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Abstract

Applying Zeilberger’s algorithm of creative telescoping to a family of certain
very-well-poised hypergeometric series involving linear forms in Catalan’s constant
with rational coefficients, we obtain a second-order difference equation for these
forms and their coefficients. As a consequence we derive a new way of fast calculation
of Catalan’s constant as well as a new continued-fraction expansion for it. Similar
arguments are put forward to deduce a second-order difference equation and a new
continued fraction for ζ(4) = π4/90.

1 Introduction

One of the most crucial and quite mysterious ingredients in Apéry’s proof [1], [8] of the
irrationality of ζ(2) and ζ(3) is the existence of the difference equations

(n + 1)2un+1 − (11n2 + 11n + 3)un − n2un−1 = 0,

u′
0 = 1, u′

1 = 3, v′
0 = 0, v′

1 = 5,
(1)

and

(n + 1)3un+1 − (2n + 1)(17n2 + 17n + 5)un + n3un = 0,

u′′
0 = 1, u′′

1 = 5, v′′
0 = 0, v′′

1 = 6,

with the following properties of their solutions:

lim
n→∞

v′
n

u′
n

= ζ(2), lim
n→∞

v′′
n

u′′
n

= ζ(3).
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Unexpected inclusions u′
n, D2

nv
′
n ∈ Z and u′′

n, D
3
nv′′

n ∈ Z, where Dn denotes the least
common multiple of the numbers 1, 2, . . . , n (and D0 = 1 for completeness), together with

the prime number theorem (D
1/n
n → e as n → ∞) and Poincaré’s theorem, then yield the

following asymptotic behaviour of the linear forms D2
nu′

nζ(2)−D2
nv′

n and D3
nu′′

nζ(3)−D3
nv′′

n

with integral coefficients:

lim
n→∞

|D2
nu

′
nζ(2) − D2

nv′
n|1/n = e2

(√
5 − 1

2

)5

< 1,

lim
n→∞

|D3
nu

′′
nζ(3) − D3

nv′′
n|1/n = e3(

√
2 − 1)4 < 1,

and thus one obtains that both ζ(2) and ζ(3) are irrational.
The two following decades after [1] were full of attempts to indicate the total list of

the second-order recursions with integral solutions and to show their ‘geometric’ (i.e.,
Picard–Fuchs differential equations) origin. We do not pretend to be so heroic in this
paper, and we apply quite elementary arguments to get new recurrence equations with
‘almost-integral’ solutions.

In our general, joint with T. Rivoal, study [9] of arithmetic properties for values of
Dirichlet’s beta function

β(s) :=

∞∑
l=0

(−1)l

(2l + 1)s

at positive integers s, we have discovered a construction of Q-linear forms in 1 and Cata-
lan’s constant

G :=
∞∑
l=0

(−1)l

(2l + 1)2
= β(2)

similar to the one considered by Apéry in his proof of the irrationality of ζ(2). The
analogy is far from proving the desired irrationality of G, but it allows to indicate the
following second-order difference equation

(2n + 1)2(2n + 2)2p(n)un+1 − q(n)un − (2n − 1)2(2n)2p(n + 1)un−1 = 0, (2)

where
p(n) = 20n2 − 8n + 1,

q(n) = 3520n6 + 5632n5 + 2064n4 − 384n3 − 156n2 + 16n + 7,
(3)

with the initial data

u0 = 1, u1 =
7

4
, v0 = 0, v1 =

13

8
. (4)

Theorem 1. For each n = 0, 1, 2, . . . , the numbers un and vn produced by the recur-
sion (2), (4) are positive rationals satisfying the inclusions

24n+3Dnun ∈ Z, 24n+3D3
2n−1vn ∈ Z, (5)

and the following limit relation holds:

lim
n→∞

vn

un
= G.

