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Abstract

Let F3,2 denote the 3-graph {abc, ade, bde, cde}. We show that the maximum
size of an F3,2-free 3-graph on n vertices is (4

9 + o(1))
(n
3

)
, proving a conjecture of

Mubayi and Rödl [J. Comb. Th. A, 100 (2002), 135–152].
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1 Introduction

Let [n] := {1, . . . , n} and let
(

[n]
k

)
denote the family of k-element subsets of [n]. The

Turán function ex(n, F ) of a k-graph F is the maximum size of H ⊂
(

[n]
k

)
not containing

a subgraph isomorphic to F . It is well known [5], that the ratio ex(n, F )/
(

n
k

)
is non-

increasing with n. In particular, the limit

π(F ) := lim
n→∞

ex(n, F )(
n
k

)
exists. See [4] for a survey on the Turán problem for hypergraphs. The value of π(F ), for

k ≥ 3, is known for very few F and any addition to this list is of interest.

In this note we consider the 3-graph

F3,2 = { {1, 2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5} }.
The notation F3,2 comes from [7] where, more generally, the 3-graph Fp,q consists of those

edges in
(

[p+q]
3

)
which intersect [p] in either 1 or 3 vertices. Note that we shall use both

F3,2 and F2,3 and they are different.

The extremal graph problem of F3,2 originates from a Ramsey-Turán hypergraph paper

of Erdős and T. Sós [2]. They investigated examples where the Turán function and the

Ramsey-Turán number essentially differ from each other. They observed that ex(n,F3,2) >

cn3, while, if Hn is a 3-uniform hypergraph without F3,2 and the independence number

of Hn is o(n) then e(Hn) = o(n3). A more general theorem is proved in [3].

Mubayi and Rödl [7, Theorem 1.5] showed that

4

9
≤ π(F3,2) ≤ 1

2
,

and conjectured [7, Conjecture 1.6] that the lower bound is sharp. An F3,2-free hypergraph

of density 4
9

+ o(1) can be obtained by taking those 3-subsets of [n] which intersect [a] in

precisely two vertices, a = (2
3

+ o(1)) n.

Here we verify this conjecture.

Theorem 1. π(F3,2) = 4/9.

In a forthcoming paper we will present a different argument showing that the above

construction with a = d2n/3e gives the exact value of ex(n, F ) for all sufficiently large n.

2 Preliminary Observations

We frequently identify a hypergraph with its edge set but write V (H) for its vertex set.

For a 3-graph H the link graph of a vertex x ∈ V (H) is

Hx := {{y, z} | {x, y, z} ∈ H}.
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Suppose, to the contrary to Theorem 1, that δ := π(F3,2) > 4/9 + ε for some ε > 0.

Let n be sufficiently large and let H ⊂
(

[n]
3

)
be a maximum F3,2-free hypergraph.

The degrees of any two vertices of H differ by at most n−2. Indeed, otherwise we can

delete the vertex with the smaller degree and duplicate the other, strictly increasing the

size of H. (This is a variant of Zykov’s symmetrization.) Hence, e(Hv) = (δ + o(1))
(

n
2

)
for every v ∈ [n].

For distinct x, y ∈ V (H) let

Hx,y := {z ∈ V (H) | {x, y, z} ∈ H}.

Let |Hx,y| attain its maximum for (x0, y0). Put A := Hx0,y0 , α := |A|/n, and A := [n] \A.

Equivalently, αn is the maximum of ∆(Hx) over x ∈ V (H), where ∆ stands for the

maximum degree. As H is F3,2-free, no edge of H lies inside A.

For v ∈ V (H) let ev := e(Gv[A, A]) be the number of edges in Hv connecting A to A.

ev = 2e(Hv) −
∑
x∈A

|Hx,v| ≥ (δ − α(1 − α) + o(1)) n2, v ∈ A. (1)

The assumption v ∈ A is essential in (1) as we use the fact that A is an independent

vertex-set in Gv.

By (1), the average degree of Gv[A, A] over x ∈ A is

ev

|A| ≥
(

δ

α
− 1 + α + o(1)

)
n =: γn. (2)

Thus we can find a set C ⊂ A of size |C| = γn covered in Gv by some x ∈ A, i.e.,

C ⊆ Hv,x. Let B := A \ C and

β :=
|B|
n

= 1 − α − γ = 2 − 2α − δ

α
+ o(1). (3)

Let cv := e(Gv[A, C]) and bv := e(Gv[A, B]). Obviously, ev = bv + cv for every v ∈ [n].

