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Abstract
In this paper configurations of n non-intersecting lattice paths which begin and

end on the line y = 0 and are excluded from the region below this line are consid-
ered. Such configurations are called Hankel n−paths and their contact polynomial is
defined by ẐH

2r(n;κ) ≡∑r+1
c=1 |H(n)

2r (c)|κc where H(n)
2r (c) is the set of Hankel n-paths

which make c intersections with the line y = 0 the lowest of which has length 2r.
These configurations may also be described as parallel Dyck paths.

It is found that replacing κ by the length generating function for Dyck paths,
κ(ω) ≡ ∑∞

r=0 Crω
r, where Cr is the rth Catalan number, results in a remarkable

simplification of the coefficients of the contact polynomial. In particular it is shown
that the polynomial for configurations of a single Dyck path has the expansion
ẐH

2r(1;κ(ω)) =
∑∞

b=0 Cr+bω
b. This result is derived using a bijection between bi-

coloured Dyck paths and plain Dyck paths. A bi-coloured Dyck path is a Dyck
path in which each edge is coloured either red or blue with the constraint that the
colour can only change at a contact with the line y = 0. For n > 1, the coefficient
of ωb in ẐW

2r (n;κ(ω)) is expressed as a determinant of Catalan numbers which has a
combinatorial interpretation in terms of a modified class of n non-intersecting Dyck
paths. The determinant satisfies a recurrence relation which leads to the proof of a
product form for the coefficients in the ω expansion of the contact polynomial.
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1 Introduction.

We consider n non-intersecting paths on the half plane square lattice Ξ = {(t, y)| t, y ∈
Z, y ≥ 0 and t + y even }, where Z is the set of integers. The results in this paper follow
recent interest in single paths on Ξ [1], n non-intersecting paths [2],[3] and with their
applications in statistical mechanics [4],[5], as well as their connection with the Bethe
Ansatz of statistical mechanics [1],[6] and work on return polynomials [7].

A single path known as a ballot path is defined as follows.

Definition 1 (Ballot and Dyck paths). A path of length t ≥ 0 is a sequence of
vertices (v0, v1, . . . , vt), vi ∈ Ξ, with vi − vi−1 = (1, 1) (an up step) or (1,−1) (a down
step), i = 1, . . . , t. A t = 0 length path is a single vertex v0. A ballot path of length
t with deviation y ≥ 0 has v0 = (0, 0) and vt = (t, y). Ballot paths with zero deviation
are known as Dyck paths and the set of Dyck paths of length 2r ≥ 0 will be denoted by
{ }2r. Denote the length of a path π by |π|.

The number of ballot paths with deviation y, Bt,y, is called a ballot number and is
given by

Bt,y =
(y + 1)t!

(1
2
(t + y) + 1)!(1

2
(t− y))!

(1)

The case y = 0, t = 2r gives the number of Dyck paths of length 2r

|{ }2r| = B2r,0 =
1

r + 1

(
2r

r

)
= Cr (2)

which is the rth Catalan number. The Dyck path length generating function is

κ(ω) ≡
∞∑

r=0

|{ }2r|ωr =
∞∑

r=0

Cr ωr (3)

This series can be summed to give

κ(ω) =
1−√1− 4ω

2ω
(4)

which is a root of the quadratic κ = 1+ ωκ2. The “ω” variable arises naturally in certain
physical applications of the contact polynomials [4], [5].

Definition 2 (Surface and Contacts). The line y = 0 will be referred to as the surface.
Any vertex of a Dyck path in common with the surface, is called a contact. Denote the
set of Dyck paths of length 2r with exactly c contacts by { }c2r. Define the Dyck Path
contact polynomial by

ẐS
2r(κ) ≡

r+1∑
c=1

|{ }c2r|κc. (5)
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The notation ẐS agrees with that used in our earlier work [1] where the contact polynomial
for paths with only one end attached to the surface were denoted ŹS. The superscript S
denotes a single path.

