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Abstract

We show that an action of SL(2,p), p > 7 an odd prime such that 4 f (p — 1),
has exactly two orbital digraphs I'1, I's, such that Aut(I';) admits a complete block
system B of p + 1 blocks of size 2, ¢ = 1,2, with the following properties: the
action of Aut(I';) on the blocks of B is nonsolvable, doubly-transitive, but not a
symmetric group, and the subgroup of Aut(I';) that fixes each block of B set-wise
is semiregular of order 2. If p = 2¥ — 1 > 7 is a Mersenne prime, these digraphs
are also Cayley digraphs of the generalized quaternion group of order 2¥*1. In this
case, these digraphs are non-normal Cayley digraphs of the generalized quaternion
group of order 2+ +1,

There are a variety of problems on vertex-transitive digraphs where a natural approach
is to proceed by induction on the number of (not necessarily distinct) prime factors of
the order of the graph. For example, the Cayley isomorphism problem (see [6]) is one
such problem, as well as determining the full automorphism group of a vertex-transitive
digraph I'. Many such arguments begin by finding a complete block system B of Aut(T").
Ideally, one would then apply the induction hypothesis to the groups Aut(I')/B and
fixaut(r)(B)| 5, where Aut(I')/B is the permutation group induced by the action of Aut(I")
on B, and fixaury(B) is the subgroup of Aut(I') that fixes each block of B set-wise,
and B € B. Unfortunately, neither Aut(I')/B nor fixauyr)(B)|p need be the automor-
phism group of a digraph. In fact, there are examples of vertex-transitive graphs where
Aut(I")/B is a doubly-transitive nonsolvable group that is not a symmetric group (see [7]),
as well as examples of vertex-transitive graphs where fixaury(B)|p is a doubly-transitive
nonsolvable group that is not a symmetric group (see [2]). (There are also examples
where Aut(I")/B is a solvable doubly-transitive group, but in practice, this is not usually
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a genuine obstacle in proceeding by induction.) The only known class of examples of
vertex-transitive graphs where Aut(I')/B is a doubly-transitive nonsolvable group, have
the property that Aut(I')/B is a faithful representation of Aut(I') and I is not a Cayley
graph. In this paper, we give examples of vertex-transitive digraphs that are Cayley di-
graphs and the action of Aut(I')/B on B is doubly-transitive, nonsolvable, not faithful,
and not a symmetric group.

1 Preliminaries

Definition 1.1 Let G be a permutation group acting on €. If w € €0, then a sub-orbit of
G is an orbit of Stabg(w).

Definition 1.2 Let G be a finite group. The socle of G, denoted soc(G), is the product
of all minimal normal subgroups of G. If G is primitive on €2 but not doubly-transitive,
we say G is stmply primitive. Let G be a transitive permutation group on a set 2 and let
G act on Q x Q by g(a, 8) = (g(«), g(5)). The orbits of G in Q x Q are called the orbitals
of G. The orbit {(a,a) : a € Q} is called the trivial orbital. Let A be an orbital of G
in 2 x Q. Define the orbital digraph A to be the graph with vertex set €2 and edge set
A. Each orbital of G has a paired orbital A" = {(5,«a) : (a, 3) € A}. Define the orbital
graph A to be the graph with vertex set Q2 and edge set A U A’. Note that there is a
canonical bijection from the set of orbital digraphs of G to the set of sub-orbits of G (for
fixed w € Q).

Definition 1.3 Let GG be a transitive permutation group of degree mk that admits a
complete block system B of m blocks of size k. If ¢ € G, then g permutes the m
blocks of B and hence induces a permutation in S,,, which we denote by g/B. We define
G/B={g/B:ge G}. Let fixg(G) ={g € G : g(B) = B for every B € B}.

Definition 1.4 Let G be transitive group acting on 2 with r orbital digraphs I'y, ..., T,
Define the 2-closure of G, denoted G® to be Mi_,Aut(T;). Note that if G is the auto-
morphism group of a vertex-transitive digraph, then G® = G.

Definition 1.5 Let I' be a graph. Define the complement of I', denoted by T, to be the

graph with V(I') = V/(I") and E(') = {wwv : u,v € V(I') and uwv ¢ E(T")}.

Definition 1.6 A group G given by the defining relations

2a—1

G={(hk:h =k =mm?*=1k"hk=h""
is a generalized quaternion group.

