The order of monochromatic subgraphs with a given minimum degree

Yair Caro *
and
Raphael Yuster ${ }^{\dagger}$
Department of Mathematics
University of Haifa at Oranim
Tivon 36006, Israel

Submitted: Jan 10, 2003; Accepted: Aug 22, 2003; Published: Sep 8, 2003
MR Subject Classifications: 05C15, 05C55, 05C35

Abstract

Let G be a graph. For a given positive integer d, let $f_{G}(d)$ denote the largest integer t such that in every coloring of the edges of G with two colors there is a monochromatic subgraph with minimum degree at least d and order at least t. Let $f_{G}(d)=0$ in case there is a 2-coloring of the edges of G with no such monochromatic subgraph. Let $f(n, k, d)$ denote the minimum of $f_{G}(d)$ where G ranges over all graphs with n vertices and minimum degree at least k. In this paper we establish $f(n, k, d)$ whenever k or $n-k$ are fixed, and n is sufficiently large. We also consider the case where more than two colors are allowed.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. For standard terminology used in this paper see [6]. It is well known that in any coloring of the edges of a complete graph with two colors there is a monochromatic connected spanning subgraph. This folkloristic Ramsey-type fact, which is straightforward to prove, has been generalized in many ways, where one shows that some given properties of a graph G suffice in order to guarantee a large monochromatic subgraph of G with related given properties in any two (or more than two) edge-coloring of G. See, e.g., $[2,3,4,5]$ for these types of results. In this paper we consider the property of having a certain minimum degree.

[^0]For given positive integers d and r, and a fixed graph G, let $f_{G}(d, r)$ denote the largest integer t such that in every coloring of the edges of the graph G with r colors there is a monochromatic subgraph with minimum degree at least d and order at least t. If G has an r-coloring of its edges with no monochromatic subgraph of minimum degree at least d we define $f_{G}(d, r)=0$. Let $f(n, k, d, r)$ denote the minimum of $f_{G}(d)$ where G ranges over all graphs with n vertices and minimum degree at least k. The main results of our paper establish $f(n, k, d, 2)$ whenever k or $n-k$ are fixed, and n is sufficiently large. In particular, we prove the following results.

Theorem 1.1 (i) For all $d \geq 1$ and $k \geq 4 d-3$,

$$
\begin{equation*}
f(n, k, d, 2) \geq \frac{k-4 d+4}{2(k-3 d+3)} n+\frac{3 d(d-1)}{4(k-3 d+3)} . \tag{1}
\end{equation*}
$$

(ii) For all $d \geq 1$ and $k \leq 4 d-4$, if n is sufficiently large then $f(n, k, d, 2) \leq d^{2}-d+1$. In particular, $f(n, k, d, 2)$ is independent of n.

Theorem 1.2 For all $d \geq 1, r \geq 2$ and $k>2 r(d-1)$, there exists a constant C such that

$$
f(n, k, d, r) \leq n \frac{k-2 r(d-1)}{r(k-(r+1)(d-1))}+C
$$

In particular, $f(n, k, d, 2) \leq \frac{k-4 d+4}{2(k-3 d+3)} n+C$.
Notice that Theorem 1.1 and Theorem 1.2 show that for fixed $k, f(n, k, d, 2)$ is determined up to a constant additive term. The theorems also show that $f(n, k, d, 2)$ transitions from a constant to a value linear in n when $k=4 d-3$.

The following theorem determines $f(n, k, d, 2)$ whenever k is very close to n.
Theorem 1.3 Let d and k be positive integers. For n sufficiently large, $f(n, n-k, d, 2)=$ $n-2 d-k+3$.

The next section presents our main results. The final section contains some concluding remarks. Throughout the rest of this paper, we use the term k-subgraph to denote a subgraph with minimum degree at least k.

2 Results

We need the following lemmas. The first one is well-known (see, e.g., [1] page xvii).
Lemma 2.1 For every $m \geq k$, every graph with m vertices and more than $(k-1) m-\binom{k}{2}$ edges contains a k-subgraph. Furthermore, there are graphs with m vertices and ($k-$ 1) $m-\binom{k}{2}$ edges that have no k-subgraph.

