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Abstract

We introduce a new class of admissible pairs of triangular sequences and prove
a bijection between the set of admissible pairs of triangular sequences of length n
and the set of parking functions of length n. For all u and v = 0, 1, 2, 3 and all
n ≤ 7 we describe in terms of admissible pairs the dimensions of the bi-graded com-
ponents hu,v of diagonal harmonics C[x1, . . . , xn; y1, . . . , yn]/Sn, i.e., polynomials in
two groups of n variables modulo the diagonal action of symmetric group Sn.

1 Introduction

A sequence p = (p0, . . . , pn−1) is called a parking function if it is majorized by a permuta-
tion, that is, if there exists a permutation (one-to-one mapping) σ of the set {0, 1, . . . , n−
1} such that p0 ≤ σ(0), . . . , pn−1 ≤ σ(n−1). The sequence p = (p0, . . . , pn−1) is a parking
function if and only if for every s = 0, . . . , n−1 it contains at least s+1 terms pi satisfying
the inequality pi ≤ s. The set of parking functions with n terms will be denoted PFn.

Parking functions are a popular subject in combinatorics. Taking their name from a
problem of car parking along a one-way street (see [1]), they attracted attention after the
following theorem had been proved:

Theorem 1.1 (Kreweras, [3], 1977). For every k, 0 ≤ k ≤ n(n − 1)/2, there exists
a one-to-one correspondence κn between the set PFn and the set of Tn trees with n + 1
numbered vertices such that if p0 + · · · + pn = u then the tree D = κn(p) has exactly
n(n− 1)/2−u inversions. In particular, the total number of parking functions is equal to
the total number of trees, that is, (n + 1)n−1.
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A tree here means a connected graph without cycles, whose vertices are numbered
0, 1, . . . , n. We say that a pair of vertices (i, j) forms an inversion if i < j but the path
joining the vertex i with the vertex 0 passes through j. The paper [3] contains an explicit
construction of the correspondence involved. (Note that Kreweras’s suites majeures differ
formally from parking functions we have defined: (q0, . . . , qn−1) is a suite majeure if
(n − q0, . . . , n − qn−1) is a parking function.)

The permutation group Σn acts in a natural way on the set PFn. Consider a vector
space of dimension (n + 1)n−1 with the basis ep whose elements are numbered by the
parking functions p ∈ PFn. This space carries a natural linear representation of Σn;
denote this representation Pn. Define a weight w(p) of the parking function p as w(p) =
n(n − 1)/2 − (p0 + · · · + pn−1). The permutation group action preserves the weight, and
therefore Pn becomes a graded representation.

Another instance of parking functions (and the main inspiration of this paper) is the
following theorem conjectured first in [1] and proved later in a series of works by the same
author, see [2] and references therein. Consider a natural action of the permutation group
Σn on the direct product Vn = (C2)n. Let C[Vn] be the ring of polynomials on Vn, and
Jn ⊂ C[Vn] be the ideal generated by Σn-invariant polynomials of positive degree. The
factor Rn = C[Vn]/Jn is called a module of diagonal harmonics. It is a doubly-graded
module: if one denotes arguments of the polynomial f ∈ C[Vn] as x1, y1, . . . , xn, yn (xi, yi

being coordinates in the i-th copy of C2) then the gradings are the total degree of f with
respect to all xi and its total degree with respect to all yi. Either grading makes Rn a
graded representation of Σn.

Theorem 1.2 (Haiman, [2], 2000). Rn is isomorphic, as a graded representation of
Σn, to the representation Pn tensored by the sign representation εn.

In particular, the dimension of the homogeneous component of Rn of the grading k is
equal to the number of parking functions p with p0 + · · · + pn−1 = n(n − 1)/2 − k, or to
the number of trees with n + 1 numbered vertex having exactly k inversions.

Note that in fact the representation Rn is bi-graded, but Theorem 1.2 ignores the
second grading. There are explicit formulas for dimensions of the bihomogeneous com-
ponents of Rn (see [2]) but they have nothing to do with trees and parking functions.
Nevertheless, the theorem suggests that the representation Pn also can be made doubly
graded — that is, the sets of parking functions and trees should carry the second grading,
yet unknown, different from the weight defined above.

The aim of our project was to find an elementary approach to the above bi-grading.
Unfortunatelly we failed to define the second grading. This paper is a description of
steps made in this direction, some of them being rigorously proved statements, and some,
numerical observations. We start at sections 2 and 3 with a combinatorial construction
encoding parking functions by pairs of permutations satisfying some admissibility condi-
tion. The last section contains some data shading light on the relation of this construction
to Theorem 1.2 above.

