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Abstract

Let ¢ be a positive constant. We show that if r = |en!/3] and the members of
([:f]) are chosen sequentially at random to form an intersecting hypergraph then with

limiting probability (1 +¢3)7!, as n — oo, the resulting family will be of maximum

size (::11) )

1 Introduction

An intersecting hypergraph is one in which each pair of edges has a non-
empty intersection. Here, we consider r-uniform hypergraphs which are
those for which all edges contain r vertices.
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The motivating idea for this paper is the classical Erdés-Ko-Rado theorem
[4] which states that a maximum size r-uniform intersecting hypergraph
has (:f:ll) edges if r < n/2 and (:L) edges if r > n/2. Furthermore, for
r < n/2 any maximum-sized family must have the property that all edges
contain a common vertex.

In the last four decades this theorem has attracted the attention of many
researchers and it has been generalized in many ways. It is worth men-
tioning for example the famous conjecture of Frankl on the structure of
maximum ¢-intersecting families in a certain range of n(t,r) which was in-
vestigated by Frankl and Fiiredi [6] and completely solved only a few years
ago by Ahlswede and Khachatrian [1]. Another type of generalization can
be found in [2].

The first attempt (and as far as we know the only one) to ‘randomize’ this
topic was given by Fishburn, Frankl, Freed, Lagarias and Odlyzko [5]. Also
note that other random hypergraph structures were considered already by
Rényi e.g., in [7], he identified the anti-chain threshold. Here we try to
continue this line of investigation. Our goal is to describe the structure
of random intersecting systems. More precisely, we consider taking edges
on-line; that is, one at a time, ensuring that at each stage, the resulting
hypergraph remains intersecting. I.e., we consider the following random
process:

CHOOSE RANDOM INTERSECTING SYSTEM

Choose €1 € ([:f]). Given F; := {ey,...,e;}, let A(F;) ={e¢€ ([Zf]) ceé¢ F;
and eNe;j # 0 for 1 < j < i}. Choose e;41 uniformly at random from
A(F;). The procedure halts when A(F;) = (0 and F = F; is then output
by the procedure.

It should be made clear that sets are chosen without replacement.

2 Definitions

Let [n] be the set of vertices of the hypergraph H.

A staris collection of sets such that any pair in the collection has the same
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one-element intersection {z}, which is referred to as the kernel. A star
with 7 > 2 edges is referred to as an i-star. A single edge is a 1-star, by
convention. We say that H is fized by x if every member of H contains z.

For any sequence of events &,,, we will say that &, occurs with high prob-
ability (i.e., whp) if lim,, .. Pr(&,) = 1.

3 The Erdos-Ko-Rado Threshold

The following theorem determines the threshold for the event that edges

chosen online to form an intersecting hypergraph will attain the Erdos-Ko-
Rado bound.

Theorem 1. Let &, be the event that |F| = (:fj) For r < mn/2, this is
equivalent to F fizing some x € [n]. Then if r = c,n'/? < n/2,

1 c, — 0
lim Pr(&,,) = ¢ =5 ¢ —c
n—00 ’ +c

0 C, — 00

Note: If r > n/2, then all of ([Z]) is an intersecting hypergraph. If r = n/2
then for any H chosen online to be an intersecting hypergraph, it will have

(2-1) =32

In the case of r = n/2, however, a vertex will not necessarily be fixed for
even n > 4.

size

4 Proof of Theorem 1

4.1 Main Lemmas

Before we prove relevant lemmas, we need to define some events.
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e Let A; be the event that F; is an i-star, for i > 1.
e Let B; be the event that ﬂ;zlej # (), for i > 3.

e Let C be the event that e contains all of e; Nesy as well as at least one
vertex in (e \ e2) U (e2 \ €1).

e [.et D be the event that there is some r-set that intersects all cur-
rently chosen edges but fails to contain any vertex in their common
intersection.

Lemma 1. If r = o(n'/?) then

Pr(A;) =1—o(1).

The fulecrum on which Theorem 1 rests is Lemma 2.