Lemma 2.2 Let G be a graph and let X be the set of vertices of G that are not in any k-subgraph of G. If $|X| \geq k$ then

$$
\sum_{x \in X} d_{G}(x) \leq 2(k-1)|X|-\binom{k}{2}
$$

Proof Assume the lemma is false. Put $x=|X|$ and let $S \subset V(G) \backslash X$ denote the set of vertices of the graph G that have at least one neighbor in X. Put $s=|S|$. Notice that there are at most $(k-1) x-\binom{k}{2}$ edges in $G[X]$ (the subgraph induced by X), and hence, if z denotes the number of edges between X and S then, by the assumption on the sum of degrees in X we have

$$
z \geq \sum_{x \in X} d_{G}(x)-2\left[(k-1) x-\binom{k}{2}\right]>\binom{k}{2}
$$

We distinguish between two cases. Assume first that $s \geq k$. We create a new graph H, which is obtained from G by removing all the edges of $G[S]$ and adding a set M of edges between vertices of S such that $H[S]$ has $(k-1) s-\binom{k}{2}$ edges and no k-subgraph. Such an M exists by Lemma 2.1. Now, the sum of the degrees of the subgraph of H on $X \cup S$ is greater than

$$
2(k-1) x-2\binom{k}{2}+2 z+2(k-1) s-2\binom{k}{2} \geq 2(k-1)(x+s)-k(k-1)
$$

Hence, this subgraph which has $x+s$ vertices, has more than $(k-1)(x+s)-\binom{k}{2}$ edges and therefore contain a k-subgraph, P. Clearly, P contains at least one vertex of X. Now, revert from H to G by deleting M and adding the original edges with both endpoints in S. Also, add to P all other vertices of $V(G) \backslash(X \cup S)$ and all their incident edges. Notice that the obtained subgraph is a k-subgraph of G that contains a vertex of X, a contradiction. Now assume $s<k$ (clearly $s \geq 1$). We can repeat the same argument where instead of M we use a complete graph on S, and similar computations hold.
Proof of Theorem 1.1, part (i). The theorem is trivial for $d=1$ so we assume $d \geq 2$. Let $G=(V, E)$ have n vertices and minimum degree at least k, and consider some fixed red-blue coloring of G. Let B (resp. R) denote the set of vertices of G that are not on any blue (resp. red) d-subgraph but are on some red (resp. blue) d-subgraph. Let C denote the set of vertices of G that are neither in a red d-subgraph nor in a blue d-subgraph. Put $|R|=r,|B|=b,|C|=c$. Clearly, there is a monochromatic subgraph of order at least $(n-c) / 2$. Hence, if $c<d$ the theorem trivially holds since the r.h.s. of (1) is always at most $(n-d+1) / 2$. We may therefore assume $c \geq d$. For each $v \in B \cup C$ (resp. $v \in R \cup C$) let $b(v)$ (resp. $r(v)$) denote the number of blue (resp. red) edges incident with v and that are not on any blue (resp. red) d-subgraph. By Lemma 2.2 applied to the graph spanned by blue edges on $B \cup C$ (resp. red edges on $R \cup C$),

$$
\sum_{v \in B \cup C} b(v) \leq 2(d-1)(b+c)-\binom{d}{2}, \quad \sum_{v \in R \cup C} r(v) \leq 2(d-1)(r+c)-\binom{d}{2}
$$

Notice that, trivially, for each $v \in C, b(v)+r(v)=\operatorname{deg}(v) \geq k$. Put

$$
b_{c}=\sum_{v \in C} b(v), \quad r_{c}=\sum_{v \in C} r(v) .
$$

Thus, $b_{c}+r_{c} \geq k c$. By Lemma 2.1, the subgraph induced by C contains at most $(d-1) c-$ $\binom{d}{2}$ blue edges and at most $(d-1) c-\binom{d}{2}$ red edges. Hence, this subgraph contributes to the sum of $b(v)$ at most $2(d-1) c-d(d-1)$ and to the sum of $r(v)$ at most $2(d-1) c-d(d-1)$. Hence, the sum of $b(v)$ (resp. $r(v)$) on the vertices of B (resp. R) must be at least $b_{c}-2(d-1) c+d(d-1)$ (resp. $\left.r_{c}-2(d-1) c+d(d-1)\right)$. It follows that:

$$
\begin{aligned}
& 2(d-1)(b+c)-\binom{d}{2} \geq \sum_{v \in B \cup C} b(v) \geq b_{c}+\left(b_{c}-2(d-1) c+d(d-1)\right), \\
& 2(d-1)(r+c)-\binom{d}{2} \geq \sum_{v \in R \cup C} r(v) \geq r_{c}+\left(r_{c}-2(d-1) c+d(d-1)\right) .
\end{aligned}
$$