The authors thank Mark Haiman and Ira Gessel for useful discussions. The first
author was supported by Gustafsson foundation during his stay at Royal Institute of
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Technology, where this work started. He also wishes to thank INTAS whose fellowship
No YS 2001-1/81 he used in a later stage of the work. The second author wants to express
his gratetude to Max Planck Institute in Bonn, where this paper was accomplished.

2 Main definitions

Throughout this paper we use the following conventions:

1. All the numbers mentioned are integers, unless otherwise stated.

2. All sequences are indexed starting from zero; giving numbers to elements of a finite
set, we also start from zero.

2.1 Permutations and triangular sequences

We call a sequence a = (a0, . . . , an−1) triangular if an inequality 0 ≤ ai ≤ i is satisfied for
all i = 0, . . . , n−1. Denote An the set of all triangular sequences of length n. Apparently,
the cardinality of An is n!; this allows to put it into a one-to-one correspondence with the
set Σn of all permutations of the set {0, . . . , n − 1}.

There are several explicit constructions for this correspondence. We will usually use
the correspondence αn : An → Σn defined inductively as follows. If n = 1, there is only
one triangular sequence, only one permutation, and only one correspondence α1 between
them. Now let αn−1 be defined and let σ′ = (σ′(0), . . . , σ′(n − 2)) = αn−1(a0, . . . , an−2).
Take the number n − 1 and insert it into the line (σ′(0), . . . , σ′(n − 2)) between σ′(n −
2 − an−1) and σ′(n − 1 − an−1); the resulting sequence will represent the permutation
σ = αn(a0, . . . , an−1). Formally,

σ(i) =




σ′(i), if i ≤ n − 2 − an−1,

n − 1, if i = n − 1 − an−1,

σ′(i − 1), if i ≥ n − an−1.

It is easy to see that αn is indeed a one-to-one correspondence. The inverse mapping
can be described by the following rule: if a = α−1

n (σ) then ai equals the number of j > i
such that σ(j) < σ(i). A pair (i, j) such that j > i but σ(j) < σ(i) is called an inversion
of the permutation σ; the total number of inversions of the permutation αn(a) is thus
equal to a0 + · · · + an−1.

2.2 Triangular sequences and parking functions

Consider a pair of triangular sequences k = (k0, . . . , kn−1), l = (l0, . . . , ln−1) ∈ An such
that ls ≤ ks for all s = 0, . . . , n − 1. Define a sequence βn(k, l) = p = (p0, . . . , pn−1)
by induction as follows. Let βn−1 be defined, and (p′0, . . . , p

′
n−1) = βn−1(k

′, l′) where
k′ = (k0, . . . , kn−2), l

′ = (l0, . . . , ln−2) ∈ An−2. Now take the number kn−1 and insert it
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into the line (p′0, . . . , p
′
n−1) between positions number kn−1 − ln−1 − 1 and kn−1 − ln−1; the

resulting sequence will be βn(k, l). Formally, if p = βn(k, l) then

pi =




p′i, if i ≤ kn−1 − ln−1 − 1,

kn−1, if i = kn−1 − ln−1,

p′i−1, if i ≥ kn−1 − ln−1 + 1.

It is easy to see that βn(k, l) is a parking function for all k, l.
An equivalent description of this algorithm is as follows: let us have, first, n empty

positions numbered from 0 to n − 1, left to right. Take kn−1 and place it to the position
number kn−1 − ln−1. Then re-number empty positions using numbers from 0 to n − 2,
skipping the occupied position. Then take kn−2 and place it to the empty position whose
(new) number is kn−2 − ln−2. Again, re-number the empty positions using numbers from
0 to n − 3, etc.

3 Admissible pairs of triangular sequences

Let, again, k = (k0, . . . , kn−1) and l = (l0, . . . , ln−1) be triangular sequences. We say that
a pair of integers (i, j), 0 ≤ i < j ≤ n−1 forms an irregular position for a pair k, l ∈ An if
li > lj and kj ≤ i. The pair k, l ∈ An is called admissible if ls ≤ ks for all s = 0, . . . , n−1,
and no irregular positions exist. Denote Admn ⊂ An ×An the set of all admissible pairs.

The next statement is the main proved result of the paper.

Theorem 3.1. The mapping βn provides a one-to-one correspondence between the sets
Admn and PFn.

