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Abstract

Garsia and Haiman (J. Algebraic. Combin. 5 (1996), 191 − 244) conjectured
that a certain sum Cn(q, t) of rational functions in q, t reduces to a polynomial in
q, t with nonnegative integral coefficients. Haglund later discovered (Adv. Math.,
in press), and with Garsia proved (Proc. Nat. Acad. Sci. 98 (2001), 4313 −
4316) the refined conjecture Cn(q, t) =

∑
qareatbounce. Here the sum is over all

Catalan lattice paths and area and bounce have simple descriptions in terms of
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the path. In this article we give an extension of (area,bounce) to Schröder lattice
paths, and introduce polynomials defined by summing qareatbounce over certain sets of
Schröder paths. We derive recurrences and special values for these polynomials, and
conjecture they are symmetric in q, t. We also describe a much stronger conjecture
involving rational functions in q, t and the ∇ operator from the theory of Macdonald
symmetric functions.

1 Introduction

In the early 1990’s Garsia and Haiman introduced an important sum Cn(q, t) of rational
functions in q, t which has since been shown to have interpretations in terms of algebraic
geometry and representation theory. This rational function is defined explicitly in section
4; for now we wish to note that it follows easily from this definition that Cn(q, t) is
symmetric in q and t. Garsia and Haiman conjectured Cn(q, t) reduces to a polynomial
in q, t with nonnegative integral coefficients [GH96], and called Cn(q, t) the q, t-Catalan
polynomial since Cn(1, 1) equals the nth Catalan number. The special cases Cn(q, 1) and
Cn(q, 1/q) yield two different q-analogs of the Catalan numbers, introduced by Carlitz and
Riordan, and MacMahon, respectively [CR64],[Mac01]. Haglund [Hag] introduced the
refined conjecture Cn(q, t) =

∑
qareatbounce, where area and bounce are simple statistics

on lattice paths described below. Garsia and Haglund later proved this conjecture by an
intricate argument involving plethystic symmetric function identities [GH01],[GH02].

A natural question to consider is whether the lattice path statistics for Cn(q, t) can be
extended, in a way which preserves the rich combinatorial structure, to related combina-
torial objects. In this article we show that many of the important properties of Cn(q, t)
appear to extend to a more general family of polynomials related to the Schröder numbers,
which are close combinatorial cousins of the Catalan numbers.

A Schröder path is a lattice path from (0, 0) to (n, n) consisting of north N (0, 1), east
E (1, 0), and diagonal D (1, 1) steps, which never goes below the line y = x. We let Sn,d

denote the set of such paths consisting of d D steps, n − d N steps and n − d E steps.
Throughout the remainder of this article, Π will denote a Schröder path. A Schröder path
with no D steps is a Catalan path. We call a 45 − 90 − 45 degree triangle with vertices
(i, j), (i + 1, j) and (i + 1, j + 1) for some i, j a “lower triangle” and the lower triangles
below a path Π and above the line y = x “area triangles”. Define the area of Π, denoted
area(Π), to be the number of such triangles.

For Π ∈ Sn,d, let pword(Π) denote the sequence σ1 · · ·σ2n−d where the ith letter σi is
either an N , D, or E depending on whether the ith step (starting at (0, 0)) of Π is an N ,
D, or E step, respectively. Furthermore let word(Π) denote the word of 2’s, 1’s and 0’s
obtained by replacing all N ’s, D’s and E’s in pword(Π) by 2’s, 1’s and 0’s, respectively.
By a row of Π we mean the region to the right of an N or D step and to the left of the line
y = x. We let rowi(Π) denote the ith row, from the top, of Π. We call the number of area
triangles in this row the length of the row, denoted areai(Π). For example, the path on the
left side of Figure 1 has pword = NDNENDDENENEE and word = 2120211020200,
with area1(Π) = 1, area2(Π) = 1, area3(Π) = 2, etc. Note arean(Π) = 0 for all Π ∈ Sn,d.
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Figure 1: On the left, a Schröder path Π, with the top of each peak marked by a dot. To
the right of each row is the length of the row. On the right is the Catalan path C(Π) and
its bounce path (the dotted path).

We now introduce what we call the bounce statistic for a path Π, denoted bounce(Π).
To calculate this, we first form an associated Catalan path C(Π) by deleting all D steps
and collapsing the remaining path, so pword(C(Π)) is the same as pword(Π) with all D’s
removed. See Figure 1. Then we form the “bounce path” for C(Π) (the dotted path in
Figure 1) by starting at (n − d, n − d), going left until we reach the top of an N step of
C(Π), then “bouncing” down to the line y = x, then iterating: left to the path, down to
the line y = x, and so on until we reach (0, 0). As we travel from (n − d, n − d) to (0, 0)
our bounce path hits the line y = x at various points, say at (j1, j1), (j2, j2), . . . , (jk, jk)
((3, 3), (1, 1), (0, 0) in Figure 1) with n − d > j1 > · · · > jk = 0.

We call the vector (n− d− j1, j1 − j2, . . . , jk−1) the bounce vector of Π. Geometrically,
the ith coordinate of this vector is the length of the ith “bounce step” of our path. Note
that the N steps of the bounce path which occur immediately after the bounce path
changes from going west to south will also be N steps of C(Π). The N steps of Π which
correspond to these N steps of C(Π) are called the peaks of Π. Specifically, for 1 ≤ i ≤ k
we call the ji−1th N step of Π peak i, with the convention that j0 = n − d. Say Π has
β0 D steps above peak 1, βk D steps below peak k, and for 1 ≤ i ≤ k − 1 has βi D steps
between peaks i and i +1. We call (β0, β1, . . . , βk) the shift vector of Π. For example, the
path of Figure 1 has bounce vector (2, 2, 1) and shift vector (0, 2, 1, 0).