Summing the two last inequalities we have:

$$
2(d-1)(b+r)-d(d-1)+4(d-1) c \geq(2 k-4(d-1)) c+2 d(d-1) .
$$

Thus, $r+b \geq(k-4 d+4) c /(d-1)+3 d / 2$. On the other hand $r+b+c \leq n$. It follows that

$$
c \leq \frac{d-1}{k-3 d+3} n-\frac{3 d(d-1)}{2(k-3 d+3)}, \quad \frac{r+b}{2}+c \leq \frac{k-2 d+2}{2(k-3 d+3)} n-\frac{3 d(d-1)}{4(k-3 d+3)} .
$$

It follows that there is either a red or a blue monochromatic d-subgraph of order at least

$$
\frac{k-4 d+4}{2(k-3 d+3)} n+\frac{3 d(d-1)}{4(k-3 d+3)} .
$$

Proof of Theorem 1.1, part (ii). It suffices to prove the theorem for $k=4 d-4$. We first create a specific graph H on n vertices. Place the n vertices in a sequence $\left(v_{1}, \ldots, v_{n}\right)$ and connect any two vertices whose distance is at most $d-1$. Hence, all the vertices $\left\{v_{d}, \ldots, v_{n-d+1}\right\}$ have degree $2(d-1)$. The first d and last d vertices have smaller degree. To compensate for this we add the following $\binom{d}{2}$ edges. For all $i=1, \ldots, d-1$ and for all $j=i, \ldots, d-1$ we add the edge $\left(v_{i}, v_{j d+1}\right)$. For example, if $d=3$ we add $\left(v_{1}, v_{4}\right)$, $\left(v_{1}, v_{7}\right)$ and $\left(v_{2}, v_{7}\right)$. Notice that these added edges are indeed new edges. The resulting graph H has n vertices and $(k-1) n$ edges. Furthermore, all the vertices have degree $2(d-1)$ except for $v_{j d+1}$ whose degree is $2(d-1)+j$ for $j=1, \ldots, d-1$ and $v_{n-d+1+j}$ whose degree is $2(d-1)-j$ for $j=1, \ldots, d-1$. Also notice that any d-subgraph of H may only contain the vertices $\left\{v_{1}, \ldots, v_{d^{2}-d+1}\right\}$. Thus, the order of any d-subgraph of H is at most $d^{2}-d+1$. The crucial point to observe is that the vertices of excess degree, namely $\left\{v_{d+1}, v_{2 d+1}, \ldots, v_{d^{2}-d+1}\right\}$ form an independent set. Hence, for n sufficiently large,
K_{n} contains two edge disjoint copies of H where in the second copy, the vertex playing the role of $v_{j d+1}$ plays the role of the vertex $v_{n-d+1+j}$ in the first copy, for $j=1, \ldots, d-1$, and vice versa. In other words, there exists a $4(d-1)$-regular graph with n vertices, and a red-blue coloring of it, such that the red subgraph and the blue subgraph are each isomorphic to H. In particular, there is no monochromatic d-subgraph with more than $d^{2}-d+1$ vertices.

Proof of Theorem 1.2. The theorem is trivial for $d=1$ so we assume $d \geq 2$. It clearly suffices to prove the theorem for $n=(m+d) r$ where m is an arbitrary element of some fixed infinite arithmetic sequence whose difference and first element are only functions of d, k and r. Let m be a positive integer such that

$$
y=m \frac{(d-1)(r-1)}{k-(r+1)(d-1)}
$$

is an integer. Whenever necessary we shall assume m is sufficiently large. We shall create a graph with $n=(m+d) r$ vertices, minimum degree at least k, having an r-coloring of its edges with no monochromatic subgraph larger than the value stated in the theorem. Let A_{1}, \ldots, A_{r} be pairwise disjoint sets of vertices of size y each. Let B_{1}, \ldots, B_{r} be pairwise disjoint sets of vertices (also disjoint from the A_{i}) of size $x=m+d-y$ each. The vertex set of our graph is $\cup_{i=1}^{r}\left(A_{i} \cup B_{i}\right)$. The edges of G and their colors are defined as follows. In each B_{i} we place a graph of minimum degree at least $k-(r-1)(d-1)$, and color its edges with the color i. In each A_{i} we place a $(d-1)$-degenerate graph with the maximum possible number of vertices of degree $2(d-1)$. It is easy to show that such graphs exists with precisely d vertices of degree $d-1$ and the rest are of degree $2(d-1)$. Denote by A_{i}^{\prime} the $y-d$ vertices of A_{i} with degree $2(d-1)$ in this subgraph and put $A_{i}^{\prime \prime}=A_{i} \backslash A_{i}^{\prime}$. Color its edges with the color i. Now for each $j \neq i$ we place a bipartite graph whose sides are A_{i} and $A_{j} \cup B_{j}$ and whose edges are colored i. The degree of all the vertices of $A_{j} \cup B_{j}$ in this subgraph is $d-1$, the degrees of all the vertices of A_{i}^{\prime} are at least $(k-(r+1)(d-1)) /(r-1)$ and the degrees of all vertices of $A_{i}^{\prime \prime}$ in this subgraph are at least $(k-r(d-1)) /(r-1)$. This can be done for m sufficiently large since