Let p > 5 be an odd prime. Then GL(2,p) acts on the set IFZ, where T, is the field of
order p, in the usual way. This action has two orbits, namely {0} and Q = F; — {0}. The
action of GL(2, p) on € is imprimitive, with a complete block system C of (p>*—1)/(p—1) =
p + 1 blocks of size p — 1, where the blocks of C consist of all scalar multiples of a given
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vector in € (these blocks are usually called projective points), and the action of GL(2, p)
on the blocks of C is doubly-transitive. Furthermore, fixgr,2,)(C) is cyclic of order p — 1,
and consists of all scalar matrices af (where I is the 2 x 2 identity matrix) in GL(2, p).
Note that if m|(p — 1), then GL(2,p) admits a complete block system C,, of (p + 1)m
blocks of size (p—1)/m, and fixar(2,p)(Cm) consists of all scalar matrices o’ I, where o €
is of order (p — 1)/m and i € Z. Each such block of C,, consists of all scalar multiples
o'v, where v is a vector in F> and ¢ € Z . Hence GL(2,p)/Cy, admits a complete block
system D,, consisting of p+ 1 blocks of size m, induced by C,,. Henceforth, we set m = 2
so that Cy consists of 2(p + 1) blocks of size (p — 1)/2, and Dy consists of p + 1 blocks of
size 2. Note that as p > 5, SL(2, p) is doubly-transitive on the set of projective points, as
if A € GL(2,p), then det(A)"'A € SL(2,p). Finally, observe that (—1)I € SL(2,p). Thus
(—=1)1/Cy € fixsri2p)/c,(D2) # 1 so that SL(2,p)/C, is transitive on Cp. Additionally, as
fixgriep (Co) = {a'I : |a| = (p—1)/2,i € Z}, SL(2,p)/Cs = SL(2, p). That is, SL(2,p)/Cs
is a faithful representation of SL(2,p). We will thus lose no generality by referring to
an element x/Cy € SL(2,p)/Cs as simply x € SL(2,p). As each projective point can be
written as a union of two blocks contained in Cy, we will henceforth refer to blocks in Cy
as projective half-points.

2 Results

We begin with a preliminary result.

Lemma 2.1 Let p > 7 be an odd prime such that 4 f (p — 1), and let SL(2,p) act as
above on the 2(p + 1) projective half-points. Then the following are true:

1. SL(2,p) has ezactly four sub-orbits; two of size 1 and 2 of size p,

2. SL(2,p) admits exactly one non-trivial complete block system which consists of p+1
blocks of size 2, namely Do, formed by the orbits of (—1)1.

PROOF. By [4, Theorem 2.8.1], |SL(2,p)| = (p* — 1)p. It was established above that
SL(2, p) admits D, as a complete block system of p+ 1 blocks of size 2, and this complete
block system is formed by the orbits of (=1)I as (—1)I € fixgy,(2)(D2) and is semi-regular
of order 2. As SL(2,p)/Dy = PSL(2,p) is doubly-transitive, there are two sub-orbits of
SL(2,p)/Ds, one of size 1 and the other of size p. Now, consider Stabgy, ) (), where
x is a projective half-point. Then there exists another projective half-point y such that
x Uy is a projective point z. As {x,y} € Dy is a block of size 2 of SL(2, p), we have that
Stabgy,2,p) () = Stabsrep (y). Thus SL(2,p) has at least two singleton sub-orbits. As
SL(2,p)/Dy = PSL(2, p) has one singleton sub-orbit, SL(2, p) has exactly two singleton
sub-orbits. We conclude that every non-singleton sub-orbit of SL(2, p) has order a multiple
of p. As the non-singleton sub-orbits of SL(2, p) have order a multiple of p, Stabgy, ) ()
has either one non-singleton orbit of size 2p or two non-singleton orbits of size p. As the
order of a non-singleton orbit must divide [Stabgpp)(2)| = p(p — 1)/2 which is odd as
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4 ) (p—1), SL(2,p) must have exactly two non-singleton sub-orbits of size p. Thus 1)
follows.

Suppose that D is another non-trivial complete block system of SL(2,p). Let D € D
with v a projective half-point in D. By [3, Exercise 1.5.9], D is a union of orbits of
Stabgy,2,5)(v), so that | D] is either 2, p+ 1, p+ 2, 2p, or 2p + 1. Furthermore, as the size
of a block of a permutation group divides the degree of the permutation group, |D| = 2
or p+1. If |D| = 2, then D is the union of two singleton orbits of Stabgy, ) (v), in which
case D consists of two projective half-points whose union is a projective point. Thus if
|D| = 2, then D € Dy and D = D,. If |D| = p+ 1, then D consists of 2 blocks of size
p+1and D is the union of two orbits of Stabgy, ) (v), and these orbits have size 1 and
p. We conclude that UD does not contain the projective point ¢ that contains v.