Given the above definitions, our bounce statistic for Π is given by

bounce(Π) =

k−1∑
i=1

ji +

k∑
i=1

iβi. (1)
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(N. Loehr has observed that bounce(Π) also equals the sum, over all peaks p, of the
number of squares to the left of p and to the right of the y axis). For the path on the left
in Figure 1, area = 9 and bounce = 8. Note

∑
i iβi can be viewed as the sum, over all D

steps g, of the number of peaks above g.
For n, d ∈ N let

Sn,d(q, t) =
∑

Π∈Sn,d

qarea(Π)tbounce(Π). (2)

Conjecture 1 For all n, d,
Sn,d(q, t) = Sn,d(t, q). (3)

Conjecture 1 has been verified using Maple for all n, d such that n + d ≤ 10.
If Π has no D steps, the area(Π) and bounce(Π) statistics reduce to their counter-

parts for Catalan paths. Thus Garsia and Haglund’s result can be phrased as Cn(q, t) =
Sn,0(q, t), and since Cn(q, t) = Cn(t, q) this implies Conjecture 1 is true when d = 0. It
is an open problem to find a bijective proof of this case. We don’t know how to prove
Conjecture 1 for any value of d > 0 by any method. (Unless you let d depend on n; for
example, the cases d = n and d = n − 1 are simple to prove.)

When t = 1, Sn,d(q, 1) reduces to an “inversion based” q-analog of Sn,d(1, 1) studied
by Bonin, Shapiro and Simion [BSS93] (See also [BLPP99]). In section 2 we derive a
formula for Sn,d(q, t) in terms of sums of products of q-trinomial coefficients, and obtain
recurrences for the sum of qareatbounce over subsets of Schröder paths satisfying various
constraints. We then use these to prove inductively that when t = 1/q,

q(
n
2)−(d

2)Sn,d(q, 1/q) =
1

[n − d + 1]q

[
2n − d

n − d, n − d

]
q

. (4)

Here
[

m
a,b

]
q

:= [m]!/([a]![b]![m−a−b]!) is the q-trinomial coefficient. Bonin, et. al. showed

that [BSS93] ∑
Π∈Sn,d

qmaj(word(Π)) =
qn−d

[n − d + 1]q

[
2n − d

n − d, n − d

]
q

, (5)

where maj(τ1, . . . , τm) =
∑

τi>τi+1
i is the usual major index statistic. Thus by (4) this

natural “descent based” q-analog of Sn,d(1, 1) can be obtained from Sn,d(q, t) by setting
t = 1/q.

In [HL], Haglund and Loehr describe an alternate pair of statistics (dinv, area) on
Catalan paths, originally studied by Haiman, which also generate Cn(q, t). They also
include a simple, invertible transformation on Catalan paths which sends (dinv, area)
to (area, bounce). In section 3 we show how the dinv statistic, as well as this simple
transformation, can be extended to Schröder paths. As a corollary we obtain the result
Sn,d(q, 1) = Sn,d(1, q), which further supports Conjecture 1.

Cn(q, t) is part of a broader family of rational functions which Garsia and Haiman
defined as the coefficients obtained by expanding a complicated sum of Macdonald sym-
metric functions in terms of Schur functions. They defined Cn(q, t) as the coefficient of
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the Schur function s1n in this sum, and ideally we hoped to find a related rational func-
tion expression for Sn,d(q, t). We are indebted to the referee for suggesting that Sn,d(q, t)
should equal the sum of the rational functions corresponding to the coefficients of the
Schur functions for the two hook shapes sd,1n−d and sd+1,1n−d−1 . Independently of this
suggestion, A. Ulyanov and the second author noticed that qdinvtarea summed over a sub-
set of Schröder paths (counted by the “little” Schröder numbers) seems to generate the
rational function corresponding to an individual hook shape. These conjectures, which
turn out to be equivalent, are described in detail in section 4.

2 Recurrence Relations and Explicit Formulae

We begin with a simple lemma involving area and Schröder paths. Throughout this
section we use the q-notation [m]q = (1 − qm)/(1 − q), [m]q! :=

∏m
i=1[i]q and

[
m

a, b

]
q

=




1, if a = b = 0

0, if a < 0 or b < 0

0, if m < a + b and either a > 0 or b > 0
[m]q!

[a]q![b]q![m−a−b]q!
, else

(6)

For a given vector (u, v, w) of three nonnegative integers, let bdy(u, v, w) denote the
“boundary” lattice path from (0, 0) to (v+w, u+v) consisting of w E steps, followed by v
D steps, followed by u N steps. Let Tu,v,w denote the set of lattice paths from from (0, 0)
to (v + w, u + v) consisting of u N , v D and w E steps (in any order). For τ ∈ Tu,v,w, let
A(τ, u, v, w) denote the number of lower triangles between τ and bdy(u, v, w).

Lemma 1 ∑
τ∈Tu,v,w

qA(τ,u,v,w) =

[
u + v + w

u, v

]
q

. (7)

Proof. We claim the number of inversions of word(τ) equals A(τ, u, v, w) (where as usual
two letters wi, wj of word(τ) form an inversion if i < j and wi > wj). To see why, note
that if we interchange two consecutive steps of τ , the number of lower triangles between
τ and bdy(u, v, w) changes by either 1 or 0 in exactly the same way that the number of
inversions of word(τ) changes upon interchanging the corresponding letters in word(τ).
The lemma now follows from the well-known fact that the q-multinomial coefficient is the
generating function for the number of inversions of permutations of a multiset [Sta86, p.
26]. 2

We now obtain an expression for Sn,d(q, t) in closed form which doesn’t reference the
bounce or area statistics. This and other results in this section are for the most part
generalizations of arguments and results in [Hag] (corresponding to the d = 0 case).
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Theorem 1 For all n > d ≥ 0,

Sn,d(q, t) =
n−d∑
k=1

∑
α1+...+αk=n−d, αi>0

β0+...+βk=d, βi≥0

[
β0 + α1

β0

]
q

[
βk + αk − 1

βk

]
q

q(
α1
2 )+...+(αk

2 )

tβ1+2β2+...+kβk+α2+2α3+...+(k−1)αk

k−1∏
i=1

[
βi + αi+1 + αi − 1

βi, αi+1

]
q

(8)

Proof. The sum over α and β above is over all possible bounce vectors (α1, . . . , αk) and
shift vectors (β0, . . . , βk). The power of t is the bounce statistic evaluated at any Π with
these bounce and shift vectors. It remains to show that when we sum over all such Π,
qarea(Π) generates the terms involving q.

