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Abstract

Let F3 2 denote the 3-graph {abc,ade,bde,cde}. We show that the maximum
size of an Fjo-free 3-graph on n vertices is (5 + o(1))(3), proving a conjecture of
Mubayi and R6dl [J. Comb. Th. A, 100 (2002), 135-152].

*Research supported in part by the Hungarian National Science Foundation under grant OTKA T
032452, and by the National Science Foundation under grant DMS 0140692.
tSupported by a Research Fellowship, St. John’s College, Cambridge.

THE ELECTRONIC JOURNAL OF COMBINATORICS 10 (2003), #R18 1



1 Introduction

Let [n] := {1,...,n} and let ([Z]) denote the family of k-element subsets of [n]. The
Turdn function ex(n, F') of a k-graph F' is the maximum size of H C ([Z}) not containing

a subgraph isomorphic to F. It is well known [5], that the ratio ex(n, F')/ (Z) is non-

increasing with n. In particular, the limit

7(F) := lim ex(n, F)
()
exists. See [4] for a survey on the Turdn problem for hypergraphs. The value of 7(F’), for
k > 3, is known for very few F' and any addition to this list is of interest.
In this note we consider the 3-graph

Fso={{1,2,3}, {1,4,5}, {2,4,5}, {3,4,5} }.
The notation F3 5 comes from [7] where, more generally, the 3-graph F,, , consists of those
edges in ([p?;‘ﬂ) which intersect [p] in either 1 or 3 vertices. Note that we shall use both
F35 and Fy 3 and they are different.

The extremal graph problem of F3 5 originates from a Ramsey-Turdn hypergraph paper
of Erdés and T. Sé6s [2]. They investigated examples where the Turdn function and the
Ramsey-Turan number essentially differ from each other. They observed that ex(n, F32) >
cn®, while, if H,, is a 3-uniform hypergraph without F3, and the independence number
of H, is o(n) then e(H,) = o(n®). A more general theorem is proved in [3].

Mubayi and Rodl [7, Theorem 1.5] showed that

g < m(F3z) < %7
and conjectured [7, Conjecture 1.6] that the lower bound is sharp. An Fj »-free hypergraph
of density 5 + o(1) can be obtained by taking those 3-subsets of [n] which intersect [a] in
precisely two vertices, a = (2 + o(1)) n.
Here we verify this conjecture.

Theorem 1. 7(F35) =4/9.

In a forthcoming paper we will present a different argument showing that the above
construction with a = [2n/3] gives the exact value of ex(n, F') for all sufficiently large n.

2 Preliminary Observations

We frequently identify a hypergraph with its edge set but write V(H) for its vertex set.
For a 3-graph H the link graph of a vertex z € V(H) is

Hy o= {{y, 2} [{z,y, 2} € H}.
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Suppose, to the contrary to Theorem 1, that ¢ := w(F32) > 4/9 4 ¢ for some ¢ > 0.
Let n be sufficiently large and let H C ([g]) be a maximum Fj o-free hypergraph.

The degrees of any two vertices of H differ by at most n —2. Indeed, otherwise we can
delete the vertex with the smaller degree and duplicate the other, strictly increasing the
size of H. (This is a variant of Zykov’s symmetrization.) Hence, e(H,) = (6 + o(1)) (;’)
for every v € [n].

For distinct 2,y € V(H) let
Hoy :={z € V(H) [ {z,y, 2} € H}.

Let |H,,| attain its maximum for (zg,yo). Put A := Hyy 4, a :=|A|/n, and 4 := [n]\ A.
Equivalently, an is the maximum of A(H,) over x € V(H), where A stands for the
maximum degree. As H is Fj3,-free, no edge of H lies inside A.

For v € V(H) let e, := e(G,[A, A]) be the number of edges in H, connecting A to A.

eo =2(Hy) — Y [Haw| = (0 —a(l —a) +0o(1))n®, ve A, (1)
z€A
The assumption v € A is essential in (1) as we use the fact that A is an independent
vertex-set in GG,,.
By (1), the average degree of G,[A, A] over = € A is

)

m2<2—1+a+0(1))n::”yn. 2)

Thus we can find a set C C A of size |C] = yn covered in G, by some z € A4, i.e.,
C CHyp Let B:= A\ C and
|B] J
=—=1-a—-—7=2-2a— — 1). 3
= a—7 a——+o(l) (3)
Let ¢, := e(G,[A, C]) and b, := e(G,[A, B]). Obviously, e, = b, + ¢, for every v € [n].
The nonnegativity of § and 7 together with (2) and (3) imply

<7, 0<3<0.12

4 2 1
— <d< 1)< = -
9+€ _04+0()_3, 3

Concerning the edge densities we obtain by (1) for v € A that

_ _ 2

Cy _ & b, > ey, — afin (@)
|Al|C] ayn? ayn?

d—a(l—a)—ap (1)_26—3a(1—a)

- d—a(l—a) A= d—a(l—a)

+o(1) >
Here the last step is implied by 9§ > 4 > 16a(1 — «).
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Note that no edge ' € H can lie inside C, otherwise EU{v, z} would span a forbidden
subhypergraph. The independence properties of A and C' will play a crucial role in our
proof.

Following [7] we make the following definitions. Let F» = {F33} consist of the single
3-graph Fs 3. Recall that

Fo53 ={{1,3,4}, {1,3,5}, {1,4, 5}, {2,3,4}, {2,3,5}, {2,4,5} }.

For t > 3 let F; be the family of all 3-graphs obtained by adding to each F' € F;_; two
new vertices x,y and any set of t edges of the form {x,y, z} with z € V/(F). It is easy to
show (see [7, Proposition 4.2]) that each F' € F; has 2t + 1 vertices and any ¢ + 2 vertices
of F' span at least one edge.

