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Abstract

Define the neighborhood characteristic of a graph to be s; — sg + s3 — - - -, where
s; counts subsets of ¢ vertices that are all adjacent to some vertex outside the subset.
This amounts to replacing cliques by neighborhoods in the traditional ‘Euler char-
acteristic’ (the number of vertices, minus the number of edges, plus the number of
triangles, etc.). The neighborhood characteristic can also be calculated by knowing,
for all 4,7 > 2, how many K ; subgraphs there are or, through an Euler-Poincaré-
type theorem, by knowing how those subgraphs are arranged. Chordal bipartite
graphs are precisely the graphs for which every nontrivial connected induced sub-
graph has neighborhood characteristic 2.

1 The Neighborhood Characteristic

Define the neighborhood characteristic of any graph GG without isolated vertices to be
~char(G) = 1 — sg+ 53— -+ -, (1)

where s; is the number of subsets of V(G) of cardinality i that are ezternally dominated,
meaning that S C N(v) for some v € V(G) — S. Thus s; = n is just the order of G, and
s9 is the number of pairs of vertices that have a common neighbor.

For comparison, the traditional (Euler) characteristic [7]—which might be thought of
as the clique characteristic—is

Char(G):kl—k2+k3—"', (2)

where k; is the number of complete subgraphs of G of order i; thus k; = s1, ko9 = m is the
number of edges, and k3 is the number of triangles. So xchar(G) can be thought of as mod-
ifying char(G) by replacing complete subgraphs with externally dominated subgraphs. In
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topological terms, char(G) is the characteristic of the simplicial complex whose simplices
are the complete subgraphs of G, and xchar(G) is the characteristic of the ‘neighborhood
complex’ NV'(G), as in [1], whose simplices are the externally dominated subgraphs of G.

Simple Examples:

Nchar(C'n):{4_2:2 iftn=4

n—nmn=0 ifn#4
Nchal"(Kn):n—(g)+...+(_1)n( n ) :{

2 if nis even

n-t 0 if nis odd
() = ]~ ((3) ()] [(3) () - =2
5—10+6-1=0 ifn=4
~char(C,, + K7) = (n+1)_(n;1)+[(g)+n]_(z)+.“:2 if n o 4

~char(octahedron) =6 — 15 +12—-3 =0

(

~char(cube) =8 —124+8 =4
(

~char(dodecahedron) = 20 — 60 + 20 = —20

2 Computing the Neighborhood Characteristic

The neighborhood characteristic of a graph can also be calculated in terms of the complete
bipartite subgraphs present in G. Let k; ; count the number of complete bipartite—but
not necessarily induced—subgraphs that are isomorphic to K;; (so k;; = k;;). Notice
that s; is not necessarily equal to k;; since the same 4 vertices could be counted in more
than one Kj,;. Such overcounting is corrected for in the following theorem (which also
shows that, for a bipartite graph G, xchar(G) equals twice the ‘bipartite characteristic’
defined in [5]).

Theorem 1 For every graph G without isolated vertices,

~char(G) = 22 (=) k; ;. (3)

1<i<y

Proof. Using simple counting arguments, noting the symmetry of each K;;, ychar(G) =
51 — Sg + S3 — - - - equals

k k
—2/{172 _kl’g —ki2 + kiz — -
+k2’2 —1—2143273 _ +2koo — Koz + -+
n — 32 | + 33 | — -+ = n+ —ksg + 2kssz — - |

—kaz —ka3
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which, using k; ; = k;;, can be rewritten as

ki1 — kig + kg — -+
+ koo — Koz + -+
) ) . 4
_|_]€3,3_... ()
_I._...

n—2ki1+kig—kizg+-+2

The final term in (4) equals the right side of (3), while the rest of (4) equals > [(*") —

(") + (*57) =1 =0, o

Therefore xchar(G) is always even. Moreover, the computation in formula (3) can be
reduced to

~char(G) = 2 <n —m+ Yy (—1)”3'/@,]-) (5)

by first noting that expression (4) also equals

koo — kos + - -
n—k172+k173+---+2 +l€3,3—"' . (6)
_I._...

The final term in (6) equals 23, (—1)"*/k; ;, while the rest of (6) equals (2n — 2m —
n+2ky1) — k1o + k13— -+, which in turn equals

2n_2m_; Kdeogv) B (delgv) ) (dngv) } _ o)

Notice too that, by (5), if G contains no Cy subgraphs (induced or not), then ychar(G) =
2(n —m).

A vertex v of G is called covered in [2] if some vertex of G—v externally dominates N (v).
The following theorem reduces the calculation of ychar(G) to graphs G with no covered
vertices (in other words, to graphs whose open neighborhoods are pairwise incomparable).

Theorem 2 If v is a covered vertex of G, then sychar(G) = ychar(G — v).