A somewhat surprising result is obtained if, starting with any Dyck path contact
polynomial, the variable κ is replaced by the Dyck path length generating function κ(ω).
Thus with the definition

ĤS
2r(ω) ≡ ẐS

2r(κ(ω)) (6)

we find, for example

ĤS
4 (ω) = κ(ω)2 + κ(ω)3 (7)

= (1 + ω + 2ω2 + 5ω3 + 14ω4 + . . .)2 + (1 + ω + 2ω2 + 5ω3 + 14ω4 + . . .)3 (8)

= 2 + 5ω + 14ω2 + 42ω3 + . . . =

∞∑
b=0

Cb+2ω
b (9)

which is a case of the first result of this paper

ĤS
2r(ω) =

∞∑
b=0

Cr+b ωb. (10)

Notice that (3) is the case r = 0 of (10) since ẐS
0 (κ(ω)) = κ(ω). On the other hand it

follows from (4) that setting ω = 0 in (10) is equivalent to setting κ = 1 which gives

ẐS
2r(1) = Cr (11)

being the total number of Dyck paths of length 2r.
Equation (10) has already been proved analytically in [1], we now provide a combi-

natorial proof. A combinatorial interpretation of ẐS
2r(κ(ω)) can be obtained as follows.

The substitution and expansion of κ(ω) gives rise to a series of terms each one of which
can be made to correspond to a Dyck path in which the steps are assigned one of two
colours as follows. Each member of a subset of the contacts of the original Dyck path is
replaced by another Dyck path of length at least two. Contacts in the complementary
set are unchanged corresponding to choosing the first term, C0 = 1, in the expansion of
κ(ω). To distinguish the steps of the original path from the steps of the inserted paths
we will colour the former red and the latter blue. This leads to the idea of bi-coloured
Dyck paths.

Definition 3 (Bi-coloured Dyck path). A bi-coloured Dyck path, Dr,b, is a Dyck path
in which each edge is coloured either red or blue with the constraint that the colour can
only change at a contact. Denote the set of bi-coloured Dyck paths having 2r red steps
and 2b blue steps by { }2r,2b.

Examples of bi-coloured paths are illustrated in figure 1.
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Figure 1: An example of the first few sets of bi-coloured Dyck paths.

Since a factor ω arises from each step of the inserted (blue) paths we have that

ẐS
2r(κ(ω)) =

∞∑
b=0

|{ }2r,2b|ωb. (12)

In section 2.2 we prove that equation (10) is equivalent to (12) and the following theorem.

Theorem 1. The number of bi-coloured Dyck paths with 2r red steps and 2b blue steps is
given by

|{ }2r,2b| = Cr+b. (13)

The result that |{ }2r,2b| depends only on r+b is consistent with the symmetry between
red and blue in the definition.

In section 2 we will provide a combinatorial proof of theorem 1 using a bijection
between { }2r,2b and plain Dyck paths of length 2r + 2b. As an example, for the paths
in figure 1, we have bijections between the sets illustrated in figure 2.

, , , ,

{ }, ,

, , , ,

}

{ }

{ }{

}{

}{

Figure 2: Example of the sets the bi-coloured paths which are in bijection with those of
figure 1. Note, r and b are fixed in each row.

The bijection uses the marking of one step of each plain Dyck path as the bridge
connecting a ballot path and a reversed ballot path. The resulting marked Dyck path will
be known as a bi-ballot path and is defined as follows.

Definition 4 (Bi-ballot paths). A bi-ballot path with parameters r > 0 and b ≥ 0
is a Dyck path of length 2r + 2b > 0 having a marked up edge, known as its bridge
(marked by a ]), which is the step immediately before the path intersects the bi-ballot
line L of slope −1 through the point (2r, 0) (see figure 3). Denote the set of such paths by

{ }2r,2b. The height m of a bi-ballot path is the y−coordinate of the terminal vertex of
its bridge, thus the bridge connects vertices (2r−m− 1, m− 1) and (2r−m, m). Denote

the set of bi-ballot paths of given height by { }m2r,2b.
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m

2r 2b

L1

Figure 3: An example of a fixed bi-ballot path of height m.

We will obtain a bijection between { }2r,2b and { }2r,2b (see lemma 3) and hence
from (12)

ẐS
2r(κ(ω)) =

∞∑
b=0

|{ }2r,2b|ωb (14)

We now partition the set of all bi-ballot paths with given r and b by height and since this
set has the same cardinality as the set of plain Dyck paths of length 2r + 2b it follows
that

|{ }2r,2b| =
r∑

m=1

|{ }m2r,2b| = |{ }2r+2b| = Cr+b (15)

and the theorem is proved once the bijection is shown.