the electronic journal of combinatorics 10 (2003), #R14 2



The positivity and rationality of un and vn follows immediately from (2)–(4). The char-

acteristic polynomial λ2 −11λ−1 with zeros
(
(1±√

5 )/2
)5

of the difference equation (2)
coincides with the corresponding one for Apéry’s equation (1). Therefore application of
Poincaré’s theorem (see also [12], Proposition 2) yields the limit relations

lim
n→∞

u1/n
n = lim

n→∞
v1/n

n =

(
1 +

√
5

2

)5

= exp(2.40605912 . . . ),

lim
n→∞

|unG − vn|1/n =

∣∣∣∣1 −√
5

2

∣∣∣∣5 = exp(−2.40605912 . . . ),

while the inclusions (5) and the prime number theorem imply that the linear forms
24n+3D3

2n−1(unG − vn) with integral coefficients do not tend to 0 as n → ∞. However,
the rational approximations vn/un to Catalan’s constant converge quite rapidly (for in-
stance, |v10/u10−G| < 10−20) and one can use the recursion (2), (4) for fast evaluating G.
Another consequence of Theorem 1 is a new continued-fraction expansion for Catalan’s
constant. Namely, considering vn/un as convergents of a continued fraction for G and
making the equivalent transform of the fraction ([6], Theorems 2.2 and 2.6) we arrive at

Theorem 2. The following expansion holds:

G =
13/2
q(0)

+
14 · 24 · p(0)p(2)

q(1)
+ · · · + (2n − 1)4(2n)4p(n − 1)p(n + 1)

q(n)
+ · · · ,

where the polynomials p(n) and q(n) are given in (3).

The multiple-integral representation for the linear forms unG − vn similar to those
obtained by F. Beukers in [4], formula (5), for the linear forms u′

nζ(2) − v′
n is given by

Theorem 3. For each n = 0, 1, 2, . . . , the identity

unG − vn =
(−1)n

4

∫ 1

0

∫ 1

0

xn−1/2(1 − x)nyn(1 − y)n−1/2

(1 − xy)n+1
dx dy (6)

holds.

2 Difference equation for Catalan’s constant

Consider the rational function

Rn(t) := n!(2t + n + 1)
t(t − 1) · · · (t − n + 1) · (t + n + 1) · · · (t + 2n)

((t + 1
2
)(t + 3

2
) · · · (t + n + 1

2
))3

(7)
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and the corresponding (very-well-poised) hypergeometric series

Fn :=

∞∑
t=0

(−1)tRn(t)

= (−1)nn!
Γ(3n + 2) Γ(n + 1

2
)3Γ(n + 1)

Γ(2n + 3
2
)3Γ(2n + 1)

× 6F5

(
3n + 1, 3

2
n + 3

2
, n + 1

2
, n + 1

2
, n + 1

2
, n + 1

3
2
n + 1

2
, 2n + 3

2
, 2n + 3

2
, 2n + 3

2
, 2n + 1

∣∣∣∣ −1

)
. (8)

Lemma 1. The following equality holds:

Fn = Unβ(3) + U ′
nβ(2) + U ′′

nβ(1) − Vn, (9)

where Un, DnU ′
n, D2

nU ′′
n , D3

2n−1Vn ∈ 2−4nZ.

Proof. We start with mentioning that

P (1)
n (t) :=

t(t − 1) · · · (t − n + 1)

n!
and P (2)

n (t) :=
(t + n + 1) · · · (t + 2n)

n!
(10)

are integral-valued polynomials and, as it is known (see, e.g., [13], Lemma 7),

22n · Pn(−k − 1
2
) ∈ Z for k ∈ Z (11)

and, moreover,

22nDj
n · 1

j!

djPn(t)

dtj

∣∣∣∣
t=−k−1/2

∈ Z for k ∈ Z and j = 1, 2, . . . , (12)

where Pn(t) is any of the polynomials (10).
The rational function

Qn(t) :=
n!