Corollary 3.2. There are (n + 1)n−1 admissible pairs of triangular sequences.

To prove Theorem 3.1 we need two lemmas. Let p ∈ PFn be a parking function, and r
be a number such that pr is the maximal term of the sequence p; if there are several such
terms, take the smallest r possible. Let (k, l) be an admissible pair such that p = βn(k, l),
and let s be a number such that ks = pr is sent to position r by the mapping βn (in other
words, s = σr where σ = αn(k − l), cf. Section 2).

Consider the set U of all i, pr ≤ i ≤ n−1, such that for all j, pr ≤ j ≤ i, the inequality
lj ≤ (n − 1 − r) + (pr − i) takes place.

Lemma 3.3. s = max U .

Proof. By the choice of s, we have kj ≤ ks = pr for every j > s. Now if lj < ls then
kj ≤ ks ≤ s, and (s, j) is an irregular position. For an admissible pair (k, l) no such
positions exist, and so lj ≥ ls for all j > s. This inequality means that the mapping
βn sends every term kj, j > s, to a position left of (less than) r, and therefore r =
(n − 1 − s) + (ks − ls) = (n − 1 − s) + (pr − ls). So, ls = (n − 1 − r) + (pr − s).

Now let j be such that pr ≤ j ≤ s − 1. Again, we have lj ≤ ls, because (k, l) is an
admissible pair. Therefore, lj ≤ (n − 1 − r) + (pr − s) which means that s ∈ U .
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Suppose there exists t ∈ U such that t > s. Then pr ≤ s ≤ t − 1, and there holds the
inequality ls = (n − 1 − r) + pr − s ≤ (n − 1 − r) + pr − t — a contradiction.

Now delete the r-th element of the parking function p obtaining a sequence p′. Also,
delete the s-th elements from sequences k and l resulting in k′ and l′, respectively.

Lemma 3.4.

1. The sequence p′ is a parking function: p′ ∈ PFn−1.

2. The sequences k′ and l′ are triangular and form an admissible pair: (k′, l′) ∈
Admn−1.

3. βn(k′, l′) = p′.

Proof. 1. Let σ be a permutation of the set {0, . . . , n − 1} majorizing the sequence p.
Since pr is the maximal term of p, then without loss of generality σ(r) = n − 1. Deleting
the r-th term from σ one obtains a permutation σ′ of the set {0, . . . , n−2} majorizing p′.

2. If j < s then k′
j = kj ≤ j. As we noticed in the proof of Lemma 3.3, kj ≤ ks for all

j ≥ s, and therefore k′
j = kj−1 ≤ s ≤ j for such j, too. Thus, the sequence k′ is triangular.

The inequalities l′i ≤ k′
i imply that the sequence l′ is also triangular. Every irregular

position (i, j) for (k′, l′) would be irregular for (k, l), too, and thus (k′, l′) ∈ Admn−1.
3. Evident.

Proof of Theorem 3.1. 1. Existence — prove that for every parking function p ∈ PFn

there exists an admissible pair (k, l) ∈ Admn such that p = βn(k, l). Use the induction
by n, the base n = 1 being evident. To make the induction step, define the number r
and the parking function p′ ∈ PFn−1 as described in the beginning of this section. By
induction hypothesis, there exists a pair (k′, l′) ∈ Admn−1 such that p′ = βn−1(k

′, l′). Let
U be the set of all i, 0 ≤ i ≤ n − 1, such that for all j, pr ≤ j ≤ i − 1, the inequality
l′j ≤ n − 1 − r + pr − i takes place. Define the number s as the maximal element of U ,
assuming s = 0 if U = ∅. Now insert the terms ks = pr and ls = (n− 1− r) + pr − s into
k′ and l′ getting k and l, respectively. We are to prove now that (k, l) is an admissible
pair of triangular sequences satisfying βn(k, l) = p.

By the choice of s, the inequality ks = pr ≤ s holds, which means that the sequence
k is triangular. Prove that ls ≤ ks (triangularity of l would follow). This inequality is
equivalent to n − 1 − r ≤ s, so if n − 1 − r ≤ pr then it follows from the previous one.

Suppose n − 1 − r > pr. Then for every j, pr ≤ j ≤ n − 1 − r, one has l′j ≤ k′
j <

pr + 1 = (n− 1− r) + pr − (n− 2− r). This means that the number n− 1− r belongs to
the set U , and therefore, again, n − 1 − r ≤ s. So, ls ≤ ks and l is triangular.

