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Abstract

In coding theory, Plotkin’s upper bound on the maximal cadinality of a code with
minimum distance at least d is well known. He presented it for binary codes where
Hamming and Lee metric coincide. After a brief discussion of the generalization
to g-ary codes preserved with the Hamming metric, the application of the Plotkin
bound to g-ary codes preserved with the Lee metric due to Wyner and Graham is
improved.

1 Introduction

Let K be a set of cardinality ¢ € N and d¥ : K x K — R be a metric. Consider R := K"
with n € N and d®((vy, ..., v,), (w1, ..., wy)) := Y0y d¥ (vs, w;). Then (K, d¥) and (R, d")
are finite metric spaces.

A subset C' C R is called a (block) code of length n. If |C| > 2 then its minimum
distance is defined by d(C') := min{d®(v, w) € RT|v,w € C and v # w}. The observation
of the metric properties of (R, d®) and of its subsets is an essential part of coding theory.
The value u(R, d%, d) (or briefly u(d)), defined as the maximal cardinality of a code C' C R
with minimum distance d(C') > d, is frequently considered.

The determination of u(d) is a fundamental and often unsolved problem but some
lower and upper bounds are well known. This paper deals with the following condition on
the parameters of a code which gives Plotkin’s upper bound on u(d). Similar formulations
are given by Berlekamp [1] and Raduica [8].

Let d >0 and uw € N\ {1}. Put J :={0,...,u — 1}. If u(d) > u then

d@) Snmax{ > de%”,v%’“n(v%O%...,v§“‘1>>eK“}=: nPucary(u). (1)

{o.k}rCT

This condition is easy to prove by estimating >y, ,ycc d™ (v, w).

THE ELECTRONIC JOURNAL OF COMBINATORICS 10 (2003), #N6 1



If instead of Py qx)(u) an upper bound @ qx)(u) is known then inequality (1) can
be replaced by

() < Qa0 ©)

The most common finite metric spaces in coding theory are the (n-dimensional g-ary)
Hamming spaces (R, dy). Here, the Hamming metric can be introduced by

n

di (1, ooy 0n), (W1, ooy wy)) =D dp(vi, w;)

i=1

and

Furthermore, A,(n,d) is usually used instead of u(R, dg, d).
Other common finite metric spaces in coding theory consider R = K" with K = Z/qZ
together with the Lee metric d;, which can be introduced by

dL((Ul, ceey Un), (U)l, ceey U}n)) = zn;dL(Ui, U}Z)

and
dp(vi, w;) = min{|v; —wy|,q — |v; — w;|}. (3)

Whenever, like on the right-hand side of equation (3), an order < is used in Z/pZ, their
elements have to be represented by elements of {0,...,p — 1} C Z. The spaces (R,d})
should be called Lee spaces.

In case of ¢ < 3, the metrics dy and dj, are identical. Lee [3] noticed that also the
case ((Z/AZ)",dr) can be reduced to ((Z/2Z)*", dy), using the transformation 0 — (0, 0),
1+—(0,1),2+(1,1), 3+ (1,0). The pathological case ¢ = 1 is usually omitted.

After a brief discussion of the Plotkin bound in Hamming spaces, the paper considers
this bound in Lee spaces.

2 Hamming Spaces

Plotkin [6] introduced his bound in case of ¢ = 2 where Hamming and Lee metric coincide.
In terms of condition (1), he used Py’ (u) := Pio},a,)(u) = [*3](u — [“51]) and proved
the existence of an m € N with

2d
Ay(n,d) <2m < 5

(4)

—n

if 2d > n. MacWilliams/Sloane [5] mentioned in this case the equivalent bound

Ag(n,d) <2 {Md_nJ . (5)
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Berlekamp [1] considered the generalization to g-ary Hamming spaces. In terms of
Pl = Pz, and QY he showed P/'(u) < QL (u) = T‘Q(QL;I). This result yields the

bound

d
Ag(n,d) < i

<———— if dg>n(g—1).
dg —n(q—1) ( )