Let Π0 be the portion of Π above peak 1 of Π, Πk the portion below peak k, and for
1 ≤ i ≤ k−1, Πi the portion between peaks i and i+1. We call Πi section i of Π, and let
word(Πi) be the portion of word(Π) corresponding to Πi. We begin by breaking the area
below Π into regions as in Figure 2. There will be triangular regions immediately below
and to the right of each peak, whose area triangles are counted by the sum of

(
αi

2

)
. The

remaining regions are between some Πi and a boundary path as in Lemma 1. Note the
conditions on Πi for 1 ≤ i ≤ k − 1 require that it begin at the top of peak i + 1, travel to
the bottom of peak i using αi+1 E steps, βi D steps and αi − 1 N steps (in any order),
then use an N step to arrive at the top of peak i. Thus when we sum over all such Πi

the area of these regions will be counted by the product of q-trinomial coefficients above
by Lemma 1. At first glance it may seem we need to use a different idea to calculate the
area below Π0 and Πk, but these cases are also covered by Lemma 1, corresponding to the
cases w = 0 and u = 0 of either no N steps or no E steps, in which case the q-trinomial
coefficients reduce to the q-binomial coefficients above. 2

Let Sn,d,p,b denote the set of Schröder paths which are elements of Sn,d and in addition
contain exactly p E steps and b D steps after the last N step (i.e. after peak 1). Further-
more let Sn,d,p,b(q, t) denote the sum of qareatbounce over all such paths. In the identities
for Sn,d,p,b(q, t) in the remainder of this section we will assume n, d, p, b ≥ 0, n − d ≥ p
and d ≥ b (otherwise Sn,d,b,p(q, t) is zero).

Theorem 1 can be stated in terms of the following recurrence.

Theorem 2 For all n > d,

Sn,d,p,b(q, t) = q(
p
2)tn−p−b

[
p + b

p

]
q

n−p−d∑
r=0

d−b∑
m=0

[
m + r + p − 1

m + r

]
q

Sn−p−b,d−b,r,m(q, t), (9)

with the initial conditions

Sn,d,p,b(q, t) =




0, if n > d and p = 0

0, if n = d, p = 0 and b < d

1, if n = d, p = 0 and b = d

(10)
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Figure 2: The sections of a Schröder path

Proof. We give a proof based on a geometric argument. An alternative proof by induction
can be obtained by expressing Sn−p−b,d−b,r,m(q, t) as an explicit sum, as in Theorem 1 ,
and plugging this in above.

In Figure 2 replace α1 by p, β0 by b, α2 by r and β1 by m. Since n > d we know Π
has at least one peak and so p ≥ 1. If we remove the p − 1 N steps from Π1 and collapse
in the obvious way, the part of Π consisting of Πi, 2 ≤ i ≤ k and the collapsed Π1 is in
Sn−p−b,d−b,r,m. The bounce statistic for this truncated version of Π is bounce(Π) − (n −
p− d)− (d− b), since by removing peak 1 we decrease the shift contribution by d− b (the
number of D steps below peak 1) and we decrease the bounce contribution by n − p − d.
The area changes in three ways. First of all there is the

(
p
2

)
contribution from the triangle

of length p below and to the right of peak 1. Second there is the area below Π0 and
above the first step of the bounce path, which generates the

[
p+b
p

]
q

factor. Third there

is the area between Π1 and the boundary path. View this area as equal to the number
of inversions of word(Π1), and group the inversions involving 1’s and 0’s separately from
the inversions involving 2’s and 1’s or 2’s and 0’s. When we remove the 2’s (i.e. N steps)
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from the word the inversions involving 1’s and 0’s still remain, and become part of the
area count of the truncated Π. The number of inversions involving 2’s and 1’s or 2’s and
0’s is independent of the how the 1’s and 0’s are arranged with respect to each other, and
so when we sum over all possible ways of inserting the 2’s into the fixed sequence of 1’s
and 0’s, we generate the q-binomial coefficient

[
m+r+p−1

m+r

]
q
. 2

Since the D steps above peak 1 of Π don’t affect bounce(Π), it follows that

Sn,d,p,b(q, t) =

[
p + b

p

]
q

Sn−b,d−b,p,0(q, t). (11)

Setting b = 0 in (9), then applying (11) in the inner sum on the right-hand-side we get
the following recurrence for Sn,d,p,0(q, t).

Theorem 3 For all n > d,

Sn,d,p,0(q, t) = q(
p
2)tn−p

n−p−d∑
r=0

d∑
m=0

[
m + r + p − 1

m, r

]
q

Sn−p−m,d−m,r,0(q, t) (12)

with the initial conditions

Sn,d,p,0(q, t) =

{
0, if n > d and p = 0

1, if n = d and p = 0
(13)

We now use our recurrences to evaluate Sn,d,p,b(q, 1/q) and Sn,d(q, 1/q). We sometimes
abbreviate [m]q by [m] and [m]q! by [m]!.

Theorem 4 For all n > d and p ≥ 1,

q(
n
2)−(d

2)Sn,d,p,0(q, 1/q) = qn(p−1) [p]q
[2n − d − p]q

[
2n − d − p

n − d − p, n − d

]
q

. (14)

Proof. We argue by induction on n. If p = n − d then C(Π) has only one peak, and we
easily obtain

Sn,d,n−d,0(q, 1/q) = q(
n−d

2 )q−d

[
n − 1

d

]
q

, (15)

so (14) holds in this case. In particular when n = 1 we must have p = 1 and d = 0, so we
may assume n > d + p and n > 1.