Remark 1. A bi-ballot path of height m is the concatenation of a ballot path of length
2r −m − 1 and height m − 1 with its bridge (which is always up) and a reversed ballot
path of length 2b + m and height m so

|{ }m2r,2b| = B2r−m−1,m−1B2b+m,m (16)

and using (15)

r∑
m=1

B2r−m−1,m−1B2b+m,m = Cr+b (17)

or

r∑
m=1

m

r

(
2r −m− 1

r − 1

)
m + 1

b + m + 1

(
2b + m

b

)
=

1

r + b + 1

(
2r + 2b

r + b

)
(18)

which is the analogue of the Chu-Vandemonde summation formula for Dyck paths. Similar
results may be found in Gould [8].

In section 3 equation (10) is extended to the case of Hankel n−path configurations.
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Definition 5 (Hankel n–path). A Hankel n–path is a configuration of n non-intersecting
paths (ie. no vertices in common between any pair of paths) on Ξ indexed by α = 1, . . . , n
in which path α begins at vertex (−2(α− 1), 0) and ends at vertex (2(r + α− 1), 0). The
shortest of these paths has length 2r. The set of such configurations having c contacts will
be denoted by H(n)

2r (c) and the watermelon contact polynomial is defined as

ẐH
2r(n; κ) =

2n+r−1∑
c=2n−1

|H(n)
2r (c)|κc. (19)

We use this name since the total number of such configurations is enumerated by a Hankel
determinant [10] (see for example equation (32) below). The individual paths of a Hankel
n–path are clearly Dyck paths. An example of a Hankel 3−path is shown in figure 4a.

b)a)

Figure 4: a) An example of a Hankel 3–path. b) An example of three path watermelon
configuration.

We now consider the analogous operation used in formulating (10), ie. replacing κ by
κ(ω), in the case of Hankel paths and question if this gives anything interesting. Since
ẐH

2r(n; κ) is a contact polynomial, all the coefficients of κ are necessarily positive integers.
Furthermore, the coefficients of ω in κ(ω) are likewise positive and hence the substitution
κ → κ(ω) will obviously produce a series in ω whose coefficients are positive. We now
ask, “What do these coefficients enumerate”? A direct application of bi-coloured path
interpretation does not lead to anything interesting, since, if the steps of the Hankel path
are coloured red, and the Dyck paths that are inserted in place of the contacts of the
Hankel paths are coloured blue, the resulting path configurations will, in most cases, lead
to a set of intersecting (bi-coloured) paths. Is there a different interpretation in which the
coefficients enumerate non-intersecting configurations of some type of path? The answer
turns out to be “Yes”. The non-intersecting configurations we will obtain are a modified
class of Hankel paths where the uppermost path ends a distance 2b further along the
t-axis – see figure 5. We will call such path configurations “Ceratic” Hankel paths 1.

Ĥ
(n)
2r (ω) is defined by replacing κ by κ(ω) in ẐH

2r(n; κ) and expanding in powers of ω

1The paths are called thus because of the similarity to the Abyssal Anglerfish, Ceratias hollbolli.
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2b

Figure 5: The combinatorial interpretation of the coefficients of the ω expansion – the
uppermost path terminates a distance 2b further along the axis. We call these paths
“Ceratic” Hankel paths with parameter b.

defines ĥ
(n)
r (b) as the coefficient of ωb.

Ĥ
(n)
2r (ω) ≡ ẐH

2r(n, κ(ω)) =
∞∑

b=0

ĥ(n)
r (b)ωb (20)

The main result of this paper is theorem 3 which shows that ĥ
(n)
r (b) can be written as a

determinant of Catalan numbers; see (43). The theorem is proved by applying a recur-
rence relation for the single path function, ĤS

2r(ω), to the elements of the Gessel-Viennot
determinant and also independently by a variation of the Gessel-Viennot method. The
interpretation of ω as the number of Ceratic Hankel paths follows from the determinant
using the Gessel-Viennot theorem (theorem 2). Furthermore, theorem 4, the determinant

may be evaluated to express ĥ
(n)
r (b) in the product form

ĥ(n)
r (b) =

(
n + b− 1

b

)
(2r + 2n− 1)2b

(r + n)b(r + 2n)b

n∏
i=1

(2r + 2i− 2)!(2i− 1)!