(t + 1
2
)(t + 3

2
) · · · (t + n + 1

2
)

has also ‘nice’ arithmetic properties. Namely,

ak := Qn(t)(t + k + 1
2
)
∣∣
t=−k−1/2

=

{
(−1)k

(
n
k

) ∈ Z if k = 0, 1, . . . , n,

0 for other k ∈ Z,
(13)

that allow to write the following partial-fraction expansion:

Qn(t) =
n∑

l=0

al

t + l + 1
2

.
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Hence, for j = 1, 2, . . . we obtain

Dj
n

j!

dj

dtj
(
Qn(t)(t + k + 1

2
)
)∣∣

t=−k−1/2
=

Dj
n

j!

dj

dtj

n∑
l=0

al

(
1 − l − k

t + l + 1
2

)∣∣∣∣
t=−k−1/2

= (−1)j−1Dj
n

n∑
l=0
l 6=k

1

(l − k)j
∈ Z. (14)

Therefore the inclusions (11)–(14) and the Leibniz rule for differentiating a product imply
that the numbers

Ajk = Ajk(n) :=
1

j!

dj

dtj
(
Rn(t)(t + k + 1

2
)3

)∣∣
t=−k−1/2

(15)

=
1

j!

dj

dtj
(
(2t + n + 1) · P (1)

n (t) · P (2)
n (t) · (Qn(t)(t + k + 1

2
))3

)∣∣
t=−k−1/2

satisfy the inclusions

24nDj
n · Ajk(n) ∈ Z for k = 0, 1, . . . , n and j = 0, 1, 2, . . . . (16)

Mention now that the numbers (15) are coefficients in the partial-fraction expansion of
the rational function (7),

Rn(t) =
2∑

j=0

n∑
k=0

Ajk

(t + k + 1
2
)3−j

. (17)

Substituting this expansion into the definition (8) of the quantity Fn we obtain the desired
representaion (9):

Fn =

2∑
j=0

n∑
k=0

(−1)kAjk

∞∑
t=0

(−1)t+k

(t + k + 1
2
)3−j

=

2∑
j=0

n∑
k=0

(−1)kAjk

( ∞∑
l=0

−
k−1∑
l=0

)
(−1)l

(l + 1
2
)3−j

= Unβ(3) + U ′
nβ(2) + U ′′

nβ(1) − Vn,

where

Un = 23
n∑

k=0

(−1)kA0k(n), U ′
n = 22

n∑
k=0

(−1)kA1k(n), U ′′
n = 2

n∑
k=0

(−1)kA2k(n), (18)

Vn =

2∑
j=0

23−j

n∑
k=0

(−1)kAjk(n)

k−1∑
l=0

(−1)l

(2l + 1)3−j
. (19)
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Finally, using the inclusions (16) and

D3−j
2n−1

k−1∑
l=0

(−1)l

(2l + 1)3−j
∈ Z for k = 0, 1, . . . , n and j = 0, 1, 2,

we deduce that Un, DnU ′
n, D2

nU ′′
n , D3

2n−1Vn ∈ 2−4nZ as required.

Using Zeilberger’s algorithm of creative telescoping ([7], Section 6) for the rational
function (7), we obtain the certificate Sn(t) := sn(t)Rn(t), where

sn(t) :=
1

2(2t + n + 1)(t + 2n − 1)(t + 2n)
· (8n(2n − 1)2(20n2 + 32n + 13)t4

+ 2(5440n6 + 7104n5 + 912n4 − 1088n3 + 76n2 + 68n + 7)t3

+ (44800n7 + 65600n6 + 17568n5 − 7056n4 − 1088n3 + 372n2 + 146n − 1)t2

+ (2n + 1)(34880n7 + 39328n6 − 2176n5 − 8416n4 + 964n3 + 154n2 + 58n − 13)t

+ n(2n − 1)(2n + 1)2(4720n5 + 6192n4 + 816n3 − 864n2 + 69n + 13)
)

(20)

satisfying the following property.

Lemma 2. For each n = 1, 2, . . . , we have the identity

(2n + 1)2(2n + 2)2p(n)Rn+1(t) − q(n)Rn(t) − (2n − 1)2(2n)2p(n + 1)Rn−1(t)

= −Sn(t + 1) − Sn(t), (21)

where the polynomials p(n) and q(n) are given in (3).