Multiply both sides of (12) by q(
n
2)−(d

2), set t = 1/q, and interchange the order of
summation to find

q(
n
2)−(d

2)Sn,d,p,0(q, 1/q) =
d∑

m=0

n−p−d∑
r=0

[
r + m + p − 1

r, m

]
q

q(
p
2)q−n+pq(

n
2)−(d

2)Sn−p−m,d−m,r,0(q, 1/q).

(16)
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Since we are assuming n−d > p, in (16) we must have n−p−m > 0 so by (13) the r = 0
terms in this last line are zero. Using induction we then obtain

q(
n
2)−(d

2)Sn,d,p,0(q, 1/q)

=
d∑

m=0

n−p−d∑
r=1

[r + p + m − 1]![r][2n − 2p − m − d − r − 1]!qpowq(r−1)(n−m−p)

[r]![m]![p − 1]![n − p − d − r]![n − p − d]![d − m]!

=
1

[p − 1]![n − p − d]!

d∑
m=0

qpow

[m]![d − m]!

×
∑
r≥1

[p + m + (r − 1)]![2n − 2p − m − d − 2 − (r − 1)]!

[r − 1]![n − p − d − 1 − (r − 1)]!
q(r−1)(n−m−p), (17)

where pow :=
(

p
2

) − n + p +
(

n
2

) − (
d
2

) − (
n−p−m

2

)
+

(
d−m

2

)
. We now phrase (17) in the

language of basic hypergeometric series using the standard notation

(x; q)m := (x)m = (1− x)(1− xq) · · · (1− xqm−1) and 2φ1

(
x, y
w

; z

)
=

∞∑
m=0

(x)m(y)m

(q)m(w)m
zm.

(18)
First set u = r − 1 and employ the simple identities

[m]!q =
(q)m

(1 − q)m
and (qa)m−r =

(qa)mq(
r+1
2 )−(m+a)r(−1)r

(q1−m−a)r
(19)

in (17) to obtain

q(
n
2)−(d

2)Sn,d,p,0(q, 1/q) =
1

[p − 1]![n − p − d]!

d∑
m=0

[p + m]![2n − 2p − d − m − 2]!qpow

[m]![d − m]![n − p − d − 1]!

×
∑
u≥0

(qp+m+1)u(q
−(n−p−d−1))u

(q)u(q−(2n−2p−d−m−2))u
qu((n−p−d−(2n−2p−d−m−1))qu(n−m−p). (20)

Note the exponent u((n− p− d− 1)− (2n− 2p− d−m− 2)) + u(n−m− p) is equal to
u. We now use the well-known q-Vandermonde convolution, i.e. [GR90, p. 236]

2φ1

(
x, q−m

w
; q

)
=

(w/x)m

(w)m

xm, (21)
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to simplify the inner sum in (20) as follows.

∑
u≥0

(qp+m+1)u(q
−(n−p−d−1))u

(q)u(q−(2n−2p−d−m−2))u

qu

=
(q−(2n−p−d−1))n−p−d−1

(q−(2n−2p−d−m−2))n−p−d−1
q(p+m+1)(n−p−d−1)

=
(q2n−p−d−1 − 1) · · · (qn+1 − 1)q−(p+m+1)(n−p−d−1)+(p+m+1)(n−p−d−1)

(q2n−2p−d−m−2 − 1) · · · (qn−p−m − 1)

=
[2n − p − d − 1]![n − p − m − 1]!

[n]![2n − 2p − d − m − 2]!
. (22)

Using this, the right-hand-side of (20) reduces to

[2n − p − d − 1]!

[p − 1]![n − p − d]![n − p − d − 1]![n]!

d∑
m=0

qpow [p + m]![n − p − m − 1]!

[m]![d − m]!

=
[2n − p − d − 1]![n − p − 1]![p]!

[p − 1]![n − p − d]![n − p − d − 1]![n]![d]!

d∑
m=0

(q−d)m(qp+1)m

(q)m(q−n+p+1)m

qm(d+1−(n−p))+pow. (23)

Note pow + m(d + 1 − n + p) = n(p − 1) + m, and again by (21),

d∑
m=0

(q−d)m(qp+1)m

(q)m(q−n+p+1)m

qm =
(q−n)d

(q1+p−n)d

q(p+1)d

=
(qn − 1) · · · (qn−d+1 − 1)

(qn−1−p − 1) · · · (qn−1−p−d+1 − 1)
q−(p+1)d+(p+1)d

=
[n]![n − p − d − 1]!

[n − d]![n − 1 − p]!
. (24)

Plugging this into the inner sum in (23) completes the proof. 2

Theorem 4 and (11) imply

Corollary 1 For all n > d ≥ 0 and p, b ≥ 0,

q(
n−b
2 )−(d−b

2 )Sn,d,p,b(q, 1/q) = q(n−b)(p−1)

[
p + b

b

]
q

[p]q
[2n − p − d − b]q

[
2n − p − d − b

n − d, n − p − d

]
q

.

(25)

We should mention that although Sn,d,p,b(q, t) has a nice recursive structure and a compact
expression when t = 1/q, it is not in general symmetric in q, t.

We now use Corollary 1 to evaluate q(
n
2)−(d

2)Sn,d(q, 1/q).

Theorem 5 For all n ≥ d ≥ 0 we have

q(
n
2)−(d

2)Sn,d(q, 1/q) =
1

[n − d + 1]q

[
2n − d

n − d, n − d

]
q

. (26)
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Proof. For n ≤ 1 or n = d both sides reduce to 1. Suppose n > 1 and n > d and

abbreviate q(
n
2)−(d

2)Sn,d(q, 1/q) by S. Since Sn,d,0,k(q, t) = 0 if n > d,

Sn,d(q, t) =
n−d∑
p=1

d∑
k=0

Sn,d,p,k(q, t). (27)

Using (27) and Corollary 1 yields

S =

d∑
k=0

n−d∑
p=1

[p + k]!

