
The order of monochromatic subgraphs with a given
minimum degree

Yair Caro ∗

and
Raphael Yuster †

Department of Mathematics
University of Haifa at Oranim

Tivon 36006, Israel

Submitted: Jan 10, 2003; Accepted: Aug 22, 2003; Published: Sep 8, 2003
MR Subject Classifications: 05C15, 05C55, 05C35

Abstract

Let G be a graph. For a given positive integer d, let fG(d) denote the largest
integer t such that in every coloring of the edges of G with two colors there is a
monochromatic subgraph with minimum degree at least d and order at least t. Let
fG(d) = 0 in case there is a 2-coloring of the edges of G with no such monochromatic
subgraph. Let f(n, k, d) denote the minimum of fG(d) where G ranges over all
graphs with n vertices and minimum degree at least k. In this paper we establish
f(n, k, d) whenever k or n−k are fixed, and n is sufficiently large. We also consider
the case where more than two colors are allowed.

1 Introduction

All graphs considered in this paper are finite, simple and undirected. For standard termi-
nology used in this paper see [6]. It is well known that in any coloring of the edges of a
complete graph with two colors there is a monochromatic connected spanning subgraph.
This folkloristic Ramsey-type fact, which is straightforward to prove, has been general-
ized in many ways, where one shows that some given properties of a graph G suffice in
order to guarantee a large monochromatic subgraph of G with related given properties
in any two (or more than two) edge-coloring of G. See, e.g., [2, 3, 4, 5] for these types
of results. In this paper we consider the property of having a certain minimum degree.
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For given positive integers d and r, and a fixed graph G, let fG(d, r) denote the largest
integer t such that in every coloring of the edges of the graph G with r colors there is a
monochromatic subgraph with minimum degree at least d and order at least t. If G has
an r-coloring of its edges with no monochromatic subgraph of minimum degree at least
d we define fG(d, r) = 0. Let f(n, k, d, r) denote the minimum of fG(d) where G ranges
over all graphs with n vertices and minimum degree at least k. The main results of our
paper establish f(n, k, d, 2) whenever k or n − k are fixed, and n is sufficiently large. In
particular, we prove the following results.

Theorem 1.1 (i) For all d ≥ 1 and k ≥ 4d − 3,

f(n, k, d, 2) ≥ k − 4d + 4

2(k − 3d + 3)
n +

3d(d − 1)

4(k − 3d + 3)
. (1)

(ii) For all d ≥ 1 and k ≤ 4d − 4, if n is sufficiently large then f(n, k, d, 2) ≤ d2 − d + 1.
In particular, f(n, k, d, 2) is independent of n.

Theorem 1.2 For all d ≥ 1, r ≥ 2 and k > 2r(d − 1), there exists a constant C such
that

f(n, k, d, r) ≤ n
k − 2r(d − 1)

r(k − (r + 1)(d − 1))
+ C.

In particular, f(n, k, d, 2) ≤ k−4d+4
2(k−3d+3)

n + C.

Notice that Theorem 1.1 and Theorem 1.2 show that for fixed k, f(n, k, d, 2) is determined
up to a constant additive term. The theorems also show that f(n, k, d, 2) transitions from
a constant to a value linear in n when k = 4d − 3.

The following theorem determines f(n, k, d, 2) whenever k is very close to n.

Theorem 1.3 Let d and k be positive integers. For n sufficiently large, f(n, n−k, d, 2) =
n − 2d − k + 3.

The next section presents our main results. The final section contains some concluding
remarks. Throughout the rest of this paper, we use the term k-subgraph to denote a
subgraph with minimum degree at least k.

2 Results

We need the following lemmas. The first one is well-known (see, e.g., [1] page xvii).

Lemma 2.1 For every m ≥ k, every graph with m vertices and more than (k−1)m−(
k
2

)
edges contains a k-subgraph. Furthermore, there are graphs with m vertices and (k −
1)m − (

k
2

)
edges that have no k-subgraph.
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Lemma 2.2 Let G be a graph and let X be the set of vertices of G that are not in any
k-subgraph of G. If |X| ≥ k then

∑
x∈X

dG(x) ≤ 2(k − 1)|X| −
(

k

2

)
.