Prove now that βn(k, l) = p. Show first that lj ≥ ls for all j > s. Suppose that lj < ls
for some j > s. By the induction hypothesis, (k′, l′) is a admissible pair, and therefore
(s, j − 1) is not an irregular position for it. The inequality k′

j−1 = kj ≥ s + 1 > pr is
impossible, so, ls+1 = l′s ≤ l′j−1 = lj , and therefore ls+1 < ls = (n − 1 − r) + pr − s, or
l′s ≤ (n − 1− r) + pr − (s + 1). By the choice of s, the number s + 1 is not an element of
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the set U . This means that there exists t, pr ≤ t < s, such that lt > ls+1. The inequality
k′

s ≥ t + 1 > pr is impossible, so in this case (t − 1, s) is an irregular position for (k′, l′)
— a contradiction.

So, lj ≥ ls for all j > s. Since ks = pr is the maximal term of the sequence p, we have
also kj ≤ ks all j > s. This implies that the mapping βn sends all the kj with j > s to
positions left of r, and therefore ks = pr is sent to position r. It follows now from the
induction hypothesis (p′ = βn−1(k

′, l′)) that p = βn(k, l).
We proved already that the sequences k and l are triangular, and li ≤ ki for all i =

0, . . . , n−1. Prove that there are no irregular positions for k, l and therefore (k, l) ∈ Admn.
Let (u, v) be such a position; consider several cases:

Case 1. u < v < s. Then (u, v) is irregular for (k′, l′), too — a contradiction. The
same argument applies to cases u < s < v (the position (u, v − 1)) and s < u < v (the
position (u − 1, v − 1)).

Case 2. u = s < v. This is impossible because, as we proved earlier, lv ≤ ls.
Case 3. u < v = s. This means that pr ≤ u and thus l′u = lu > ls = (n−1−r)+pr−s,

which is impossible by the definition of the set U .
2. Uniqueness. Again, use induction by n, the base n = 1 being evident. Let

βn(k(1), l(1)) = βn(k(2), l(2)) = p ∈ PFn where (k(1), l(1)) and (k(2), l(2)) are admissible
pairs. Choose the number r as above, and let s1, s2 be numbers such that the mapping
βn applied to pairs (k(1), l(1)) and (k(2), l(2)) sends k

(1)
s1 and k

(2)
s2 , respectively, to position

r. Let k̃(1) and l̃(1) be sequences obtained by deletion of the s1-th term from k(1) and l(1),
and similarly k̃(2) and l̃(2). By Lemma 3.4, βn−1(k

(1), l(1)) = βn−1(k
(2), l(2)), and by the

induction hypothesis, k̃(1) = k̃(2), l̃(1) = l̃(2).
The pair (k(1), l(1)) is admissible, and k

(1)
i ≤ k

(1)
s1 for all i. It implies that l

(1)
j ≥ l

(1)
s1

for all j > s1 and l
(1)
j ≤ l

(1)
s1 for all j, pr ≤ j ≤ s1 − 1. The same is true for l(2). As we

know, the sequences l(1) and l(2) become the same after deletion of the s1-th and the s2-th
terms, respectively. Hence, if l

(1)
s1 > l

(2)
s2 then s1 > s2, and vice versa.

On the other hand, the mapping βn sends all the k
(1)
j with j > s1 to positions left of

r, and therefore r = (n − 1 − s1) + (pr − l
(1)
s1 ). A similar equation is true for l(2), hence,

l
(1)
s1 + s1 = l

(2)
s2 + s2. So, s1 = s2 and l

(1)
s1 = l

(2)
s2 — uniqueness is proved.

4 Admissible pairs and diagonal harmonics

Here we present some relation between the construction of Theorem 3.1 and the module Rn

of diagonal harmonics described in Section 1. Let Hu,v be the bihomogeneous component
of the module Rn of bi-degree (u, v); denote hu,v its dimension.

Define now the four sets Y0, Y1, Y2, Y3 ⊂ An of triangular sequences as follows.

0. The set Y0 consists of only one sequence, namely (0, 0, . . . , 0).

1. The set Y1 consists of sequences (l0, . . . , ln−1) such that l0 = · · · = ln−2 = 0 and
ln−1 ≥ 1.
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2. The set Y2 consists of sequences (l0, . . . , ln−1) such that l0 = · · · = ln−3 = 0 and
ln−1 ≥ ln−2 ≥ 1.