Quistorff [7] determined

riw = (3) -o("3 ") - - (5) )

if u = aq+ b with a,b € Ny and b < ¢. An equivalent statement can be found in
Bogdanova et al. [2]. The results (1) and (6) imply e.g. the tight upper bound A3(9,7) < 6.
Vaessens/Aarts/Van Lint [9] formerly mentioned this and similar examples for ¢ = 3 as
an implication of Plotkin [6] and also solved the case @ = b = 1 in (6) with arbitrary
g € N\ {1}. Mackenzie/Seberry’s [4] bound on Aj(n,d) with 3d > 2n is incorrect. The
adequate use of their method leads to

d d 2
< — — 1
Ag(n’d>_max{3{3d—2nJ’3{3d—2n 3J—|—1} if 3d>2n

which is equivalent to the application of (6).

3 Lee Spaces

Put Pl (u) := Pz/qz,4;)(u). Wyner/Graham [10] proved

8q
w2 e
=q if ¢ is even

{ we’-1) if ¢ is odd

as an application of the Plotkin bound in Lee spaces, cf. also Berlekamp [1]. The stronger
inequality

Pl (u) < |Q (u)] (7)

follows by definition. In order to improve formula (7), some preparation is necessary.

Lemma 1 Let q,u € N\ {1} and m € {1,...,u —1}. Let J := Z/uZ and vY) € Z/qZ
with j € J and v9) < v® for j < k. Then

Z dL(v(j), U(j+m)) < mg (8)

j€J
and equality holds in estimation (8) iff

pU+m) — g0) ifj<u—m

) plitm)y —
dp (v, v )—{q+v(j+m>_v(j> ifj>u—m

18 valid.
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Proof:

Y < g0 (G+1)

T

jeJ\{u—1}

v

ZdL €]

Jj€J

and hence

plUt+m) ) dL(v(j“), U(J’+l+1))

ZdL (J

JjeJ

dL(v(j), U(j+1))

IN

<

All estimates turn out to be equalities iff condition (9) is valid.
Put

u?—1

if v is odd
J if u is even

—Lg
u(u—2)
8

g

q"’_%b

u(u 2)

with u € N\ {1}. Clearly, %

Theorem 2 Let q,u € N\ {1}. Then P} (u) < N} (u) holds true.

Proof: Let v
] <k.

(i) Let u be odd. Then

u—1

Z dL(v(j),v(k)

{j.k}CJ m=1jeJ

IN

3

follows by Lemma, 1.

(ii) Let u be even. Then

3 dL(v(j), U(kr))

{4,k}cJ VISV AS

IN

(u)

follows by Lemma, 1.
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) € Z/qZ with j € J := Z/uZ. Without loss of generality, let v

dL(U(j)’U(jﬁLm))jL 3 dL(U(J

_ o) =g

€ Ny if u is even.

) < ) for

2
S dL(v(j), plTm)y

),v(”%))



Hence, in both cases P (u) < N} (u) is valid. O
Theorem 2 improves formula (7) in many cases. E.g. N¥(3) =8 < 9 = |Q(3)] and
NE(6) =39 <40 = |Q5(6)] hold true.
The following statements will prove coincidence between P (u) and N (u) if ¢ is odd
or u is small, relative to ¢. Put f(u) := 1 if u is odd and f(u) := 2 if u is even.

Lemma 3 Let g,u € N\ {1}. Let q be even or f(u)g > u—1. Let |2], %] € Z/qZ
with j,k:=7+m € Z/uZ and 1 <m < L“T’lj as well as 0 < j, k < u. Put

ke _ | 5 ifj<u—m
u | q+L%j if § > u—m.

Then dp ([ 2], |%]) = | %] — | 2] < [4] is valid.

u u

Proof: It holds true that {UqJ < W and |4] > de=lu=l),

(i) Let ube odd. Then | 52| — 4] < 20D | — (4 4 1)(1— 1)]. It ¢ is even then

- u

812 < 19). q = u—L then [22] =12 < |(3+1)35) = |45 k) < 14).

(ii) Let u be even. Then {%J [ &) < LMJ = [(£+1)— 2| If g is even

| < | - A < ().