Proof Assume the lemma is false. Put x = |X| and let S ⊂ V (G) \ X denote the set of
vertices of the graph G that have at least one neighbor in X. Put s = |S|. Notice that
there are at most (k − 1)x− (

k
2

)
edges in G[X] (the subgraph induced by X), and hence,

if z denotes the number of edges between X and S then, by the assumption on the sum
of degrees in X we have

z ≥
∑
x∈X

dG(x) − 2

[
(k − 1)x −

(
k

2

)]
>

(
k

2

)
.

We distinguish between two cases. Assume first that s ≥ k. We create a new graph H ,
which is obtained from G by removing all the edges of G[S] and adding a set M of edges
between vertices of S such that H [S] has (k − 1)s − (

k
2

)
edges and no k-subgraph. Such

an M exists by Lemma 2.1. Now, the sum of the degrees of the subgraph of H on X ∪ S
is greater than

2(k − 1)x − 2

(
k

2

)
+ 2z + 2(k − 1)s − 2

(
k

2

)
≥ 2(k − 1)(x + s) − k(k − 1).

Hence, this subgraph which has x + s vertices, has more than (k − 1)(x + s) − (
k
2

)
edges

and therefore contain a k-subgraph, P . Clearly, P contains at least one vertex of X. Now,
revert from H to G by deleting M and adding the original edges with both endpoints
in S. Also, add to P all other vertices of V (G) \ (X ∪ S) and all their incident edges.
Notice that the obtained subgraph is a k-subgraph of G that contains a vertex of X, a
contradiction. Now assume s < k (clearly s ≥ 1). We can repeat the same argument
where instead of M we use a complete graph on S, and similar computations hold.

Proof of Theorem 1.1, part (i). The theorem is trivial for d = 1 so we assume d ≥ 2.
Let G = (V, E) have n vertices and minimum degree at least k, and consider some fixed
red-blue coloring of G. Let B (resp. R) denote the set of vertices of G that are not on any
blue (resp. red) d-subgraph but are on some red (resp. blue) d-subgraph. Let C denote
the set of vertices of G that are neither in a red d-subgraph nor in a blue d-subgraph. Put
|R| = r, |B| = b, |C| = c. Clearly, there is a monochromatic subgraph of order at least
(n − c)/2. Hence, if c < d the theorem trivially holds since the r.h.s. of (1) is always at
most (n−d+1)/2. We may therefore assume c ≥ d. For each v ∈ B∪C (resp. v ∈ R∪C)
let b(v) (resp. r(v)) denote the number of blue (resp. red) edges incident with v and that
are not on any blue (resp. red) d-subgraph. By Lemma 2.2 applied to the graph spanned
by blue edges on B ∪ C (resp. red edges on R ∪ C),

∑
v∈B∪C

b(v) ≤ 2(d − 1)(b + c) −
(

d

2

)
,

∑
v∈R∪C

r(v) ≤ 2(d − 1)(r + c) −
(

d

2

)
.

the electronic journal of combinatorics 10 (2003), #R32 3



Notice that, trivially, for each v ∈ C, b(v) + r(v) = deg(v) ≥ k. Put

bc =
∑
v∈C

b(v), rc =
∑
v∈C

r(v).

Thus, bc +rc ≥ kc. By Lemma 2.1, the subgraph induced by C contains at most (d−1)c−(
d
2

)
blue edges and at most (d−1)c−(

d
2

)
red edges. Hence, this subgraph contributes to the

sum of b(v) at most 2(d−1)c−d(d−1) and to the sum of r(v) at most 2(d−1)c−d(d−1).
Hence, the sum of b(v) (resp. r(v)) on the vertices of B (resp. R) must be at least
bc − 2(d − 1)c + d(d − 1) (resp. rc − 2(d − 1)c + d(d − 1)). It follows that:

2(d − 1)(b + c) −
(

d

2

)
≥

∑
v∈B∪C

b(v) ≥ bc + (bc − 2(d − 1)c + d(d − 1)),

2(d − 1)(r + c) −
(

d

2

)
≥

∑
v∈R∪C

r(v) ≥ rc + (rc − 2(d − 1)c + d(d − 1)).