$$
(y-d)\left\lceil\frac{k-(r+1)(d-1)}{r-1}\right\rceil+d\left\lceil\frac{k-r(d-1)}{r-1}\right\rceil \leq(d-1)(m+d)
$$

Notice that when m is sufficiently large we can place all of these $r(r-1)$ bipartite subgraphs such that their edge sets are pairwise disjoint (an immediate consequence of Hall's Theorem).

By our construction, the minimum degree of the graph G is at least k. Furthermore, any monochromatic subgraph with minimum degree at least d must be completely placed within some B_{i}. It follows that

$$
f(n, k, d, r) \leq x=m+d-m \frac{(d-1)(r-1)}{k-(r+1)(d-1)}=n \frac{k-2 r(d-1)}{r(k-(r+1)(d-1))}+C .
$$

Proof of Theorem 1.3. Suppose $n \geq R(4 d+2 k-5,4 d+2 k-5)$ where $R(a, b)$ is the usual Ramsey number. Let G be a a graph with $\delta(G)=n-k$ and fix a red-blue coloring of G. Add edges to G in order to obtain K_{n}. Note that at most $k-1$ new edges are incident with each vertex. Color the new edges arbitrarily using the colors red and blue. The obtained complete graph contains either a red or blue $K_{4 d+2 k-5}$. Deleting the new edges we get a monochromatic subgraph of G on $4 d+2 k-5$ vertices and minimum degree at least $4 d+k-4 \geq 4 d-3 \geq d$. Now consider the largest monochromatic subgraph Y with minimum degree at least d. Hence, $|Y| \geq 4 d+2 k-5$. Assume, w.l.o.g., that $|Y|$ is red. If $|Y| \leq n-2 d-k+2$, then define X to be a set of $2 d+k-2$ vertices in $V \backslash Y$. We call a vertex $y \in Y$ bad if it has d "red" neighbors in X. Let B denote the subset of bad vertices in Y. Since the number of red edges between X and B is at most $|X|(d-1)$ we have $|B| d \leq|X|(d-1)$. Hence, $|B|<|X|=2 d+k-2 \leq 4 d+2 k-5 \leq|Y|$. In particular, $|B| \leq 2 d+k-3$. Consider the bipartite blue graph on X versus $Y \backslash B$. Its order is $|X|+|Y|-|B|>|Y|$. Furthermore, we claim that it has minimum degree at least d. This is true because each $y \in Y \backslash B$ has at least $|X|-(d-1)-(k-1)=d$ blue neighbors in $|X|$ and each vertex in X is adjacent to at least $|Y|-|B|-(d-1)-(k-1) \geq 4 d+2 k-5-(2 d+k-3)-(d-1)-(k-1)=d$ vertices in $Y \backslash B$. Thus, $X \cup(Y \backslash B)$ contradicts the maximality of Y. So, we must have $|Y| \geq n-2 d-k+3$, as required. Clearly the value $n-2 d-k+3$ is sharp for large n. Take a red $K_{n-2 d-k+3}$ on vertices $v_{1}, \ldots, v_{n-2 d-k+3}$ and a blue $K_{2 d+k-3}$ on vertices $u_{1}, \ldots, u_{2 d+k-3}$. Put $A=\left\{v_{1}, \ldots, v_{2 d+k-3}\right\}$. Connect with $d-1$ blue edges the vertex u_{i} to the vertices $v_{i}, \ldots, v_{i+d-2(\bmod 2 d+k-3)}$, and connect with $d-1$ red edges the vertex u_{i} to the vertices $v_{i+d-1}, \ldots, v_{i+2 d-3(\bmod 2 d+k-3)}$. There are no edges between u_{i} and $v_{i+2 d-2}, \ldots, v_{i+2 d+k-4(\bmod 2 d+k-3)}$. The rest of the edges between the u_{i} and v_{j} for $j \geq 2 d+k-2$ are colored blue. It is easy to verify that this graph is $(n-k)$-regular and contain no blue nor red d-subgraph with more than $n-2 d-k+3$ vertices.

