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Abstract

Let 7(G) be the domination number of a graph G, and let g (G) be the maximum
number of vertices in G, no two of which are at distance < k in G. It is easy to
see that v(G) > a2(G). In this note it is proved that v(G) is bounded from above
by a linear function in ag(G) if G has no large complete bipartite graph minors.
Extensions to other parameters ay(G) are also derived.

1 Introduction and main results

Let G be a finite undirected graph. A graph H is a minor of G if it can be obtained
from a subgraph of G by contracting edges. The distance distg(x,y) in G of two vertices
x,y € V(G) is the length of a shortest (z,y)-path in G. The distance of a vertex z from
aset A C V(G) is min{distg(z,a) | a € A}.

For a set A C V(G), G(A) denotes the subgraph of G induced by A. If k is a
nonnegative integer, we denote by Ny (A) the set of all vertices of G which are at distance
< k from A. The set A is a k-dominating set in G if Ni(A) = V(G). The cardinality
of a smallest k-dominating set of G is denoted by vx(G). A vertex set Xo C V(@) is an
ag-set if no two vertices in Xy are at distance < k in G. Let ay(G) denote the cardinality
of a largest ag-set of G. Observe that v(G) = 71(G) and a(G) = a1(G) are the usual
domination number and the independence (or stability) number of G. We refer to [3] for
further details on domination in graphs.
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It is clear that v4(G) > agi(G). On the other hand, for any r there is a graph such
that ay11(G) = 1 and 74(G) > r. In order to see this, let H,, be the Cartesian product
of k + 1 copies of the complete graph K,. Then any two vertices of H, have distance
at most k 4+ 1 in H,. Therefore, ay1(H,) = 1. Since degy (z) = (k+ 1)(n — 1) and
\V(H,)| = n**1 it follows that v,(H,) > n/(k + 1)*. So, vx(H,) > rif n > r(k + 1)*.

The main result of the present note is the following theorem which gives a linear upper
bound on v(G) in terms of oy, (G), k < m < 2(k + 1), in any set of graphs with a fixed
excluded minor.

Theorem 1.1 Let k > 0 and m > 1 be integers such that k < m < %(k +1). If
Y(G) > 2mr + (¢ — 1)(mr —r +1))an(G) — 2mr +1r + 1, then G has a K, ,-minor.

Our original motivation was the case when £k =1 and m = 2.

Corollary 1.2 Ifv(G) > (4r+ (¢ —1)(r+1))as(G) — 3r+ 1, then G has a K, ,-minor.
By excluding K3 3-minors, we get:

Corollary 1.3 If G is a planar graph, then v(G) < 20a3(G) — 9.

The existence of a linear bound 7(G) < c1a2(G)+ ¢, for planar graphs was conjectured
by F. Géring (private communication) who proved such a bound for plane triangulations.

An improvement of a very special case of Corollary 1.3 was obtained by MacGillivray
and Seyffarth [4] who proved that a planar graph of diameter at most 2 has domination
number at most three. Observe that a graph G has diameter at most 2 if and only if
a3(G) = 1. They extend this result to planar graphs of diameter 3 by using an observation
that in every planar graph of diameter 3, as(G) < 4. See also [2] for further results in
this direction.

Corollary 1.3 can be generalized to graphs on any surface. Since the graph K3 cannot
be embedded in a surface of Euler genus g < (k — 3)/2 the following bound holds:

Corollary 1.4 Suppose that G is a graph embedded in a surface of Fuler genus g. Then
Y(G) <4(29 +5)aa(G) — 9.

The special case of Theorem 1.1 when £ = 0 and m = 1 is also interesting. The
proof of Theorem 1.1 in this special case yields an even stronger statement since the
sets Aj,..., A, in that proof are mutually at distance 1 and hence, in the constructed
minor K ,, any two of the r vertices in the second bipartition class are adjacent. Since
7(G) = |V(G)], the following result is obtained:

Corollary 1.5 Let K;r be the graph obtained from K,, by adding the r-clique on the
vertex set of the bipartition class of cardinality r. Suppose that K is not a minor of G.

q,r
Then
- V(G| +r

Gz o T
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Duchet and Meyniel [1] obtained a special case of Corollary 1.5 when ¢ < 1. (Note
that K;,_, = Ky, = K,.) They proved that in a graph G without K, minor

V(G| +r—1
a(e) > MOIEr -1 0

As it turns out, our proof of Theorem 1.1 restricted to this special case is quite similar to
Duchet and Meyniel’s proof.