Lemma 2. If r = o(n'/?) then

PI‘(Ag) =

Lemma 3. If r = o(n*®) and m = O(n'/?/r) then

m2r?

Pr(A, | A3) = exp {— . 0(1)}

Remark 1. Observe that Lemmas 1, 2, 3 imply that if r = d,n'/*, then
the probability of the event A,.1 approaches exp{—d*/4} as d, — d. Fur-
thermore, the occurrence of A,.1 immediately implies A for s > r + 1.

Lemma 4. If r = o(n'/?) then

Pr(C | A3) = o(1).
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Lemma 5. If r = o(n®®) then

Pr(Bs, | As) =1 —o(1).

Lemma 6. If r = o(n*°) then

Pr(D | B, As) = o(1).

Lemma 7. If r = w(n'/?) (i.e. r/n'® = o0) and r = o(n?*/?) then

Pr(B;3) = o(1).

Lemma 8. If r = w(n'/?) and 2logyn < m = o(e”/") then

Pr(B,,) = o(1).

4.2 Using these lemmas

Case 1: r < n'3logn.

Suppose first that ¢, — ¢. Then Lemma 1 shows that Ay occurs whp.
Given A, there are 3 disjoint possibilities

Az U B3 UC. (1)

Lemma 4 shows that the conditional probability of C tends to zero. Lemma
2 shows that A3 occurs with limiting probability ﬁ and so given Ay the

probability of Bs tends to 1j303.
element.

If B3 does not occur then F cannot fix an

Suppose then that A3 occurs and e; NesNes = {v}. We use Lemma 3 with
m = 4 to show that A, occurs with conditional probability 1 —o(1). Then,
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given A4 we can use Lemma 5 to show that B3, occurs whp and Lemma
6 to show that with conditional probability 1 — o(1), F must fix v.

If ¢,, — 0 then A3 occurs whp and we conclude as in the previous paragraph
that with conditional probability 1—o(1), F must fix v, where e;NesNes =

{v}.
Now assume that ¢, — oo. We still have Ay occuring whp, but now As

occurs whp. Using decomposition (1) and Lemma 4 to rule out event C
we see that B3 occurs whp and so F cannot fix any element.

Case 2: n'/3logn < r < n'?logn.
Here we use Lemma 7, which immediately gives that whp F3 has no vertex
of degree 3; thus F cannot fix any element.

Case 3: n'/?logn <r < n/2.

r2

In this case, we apply Lemma 8 with m = exp {—} and we see that

n

pris) -0 (e 21 1) <ot

So F,, fails, whp, to have a vertex of degree m, in which case F cannot
fix any element. O
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5 Proofs of Lemmas

5.1 Proof of Lemma 1

First we see that

Pr(A) = 1. (2)
Pr(Ay | A) = m (3)
2 (1+0(5))

(- 1+5+0(5))

2
- 1+O<T—).
n

O
5.2 Proof of Lemma 2
Continuing as in (3),
(n—i(r—l)—l)
Pr (A | Ai) = — P> 2. (4)

(") +N; =i -

For i > 2, the quantity NV; is the number of r sets that intersect all of F;
but fail to contain the one-vertex kernel of F;. Thus,

r 1)2-(71—2'(:_—;) - 1) <N, <(r— 1)Z<n;i; 1>. (5)

The lower bound comes from taking a single vertex (not the kernel) from
each of the edges and r — ¢ vertices from the remainder of the vertex set.
The upper bound comes from taking one vertex (not the kernel) from each
of the edges and r — ¢ other non-kernel vertices.
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Simple computations give, for r = o(n!/?),

Ny = (1401 (”_ 1).

r—1

Ny < (1+ 0(1))(
("I = oM

It follows from (4), (6), (7) and (8) that

PI‘(.A;), ’ AQ) =

Lemma 1 then gives that

5.3 Proof of Lemma 3

We estimate for 3 < < r:

-0 ), <> |

- i1

CHEE
It then follows from (4), (5) and (10) that for 3 <i <,
(n—i(r—l)—l)

r—1

) (-0 ()

_1 i Lo ;2,3 . 2i-1
- 2n n? ni=1 ) -

Pr(Aiq | A) =
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Equation (11) implies that

|3

Pr(Ayi | As) = [[Pr(Ai | A)

L A

3

: .2 2.3 2i—1
TT wr r'r r
- TM(1i-L+o(+=
P ( 2n ( n? = nil ))
m ir2 o 274 .\ 2i—1
= exp § —— — .
L4 p 2n n2 nl—l
1=3
2,2

- exp{—njh: +0(1)}.