(r + i− 1)!(r + i + n− 1)!
(21)

where (a)k denotes the rising factorial a(a + 1) . . . (a + k− 1). We also show that Ĥ
(n)
2r (ω)

satisfies the recurrence relations (50), (52) and (56).
In polymer physics applications [9] the n path configurations usually considered are

known as “Watermelons”.

Definition 6 (Watermelon). A watermelon 2 with zero deviation and length 2r is a
configuration of n non-intersecting paths on Ξ indexed by α = 1, . . . n in which path α
begins at vertex (0, 2(α−1)) and ends at vertex (2r, 2(α−1)). The set of such configurations

for which the path for α = 1 has c contacts will be denoted by W(n)
2r (c) and the watermelon

contact polynomial is defined as

ẐW
2r (n; κ) =

r+1∑
c=1

|W(n)
2r (c)|κc. (22)

2This name was used by Fisher[9] presumably because of the similarity to the stripes on a watermelon.
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Note: |W(n)
2r (1)| = δr,0

An example of a watermelon configuration is shown in figure 4b. There is an obvious
bijection between watermelons and Hankel paths. Each watermelon corresponds to a
distinct Hankel n–path by connecting its initial and final vertices to the t− axis by the
shortest possible non-intersecting paths (see figure 4). The contact polynomial ẐH

2r(n; κ)
for Hankel n–paths is related to that for watermelons by

ẐH
2r(n; κ) = κ2(n−1)ẐW

2r (n; κ) (23)

since for Hankel configurations all n paths have both ends in contact with the surface.
Both polynomials reduce to the contact polynomial for a single Dyck path in the case
n = 1.

The following recurrence relations for Ẑ
(n)
2r (κ) ≡ ẐW

2r (n; κ) may be shown to be equiv-
alent to (50), (52) and (56) for Hankel n−paths by using (23), (20) and ω = (κ− 1)/κ2,
which follows from (4).

(κ− 1)Ẑ
(n−1)
2r−2 (1)Ẑ

(n)
2r (κ) = κ2Ẑ

(n−1)
2r (1)Ẑ

(n)
2r−2(κ)− Ẑ

(n)
2r−2(1)Ẑ

(n−1)
2r (κ) (24)

κ2Ẑ
(n−2)
2r+4 (1)Ẑ

(n)
2r (κ) = Ẑ

(n−1)
2r (1)Ẑ

(n−1)
2r+4 (κ)− Ẑ

(n−1)
2r+2 (1)Ẑ

(n−1)
2r+2 (κ) (25)

and, of particular significance,

(r + 2n− 2)(r + n− 1)2
n−1(κ− 1) Ẑ

(n)
2r (κ)

− 4n−1(r − 1

2
)n−1(r + n− 1)n−1

{
2(2r − 3)(κ− 1) + (r + 2n− 2)κ2

}
Ẑ

(n)
2r−2(κ)

+ 16n−12(2r − 3)(r − 1

2
)2
n−1κ

2 Ẑ
(n)
2r−4(κ) = 0 (26)

The last of these equations was deduced from the first two in [5] and has the merit of
being an ordinary difference equation, relating the polynomials for different lengths but
a fixed number of paths. It was used in [5] to discuss the scaling properties of the free
energy of a polymer network.

2 Enumeration of Bi-coloured Dyck paths.

2.1 Catalan and Dyck factors.

In order to obtain the required bijection between bi-coloured Dyck paths and bi-ballot
paths we need the following factorizations. The bijection is then shown by rearranging
the factors.

Definition 7 (Catalan Factor). The set of Catalan factors, or C-factors, of length 2r,

{ }2r, is the subset of Dyck paths defined by

{ }2r = {π|π ∈ { }c2r, with c = 2}
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If π ∈ { }2r we will refer to the leftmost step as the left leg and the rightmost step as
the right leg.

Clearly C-factors are just Dyck paths which only have the first and last vertices in common
with the surface. These paths are also sometimes called raised or elevated Dyck paths.

terrace rise

terrace

Figure 6: An example showing a height g = 3 terrace and the corresponding terrace edge
and vertex

Definition 8 (Terraces). For g ≥ 0 the height g terrace is the horizontal line y = g
on Ξ. The height g terrace vertex, v, of a ballot path of height h > g is its rightmost
vertex in common with the height g terrace. The height g terrace rise of a ballot path is
its edge having left vertex v. (See figure 6).