Now, fixgr(2,) (D) cannot be trivial, as SL(2,p)/D is of degree 2 while |[SL(2,p)| =
(p* — 1)p. Then |fixsye,(D)| = (p* — 1)p/2 as SL(2,p)/D is a transitive subgroup of
Sy. Furthermore, —I ¢ fixgp,2) (D) as no block of D contains the projective point ¢ that
contains v so that —I permutes the two projective half-points whose union is ¢. Thus
ﬁXSL(Q’p)(DQ) N ﬁXSL(Q’p)(D) = 1. As < - I) = ﬁXSL(27p)(D2) and both ﬁXSL(Q’p)(DQ) and
fixgr (2, (D) are normal in SL(2,p), we have that SL(2,p) = fixgp2p)(D2) X fixsr2,p) (D).
Thus a Sylow 2-subgroup of SL(2, p) can be written as a direct product of two nontrivial
2-groups, contradicting [4, Theorem 8.3]. O

Theorem 2.2 Let p > 7 be an odd prime such that 4 [ (p — 1). Then there exist exactly
two digraphs T';, i = 1,2 of order 2(p + 1) such that the following properties hold:

1. T; is an orbital digraph of SL(2,p) in its action on the set of projective half-points
and is not a graph,

2. Aut(I';) admits a unique nontrivial complete block system Dy which consists of p+ 1
blocks of size 2,

3. fixauyr,)(D2) = ( — I) is cyclic of order 2,
4. soc(Aut(I';)/Dy) is doubly-transitive but soc(Aut(L;)/Ds) # Api1.

PrROOF. By Lemma 2.1, SL(2,p) in its action on the half-projective points has exactly
four orbital digraphs; one consisting of p + 1 independent edges (the edges of this graph
consists of all edges of the form (v, w), where U{v, w} is a projective point; thus U{v, w} is
a block of Dy), one which consists of only self-loops (and so is trivial with automorphism
group Szt and will henceforth be ignored) and two in which each vertex has in and out
degree p. The orbital digraph I' of SL(2, p) consisting of p 4+ 1 independent edges is then
I_(pﬂ ! K5. The other orbital digraphs of SL(2, p), say I'; and T'y, each have in-degree and
out-degree p.

If either I'y or I'y is a graph, then assume without loss of generality that I'; is a graph.
Then whenever (a,b) € E(I'y) then (b,a) € E(I'y). As I'y is an orbital digraph, there
exists o € SL(2,p) such that a(a) = b and a(b) = a. Raising « to an appropriate odd
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power, we may assume that « has order a power of 2, and so a € (), where () is a Sylow
2-subgroup of SL(2,p). As a Sylow 2-subgroup of SL(2, p) is isomorphic to a generalized
quaternion by [4, Theorem 8.3], ) contains a unique subgroup of order 2 (see [4, pg. 29)]),
which is necessarily ( — I). If v is not of order 2, then a?(a) = a and o*(b) = b so that «
has at least two fixed points. However, (a?)¢ = —I for some ¢ € Z and —I has no fixed
points, a contradiction. Thus « has order 2 and so « = —I. Thus (a,b) € [_(pﬂ LKy # Ty,
a contradiction. Hence 1) holds.

We now establish that 2) holds. Suppose that for i = 1 or 2, Aut(I';) is primitive. We
may then assume without loss of generality that Aut(I'y) is primitive, and as Aut(T';) #
Kspt1y, Aut(I') is simply primitive, and, of course, SL(2,p)® < Aut(T;). First observe
that by [11, Theorem 4.11], SL(2,p)® admits D, as a complete block system. Let v be
a projective half-point. By Lemma 2.1, SL(2,p) has four sub-orbits relative to v, two
of size 1, say O; = {v} and Oy = {w}, and two of size p, say O3 and O4. By [11,
Theorem 5.5 (ii)] the sub-orbits of SL(2, p)® relative to v are the same as the sub-orbits
of SL(2,p) relative to v. Thus the neighbors of v in I'; consist of all elements in one
of the sub-orbits O3 or ;. Without loss of generality, assume that this sub-orbit is
Os. As Aut(I'y) is primitive, by [3, Theorem 3.2A], every non-trivial orbital digraph of
Aut(I'y) is connected. Then the orbital digraph of Aut(I';) that contains v is connected,
and so Oy = {w} is not a sub-orbit of Aut(T;). Of course, Aut(I';) = Aut(I';) so that
Aut(T) is primitive as well. As if Aut(T';) has exactly two sub-orbits, then Aut(T;) is
doubly-transitive and hence I'y = Kjy(,11) which is not true, Aut(I'y) has exactly three
sub-orbits. Clearly Oj is a sub-orbit of Aut(I';) so that the only sub-orbits of Aut(I'y)
relative to v are Oy, Os, and Oy U O4. Thus the neighbors of v in T'; are all contained
in one sub-orbit of Aut(I';) relative to v. However, one of these directed edges is an edge
(as Ty = Ty U (Kpp1 1 K3)), and so every neighbor of v in 'y is an edge. Thus every
neighbor of v in I'y is an edge. However, we have already established that I'; is a digraph
that is not a graph, a contradiction. Whence Aut(I';), ¢ = 1,2, are not primitive, and as
SL(2,p) < Aut(I';), we have by Lemma 2.1 that D, is the unique complete block system
of Aut(I';), i = 1,2. Thus (2) holds.