[p]![k]!

[p][2n − k − d − p − 1]!

[n − d − p]![n − d]![d − k]!
q((

n
2)−(d

2)−(n−k
2 )+(d−k

2 )+(n−k)(p−1))

=

d∑
k=0

q((
n
2)−(d

2)−(n−k
2 )+(d−k

2 ))

[k]![n − d]![d − k]!

∑
p≥1

[k + 1 + (p − 1)]![2n − d − k − 2 − (p − 1)]!

[p − 1]![n − d − 1 − (p − 1)]!
q(p−1)(n−k).(28)

Setting u = p − 1 and writing the inner sum as a basic hypergeometric series we obtain

S =
1

[n − d]!

d∑
k=0

q((
n
2)−(d

2)−(n−k
2 )+(d−k

2 ))[k + 1]![2n − d − k − 2]!

[k]![d − k]![n − d − 1]!

×
∑
u≥0

(qk+2)u(q
−(n−d−1))u

(q)u(q−(2n−d−k−2))u
qu(n−k)+u(n−d−1−2n+d+k+2). (29)

Note the exponent of q in the inner sum is u. By (21),

∑
u≥0

(qk+2)u(q
−(n−d−1))u

(q)u(q−(2n−d−k−2))u

qu =
(q−(2n−d))n−d−1

(q−(2n−d−k−2))n−d−1

q(k+2)(n−d−1)

=
(q2n−d − 1) · · · (qn+2 − 1)

(q2n−d−k−2 − 1) · · · (qn−k − 1)

=
[2n − d]![n − k − 1]!

[n + 1]![2n − d − k − 2]!
. (30)

Plugging this back into (29) we see

S =
[2n − d]!

[n + 1]![n − d]![n − d − 1]!

d∑
k=0

q((
n
2)−(d

2)−(n−k
2 )+(d−k

2 ))[k + 1]![n − 1 − k]!

[k]![d − k]!

=
[2n − d]![n − 1]!

[n + 1]![n − d]![n − d − 1]![d]!

d∑
k=0

(q2)k(q
−d)k

(q)k(q1−n)k
q((

n
2)−(d

2)−(n−k
2 )+(d−k

2 ))qk(1−n+d). (31)
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The exponent
((

n
2

) − (
d
2

) − (
n−k

2

)
+

(
d−k
2

))
+k(1−n+d) is equal to k, so by (21) the inner

sum is

d∑
k=0

(q2)k(q
−d)k

(q)k(q1−n)k
qk =

(q−1−n)d

(q1−n)d
q2d

=
(qn+1 − 1) · · · (qn+2−d − 1)

(qn−1 − 1) · · · (qn−d − 1)

=
[n + 1]![n − d − 1]!

[n + 1 − d]![n − 1]!
, (32)

and the theorem follows. 2

By replacing q by 1/q in Theorem 5 we easily obtain the fact that Conjecture 1 is true
when t = 1/q.

Corollary 2 For all n, d, Sn,d(q, 1/q) = Sn,d(1/q, q).

3 A Schröder Generalization of Haiman’s Statistic

The left border of each row of a path Π will consist of either an N step or a D step, and
we call it an N row or a D row, accordingly. Recalling the notations rowi(Π) and areai(Π)
from the introduction, we define a statistic dinv(Π) to be the number of “inversion pairs”
of Π, which are pairs (i, j), 1 ≤ i < j ≤ n, such that either

areai(Π) = areaj(Π) and rowj is an N row (33)

or
areai(Π) = areaj(Π) − 1 and rowi is an N row. (34)

For example, for the path on the left side of Figure 3, the inversion pairs are (1, 2), (1, 4),
(1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 5), (3, 6), (3, 7), (3, 8) and (5, 6) so dinv(Π) = 12.

We call the length of the longest N -row of Π the height of Π. For Π of height h,
we call the vector (n0, n1, . . . , nh) whose ith coordinate is the number of N rows of Π of
length i the N -area vector of Π. Similarly we call the vector (d0, d1, . . . , dh+1) whose ith
coordinate is the number of D rows of Π of length i the D-area vector of Π.

Theorem 6 There exists a bijection φ : Sn,d → Sn,d such that

dinv(Π) = area(φ(Π)) and area(Π) = bounce(φ(Π)). (35)

Moreover, the N-area and D-area vectors of Π equal the bounce and shift vectors of φ(Π),
respectively.

Corollary 3 For all n, d,

Sn,d(q, t) =
∑

Π∈Sn,d

qdinv(Π)tarea(Π). (36)
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Corollary 4 For all n, d,
Sn,d(q, 1) = Sn,d(1, q). (37)

Proof. (of Theorem 6). Given Π ∈ Sn,d, we will argue that the following algorithm
creates a path φ(Π) with the requisite properties.

Algorithm φ [(dinv, area) → (area, bounce)]:
Initialize to (0, 0).
Input: the area sequence (areai(Π), Ri)

n
i=1 with Π of height h.

Here Ri is either N or D indicating whether rowi of Π is an N or D row.
Output: a path φ(Π) ∈ Sn,d.
For v = h to −1;

For w = 1 to n;
If areaw(Π) = v and roww is an N row then take a N step;
If areaw(Π) = v + 1 and roww is a D row then take a D step;
If areaw(Π) = v + 1 and roww is an N row then take a E step;

repeat;
repeat;

In Figure 3 we have a path Π and its image φ(Π) under the map described above.