The nonnegativity of β and γ together with (2) and (3) imply

4

9
+ ε < δ ≤ α + o(1) ≤ 2

3
,

1

3
≤ γ, 0 ≤ β < 0.12

Concerning the edge densities we obtain by (1) for v ∈ A that

cv

|A||C| =
ev − bv

αγn2
≥ ev − αβn2

αγn2
(4)

≥ δ − α(1 − α) − αβ

δ − α(1 − α)
+ o(1) =

2δ − 3α(1 − α)

δ − α(1 − α)
+ o(1) >

5

7
.

Here the last step is implied by 9δ > 4 ≥ 16α(1 − α).
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Note that no edge E ∈ H can lie inside C, otherwise E∪{v, x} would span a forbidden

subhypergraph. The independence properties of A and C will play a crucial role in our

proof.

Following [7] we make the following definitions. Let F2 = {F2,3} consist of the single

3-graph F2,3. Recall that

F2,3 = { {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5} }.

For t ≥ 3 let Ft be the family of all 3-graphs obtained by adding to each F ∈ Ft−1 two

new vertices x, y and any set of t edges of the form {x, y, z} with z ∈ V (F ). It is easy to

show (see [7, Proposition 4.2]) that each F ∈ Ft has 2t + 1 vertices and any t + 2 vertices

of F span at least one edge.

Why is this family useful in our study of π(F3,2)? A straightforward attempt to find

F3,2 ⊂ H is to pick an arbitrary edge E = {x, y, z} ∈ H and to prove that Hx∩Hy∩Hz 6= ∅.
To guarantee the last property, it is enough to require that each Hx, x ∈ V (H), has more

than 2
3

(
n
2

)
edges. This leads to π(F3,2) ≤ 2/3. But suppose that we have F ⊂ H with

F ∈ Ft. To find a copy of F3,2 in H, it is enough to find a (t + 2)-set X ⊂ V (F ) with

∩x∈XHx 6= ∅. The condition that for every x ∈ X, e(Hx) > t+1
2t+1

(
n
2

)
is sufficient for this.

So, if we can find Ft-subgraphs for sufficiently large t, then we can show π(F3,2) ≤ 1/2.

This idea is due to Mubayi and Rödl [7]. Here, we take it one step further by trying

to find an Ft-subgraph which lies “nicely” with respect to A and C. Then we exploit the

fact that each link graph has a large independent set, so its edge density is relatively large

between A and C. Here is the crucial definition.

Definition 2. An Ft-subgraph F ⊂ H is well-positioned if V (F ) ⊂ A ∪ C and

|V (F ) ∩ A| = t + 1 and |V (F ) ∩ C| = t. (5)

the electronic journal of combinatorics 10 (2003), #R18 4



3 Proof of Theorem 1

The proof consists of three steps. First, in a lemma, we show that there are well-positioned

Ft-subhypergraphs in H, namely we can take t = 2. In this step we do not use our

assumption that δ > 4
9

+ ε, only that n > n0. Next we show that there is no well-

positioned Ft-subhypergraph with t = d1/εe. In the last step we consider a well-positioned

Ft subgraph F , which is not contained in any well-positioned Ft+1-subhypergraph, and

t < 1/ε.

Lemma 3. F2,3 ⊂ H.

Proof. Denote the number of hyperedges of H of type AAC, i.e., those having two

vertices in A and one in C, by ∆AAC . Let aw := e(Gw[A]) and recall that cv = e(Gv[A, C]).

Then ∑
w∈C

aw = ∆AAC =
1

2

∑
v∈A

cv.

By (4) we have ∑
w∈C

aw >
5

14
|A|2|C|.