Summing the two last inequalities we have:

2(d − 1)(b + r) − d(d − 1) + 4(d − 1)c ≥ (2k − 4(d − 1))c + 2d(d − 1).

Thus, r + b ≥ (k − 4d + 4)c/(d − 1) + 3d/2. On the other hand r + b + c ≤ n. It follows
that

c ≤ d − 1

k − 3d + 3
n − 3d(d − 1)

2(k − 3d + 3)
,

r + b

2
+ c ≤ k − 2d + 2

2(k − 3d + 3)
n − 3d(d − 1)

4(k − 3d + 3)
.

It follows that there is either a red or a blue monochromatic d-subgraph of order at least

k − 4d + 4

2(k − 3d + 3)
n +

3d(d − 1)

4(k − 3d + 3)
.

Proof of Theorem 1.1, part (ii). It suffices to prove the theorem for k = 4d − 4.
We first create a specific graph H on n vertices. Place the n vertices in a sequence
(v1, . . . , vn) and connect any two vertices whose distance is at most d − 1. Hence, all the
vertices {vd, . . . , vn−d+1} have degree 2(d−1). The first d and last d vertices have smaller
degree. To compensate for this we add the following

(
d
2

)
edges. For all i = 1, . . . , d−1 and

for all j = i, . . . , d − 1 we add the edge (vi, vjd+1). For example, if d = 3 we add (v1, v4),
(v1, v7) and (v2, v7). Notice that these added edges are indeed new edges. The resulting
graph H has n vertices and (k − 1)n edges. Furthermore, all the vertices have degree
2(d − 1) except for vjd+1 whose degree is 2(d − 1) + j for j = 1, . . . , d − 1 and vn−d+1+j

whose degree is 2(d − 1) − j for j = 1, . . . , d − 1. Also notice that any d-subgraph of H
may only contain the vertices {v1, . . . , vd2−d+1}. Thus, the order of any d-subgraph of H
is at most d2 − d + 1. The crucial point to observe is that the vertices of excess degree,
namely {vd+1, v2d+1, . . . , vd2−d+1} form an independent set. Hence, for n sufficiently large,
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Kn contains two edge disjoint copies of H where in the second copy, the vertex playing
the role of vjd+1 plays the role of the vertex vn−d+1+j in the first copy, for j = 1, . . . , d−1,
and vice versa. In other words, there exists a 4(d − 1)-regular graph with n vertices,
and a red-blue coloring of it, such that the red subgraph and the blue subgraph are each
isomorphic to H . In particular, there is no monochromatic d-subgraph with more than
d2 − d + 1 vertices.

Proof of Theorem 1.2. The theorem is trivial for d = 1 so we assume d ≥ 2. It clearly
suffices to prove the theorem for n = (m + d)r where m is an arbitrary element of some
fixed infinite arithmetic sequence whose difference and first element are only functions of
d, k and r. Let m be a positive integer such that

y = m
(d − 1)(r − 1)

k − (r + 1)(d − 1)

is an integer. Whenever necessary we shall assume m is sufficiently large. We shall create
a graph with n = (m+d)r vertices, minimum degree at least k, having an r-coloring of its
edges with no monochromatic subgraph larger than the value stated in the theorem. Let
A1, . . . , Ar be pairwise disjoint sets of vertices of size y each. Let B1, . . . , Br be pairwise
disjoint sets of vertices (also disjoint from the Ai) of size x = m + d− y each. The vertex
set of our graph is ∪r