Note, since g > h, the terrace vertex and rise always exist.

D-factor

a) b)

Figure 7: An example (a) of the use of seven terraces (g = 0, ..., 6) to uniquely factorise
the height seven ballot path into eight D-factors (b) – one of which is a zero step path.

Definition 9 (Dyck factor). A Dyck factor or D − factor of height α is Dyck path of
maximum length, which begins and ends on terrace α and never passes below it.

Notice that removing the legs from a C-factor gives a D-factor of height one.

Lemma 1. A bi-coloured Dyck path Dr,b with r ≥ 1 can be uniquely factored in the form

Dr,b = β0(ρ1β1ρ2β2 . . . βm−1ρmβm) for some m ∈ {1, 2, . . . , r}, r ≥ 1 (27)

where βα ∈ { }, ρα ∈ { }, |β0|+ . . .+ |βm| = 2b and |ρ1|+ . . .+ |ρm| = 2r. All the
edges in the βα paths are coloured blue and those in ρα red. If βα is the zero step path,
then the single vertex is coloured blue. Denote the set of bi-coloured Dyck paths having 2r
red steps, 2b blue steps and m red Catalan factors by { }m2r,2b
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Proof. A Dyck path is factored by its internal contacts into Catalan factors. By definition
of a bi-coloured Dyck path each factor must be of a single colour. The βα of positive length
are obtained by concatenating adjacent blue C-factors. A contact separating adjacent red
C-factors is coloured blue to give a βα of zero length.

The bicoloured paths are partitioned by the number of red Catalan factors so

|{ }2r,2b| =
r∑

m=1

|{ }m2r,2b|. (28)

Lemma 2. Any ballot path of length 2r + y and height y > 0 can be uniquely written in
the form β0u1β1u2β2 . . . uyβy where βα ∈ { }, |β0|+ . . .+ |βy| = 2r and uα is the height
α− 1 terrace rise .

Proof. The terrace vertices of the ballot path of heights α = 0, 1, . . . y − 1 partition the
path into y + 1 subpaths. The first of these is the Dyck path β0 and the others are of the
form uαβα, α = 1, . . . y, where uα is a terrace rise and βα is a D-factor of height α.

2.2 The number of bi-coloured Dyck paths.

Lemma 3. There exists a bijection, Γ : { }m2r,2b

biject←→ { }m2r,2b, between the set of
bi-coloured Dyck paths of length 2r having m red Catalan factors and bi-ballot paths with
bi-ballot line through (2r, 0), having bridge height m, and hence

|{ }m2r,2b| = |{ }m2r,2b| (29)

a)
b)

c)
d)

m red C-factors

2b2r

m

Figure 8: Several stages of bi-coloured path bijection.
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Proof. We first define the mapping Γ, and then show that it is a bijection. Let π = Dr,b ∈
{ }m2r,2b be written in the form (27) (see figure 8a). First, shift all the blue edges (or
contacts) to the right to form the path (see figure 8b)

π → π′ = ρ1ρ2 . . . ρmβ0β1 . . . βm, (Shift blue edges)

then take the right leg of each ρα and “intercolate” it between the corresponding pair of
blue paths (see figure 8c) i.e. if ρα = uαρ̂αūα then

π′ → π′′ = u1ρ̂1u2ρ̂2 . . . umρ̂mβ0ū1β1ū2β2 . . . ūmβm (Intercolate red right legs)

Finally, “left-shuffle” the red path by deleting u1 and inserting it between ρ̂mβ0 of π′′ (see
figure 8d), to give

π′′ → π′′′ = ρ̂1u2ρ̂2 . . . umρ̂mu1β0ū1β1ū2β2 . . . ūmβm (Left-shuffle red path)

Removing the colours from π′′′ gives a fixed bi-ballot path in { }m2r,2b where u1 is
the bridge. (The bridge partitions the Dyck path into two subpaths ρ̂1u2ρ̂2u3 . . . umρ̂m

and β0ū1β1ū2β2 . . . ūmβm which, by Lemma 2, are a ballot paths (the latter written in
reverse order) with deviations m− 1 and m respectively.)