Although Theorem 1.1 does not work for the case &k = 1 and m = 3, the following
result can be used to get such an extension:

Corollary 1.6 Let k > 0 be an integer and let G be a graph. Let r be the largest integer
such that K, is a minor of G. Then

aok(G) < 7r(2a0,41(G) — 1).

Proof. Let S be a maximum ag-set in G. Define a graph H with V(H) = S in which
two vertices x,y are adjacent if and only if distg(z,y) = 2k + 1. Suppose that K is a
subgraph of H. Let K’ be a subgraph of G obtained by taking vertices in V(K) and, for
each edge xy of K, adding a path of length 2k + 1 in GG joining x and y. Since all such
paths are geodesics of odd length 2k + 1, they cannot intersect each other. This implies
that K’ is a subdivision of K. In particular, if H has a K, minor, so does G.

Clearly, a(H) < agr41(G). Since |V(H)| = a9 (G), (1) implies that H contains K,
minor, where r > a9, (G)/(209k4+1(G) — 1). Then also G contains a K, minor, and this
completes the proof. -

The relation between ag and a1 in Corollary 1.6 cannot be extended to aggy1 and
Qap+2 as shown by the following examples (which are all planar and hence K33 minor
free). Let T}, be the tree obtained from the star K3, (p > 1) by replacing each edge by
a path of length k + 1. Then v (T}) = p (if £ > 1), ager1(T) = p, and ageo(Tx) = 1.
This example also shows that Theorem 1.1 cannot be extended to the value m = 2k + 2
if k> 1.

2 Proof of Theorem 1.1

In this section, & and m will denote fixed nonnegative integers such that £k < m < 2k + 1.
Let G be a graph, and A C V(G). Let Q = Q}*(A) be the subgraph of G which is obtained
from the vertex set U = Ug(A) := V(G) \ Nx(A) by adding vertices and edges of all paths
of length < m in G which connect two vertices in U. Since m < 2k + 1, V(Q) N A = 0.
Observe that U = () if and only if A is a k-dominating set of G.

An eztended oy, -pair with respect to A and k is a pair (X, Xy) where Xy C X C V(G)
such that:

(a) Xo C Ug(A) is an ay,-set in G and every vertex in Uy (A) is at distance < m from
Xp.

THE ELECTRONIC JOURNAL OF COMBINATORICS 10 (2003), #N9 3



(b) Every vertex of X \ X, lies on an (X, Xo)-path in Q = Q}*(A) which is of length
< 2m.

(¢) Every component of () contains precisely one connected component of Q(X).

Observe that by (a), Xo # 0 if A is not k-dominating.

Lemma 2.1 If k <m < 2k+1 and A C V(G), then there exists an extended o, -pair
(X, Xo) with respect to A and k. If m > 1 and A is not k-dominating, then |X| <
2m|Xo| —2m + 1.

Proof. If A is k-dominating, then Xo = X = () will do. If m = 0, then X, = X = Uy (A).
Suppose now that A is not k-dominating and that m > 1. Let B be a component of ).
Let By = BNG(U) and Vy = V(By). Let us build a set X C V(B) and the corresponding
am-set Xo C Vj as follows. Start with X = Xy = {v}, where v € V;. If there exists a
vertex of V[ at distance in B at least m + 1 from the current set X, let u € V{) be one of
such vertices chosen such that its distance in B from X is minimum possible. Observe
that distg(u, Xo) > m + 1 although the distance in G may be smaller than the distance
in B.

Let uguy ... u, be a shortest path in B from Xy (so ug € Xo) to u = u, € Vy. Then
distg(u;, Xo) =i for i = 0,...,7r. Suppose that r > 2m. The vertices w11, ..., u_1 do
not belong to V{ since their distance from X, is > m + 1 but smaller than the distance
between u and Xo. Let p = r — [%] — 1. By the definition of B, the edge upu,41
lies on a path of length < m joining two vertices of V5. In particular, an end u’ of
this edge is at distance < [F] — 1 from a vertex u” € V. If distg(u”, Xo) < m, then
dist p(u, Xo) < distg(u,u’) +distp(v/,v”) +distp(u”, Xo) < ([F]+1) +([F] -1 +m <
r. This contradiction shows that distg(u”, Xo) > m + 1. However, distp(u”, Xo) <
dist g(u”, u') +dist g(u', Xo). If m is even, this implies that distp(u”, Xo) < r. If m is odd,
then we may assume that v’ = u,, and then the same conclusion holds. This contradiction
to the choice of u implies that distg(u, Xo) = r < 2m.