i=1(Ai ∪ Bi). The edges of G and their colors are defined as follows.
In each Bi we place a graph of minimum degree at least k − (r − 1)(d − 1), and color its
edges with the color i. In each Ai we place a (d−1)-degenerate graph with the maximum
possible number of vertices of degree 2(d − 1). It is easy to show that such graphs exists
with precisely d vertices of degree d − 1 and the rest are of degree 2(d − 1). Denote by
A′

i the y − d vertices of Ai with degree 2(d − 1) in this subgraph and put A′′
i = Ai \ A′

i.
Color its edges with the color i. Now for each j 6= i we place a bipartite graph whose
sides are Ai and Aj ∪ Bj and whose edges are colored i. The degree of all the vertices
of Aj ∪ Bj in this subgraph is d − 1, the degrees of all the vertices of A′

i are at least
(k − (r + 1)(d − 1))/(r − 1) and the degrees of all vertices of A′′

i in this subgraph are at
least (k − r(d − 1))/(r − 1). This can be done for m sufficiently large since

(y − d)

⌈
k − (r + 1)(d − 1)

r − 1

⌉
+ d

⌈
k − r(d − 1)

r − 1

⌉
≤ (d − 1)(m + d).

Notice that when m is sufficiently large we can place all of these r(r − 1) bipartite sub-
graphs such that their edge sets are pairwise disjoint (an immediate consequence of Hall’s
Theorem).

By our construction, the minimum degree of the graph G is at least k. Furthermore,
any monochromatic subgraph with minimum degree at least d must be completely placed
within some Bi. It follows that

f(n, k, d, r) ≤ x = m + d − m
(d − 1)(r − 1)

k − (r + 1)(d − 1)
= n

k − 2r(d − 1)

r(k − (r + 1)(d − 1))
+ C.
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Proof of Theorem 1.3. Suppose n ≥ R(4d + 2k − 5, 4d + 2k − 5) where R(a, b) is
the usual Ramsey number. Let G be a a graph with δ(G) = n − k and fix a red-blue
coloring of G. Add edges to G in order to obtain Kn. Note that at most k − 1 new
edges are incident with each vertex. Color the new edges arbitrarily using the colors
red and blue. The obtained complete graph contains either a red or blue K4d+2k−5 .
Deleting the new edges we get a monochromatic subgraph of G on 4d + 2k − 5 vertices
and minimum degree at least 4d + k − 4 ≥ 4d − 3 ≥ d. Now consider the largest
monochromatic subgraph Y with minimum degree at least d. Hence, |Y | ≥ 4d + 2k − 5.
Assume, w.l.o.g., that |Y | is red. If |Y | ≤ n − 2d − k + 2, then define X to be a
set of 2d + k − 2 vertices in V \ Y . We call a vertex y ∈ Y bad if it has d “red”
neighbors in X. Let B denote the subset of bad vertices in Y . Since the number of
red edges between X and B is at most |X|(d − 1) we have |B|d ≤ |X|(d − 1). Hence,
|B| < |X| = 2d+k−2 ≤ 4d+2k−5 ≤ |Y |. In particular, |B| ≤ 2d+k−3. Consider the
bipartite blue graph on X versus Y \B. Its order is |X|+ |Y | − |B| > |Y |. Furthermore,
we claim that it has minimum degree at least d. This is true because each y ∈ Y \B has
at least |X|− (d−1)− (k−1) = d blue neighbors in |X| and each vertex in X is adjacent
to at least |Y |− |B|− (d−1)− (k−1) ≥ 4d+2k−5− (2d+k−3)− (d−1)− (k−1) = d
vertices in Y \ B. Thus, X ∪ (Y \ B) contradicts the maximality of Y . So, we must
have |Y | ≥ n − 2d − k + 3, as required. Clearly the value n − 2d − k + 3 is sharp
for large n. Take a red Kn−2d−k+3 on vertices v1, . . . , vn−2d−k+3 and a blue K2d+k−3 on
vertices u1, . . . , u2d+k−3. Put A = {v1, . . . , v2d+k−3}. Connect with d − 1 blue edges the
vertex ui to the vertices vi, . . . , vi+d−2( mod 2d+k−3) , and connect with d − 1 red edges the
vertex ui to the vertices vi+d−1, . . . , vi+2d−3( mod 2d+k−3). There are no edges between ui