ERN

ER

U
5.4 Proof of Lemma 4
A simple computation suffices:
o (M2 92 2
PI‘(C | AQ) < n_ST_Q) < d 7 = @ (T—> .
(C) =27 n—2r(0)) n
O

5.5 Proof of Lemma 5

Assuming that both A4 and B; occur for ¢ > 4, there are at most (r —

1)4(2;1) r-sets which do not contain v and which meet eq, es, e3, e4. On the
-1

other hand there are (”

r—1

F;. As a result, for ¢ > 4,

) — ¢ r-sets which contain v and are not edges of

(r—1)*(",) 2o

(i

Pr(By1 | Bi, A) < (12)
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Thus
3r—1

Pr(B?ﬂ” ’ A4) = H Pr(Bi—i—l ’ Bi7A4)

1=4

1V
—
|
|

5.6 Proof of Lemma 6

Assume that B3, N A4 occurs and that v is the unique vertex of degree 3r
in F3,.. We show that whp v € ¢; for ¢ > 3r.

Claim 1. Suppose that Bs, N Ay occurs. Then e, = e; \ {v},1 <i < 3r is
a collection of 3r randomly chosen (r — 1)-sets from [n]\ {v}.

The claim can be argued as follows: e; is chosen uniformly from all r-sets
which meet ey, es,...,¢,_1. If we add the condition v € ¢; i.e. B; occurs,
then e; is equally likely to be any such r-set containing v. O

Recall that D is the event that there is an r-set which meets all edges but
does not contain the kernel. Then

Pr(D | By, As) < <n; 1) (1 - (2"11)1)>3
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5.7 Proof of Lemma 7

We show that Pr(Bs) = o(1). We write

Pr(B;) = 3 f(1)g()

where
f(i) = Pr(leNesf =1)
00
()= (")
and

g(i) = Pr(Bs||ernN €2|' =1)
O
D207+ (5

Now for 0 < s < 2r we have

Furthermore,

B (”;1 0
<3 <nf2r>zeXp{‘%+0(%>}
o fiy< . L+ol)
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Using (16) in (15) we see that
_ 1 —exp{ T4+ 0 (%)}
g(i) = — -
1—2exp{———|—0( )}+exp{ (277;2)—%0(%)}

ro(x)
BT

So,
::f(z-)g(z) < (1+0(1)) (e;xiij}l 3ZZ,n_2r (+o(n_‘°;))
ol g )
rs 1
) ( (1—exp {2 >3>
= o(1)
O

5.8 Proof of Lemma 8

Consider m members of ([Z]) being chosen at random (without replace-
ment).

The probability that these m edges fail to form an intersecting family is at

most o ) .o y
() <% (- < Fen{-7)

i)
m=expq — ¢ .
3n
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For r = w(y/n) we can use the fact that F,, has the same distribution as
m distinct randomly chosen 7-sets, conditional on the event (of probability
1—o0(1)) that F,, is intersecting. To see this consider sequentially choosing
m distinct sets at random. If we ignore the cases when the m chosen
sets are not intersecting then we will produce a collection with the same
distribution as F,,.

Using r < n/2, the probability that F,, has a vertex of degree m is at most

%exp{g—Z}jLn((%)%))m = O(exp{—;—i}>+rmnl_m

6 Open Problem

It is known that a maximal intersecting system, i.e, a system to which we
can not add any additional edge without making it non-intersecting, may
have various structures. Thus we finish by posing the following problem.

Problem: What is the structure of F in different ranges of n'/? < r <
n/27
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