Let us add u into X and add the vertices ug, uq, ..., u, into the set X. This procedure
gives rise to an extended a,,-pair inside B. Clearly, |X| < 2m|Xo| — 2m + 1.

By taking the union of such sets constructed in all components of (), an appropriate
extended «,,-pair is obtained. O

Proof of Theorem 1.1. By Lemma 2.1, there are pairwise disjoint vertex sets Ay, Ao, ...,
A, such that (A;, AY) is an extended ,,-pair with respect to k& and A = (), and
(A;, AY) is an extended ay,-pair with respect to k& and the set AW = A, U---U A;_4,

for i = 2,...,r. Moreover, |4;| < 2ma,, —2m + 1, where «,, = a,,(G). Suppose that
%(G) > 2mr+(q—1)(mr—r+1))a,, —2mr+r+1. Then v,(G) > (2may,, —2m+1)(r—1),
so A is not a k-dominating set. Therefore, A;,..., A, are all nonempty.

Fori=1,...,7 let H; = Q"(A®). Let H}, ..., H! be the connected components of
H,. If i > 2, then H; C H; ;. This implies that each component of H; is contained in
some component of H; ;. For j =1,...,t, let H! be the component of H; containing H.
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By (c), each H/ contains a component C? of H;(A;). Each CJ contains at least one vertex
from the a,,-set AY. Therefore, t < .

Let By = A; U---UA,. Since 1(G) > r(2ma,, —2m + 1), By is not k-dominating.
Hence, there is a vertex v, € Uy(By). By (a), vy is at distance < m from some component
CJ (1 <j<t)of H.(A,). Then Hi H! |, ... Hi are the components of H,, H,_y, ..., H
(respectively) containing CY. For any of the components H] (1 < i < r), there is a path
P! in G of length < m connecting v; with C? C H!. Let B, be the union of By with {v1}
and the internal vertices of the paths P}, P},..., P!. Let us repeat the process with B
instead of B; to obtain a vertex vy € Uy(Bz) and linking paths P?, P}, ..., P? of length
< m joining vy with Ay, Ay, ..., A,, respectively.

Now, repeat the process by constructing Bs, obtaining vz and paths PP, Py, ... P2
and so on, as long as possible. This way we get a sequence of vertices wvy,vs, ..., vs
and paths of length < m joining these vertices with Ay,..., A,. The only requirement
which guarantees the existence of vy, ..., vs and the corresponding paths is that 74 (G) >
r(2may, —2m 4+ 1) + (s — 1)(1 + r(m — 1)). Since %(G) > (2mr + (¢ — 1)(mr — r +
1))y, — 2mr + 7, we may take s > (¢ — 1)ay, > (¢ — 1)t. Then ¢ of the vertices among
vy, ..., v, correspond to the same component C?, say to C!. Suppose that these vertices
are vy, ..., V.

Let us now consider two vertices v;,v; (1 <i < j < ¢q) and two of their paths P} and
ij where a # b. Suppose that they intersect in a vertex v. Denote by = = distg(v;, v),
y = distg(v, Aq), 2 = distg(v;, v), and w = distg(v, Ap). Then z+y < m and z+w < m.
This implies that

r+y+z+w<2m. (2)

The choice of v; and v; was made in such a way that 2 > k+ 1, v +v > k+ 1, and
x4y > k+ 1. Moreover, y + w > distg(A,, Ap) > k + 1.

Suppose that > $(k + 1). Then (2) and the inequalities after that imply that
2m > x+2(k+1) > 5(k+1). Similarly, if # < $(k+1), then 2m > 3(k+1)—z > 5(k+1).

Consequently, P! and P/ cannot intersect if 2m < 2(k + 1). In such a case it is easy
to verify that vertices vy, ..., v,, the connected subgraphs C{,C3,...,C! and the linking
paths P! (1 <i<gq, 1<a<r)giverise to a K, ,~-minor in G. This completes the proof
of Theorem 1.1. -
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