Hence, dp ([ 2], | %)) = [22] — | L]. O

N

then {%J — L%j < [4]. If 2¢ > u — 1 then {%J — L

2 [3

IN

b |2 =2>1=|%] and d (%], |¥]) = 1. A similar

Lemma 4 Let q,u € N\ {1} and u be even. Let |L], |2 | € Z/qZ with j, k= j+ % €
Z/uZ and 0 < j <% <k <wu. Then dr(|2], %)) = | 4] is valid.

u

| I

Proof: It holds true that w < quj < (jJru%)q and jqf(;kl) < qu < ;q Hence,
15 = [ kJ 4+t <[5 ] and g — [52) + [%2] < [+ 5] < [%7). This yields
dr(i2), (B = |g). O
Theorem 5 Let q,u € N\ {1}. Let q be even or f(u)q > u—1. Then Pf(u) = N (u).

Proof: Put vV) := |L] for j € J := Z/uZ with 0 < j < u.
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(i) Let u be odd. Then

by Lemma 1 and 3.

(ii) Let u be even. Then

Piuw) > > dy(?,o®)

{g,k}cJ

-1

- ZZdL(U(j),U(j+m))+ Z dL(U(j),U(j+%))

m=1jeJ JET <Y
_ L
- Nq (’LL)
by Lemma 1, 3 and 4.

SIS

Theorem 2 completes the proof. O

If u is considerable greater than ¢, the Plotkin bound is usually weak and other well
known upper bounds, e.g. the Hamming bound, give stronger results. Hence, it seems
not to be fatal that P (u) is not determined in all these cases. The final theorem gives
at least a lower bound on PqL(u). According to Theorem 5, it is sufficent to consider only
odd values of ¢q. The following convention is used. Extending inequality (1) by u € {0,1},
one gets P qx)(u) = 0 and hence P*(0) = PF(1) = 0.

Theorem 6 Let q,u € N\ {1} and q be odd. Let w = aq+ b with a,b € Ny and b < q.
Then
¢ -1

PX(u) > a(u+b) 3

q

+ PX(b) (10)

Proof: Put J; := {0, ..., — 1} x {s} with s € {0,...,a — 1} as well as J, := {(|£],a)|j €
{0,....,6— 1}}. Put v :=r for all (r,5) € J := ", Js. Using the proof of Theorem 5,
it follows that

Z dL(U(j)aU(k)) =a’ Z dL(v(j),v(k)) = aQPqL(q)
(kU Js {5k} o
and |
> di(?,0M) = PE(b)

{4:k}C o
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as well as

q%l q2 1
> dr, (v, 0®) = 2ab> " i = ab
jelU') Jakeda =0
Hence,
2
, -1
Pru)y> Y dp(w9,o™) = a(u+ b)? o+ PO
{ikyc
is valid. O

One might conjecture equality in (10). The combination of the formulas (7) and (10)
proves e.g. PF(5) = |Q4(5)| =8 < 9= NJ(5) and Pf(8) = |Qk(8)] =21 < 22 = N&(8).
For some applications, let u(d) > u € N\ {1}.

(i) Let u = 3. Inequality (2) and Theorem 2 imply the condition 3d < gn. Theorem 5
shows that inequality (1) cannot improve this condition.

(ii) Let w =4 and use (2). If ¢ is even then 3d < gn follows again. If ¢ is odd then the
stronger condition 6d < (2¢ — 1)n follows. In both cases, an improvement by (1) is
impossible.

(i) Let u = 5. Inequality (2) implies 10d < 3¢gn. Only in case of ¢ = 3, an improvement
by (1) is possible: 5d < 4n.

(iv) Let ¢ be even and u be odd. Then inequality (1) implies the same condition for u
. u -1 L u+1 -1 L
and u + 1, since (2) Py (u) = ( 5 ) Pr(u+1).

2 2 q
ity (1) turns out to be a tautology iff 4d < ¢n.

(v) Let ¢ be even. Then (u)iquL(u) > 1 and lim, (u)ilPL(u) = 4. Hence, inequal-
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