Proof. Divide both sides of (21) by Rn(t) and verify the identity

(2n + 1)2(2n + 2)2p(n) · (n + 1)
(2t + n + 2)(t − n)(t + 2n + 1)(t + 2n + 2)

(2t + n + 1)(t + n + 1)(t + n + 3
2
)3

− q(n)

− (2n − 1)2(2n)2p(n + 1) · (2t + n)(t + n)(t + n + 1
2
)3

n(2t + n + 1)(t − n + 1)(t + 2n − 1)(t + 2n)

= −sn(t + 1)
(2t + n + 3)(t + 1

2
)3(t + 1)(t + 2n + 1)

(2t + n + 1)(t − n + 1)(t + n + 1)(t + n + 3
2
)3

− sn(t),

where sn(t) is given in (20).

Lemma 3. The quantity (8) satisfies the difference equation (2) for n = 1, 2, . . . .

Proof. Multiplying both sides of the equality (21) by (−1)t and summing the result over
t = 0, 1, 2, . . . we obtain

(2n + 1)2(2n + 2)2p(n)Fn+1 − b(n)Fn − (2n − 1)2(2n)2p(n + 1)Fn−1 = −Sn(0).

It remains to note that, for n ≥ 1, both functions Rn(t) and Sn(t) = sn(t)Rn(t) have zero
at t = 0. Thus Sn(0) = 0 for n = 1, 2, . . . and we obtain the desired recurrence (2) for
the quantity (8).
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Lemma 4. The coefficients Un, U ′
n, U ′′

n , Vn in the representation (9) satisfy the difference
equation (2) for n = 1, 2, . . . .

Proof. We can write down the partial-fraction expansion (17) in the form

Rn(t) =

4∑
j=1

+∞∑
k=−∞

Ajk(n)

(t + k + 1
2
)3−j

,

where the formulae (15) remain true for all k ∈ Z (not for k = 0, 1, . . . , n only). Now,
multiply both sides of (21) by (−1)k(t+k+ 1

2
)3, take the jth derivative, where j = 0, 1, 2,

substitute t = −k − 1
2

in the result, and sum over all integers k; this procedure implies
that the numbers

Un = 8
+∞∑

k=−∞
(−1)kA0k(n), U ′

n = 4
+∞∑

k=−∞
(−1)kA1k(n), U ′′

n = 2
+∞∑

k=−∞
(−1)kA2k(n)

(cf. (18)) satisfy the difference equation (2). Finally, the sequence

Vn = Unβ(3) + U ′
nβ(2) + U ′′

nβ(1) − Fn

also satisfies the recursion (2) by Lemma 3 and the above.

Since

R0(t) =
2

(t + 1
2
)2

, R1(t) = − 3/4

(t + 1
2
)3

− 3/4

(t + 3
2
)3

+
7/4

(t + 1
2
)2

− 7/4

(t + 3
2
)2

,

in accordance with (18), (19) we obtain

U ′
0 = 8, U0 = U ′′

0 = V0 = 0, and U ′
1 = 14, V1 = 13, U1 = U ′′

1 = 0,

hence as a consequence of Lemma 4 we deduce that Un = U ′′
n = 0 for n = 0, 1, 2, . . . .

Lemma 5. The following equality holds:

Fn = U ′
nG − Vn,

where 24nDnU ′
n ∈ Z and 24nD3

2n−1Vn ∈ Z.

The sequences un := U ′
n/8 and vn := Vn/8 satisfy the difference equation (2) and initial

conditions (4); the fact that Fn 6= 0 and |Fn| → 0 as n → ∞ follows from Theorem 3
and asymptotics of the multiple integral (6) proved in [4]. This completes the proof of
Theorem 1.
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3 Connection with 3F2-hypergeometric series

The corresponding very-well-poised hypergeometric series (8) at z = −1 can be reduced
to a simpler series with the help of Whipple’s transform ([2], Section 4.4, formula (2)):

3F2

(
1 + a − b − c, d, e

1 + a − b, 1 + a − c

∣∣∣∣ 1

)
=

Γ(1 + a) Γ(1 + a − d − e)

Γ(1 + a − d) Γ(1 + a − e)

× 6F5

(
a, 1 + 1

2
a, b, c, d, e

1
2
a, 1 + a − b, 1 + a − c, 1 + a − d, 1 + a − e

∣∣∣∣ −1

)
,

if Re(1+a−d−e) > 0. Namely, in the case a = 3n+1, b = c = d = n+ 1
2
, and e = n+1,

we obtain

Fn = U ′
nG − Vn = (−1)n · 2

∫ 1

0

∫ 1

0

xn−1/2(1 − x)nyn(1 − y)n−1/2

(1 − xy)n+1
dx dy,

where the Euler-type integral representation for the 3F2-series can be derived as in [10],
Section 4.1, and [3], the proof of Lemma 2.