The mapping Γ is inverted as follows. Starting with π′′′ ∈ { }m2r,2b, colour the path
to the right of ], blue, that to the left, red. Draw all terraces of heights 0, 1, . . . , m − 1.
These terraces define the D-factors of the red and blue paths. The path can now be
uniquely written in the form

π̄′′′ = ρ̂1u2ρ̂2 . . . umρ̂mu1β0ū1β1ū2β2 . . . ūmβm, (D-factorised)

where the βα and the ρ̂α are the blue and red D-factors, respectively. Now, shift the
bridge edge to the extreme left end ie. “right-shuffle”, and set its colour to red, to give

π̄′′′ → π̄′′ = u1ρ̂1u2ρ̂2 . . . umρ̂mβ0ū1β1ū2β2 . . . ūmβm. (right-shuffled reds)

Finally, shift the blue legs, ūα to the left and change their colour to red, ie. “left intercolate
blue rises” to give

π̄′′ → π̄ = β0(ρ1β1ρ2β2 . . . βmρmβm), (left intercolated blue rises)

where ρα = uαρ̂αūα. Clearly π̄ ∈ { }m2r,2b and π̄ = π, and hence Γ−1 ◦ Γ = 1 thus Γ is
a bijection.

A particular example of the bijection is shown in figure 9.

Proof of theorem 1. The theorem follows from equations (28), (15) and Lemma 3.

= (tiα, yi
α) = (tfα, yf

α)
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a)

e)

2r

b)

c)d)

f)

g)h)

red and blue D-factors

Figure 9: (a) – (d) The two-coloured path bijection applied to a particular example. (e)
– (h) The bijection applied to the final path d), showing that the original path, a) is re-
obtained ie. that Γ2 = 1. Note, in g) the path corresponding to π̄ is illustrated without the
u and ū steps (which are then inserted in h)).

3 The ω−expansion for Hankel n–paths.

3.1 Expressing the Hankel n–path contact polynomial as a de-
terminant.

In the case of two or more paths we take as our starting point the following theorem

Theorem 2. (Gessel and Viennot [11, 12]) For n > 1 let Z(vi,vf ) be a weighted sum
over configurations of n non-intersecting paths on a directed graph, in which path α starts
at vertex vi

α and ends at vertex vf
α. Suppose that the weight attached to a given path is

a product of weights associated with vertices and arcs visited by the paths. If there is at
least one non-intersecting configuration and all path configurations connecting the initial
vertices to any permutation of the terminal vertices (other than the identity) have at least
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one intersection then

Z(vi,vf) =

∣∣∣∣∣∣∣∣∣∣∣∣

Z(vi
1, v

f
1 ) Z(vi

1, v
f
2 ) . . . Z(vi

1, v
f
n)

Z(vi
2, v

f
1 ) Z(vi

2, v
f
2 ) . . . Z(vi

2, v
f
n)

. . . .

. . . .

. . . .

Z(vi
n, vf

1 ) Z(vi
n, vf

2 ) . . . Z(vi
n, vf

n)

∣∣∣∣∣∣∣∣∣∣∣∣
(30)

where Z(vi
α, vf

β) is the weighted sum over configurations of a single path starting at vertex

vi
α and ending at vertex vf

β .

The theorem may be used to find the Hankel n−path contact polynomial by taking
the point set of the half plane square lattice Ξ to be the vertex set of the directed graph
and the arc set to be the vertex pairs (u, v) such that v is either an up step or a down
step away from vertex u. Weight κ is assigned to the vertices with y = 0 and weight
one to all other vertices and all of the arcs. In this way each Hankel path configuration
gets the correct weight κc as in the defining equations (22) and (23). The elements of the
determinant in this case are the single path contact polynomials.

Corollary 1.

ẐH
2r(n; κ) =

∣∣∣∣∣∣∣∣∣∣∣

ẐS
2r(κ) ẐS

2r+2(κ) . . . ẐS
2r+2(n−1)(κ)

ẐS
2r+2(κ) ẐS

2r+4(κ) . . . ẐS
2r+2n(κ)

ẐS
2r+4(κ) ẐS

2r+6(κ) . . . ẐS
2r+2(n+1)(κ)

. . . . . . . . . . . .

ẐS
2r+2(n−1)(κ) ẐS

2r+2n(κ) . . . ẐS
2r+4(n−1)(κ)

∣∣∣∣∣∣∣∣∣∣∣
(31)

Replacing κ by κ(ω) in corollary 1 and using the definitions (6) and (20) gives

Ĥ
(n)
2r (ω) = det

(
ĤS

2(r+α+β−2)(ω)
)
1≤α,β≤n

. (32)

Note, determinant (32) is a Hankel determinant as the matrix elements appearing in the
determinant only depend on the sum of the row and column indexes, α and β.