and vi+2d−2, . . . , vi+2d+k−4( mod 2d+k−3) . The rest of the edges between the ui and vj for
j ≥ 2d + k − 2 are colored blue. It is easy to verify that this graph is (n− k)-regular and
contain no blue nor red d-subgraph with more than n − 2d − k + 3 vertices.

3 Concluding remarks

• In the proof of Theorem 1.3 we assume n ≥ R(4d + 2k − 5, 4d + 2k − 5) and hence
n is very large. We can improve upon this to n ≥ Θ(d + k) using the following
argument. Let g(n, m, d, r) denote the largest integer t such that in any r coloring
of a graph with n vertices and m edges there exists a monochromatic subgraph of
order at least t and minimum degree d.

Proposition 3.1

g(n, m, d, r) ≥
√

2

(
m − (d − 1)n +

(
d

2

))
/r ≥

√
2m/r − 2dn/r.

Proof. Suppose G has n vertices m edges and the edges are r-colored. Start
deleting edge-disjoint monochromatic d-graphs as long as we can. We begin with m
edges and when we stop we remain with at most (d− 1)n− (

d
2

)
edges. Hence, there
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are at least q = (m− (d−1)n+
(

d
2

)
)/r edges in one of the monochromatic d-graphs.

Thus, this monochromatic d-graph contains at least
√

2q vertices as claimed. Notice
that this bound is rather tight for d ≤ √

2m/r − 1. Consider the n-vertex graph

composed of r vertex-disjoint copies of K√
2m/r

and n − √
2mr isolated vertices

(assume all numbers are integers, for simplicity). Then, e(G) ≥ m and by coloring
each of the r large cliques with different colors we get that any monochromatic
d-subgraph has at most

√
2m/r vertices.

Proposition 3.1 shows that in the proof of Theorem 1.3 we can ensure an initial big
monochromatic d-subgraph already when n ≥ 7(k + 2d)/2 = Θ(d + k).

• In the case where r ≥ 3 colors are considered and k > 2r(d − 1) is fixed, Theorem
1.2 supplies a linear upper bound for f(n, k, d, r). However, unlike the case where
only two colors are used, we do not have a matching lower bound. The following
recursive argument supplies a linear lower bound in case k = k(d) is sufficiently
large. We may assume that r is a power of 2 as any lower bound for r colors implies
a lower bound for less colors. Given an r-coloring of an n-vertex graph G, split
the colors into two groups of r/2 colors each. Now, using Theorem 1.1 we have a
subgraph that uses only the colors of one of the groups, and whose minimum degree
is x, where x is a parameter satisfying k ≥ 4x− 3. The order of this subgraph is at
least n(k− 4x + 4)/(2(k− 3x + 3)). Now we can use the recursion to show that this
r/2-colored linear subgraph has a linear order subgraph which is monochromatic.
x is chosen so as to maximize the order of the final monochromatic subgraph. For
example, with r = 4 we can take x = 4d−3 and hence k ≥ 16d−15. For this choice
of x (which is optimal for this strategy) we get a monochromatic subgraph of order
at least

n
(k − 4(4d − 3) + 4)((4d − 3) − 4d + 4)

(2(k − 3(4d − 3) + 3))(2((4d − 3) − 3d + 3))
= n

k − 16d + 16

4d(k − 12d + 12)
.

• Our theorems determine, up to a constant additive term, the value of f(n, k, d, 2)
whenever k or n − k are fixed and n is sufficiently large. It may be interesting
to establish precise values for all k < n. Another possible path of research is the
extension of the definition of f(n, k, d, r) to t-uniform hypergraphs.
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