Why is this family useful in our study of m(F34)? A straightforward attempt to find
F3o C H is to pick an arbitrary edge E = {z,y, z} € H and to prove that H,NH,NH, # 0.
To guarantee the last property, it is enough to require that each H,, x € V(H), has more
than %(g) edges. This leads to m(F32) < 2/3. But suppose that we have F' C H with
F e F,. To find a copy of F3, in H, it is enough to find a (¢ + 2)-set X C V(F') with
Neex Mz # 0. The condition that for every z € X, e(H,) > 2’%51 (Z) is sufficient for this.
So, if we can find Fj-subgraphs for sufficiently large ¢, then we can show 7(F32) < 1/2.

This idea is due to Mubayi and Rédl [7]. Here, we take it one step further by trying
to find an F;-subgraph which lies “nicely” with respect to A and C'. Then we exploit the
fact that each link graph has a large independent set, so its edge density is relatively large

between A and C'. Here is the crucial definition.

Definition 2. An F;-subgraph F' C H is well-positioned if V(F) C AU C and

[V(F)NAl=t+1and |V(F)NC|=t. (5)
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3 Proof of Theorem 1

The proof consists of three steps. First, in a lemma, we show that there are well-positioned
Fi-subhypergraphs in H, namely we can take ¢ = 2. In this step we do not use our
assumption that 6 > % + ¢, only that n > ny. Next we show that there is no well-
positioned Fi-subhypergraph with ¢ = [1/¢]. In the last step we consider a well-positioned
F; subgraph F', which is not contained in any well-positioned F;,i-subhypergraph, and
t<1/e.

Lemma 3. Fy3 C H.

Proof. Denote the number of hyperedges of H of type AAC, i.e., those having two
vertices in A and one in C, by Aaac. Let a,, := e¢(Gy[A]) and recall that ¢, = e(G,[A, C]).

Then )
Z%ZAAAC:§ZC@-

weC veEA
By (4) we have .
u%:Caw > ﬁ]AP]C\.

Count the 4-vertex 3-edge subhypergraphs Fy 3 of the form {wzy, wzz, wyz}, w € C,
x,y,z € A. For a given w they are obtained from the triangles in G, [A]. So we may
apply the Moon-Moser’s extension of Turan’s theorem [6], that the number of triangles
k3(G) of an n-vertex e-edge graph G is at least e(4de — n?)/(3n). The convexity of this

function implies for n > ny,

A3 w 4 w
#F3 = Z ks(GwlA]) > Z | 3’ &,2 <‘Z’2 - 1)

welC welC
|A]? 5 (20 > | A
> IClx ——=(—-1) > :
R R YASY 3
So at least two of these triangles coincide, giving a well-positioned Fy-subgraph. O

Lemma 4. Lett = [1/e]. Then H contains no well-positioned F;-subgraph.

Proof. Suppose, to the contrary, that such an F' C H exists and consider the link
graphs G, v € V(F). As H is Fjo-free, any pair of vertices belongs to at most ¢ + 1
links. For the edges between A and B we have

(t+Lapn®> > b, (6)

veV (F)

Recall that b, = e(G,[A, B)).
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We need the following analogue of (1) for w € C:

ew = 20(Gu) = X Mol — 2¢(CulA))

veEA

> (6—a®—=28y—3*+o0(1)n? weC. (7)

For the edges connecting A to C, we obtain by (5), (1), (7), and (6) that

1

n2

1
ZCU:—Q( Z ey + Z €y — Zby)
VeV (F) " \vev(F)na VeV (F)NC VeV (F)
> (t+1)(0 —a(l —a)) +t6—a®—28y— 3%

—(t+ 1)af + o(t).

(t+ Doy =

Rearranging, we get

ay— (0 —a(l —a))+af (8)
> t(—ow—i—(5—&(1—04))+(5—042—25v—ﬁ2)—ozﬁ—l—o(l)).

Here the left hand side equals to 2a(1 — ) — §. We have a(1 — «a) < 1/4, 6 > 4/9,
therefore
. 1 4 1
the left hand side of (8) < = — - = —.
2 9 18
Substituting the values of v and (3 given by (2) and (3) into the right hand side of (8) we
obtain after routine transformations that the coefficient of t equals a? — 2o + 48 — %6 +

2—22 + o(1), which equals

L3 (o o o o) o

Here the first term is non-negative, and in the second term ¢ + g + 40 — 2a > 202 since
6 > 4. Thus (8) implies that 1/18 > 2et which is impossible. O

Let t be the largest integer such that well-positioned F3, Fj3, ..., F-subhypergraphs
exist. By our above arguments we have 2 <t < 1/e. We are going to use the maximality
of t, which tells us that any pair connecting A\ V(F') to C'\ V(F') belongs to at most ¢
graphs H,, v € V(F'). We obtain

t(Al =t =D(C| =) +[V(E)N'n= >

veV (F)

Note that we cannot make the same claim about the edges between A and B because a
well-positioned subgraph must lie inside A U C by definition. However, we can use the
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weaker inequality (6). We obtain

1 1
tay + Ot /n) > —

LT e k(T ez

VeV (F) VeV (F) VeV (F)
> (t+1)(00—a(l—a))

+t(6 —a® =298 — B%) — (t+ 1)af + o(1),
leading to
—(0—a(l—a))+ap 9)
> t(—ow—i—(é—a(l—oz))—l—(é—oﬂ—2ﬁ7—ﬁ2)—ozﬁ) +o(1)

Here the left hand side is negative
1 4
—(0—a(l—a))+af =3a(l —a) —20+o(1) <3 x Z_QX §—|—0(1) <0,

and the right hand side of (9) is the same as in inequality (8), so it is at least 2et. This
contradiction proves Theorem 1.
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