This completes the proof of Theorem 3.

4 Concluding remarks

The conclusion (5) of Theorem 1 is far from being precise; in fact, using (2), (4) one gets
experimentally (up to n = 1000, say) the stronger inclusions1

24nun ∈ Z, 24nD2
2n−1vn ∈ Z.

Unfortunately, they also give no chance to prove that Catalan’s constant is irrational since
linear forms 24nD2

2n−1(unG − vn) do not tend to 0 as n → ∞.
In the same vein, using another very-well-poised series of hypergeometric type

F̃n :=
(−1)n+1

6

∞∑
t=1

d

dt

(
(2t + n)

((t − 1) · · · (t − n))2 · ((t + n + 1) · · · (t + 2n))2

(t(t + 1) · · · (t + n))4

)
= ũnζ(4) − ṽn

and the arguments of Section 2, we deduce the difference equation

(n + 1)5un+1 − r(n)un − 3n3(3n − 1)(3n + 1)un−1 = 0, (22)

where

r(n) = 3(2n + 1)(3n2 + 3n + 1)(15n2 + 15n + 4)

= 270n5 + 675n4 + 702n3 + 378n2 + 105n + 12, (23)

1A slightly weakened form of the inclusions is proved in [15].
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with the initial data

ũ0 = 1, ũ1 = 12, ṽ0 = 0, ṽ1 = 13

for its two independent solutions ũn and ṽn,

Theorem 4 ([14]). For each n = 0, 1, 2, . . . , the numbers ũn and ṽn are positive rationals
satisfying the inclusions

6Dnũn ∈ Z, 6D5
nṽn ∈ Z, (24)

and the following limit relation holds:

lim
n→∞

ṽn

ũn
=

π4

90
= ζ(4) =

∞∑
n=1

1

n4
. (25)

Remark. During the preparation of this article, we have known that the difference equa-
tion (22), in slightly different normalization, and the limit relation (25) without the in-
clusions (24) had been stated independently by H. Cohen and G. Rhin [5] using Apéry’s
‘accélération de la convergence’ approach, and by V.N. Sorokin [11] by means of certain
explicit Hermite–Padé-type approximations. We underline that our approach differs from
that of [5] and [11].

Application of Poincaré’s theorem yields the asymptotic relations

lim
n→∞

|ũn|1/n = lim
n→∞

|ṽn|1/n = (3 + 2
√

3 )3 = exp(5.59879212 . . . )

and
lim

n→∞
|ũnζ(4) − ṽn|1/n = |3 − 2

√
3 |3 = exp(−2.30295525 . . . ),

since the characteristic polynomial λ2 − 270λ − 27 of the equation (22) has zeros 135 ±
78
√

3 = (3 ± 2
√

3 )3. Thus, we can consider ṽn/ũn as convergents of a continued fraction
for ζ(4) and making the equivalent transform of the fraction we obtain

Theorem 5. The following expansion holds:

ζ(4) =
13

r(0)
+

17 · 2 · 3 · 4
r(1)

+
27 · 5 · 6 · 7

r(2)
+ · · ·+ n7(3n − 1)(3n)(3n + 1)

r(n)
+ · · · ,

where the polynomial r(n) is given in (23).

The mystery of the ζ(4)-case consists in the fact that experimental calculations give
us the better inclusions

ũn ∈ Z, D4
nṽn ∈ Z

(cf. (24)); unfortunately, the linear forms D4
n(ũnζ(4) − ṽn) do not tend to 0 as n → ∞.
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