3 Concluding remarks

- In the proof of Theorem 1.3 we assume $n \geq R(4 d+2 k-5,4 d+2 k-5)$ and hence n is very large. We can improve upon this to $n \geq \Theta(d+k)$ using the following argument. Let $g(n, m, d, r)$ denote the largest integer t such that in any r coloring of a graph with n vertices and m edges there exists a monochromatic subgraph of order at least t and minimum degree d.

Proposition 3.1

$$
g(n, m, d, r) \geq \sqrt{2\left(m-(d-1) n+\binom{d}{2}\right) / r} \geq \sqrt{2 m / r-2 d n / r}
$$

Proof. Suppose G has n vertices m edges and the edges are r-colored. Start deleting edge-disjoint monochromatic d-graphs as long as we can. We begin with m edges and when we stop we remain with at most $(d-1) n-\binom{d}{2}$ edges. Hence, there
are at least $q=\left(m-(d-1) n+\binom{d}{2}\right) / r$ edges in one of the monochromatic d-graphs. Thus, this monochromatic d-graph contains at least $\sqrt{2 q}$ vertices as claimed. Notice that this bound is rather tight for $d \leq \sqrt{2 m / r}-1$. Consider the n-vertex graph composed of r vertex-disjoint copies of $K \sqrt{2 m / r}$ and $n-\sqrt{2 m r}$ isolated vertices (assume all numbers are integers, for simplicity). Then, $e(G) \geq m$ and by coloring each of the r large cliques with different colors we get that any monochromatic d-subgraph has at most $\sqrt{2 m / r}$ vertices.

Proposition 3.1 shows that in the proof of Theorem 1.3 we can ensure an initial big monochromatic d-subgraph already when $n \geq 7(k+2 d) / 2=\Theta(d+k)$.

- In the case where $r \geq 3$ colors are considered and $k>2 r(d-1)$ is fixed, Theorem 1.2 supplies a linear upper bound for $f(n, k, d, r)$. However, unlike the case where only two colors are used, we do not have a matching lower bound. The following recursive argument supplies a linear lower bound in case $k=k(d)$ is sufficiently large. We may assume that r is a power of 2 as any lower bound for r colors implies a lower bound for less colors. Given an r-coloring of an n-vertex graph G, split the colors into two groups of $r / 2$ colors each. Now, using Theorem 1.1 we have a subgraph that uses only the colors of one of the groups, and whose minimum degree is x, where x is a parameter satisfying $k \geq 4 x-3$. The order of this subgraph is at least $n(k-4 x+4) /(2(k-3 x+3))$. Now we can use the recursion to show that this $r / 2$-colored linear subgraph has a linear order subgraph which is monochromatic. x is chosen so as to maximize the order of the final monochromatic subgraph. For example, with $r=4$ we can take $x=4 d-3$ and hence $k \geq 16 d-15$. For this choice of x (which is optimal for this strategy) we get a monochromatic subgraph of order at least

$$
n \frac{(k-4(4 d-3)+4)((4 d-3)-4 d+4)}{(2(k-3(4 d-3)+3))(2((4 d-3)-3 d+3))}=n \frac{k-16 d+16}{4 d(k-12 d+12)}
$$

- Our theorems determine, up to a constant additive term, the value of $f(n, k, d, 2)$ whenever k or $n-k$ are fixed and n is sufficiently large. It may be interesting to establish precise values for all $k<n$. Another possible path of research is the extension of the definition of $f(n, k, d, r)$ to t-uniform hypergraphs.

References

[1] B. Bollobás, Extremal Graph Theory, Academic Press, 1978.
[2] A. Bialostocki , P. Dierker and W. Voxman, Either a graph or its complement is connected : A continuing saga, Mathematics Magazine, to appear.
[3] D. W. Matula, Ramsey Theory for graph connectivity, J. Graph Theory 7 (1983), 95-105.
[4] Y. Caro and Y. Roditty, Connected colorings of graphs, Ars Combinatoria, to appear.
[5] Y. Caro and R. Yuster, Edge coloring complete uniform hypergraphs with many components, Submitted.
[6] D.B. West, Introduction to Graph Theory, Prentice Hall, second edition, 2001.

[^0]: *e-mail: yairc@macam98.ac.il
 ${ }^{\dagger}$ e-mail: raphy@research.haifa.ac.il