Proof. Suppose v is a covered vertex of G and S is any subset of N(v) with |S| > 2 and
with S externally dominated by d > 1 vertices of G — v. Vertex v can be involved with
part of N(v) in a complete bipartite (not necessarily induced!) subgraph H + H'—and
so contribute to k; ; in expression (5)—in two ways:

CASE 1: ve H, S=H', and HN N(v) = (. For each i > 1, there are (f) subgraphs
isomorphic to Kjij)s that involve v and S in this way, so the total contribution to
~char(G) — achar(G — v) in expression (5) in this case is

(—1)2+18 (f) (1) (g) Lo (c1)ts (Z) )
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CASE 2: ve H, S = H U{wy,...,wp}, HNN(v) = {wy,...,wy}, and h > 1. For
each ¢ > 0, there are ( ) subgraphs isomorphic to K 144,s/—4 that involve v and S in this
way, the total contribution to schar(G) — achar(G — v) in expression (5) in this case is

(—1)+1S] (g) 4 (—1)2H] (‘ll) b (1) TS (Z) .

Adding v to G —wv increases n by 1 and m by |N(v)|. Therefore, the total contribution
to wchar(G) — achar(G — v) involving all S C N(v) in expression (5) is

2(1 = IN(@)| + > (-] = 22(—1)1'(’N§“)‘) — 0.

SCN(v),|S|>2 i>0

Therefore, xchar(G) = schar(G —v). O

A chordal bipartite graph is a bipartite graph in which every cycle of length at least
six has a chord; see [6, §7.3] and the papers cited there. Suppose G is a chordal bipartite
graph. In [3], aset S C V(G) is called a minimal edge separator if there exist edges e and
f that are in different components of the subgraph G — S induced by V(G) — S, and no
proper subset of S has that same property. If S is a minimal edge separator of G, with
e and f as above, then the definition of chordal bipartite implies that every two vertices
in S of opposite ‘color’ in G will be adjacent (they will be endpoints of a chord in a cycle
that contains e and f). If S is an edge separator of G with one component of G — S as
small as possible, then S will contain an edge e with endpoints v and w such that every
two vertices in N(v) U N(w) of opposite color in G will be adjacent. Such an edge is
called a bisimplicial edge. As in [3], this shows that every chordal bipartite graph contains
a bisimplicial edge.

The following corollary is analogous to the observation in [4] that a graph is chordal
if and only every induced subgraph H has char(H) = 1. (Notice that the proof shows
that schar(H) = 2 in the statement of the corollary could be equivalently replaced by
~char(H) # 0.)

Corollary 3 A graph with no isolated vertices is chordal bipartite if and only if every
connected induced subgraph H of order > 2 has xchar(H) = 2.

Proof. First suppose G is a chordal bipartite graph and H is any connected induced
subgraph of G with |V(H)| > 2. Then H must be chordal bipartite as well. Since G is
chordal bipartite, there will be a bisimplicial edge vw in G and, without loss of generality,
v can be assumed to have degree at least two. Then w is covered and can be removed
with, by Theorem 2, ~char(H) = schar(H — w). Repeating this eventually ends with a
single edge, and so ~char(H) = 2.

Conversely, suppose G is not chordal bipartite. If G is not bipartite, then G' contains
an induced odd cycle C' and ~char(C) = 0. If G is bipartite but not chordal bipartite, then
G must contain an induced even cycle C' of length at least six, and again ~char(C') = 0. O
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3 An Euler-Poincaré-type Theorem

This section develops machinery for the Euler-Poincaré-like Theorem 4, a formula for
calculating ~char(G) in terms of, roughly speaking, the arrangement of the K ; subgraphs
present in GG. This development parallels [7].

For any graph G, define the O-dimensional bicliques to be the vertices of G, the 1-
dimensional bicliques to be the edges, the 2-dimensional bicliques to be all the Ky 4 sub-
graphs (where ‘all’ means ‘whether induced or not’), the 3-dimensional bicliques to be
all the K3 subgraphs, and for j > 4, the j-dimensional bicliques to be all the K;;_; o
subgraphs for which 2 <17 < j.

Define the boundary of a j-dimensional biclique to be the set of all the (j — 1)-
dimensional bicliques it contains (or the empty set when j = 0). Thus the boundary
of an edge consists of its two endpoints, the boundary of a K5 o consists of the four edges
of that 4-cycle, the boundary of a Ky 3 consists of its three 4-cycles, and so on. The
boundary of a set {Si,...,S¢} of j-dimensional bicliques is the symmetric difference of
the boundaries of the S;’s. Thus the boundary of the edge set of a path consists of the end-
points of the path, while the boundary of the edge set of a cycle is empty. The boundary
of the set of 4-cycles of a cube is also empty, as is the boundary of any set of vertices.

For j > 1, define a j-~circuit to be any set S of j-dimensional bicliques whose boundary
is empty. For instance, the edge set of all cycles in a graph is a 1-wcircuit, and the six
4-cycles of a cube form a 2-wcircuit, as do the n 4-cycles of any wheel C),, + K; with
n#4. In Cy+ K, let A, B, and C be the 4-cycles contained in one of the K 3 subgraphs
and C, D, and E be the 4-cycles contained in the other K5 3 subgraph. Then {A, B, C},
{C,D,E}, and {A, B, D, E} are 2-ycircuits. The six K, 3 subgraphs in a K33 form a
3-w~circuit, but wheels have no 3-wcircuits. The set of all j-rcircuits of a graph forms a
vector space over Zo, with an empty j-acircuit as the zero vector, 1§ = § and 0§ = 0
defining scalar multiplication, and the sum of j-~circuits being the symmetric difference
of their sets of j-dimensional bicliques.