1

1

2

1

1

1

0

0

Figure 3: A path Π and its image φ(Π)

First note that if rowi is an N row with length j, then it will first contribute an N
step to φ(Π) during the v = j loop, then a E step to φ(Π) during the v = j − 1 loop. If
rowi is a D row of length j, then it will contribute a D step to φ(Π) during the v = j − 1
loop. It follows that φ(Π) ∈ Sn,d.
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We now prove by induction on i that for 0 ≤ i ≤ h, the last step created during the
v = i loop is peak i + 1 of φ(Π), and also that the i + 1st coordinates of the bounce and
shift vectors of φ(Π) equal ni and di, respectively, the i + 1st coordinates of the N -area
and D-area vectors of Π. The v = −1 loop ceates n0 E steps and d0 D steps. Now it
is clear geometrically that for any Π, if areaj = i + 1 for i > −1 then there exists l > j
such that areal = i and rowl is an N row. Thus for i > −1 the last step of φ(Π) created
during the v = i loop will be an N step. In particular, the last step created during the
v = 0 loop is peak 1 of φ(Π). Now assume by induction that the last step created during
the v = i − 1 loop is peak i, and that the length of the ith bounce step of φ(Π) is ni−1.
The fact that the last step created during the v = i loop is an N step, together with the
fact that the number of N steps created during the v = i− 1 loop is ni−1, imply that the
length of the i + 1st bounce step of φ(Π) equals the number of E steps created during
the v = i − 1 loop, which is ni. Also, the last N step created during the v = i loop will
become peak i+1. Furthermore, the number of D steps created during the v = i−1 loop
is di, and these are exactly the set of D steps of φ(Π) which end up between peaks i and
i + 1 (if 1 ≤ i − 1 < h) or below peak h + 1 if i − 1 = h. This completes the induction.

Now area(φ(Π)) =
∑

i

(
ni

2

)
, plus the area between each of the sections φ(Π)i and the

corresponding boundary path. Note
∑

i

(
ni

2

)
counts the number of inversion pairs of Π

between rows of the same length, neither of which is a D row. Fix i, 0 ≤ i ≤ k, and let
rowj1 , rowj2, . . . , rowjp, j1 < j2 < · · · < jp be the sequence of rows of Π affecting the v = i
loop, i.e. rows which are either N rows of length i or i + 1, or D rows of length i + 1 (so
p = ni + ni+1 + di+1). Let τ be the word of 2’s, 1’s and 0’s corresponding to the portion
of Π affecting the v = i loop. One verifies from the definition of dinv that the number
of inversion pairs of Π of the form (x, y) with rowx of length i, rowy of length i + 1 and
x not a D row equals the number of inversion pairs of τ involving 2’s and 1’s or 2’s and
0’s. Similarly, the number of inversion pairs of Π of the form (x, y) with rowx of length i,
rowy of length i+1 and y not a D row equals the number of inversion pairs of τ involving
1’s and 0’s. It follows from Lemma 1 that dinv(Π) = area(φ(Π)).

It remains to show the algorithm is invertible. The bounce and shift vectors of φ(Π)
yield the N -area and D-area vectors of Π, respectively. In particular they tell us how
many rows of Π there are of length 0. From section 0 of φ(Π) we can determine which
subset of these are D rows, since the v = −1 iteration of the φ algorithm produces an E
step in section 0 of φ(Π) for each N row of length 0 in Π, and a D step in section 0 of
φ(Π) for each D row of length 0 in Π. From section 1 of φ(Π) we can determine how the
rows of length 1 of Π are interleaved with the rows of length 0 of Π, and also which rows
of length 1 are D rows, since the v = 0 iteration of φ creates an N step in section 1 of
φ(Π) for every N row of Π of length 0, and a D or E step of φ(Π) for every N -row or D
row, respectively, of length 1 in Π. When considering how the rows of length 2 of Π are
related to the rows of length 1, we can ignore the rows of length 0, since no row of length
0 can be directly below a row of length 2 and still be the row sequence of a Schröder
path. Hence from section 2 of φ(Π) we can determine how the rows of length 2 of Π are
interleaved with the rows of length 1, and which ones are D rows. Continuing in this way
we can completely determine Π. An explicit algorithm for the inverse is described below.
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Algorithm φ−1 [(area, bounce) → (dinv, area)]:
Initialize to (a) = (−1, N).
Input: a path φ(Π) ∈ Sn,d with k peaks, where the top of peak i has coordinates
(xi, yi) for 1 ≤ i ≤ k. Define xk+1 = 0, yk+1 = 0 and x0 = n, y0 = n.
Let Mi denote the number of steps in the ith section of φ(Π), 0 ≤ i ≤ k.
Output: a sequence of pairs (areai(Π), Ri)

n
i=1, where Ri is either N or D indicating

whether rowi of Π is an N row or a D row.
For i = 1 to k + 1;

Number the steps of φ(Π) beginning at (xi, yi), moving up the path
until reaching (xi−1, yi−1).
Given the sequence (a) created thus far, we insert a new subsequence of
(i − 1, N)’s and (i − 1, D)’s starting to the left of the first element of (a)
and moving to the right.
For j = 1 to Mi−1;

If step j is a N step then move past the next (i − 2, N) in (a);
If step j is a D step then insert a (i − 1, D)
immediately to the left of the next (i − 2, N) in (a);
If step j is a E step then insert a (i − 1, N)
immediately to the left of the next (i − 2, N) in (a);

repeat;
repeat;
remove the (−1, N) from (a).