Count the 4-vertex 3-edge subhypergraphs F1,3 of the form {wxy, wxz, wyz}, w ∈ C,

x, y, z ∈ A. For a given w they are obtained from the triangles in Gw[A]. So we may

apply the Moon-Moser’s extension of Turán’s theorem [6], that the number of triangles

k3(G) of an n-vertex e-edge graph G is at least e(4e − n2)/(3n). The convexity of this

function implies for n > n0,

#F1,3 =
∑
w∈C

k3(Gw[A]) ≥ ∑
w∈C

|A|3
3

aw

|A|2
(

4aw

|A|2 − 1

)

≥ |C| × |A|3
3

5

14

(
20

14
− 1

)
>

(|A|
3

)
.

So at least two of these triangles coincide, giving a well-positioned F2-subgraph.

Lemma 4. Let t = d1/εe. Then H contains no well-positioned Ft-subgraph.

Proof. Suppose, to the contrary, that such an F ⊂ H exists and consider the link

graphs Gv, v ∈ V (F ). As H is F3,2-free, any pair of vertices belongs to at most t + 1

links. For the edges between A and B we have

(t + 1)αβn2 ≥ ∑
v∈V (F )

bv. (6)

Recall that bv = e(Gv[A, B]).
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We need the following analogue of (1) for w ∈ C:

ew = 2e(Gw) − ∑
v∈A

|Hv,w| − 2e(Gw[A])

≥ (δ − α2 − 2βγ − β2 + o(1)) n2, w ∈ C. (7)

For the edges connecting A to C, we obtain by (5), (1), (7), and (6) that

(t + 1)αγ ≥ 1

n2

∑
v∈V (F )

cv =
1

n2


 ∑

v∈V (F )∩A

ev +
∑

v∈V (F )∩C

ev −
∑

v∈V (F )

bv




≥ (t + 1)(δ − α(1 − α)) + t(δ − α2 − 2βγ − β2)

−(t + 1)αβ + o(t).

Rearranging, we get

αγ − (δ − α(1 − α)) + αβ (8)

≥ t
(
− αγ + (δ − α(1 − α)) + (δ − α2 − 2βγ − β2) − αβ + o(1)

)
.

Here the left hand side equals to 2α(1 − α) − δ. We have α(1 − α) ≤ 1/4, δ > 4/9,

therefore

the left hand side of (8) <
1

2
− 4

9
=

1

18
.

Substituting the values of γ and β given by (2) and (3) into the right hand side of (8) we

obtain after routine transformations that the coefficient of t equals α2 − 2α + 4δ − 2δ
α

+
δ2

α2 + o(1), which equals

1

α2

(
α − 2

3

)2 (
(α − 1

3
)2 +

1

3

)
+

1

α2

(
δ − 4

9

)(
δ +

4

9
+ 4α2 − 2α

)
+ o(1).

Here the first term is non-negative, and in the second term δ + 4
9

+ 4α2 − 2α > 2α2 since

δ > 4
9
. Thus (8) implies that 1/18 ≥ 2εt which is impossible.

Let t be the largest integer such that well-positioned F2, F3, . . . ,Ft-subhypergraphs

exist. By our above arguments we have 2 ≤ t < 1/ε. We are going to use the maximality

of t, which tells us that any pair connecting A \ V (F ) to C \ V (F ) belongs to at most t

graphs Hv, v ∈ V (F ). We obtain

t(|A| − t − 1)(|C| − t) + |V (F )|2n ≥ ∑
v∈V (F )

cv.

Note that we cannot make the same claim about the edges between A and B because a

well-positioned subgraph must lie inside A ∪ C by definition. However, we can use the
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weaker inequality (6). We obtain

tαγ + O(t2/n) ≥ 1

n2

∑
v∈V (F )

cv =
1

n2


 ∑

v∈V (F )

ev −
∑

v∈V (F )

bv




≥ (t + 1)(δ − α(1 − α))

+ t(δ − α2 − 2γβ − β2) − (t + 1)αβ + o(1),

leading to

− (δ − α(1 − α)) + αβ (9)

≥ t
(
− αγ + (δ − α(1 − α)) + (δ − α2 − 2βγ − β2) − αβ

)
+ o(1)

Here the left hand side is negative

−(δ − α(1 − α)) + αβ = 3α(1 − α) − 2δ + o(1) ≤ 3 × 1

4
− 2 × 4

9
+ o(1) < 0,

and the right hand side of (9) is the same as in inequality (8), so it is at least 2εt. This

contradiction proves Theorem 1.
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