Theorem 3. For any k such that 0 ≤ k ≤ n− 1

Ĥ
(n)
2r (ω) = det(M(k)) (33)

where M(k) is the matrix (Mαβ(k))1≤α,β≤n with

Mαβ(k) =




ĤS
2(r+α+β−2)(0) = Cr+α+β−2 for β ≤ k

ĤS
2(r+α+β−2)(ω) for β > k

(34)
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In particular when k = n− 1

Ĥ
(n)
2r (ω) =

∣∣∣∣∣∣∣∣∣∣∣∣

Cr Cr+1 . . . Cr+n−2 ĤS
2(r+n−1)(ω)

Cr+1 Cr+2 . . . Cr+n−1 ĤS
2(r+n)(ω)

Cr+2 Cr+3 . . . Cr+n ĤS
2(r+n+1)(ω)

...
... . . .

...
...

Cr+n−1 Cr+n . . . Cr+2n−3 ĤS
2(r+2n−2)(ω)

∣∣∣∣∣∣∣∣∣∣∣∣
(35)

Algebraic proof. We show that while k < n − 1, increasing k leaves the determinant
unchanged and the result follows by induction since it is true for k = 0.

From (10) we obtain the recurrence relation

ĤS
2r(ω) = Cr + ωĤS

2r+2(ω) (36)

and applying this to column k + 1 of determinant (32)

ĤS
2(r+α+k−1)(ω) = Cr+α+k−1 + ωĤS

2(r+α+k+1)(ω) (37)

Hence det
(
M(k)

)
is the sum of two determinants the first of which is det

(
M(k + 1)

)
and

the second evaluates to zero since it has two equal columns (ĤS
2(r+α+k+1)(ω) is column

k + 2).

Combinatorial proof. Expanding out the determinant (32)

Ĥ
(n)
2r (ω) =

∑
σ∈Pn

εσ

n∏
β=1

ĤS
2(r+σβ+β−2)(ω) (38)

where Pn is the set of permutations of {1, 2, . . . , n}, εσ is the sign of σ and σβ is the image
of β under the permutation σ. Now from (14)

ĤS
2(r+σβ+β−2)(ω) =

∞∑
b=0

|{ }2(r+σβ+β−2),2b|ωb. (39)

where the bi-ballot line Lβ for the set of bi-ballot paths { }2(r+σβ+β−2),2b passes through
(2(r + β − 1), 0). Substituting in (38) gives

[ωb] Ĥ
(n)
2r (ω) =

∑
σ∈Pn

εσ

∑
bn∈Kb

n

n∏
β=1

|{ }2(r+σβ+β−2),2bβ
| (40)

where K
b
n is the set of compositions of b into exactly n parts i.e the set of all n-tuples,

bn = (b1, b2, . . . , bn), bβ ≥ 0, such that
∑n

β=1 bβ = b. Given k ≤ n − 1, we can partition

K
b
n as K

b
n = K

b
n,k ∪ K̄

b
n,k where K

b
n,k is the set of compositions in which bβ > 0 for at least

one β ∈ {1, 2, . . . , k} and K̄
b
n,k = K

b
n − K

b
n,k. Restricting the sum over compositions in

(40) to K̄
b
n,k is equivalent to setting ω = 0 in the first k columns of the determinant, (32)
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which is then the determinant of Mαβ(k). The theorem would therefore be proven if we
could show that the sum over the set K

b
n,k is zero. This will be achieved by constructing a

bijection which matches configurations corresponding to permutations of opposite parity
resulting in pairwise cancellation of all terms associated with K

b
n,k.

The sum restricted to K
b
n,k can be written

∑
σ∈Pn

εσ

∑
bn∈K

b
n,k

n∏
β=1

|{ }2(r+σβ+β−2),2bβ
| = |Ω+

k | − |Ω−
k | (41)

where, with P±
n the set of even/odd permutations of {1, 2, . . . , n} and the n–path T =

{T1, T2, . . . , Tn},

Ω±
k = {(σ,T)|σ ∈ P±

n , Tβ ∈ { }2(r+σβ+β−2),2bβ
,bn ∈ K

b
n,k}. (42)

A typical member of Ω−
2 is shown in figure 10 . We now define the bijection Φω : Ω+

k ↔ Ω−
k .