Call two j-wcircuits bthomologous whenever either is the sum of the other along with
any number of (j+ 1)-dimensional bicliques—or, equivalently, if their sum is the boundary
of some set of (5 + 1)-dimensional bicliques. When j = 1 for instance, two cycles (1-
~circuits) are bihomologous if one is the sum of the other and 4-cycles. Thus, all cycles
of an cube are pairwise bihomologous, as are all the triangles of a wheel, and as are all
the 4-cycles of a wheel. When j = 2, using the notation in the preceding paragraph,
the 2-wycircuit {A, B, D, E} of Cy + K is bihomologous to the empty 2-xcircuit (using
the two 3-dimensional bicliques), as is each of the 2-ncircuits {A, B,C} and {C, D, E'}
(automatically, since each is itself a 3-dimensional biclique). The 2-ncircuit of K3 that
consists of all nine 4-cycles is also bihomologous to the empty 2-wcircuit (using the three
3-dimensional bicliques [K33s] that contain all the vertices of either of the two color
classes).

For any j-ncircuit S, let [S] denote its bihomology class—the equivalence class of j-
~circuits bihomologous to §. The bihomology classes of all j-rcircuits of G' form another
Zo-vector space where the zero vector is the bihomology class of the empty j-scircuit
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and the sum of bihomology classes [Si] and [S,] is the bihomology class of the sum (sym-
metric difference) of S; and Sp. Let 3}(G) denote the dimension of the vector space
of bihomology classes of j-wycircuits of G. For 7 = 0, there is a basis consisting of one
representative vertex from each component, and so 3)(G) is the number of components
of G. For j =1, there is a basis consisting of selected cycles with lengths different from
four, with 8{(G) = 0 if and only if the circuit space of G has a basis consisting of 4-cycles.
For instance, the cube has )" = 1 since it is connected, 51" = 0 since the circuit space
has a basis consisting of (any five) 4-cycles, 35" = 1 since the six 4-cycles form the only
2-ncircuit (there are no 3-dimensional bicliques), and 3 = 0 for all ¢ > 3 since there are
no such i-wcircuits. Similarly, Cy + K; has ) = 8 = 1 and 3 = 0 for all i > 2; all the
other wheels are the same except that 53 = 1.

Theorem 4 is the ychar(G) analogy of the Euler-Poincaré theorem [7] for char(G). To
illustrate formula (7), the cube has ychar = 2(1 =0+ 1 -0+ ---) = 4, xchar(Cy) =
20—=040+---) = 2, and ~char(Cy + K;) = 2(1 =1+ 0+ ---) = 0; when n # 4,
~char(Cp,) =2(1 =140+ ---) =0 and ~char(C, + K1) =2(1—-1+1-04+0+---) = 2.

Theorem 4 For every graph G without isolated vertices,
wehar(G) = 2(8) — B + B — ) (7)

Proof. For every integer j > 0, let B; be the set of all sets S of j-dimensional bicliques
of G. As with any power set, each B; is a vector space over Z, with symmetric difference
as sum. Since the singletons of B; form a standard basis, dim(B,) = n, dim(B;) = m,
dim(B;) = koo, dim(Bs) = ko3, and for j > 4, dim(B;) = >, k; j_i42 over all ¢ for which
2<i<j.

For each j > 1, taking boundaries of members of B; constitutes a map 9; : B; — B;_;
between vector spaces. A set S of j-dimensional bicliques is a j-acircuit if and only if
S € Kernel(0;), whereas S is a boundary of a set of (j + 1)-dimensional bicliques if and
only if § € Image(0d;1).

Since the vector space of bihomology classes of j-acircuits of G is formed from j-
~circuits modulo the boundaries of (7 + 1)-dimensional bicliques, this vector space is
isomorphic to the quotient space Kernel(d;)/Image(J;11) and so has dimension () =
dim(Kernel(0;)) — rank(9;41). But

dim(Kernel(9;)) + rank(9;) = dim(B;) (8)
by the dimension theorem for vector spaces, so

BY = dim(B;) — rank(9;) — rank(9;41). 9)

J

Since ()" counts the number of connected components of G, Kernel(d;) (because it is

the ‘circuit subspace’ of G; see [8]) has dimension m — n + " (the ‘cyclomatic number’
of G). So by (8), rank(0y) = m — [m —n+ 5] = n — 3. For j > max{i : s; # 0},
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rank(0;41) = 0. Therefore, using (9),

Z( = 3 + Z Idim(By) — rank(9;) — rank(9;41)]

>0 i>1
= 3)" + rank(d;) + Z 1)?dim(B;)
j>1
:5(/)\[+(n_ﬁo) m+k22+z jdlm
j>3
j—1

=n—m+kyy+ Z(—l)]<z ki,j—i+2>

>3 i>2
= n—m—i—z (=1)"*k; ;,

2<i<y
which equals xchar(G) by (5). O
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