2

A consequence of Corollary 3 is that the right-hand-side of (8) equals
∑

qdinv(Π)tarea(Π).
We give a brief argument as to how this can be shown directly, which builds on the
corresponding argument for the d = 0 case in [Hag]. Let (n0, . . . , nk−1) and (d0, . . . , dk)
be two N -area and D-area vectors, and consider the sum of qdinv over all Π with these N -
area and D-area vectors. We construct such a Π by starting with a sequence row1, row2, . . .
of n0 N rows of length zero, then insert d0 D rows of length zero into this sequence. The
resulting sequence will be the sequence row1, row2, . . . of a corresponding path Π, and
consider the value of dinv(Π). All the D rows will create an inversion pair with the N
rows after it, and any pair of N rows will create an inversion pair. Thus as we sum over
all ways to insert the D rows we generate a factor of

q(
n0
2 )

[
d0 + n0

d0

]
q

. (38)

Next we wish to insert the n1 + d1 rows of length one. For simplicity consider the
case where after inserting these rows all the N rows of length one occur before all the D
rows of length one. We have the constraint that we cannot insert a row of length one just
before a D row of length zero and still have the row sequence of an actual Schröder path.
In particular we must have an N row of length zero immediately following the last row of
length one. Now each of the rows of length one will create an inversion pair with each N
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row of length zero before it, but will not create an inversion pair with any of the D rows
of length zero. It follows that we can essentially ignore the D rows of length zero, and
when summing over all possible insertions we generate a factor of

q(
n1
2 )

[
n1 + d1 + n0 − 1

n1 + d1

]
q

, (39)

since each pair of N rows of length one will generate an inversion pair, but none of the
D rows of length one will occur in an inversion pair with any row of length one. In fact,
(39) gives the (weighted) count of the inversion pairs between rows of length zero and of
length one, and between N rows of length one, no matter how the N rows and D rows
of length one are interleaved with each other. Thus when we sum over all such possible
arrangements, we generate an extra factor of[

n1 + d1

n1

]
q

, (40)

and so the total contribution is

q(
n1
2 )

[
n1 + d1 + n0 − 1

n1 + d1

]
q

[
n1 + d1

n1

]
q

= q(
n1
2 )

[
n1 + d1 + n0 − 1

n1, d1

]
q

. (41)

When inserting the rows of length 2, we cannot insert before any row of length 0 and
still correspond to a Schröder path. Also, none of the rows of length 2 will create inversion
pairs with any row of length 0. Thus by the argument above we get a factor of

q(
n2
2 )

[
n2 + d2 + n1 − 1

n2, d2

]
q

. (42)

It is now clear how the right-hand-side of (8) is obtained.

4 A Conjecture Involving the Nabla Operator

For λ a partition of n, denoted λ ` n, let λ′ denote the conjugate partition, sλ the Schur
function, and en the nth elementary symmetric function. If µ is another partition of n,
let Kλ,µ(q, t) be Macdonald’s q, t-Kostka polynomial [Mac95, p. 354], and let

H̃µ =
∑
λ`n

tη(µ)Kλ,µ(q, 1/t)sλ (43)

be the modified Macdonald polynomial, where η(µ) =
∑

i(i − 1)µi. One of the ways of
defining Cn(q, t) is by the relation

Cn(q, t) =< ∇en, s1n >, (44)
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where ∇ is the linear operator defined on the H̃µ basis via

∇H̃µ = tη(µ)qη(µ′)H̃µ, (45)

and <, > is the usual Hall scalar product with respect to which the Schur functions form
an orthonormal system. In other words, Cn(q, t) is the coefficient of s1n when expanding
∇en in terms of Schur functions.

Haiman has proven the n! conjecture, which implies Kλ,µ(q, t) ∈ N[q, t] [Hai01]. In
a subsequent work he has shown that < ∇en, sλ > equals the coefficient of sλ in the
Frobenius series of the character of the module Hn of diagonal harmonics under the
diagonal action of the symmetric group [Hai02]. In particular this implies that Cn(q, t) is
the bigraded Hilbert series of Hε

n, the subspace of antisymmetric elements of Hn. Both
this and Garsia and Haglund’s result imply Cn(q, t) ∈ N[q, t], but neither one contains
the other.

The referee has suggested the following conjecture, which gives a beautiful interpreta-
tion for Sn,d(q, t) in terms of diagonal harmonics.

Conjecture 2 For all n, d,

Sn,d(q, t) =< ∇s1n , en−dsd > . (46)

By the Pieri rule, an equivalent formulation of Conjecture 2 is that (for 0 < d < n)
Sn,d(q, t) is the sum of the coefficients of the two hook shapes sd+1,1n−d−1 and sd,1n−d in
∇en. If d = 0 or d = n, it reduces to the known formulas for the coefficients of s1n and
sn in ∇en, respectively.

Independently of this, the second author and A. Ulyanov formulated the next con-
jecture, which describes how < ∇en, sd+1,1n−d−1 > can be obtained by summing qdinvtarea

over certain special paths. To be precise, say rowi(Π) is the leading row of Π if for all
j 6= i either

(1) areai(Π) > areaj(Π)
or

(2) areai(Π) = areaj(Π) and i < j.

Let S̃n,d denote the set of all Π whose leading row is an N row, and set

S̃n,d(q, t) =
∑

Π∈S̃n,d

qdinv(Π)tarea(Π). (47)

(It follows from algorithm φ that for 0 ≤ d < n, S̃n,d(q, t) also equals the sum of qareatbounce

over all Π ∈ Sn,d for which pword(Π) has no D before the first E.)

Conjecture 3 For all n, d ≥ 0,

S̃n,d(q, t) =< ∇en, sd+1,1n−d−1 > . (48)
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The Schröder numbers rn count the number of Schröder paths from (0, 0) to (n, n)
with any number of diagonals. Conjecture 2 implies that if we define a two parameter
Schröder number via

rn(q, t) =

n∑
d=0

Sn,d(q, t) (49)

then rn(q, t) is twice the sum of the coefficients of all the hook shapes in ∇en. The study of
the numbers rn goes hand in hand with the study of the little Schröder numbers, which we
denote by r̃n. These numbers count many objects [Sta99, p. 178], including the number
of Schröder paths from (0, 0) to (n, n) which have no D steps on the line y = x. It is
well-known, although not combinatorially obvious, that 2r̃n = rn. If we define

r̃n(q, t) =

n−1∑
d=0

S̃n,d(q, t) (50)

then we have a two-parameter little Schröder number which, assuming Conjecture 3, is
the sum of the coefficients of all the hook shapes in ∇en. Thus we must have 2r̃n(q, t) =
rn(q, t). In fact, it is easy to show this combinatorially, since the N step in the leading
row of any path in S̃n,d must be followed by an E step, and replacing this NE pair by a
D step doesn’t change either area or dinv. Thus for 0 ≤ d ≤ n,