If fixaue(r,) (D2) is not cyclic, then there exists 1 # v € fixauyr,)(D2) such that y(v) = v
for some v € V(I';). It is then easy to see that Aut(I';) has only three sub-orbits, two of
size 1, and one of size 2p, a contradiction. Thus (3) holds.

To establish (4), as SL(2,p)/Ds = PSL(2,p) which is doubly-transitive in its action
on the blocks (projective points) of Dy, we have that Aut(I';)/Ds is doubly-transitive. As
PSL(2,p) < Aut(I';)/Da, by [1, Theorem 5.3] soc(Aut(I';)/D,) is a doubly-transitive non-
abelian simple group acting on p+1 points. Thus we need only show that soc(Aut(I';)/Ds) #
Api1.

Assume that soc(Aut(I';)/Ds) = A,11. Recall that as p is odd, a Sylow 2-subgroup @
of SL(2,p) is a generalized quaternion group. Furthermore, the unique element of @ of
order 2, namely —I, is contained is every Sylow 2-subgroup of SL(2, p) and is semiregular.
Observe that as 4 f (p — 1), 4|/(p +1). Then @ contains an element ¢ such that 0/Ds is
a product of (p + 1)/4 disjoint 4-cycles and (6*) = fixauer,)(D2) = ( — I). Let 6/Dy =
Z0..-zea_y be the cycle decomposition of 0/Dy.  As soc(Aut(l;)/Dy) = Api1, there
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exists w € Aut(T;) such that w/Dy = 202" .. .z;}l_l (note that if w/Dy is not an even
4

permutation, then 6/D, is not an even permutation, in which case Aut(I';)/Dy = Spi1
and w € Aut(I';)). Then |[dw/D,| = 2 so that (dw)? € fixaur;)(D2). Let Op be the union
of the non-singleton orbits of (zp), and O; be the union of the non-singleton orbits of
(z1) (note that as p > 7, p+ 1 > 8, so that (p + 1)/4 > 2). Let D € D, such that
D C Oy. Then éw|p has order 1 or 2, so that (dw)?|p = 1. Thus if w|p, € J|e,, then
(6w)? € fixauyry)(D2) = (—I), (dw)? # 1, but (éw)? has a fixed point, a contradiction.
Thus w|e, € d|o,- Then H = (0, w)|o, has a complete block system £ of 4 blocks of size 2
induced by D,. Furthermore, H/E is cyclic of order 4, so that fixy(€) has order at least
4. Then Staby(v) # 1 for every v € Op. In particular, £ consists of 4 blocks of size 2, and
Staby (v) is the identity on some block of £ while being transitive on some other block.
As each block of £ is also a block of D, Stabyr) (v) is transitive on some block D, of
D,. This then implies that Stab Aut(Fi)(/U) has three orbits, two of size one and one of size
2(p+ 1) — 2, a contradiction. O

Corollary 2.3 Let p = 28 — 1 > 7 be a Mersenne prime. Then there exist exactly two
digraphs T';, i = 1,2 of order 28! such that the following properties hold:

1. T; is an orbital digraph of SL(2,p) in its action on the set of projective half-points
and is not a graph,

2. Aut(T;) admits a unique complete block system Dy which consists of 2 blocks of size
2

3. fixau(r,)(D2) is cyclic of order 2,
4. soc(Aut(I';)/Dy) = PSL(2,p) is doubly-transitive,
5. Iy is a Cayley digraph of the generalized quaternion group of order 2F+1.

PROOF. In view of Theorem 2.2, we need only show that soc(Aut(I';)/Ds) = PSL(2, p)
and that each I'; is a Cayley digraph of the generalized quaternion group @ of order 2*+1.
As [SL(2,p)| = 2%(2F — 1)(2% — 2), a Sylow 2-subgroup of SL(2, p) has order 2¥*1 and as
p is odd, is isomorphic to a generalized quaternion group of order 28!, As a transitive
group of prime power order ¢‘ contains a transitive Sylow g-subgroup [10, Theorem 3.47],
a Sylow 2-subgroup @ of SL(2,p) is transitive and thus regular. It then follows by [9]
that each I'; is isomorphic to a Cayley digraph of Q). Furthermore, Stabaur,)/p, (v) is of
index 2% in Aut(I';)/Dy. By [5, Theorem 1] we have that either soc(Aut(T;)/Dsy) is Ag
or PSL(2,p). As by Theorem 2.2, soc(Aut(I';)/Ds) # Ayx, the result follows. O
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