], Theorem 3.3) we have that det(Cn) = `cn. It
follows then from Theorem 4 that

det(Cn) = bcregn /acreg
n . (4)

From (3) and (4) we conclude | det(Xreg
n )| = acreg

n , which proves the theorem.

Proof of Theorem 3: We assume that the rows and columns of Xn are ordered such that
the regular characters and classes are the first. Then the submatrix consisting of the
intersection of the first p∗(n) rows and the first p∗(n) columns in Xn is exactly Xreg

n . In
fact Xn has a block form

Xn =

[
Xreg

n An

Bn Xsing
n

]
.

We do some row operations on Xn to get a new matrix X̄n as follows: For each singular
partition λ′ and each regular partition ρ, subtract dλ′ρ times the row labelled by ρ from
the row labelled by λ′. Thus in X̄n the row labelled by the singular partition λ′ contains
the values of the character ψλ′ on all conjugacy classes. Since ψλ′ vanishes on regular
classes X̄n looks like this:

X̄n =

[
Xreg

n An

0 Qn

]

for a suitable square p′(n)-matrixQn.We have then det(Xn) = det(X̄n) = det(Xreg
n ) det(Qn),

whence by Theorem 2
det(Qn) = acsing

n . (5)

We now have that if λ′, λ′′ are singular partitions, then since ψλ′ vanishes on regular
classes

< ψλ′ , χλ′′ >=
∑

µ

1

zµ
ψλ′(xµ)χλ′′(xµ) =

∑
µ′ class singular

1

zµ′
ψλ′(xµ′)χλ′′(xµ′).

Here xµ is an element in the conjugacy class labelled by µ. On the other hand by (2)
< ψλ′ , χλ′′ >= δλ′λ′′ . Translating these equations in terms of matrices

Qn∆(
1

zµ′
)(Xsing

n )t = E.
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Here again ∆ is a diagonal matrix and E is a p′(n)-square identity matrix. Taking
determinants

det(Xsing
n ) det(Qn) =

∏
µ′ class singular

zµ′ = acsing
n bcsing

n (6)

Now Theorem 3 follows from (5) and (6).

It should be remarked that Theorems 2 and 3 also hold, if we replace the irreducible
characters χλ by the Young characters ηλ.
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