Sn,d(q, t) = S̃n,d−1(q, t) + S̃n,d(q, t) (51)

with S̃n,n(q, t) = S̃n,−1(q, t) = 0. Hence Conjecture 3 implies Conjecture 2. On the other
hand, since S̃n,0(q, t) = Cn(q, t), if

Sn,1(q, t) = S̃n,0(q, t) + S̃n,1(q, t) = ∇en|s1n + ∇en|s2,1n−2 , (52)

we must have
S̃n,1(q, t) = ∇en|s2,1n−2

. (53)

Continuing in this way we find Conjecture 2 implies Conjecture 3 so they are equivalent.
Conjecture 2 is part of a broader conjecture involving several parameters currently

being researched by N. Loehr, J. Remmel, A. Ulyanov and the second author. Using Maple
programs created in connection with this A. Ulyanov has confirmed that Conjecture 2
holds for all n, d satisfying n + d ≤ 10. By previous remarks, it is also true when d = 0
or d = n. In addition we can show it holds in the following special cases.

Proposition 1 Conjecture 3 is true when either q or t is either 0 or 1, and also when
t = 1/q.

Proof. S̃n,d(q, 0) is the sum of qdinv over all Schröder paths in S̃n,d all of whose rows are
of length 0 and whose first (i.e. top) row is an N row. We get an inversion pair for each
pair (i, j) with i < j and rowj an N row. This implies

S̃n,d(q, 0) = en−d−1(q, q
2, . . . , qn) = q(

n−d
2 )

[
n − 1

d

]
q

. (54)
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The case t = 0 of Conjecture 3 now follows from the known formula for the Frobenius
series of the space of harmonics in one set of variables (see [Hai94, eq. (13)]). By the
comment following (47), S̃n,d(0, t) equals the sum of tbounce over all paths in Sn,d whose
pword begins with NE and all of whose rows are of length 0. The case q = 0 follows
easily. J. Remmel [Rem] has a bijective proof of the case t = 1, which also implies the
case q = 1 by Corollary 4.

[GH96, Eq. 88] states that when t = 1/q,

q(
n
2)∇en|sλ

=
sλ′(1, q, . . . , qn)

[n + 1]q
. (55)

Using the known formula for sλ(1, . . . , q
n) [Sta99, p. 374] and Theorem 5 we obtain the

case t = 1/q of Conjecture 3. 2

We now describe a rational function identity which is equivalent to Conjecture 3. For
µ ` n let s denote a cell in the Ferrers diagram of µ. By the arm (respectively, co-arm)
of s we mean the set of cells in the same row as s and strictly to the right (respectively,
left) of s. By the leg (respectively, co-leg) of s we mean the set of cells in the same
column as s and strictly below (respectively, above) s. When s has been specified, we let
a (respectively, a′) denote the number of cells in the arm (respectively, co-arm) of s, and
l (respectively, l′) denote the number of cells in the leg (respectively, co-leg) of s. For
example, for the cell labeled s in Figure 4 we have a = 5, a′ = 4, l = 3 and l′ = 2.

0,0

s aa /

l

l
/

Figure 4: Arm, leg, co-arm and co-leg of s

Garsia and Haiman obtained the following [GH96, Eq. (83)]

∇en =
∑
µ`n

tη(µ)qη(µ′)H̃µ[X; q, t](1 − t)(1 − q)
∏(0,0)(1 − qa′

tl
′
)
(∑

qa′
tl

′)∏
(qa − tl+1)(tl − qa+1)

, (56)

the electronic journal of combinatorics 10 (2003), #R16 19



where the sums and products are over the cells of µ, and the symbol
∏(0,0) indicates the

the upper left-hand corner cell of µ is not included. In general the coefficients of the sλ

in H̃µ[X; q, t] have no known combinatorial description, although a result of Macdonald
[Mac95, ex. 2, p. 362] implies that for 0 ≤ d ≤ n − 1 the coefficient of the hook shape

sd+1,1n−d−1 in H̃µ[X; q, t] equals the coefficient of zd in
∏(0,0)(z + qa′

tl
′
). Here the product

is over the non-(0, 0) cells of µ as above. Thus Conjectures 2 and 3 are equivalent to the
following.

Conjecture 4 For n ≥ 1,

n−1∑
d=0

zdS̃n,d(q, t) =
∑
µ`n

tη(µ)qη(µ′) ∏(0,0)(z + qa′
tl

′
)
∏(0,0)(1 − qa′

tl
′
)(1 − t)(1 − q)

∑
s∈µ qa′

tl
′∏

(qa − tl+1)(tl − qa+1)
.

(57)
and

n∑
d=0

zdSn,d(q, t) =
∑
µ`n

tη(µ)qη(µ′) ∏
(z + qa′

tl
′
)
∏(0,0)(1 − qa′

tl
′
)(1 − t)(1 − q)

∑
s∈µ qa′

tl
′∏

(qa − tl+1)(tl − qa+1)
.

(58)

It is interesting to note that the case z = 1 of (57) reduces to

r̃n(q, t) =
∑
µ`n

tη(µ)qη(µ′) ∏(0,0)(1 − q2a′
t2l′)(1 − t)(1 − q)

∑
s∈µ qa′

tl
′∏

(qa − tl+1)(tl − qa+1)
. (59)

5 Acknowledgments

The authors would like to thank the referee not only for pointing out Conjecture 2 but
also for making many helpful remarks about the exposition. In addition they would like to
thank N. Loehr, J. Remmel and A. Ulyanov for useful comments involving Conjecture 2.

References

[BLPP99] E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. Some combinatorial
interpretations of q-analogs of Schröder numbers. Ann. Comb., 3:171–190,
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