3. Y3 is a union of two sets, Y ′
3 and Y ′′

3 . The set Y ′
3 consists of sequences (l0, . . . , ln−1)

such that l0 = · · · = ln−3 = 0 and 1 ≤ ln−2 > ln−1. The set Y ′′
3 consists of sequences

(l0, . . . , ln−1) such that l0 = · · · = ln−4 = 0 and 1 ≤ ln−3 ≤ ln−2 ≤ ln−1 ≤ n−2 (note
an additional inequality at the end; triangularity requires only ln−1 ≤ n − 1).

Numerical computations made for all n ≤ 7 (using tables of hu,v taken from [1]) give
the following observation:

For all u and v = 0, 1, 2, 3 and all n ≤ 7 the dimension hu,v is equal to the number
of admissible pairs (k, l) such that k0 + · · ·+ kn−1 = n(n − 1)/2 − u and l ∈ Yv.

Thus it can be conjectured that there exists a splitting of the set An into a disjoint
union: An =

⊔n(n−1)/2
v=0 Yv such that the statement above holds for all u, v (and all n). The

authors, though, know neither a construction of Yv nor a proof of the conjecture above
for small v.

Besides the numerical observations for n ≤ 7 there are some more facts supporting
the conjecture.

1. Let S ⊂ C[x1, . . . , xn] be the ideal generated by symmetrical polynomials of positive
degree. Apparently, C[x1, . . . , xn]/S is a graded module isomorphic to

⊕
u Hu,0. As it is

well known, the dimension hu,0 of its component of gradung u is equal to the number
of permutations having exactly u inversions. On the other hand, for v = 0 we have
l = (0, 0, . . . , 0), and the admissibility condition does not impose any limitations on k.
The results of Section 2 now imply that the observation above is true for v = 0 and all n.

2. Apparently, hu,v = hv,u, and therefore the dimension h0,v is equal to the number
of permutations with v inversions. The conjecture above implies that h0,v equals to the
number of admissible pairs (k, l) such that k0 + · · ·+ kn−1 = n(n − 1)/2 and l ∈ Yv. The
first equation holds only if ki = i for all i = 0, . . . , n − 1. For such k and the pair (k, l)
is admissible for every l ∈ An. This implies that the number of elements in Yv should be
equal to the number of permutations with v inversions. It is easy to check that this is
true for v = 0, 1, 2, 3 (and all n).

3. It can be easily checked that the answer for hu,v given by the conjecture satisfies the
condition hu,v = hv,u for all n and all u, v ≤ 3 (that is, in all cases when the conjectural
values of both hu,v and hv,u are known).

4. From Theorem 1.2 we know that
∑

u hu,v equals to the number Tv of trees with v
inversions. The conjecture implies then that the total number of admissible pairs (k, l)
with l ∈ Yv should be equal to Tv, too. A direct computation (see [3] for a formula for
Tv) shows that this is true for v = 0, 1, 2, 3 (and all n).

The splitting An =
⊔n(n−1)/2

v=0 Yv, if known, would provide the second grading on the
sets of admissible pairs. The one-to-one correspondences βn and κn mentioned in Section
1 would allow then to define the grading on the set of parking functions and on the set of
trees. (Recall that the first grading for an admissible pair (k, l) equals n(n− 1)/2− (k0 +
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c
b CB

A

Figure 1: Such trees probably have grading 1: c ≥ b

· · ·+kn−1), for a parking function p = βn(k, l) it is w(p) = n(n−1)/2− (p0 + · · ·+pn−1) =
n(n − 1)/2 − (k0 + · · · + kn−1), and for a tree D = κn(p) it is equal, by Theorem 1.1, to
the number of inversions). Thus, by now we are able to describe conjecturally the sets
of parking functions and trees of grading 0, 1, 2 and 3 using explicit constructions of βn

(see Section 2) and κn (see [3]). To exemplify what happens we give here the answers for
gradings 0 and 1:

0. Parking functions of grading zero are triangular sequences: ps ≤ s for all s =
0, 1, . . . , n − 1. Trees of grading zero are “linear” trees with one branch only.

1. A parking function of grading 1 has exactly one term ps such that ps > s. After
deletion of this term the remaining sequence is triangular (i.e. a parking function
of grading 0). A tree of grading 1 has exactly one “branching point” — a vertex
A having two children, B and C (all the other non-terminal vertices have one child
only). The vertex B is terminal and carries the number b which is less or equal to
the length of path joining A with the other terminal vertex (see Figure 1).
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