1234

T 1 T 2T 3 T 4

b
1 =0

b
2 =3

b
3 =0

b
4 =2

 +βσβ 1 2 3 4 β

L1 L2 L3 L4

b

Figure 10: An example of the path configurations arising in the set Ω−
2 , showing the path

and terminal labelling for a given permutation, σ = 1432 and r = 6.

Let Ωk = Ω+
k ∪Ω−

k . If Ωk = φ then the sum (41) is zero and it is sufficient to consider the
case Ωk 6= φ. In this case there exists bβ , 1 ≤ β ≤ k such that bβ > 0 which implies the
existence of βmin = min{β|bβ > 0} ≤ k < n. Let ]βmin

be the bridge of Tβmin
and since

βmin < n, Tβmin+1 exists with bridge ]βmin+1.
The image pair (σ′,T′) = Φω((σ,T)) is defined by

• T ′
β = Tβ , for β 6= βmin, βmin + 1,

• T ′
βmin

is the path Tβmin+1 but with a bridge ]βmin+1 moved to the rightmost up step
(which always exists since ]βmin+1 is to the right of ]βmin

) of Tβmin+1 to the left of
]βmin+1 – e.g. see figure 11,
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• T ′
βmin+1 is the path Tβmin

but with a bridge ]βmin
moved to the leftmost up step (which

always exists as bβmin
> 0 ) of Tβmin

to the right of ]βmin
,

• σ′
β = σβ , β 6= βmin, βmin + 1, σ′

βmin
= σβmin+1 and σ′

βmin+1 = σβmin
Note, this is a

transposition of σ hence εσ′ = −εσ.

bijection

βmin
T

βmin + 1T

«β«
min

T

βmin + 1T

L1 L2 L3 L4

L1 L2 L3 L4

««

Figure 11: An example of the bijection Φω.

Moving the bridge on Tβmin
to the right decreases bβmin

by one and moving the bridge on
Tβmin+1 to the left increases bβmin+1 by one and hence b′βmin

= bβmin+1 + 1 and b′βmin+1 =
bβmin

− 1. The remaining b’s are unchanged, thus b′β = bβ , β 6= βmin, βmin + 1. Hence the

value of b is unchanged. Since T ′
βmin

terminates at vf
βmin+1, T ′

βmin+1 terminates at vf
βmin

and

b′βmin
> 0 we have (σ′,T′) ∈ Ωk. Furthermore, since εσ′ = −εσ , if (σ,T) ∈ Ω±

k , then
(σ′,T′) ∈ Ω∓

k .
Is Φ2

ω = 1? Let (σ′′,T′′) = Φω((σ′,T′)). Since b′β = bβ = 0 for β < βmin and
b′βmin

= bβmin+1 + 1 > 0 we have β ′
min = βmin. Moving the bridge ]β′

min
forward places

it on the edge previously labeled ]βmin+1 and moving ]β′
min+1 back places it on the edge

previously labeled ]βmin
and hence T ′′

βmin+1 = Tβmin+1 and T ′′
βmin

= Tβmin
. Furthermore, since

β ′
min = βmin we have σ′′ = σ. Thus (σ′′,T′′) = (σ,T) and hence Φω is a bijection. Hence
|Ω+

k | = |Ω−
k | and the sum in (41) is zero.
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3.2 Product form for the number of Ceratic Hankel n-path con-
tact polynomials.

Substitution of (10) in (35) enables the coefficients in the ω expansion of the Hankel n–
path contact polynomial (20) to be expressed as a determinant involving only Catalan
numbers.

ĥ(n)
r (b) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cr Cr+1 . . . Cr+n−2 Cr+n−1+b

Cr+1 Cr+2 . . . Cr+n−1 Cr+n+b

Cr+2 Cr+3 . . . Cr+n Cr+n+1+b

. . . . . . . . . . . . . . .
Cr+n−1 Cr+n . . . Cr+2n−3 Cr+2n−2+b

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (43)

Since Cr is the number of Dyck paths of length 2r, Theorem 2 shows that ĥ
(n)
r (b) can be

interpreted as the number of unweighted Hankel n–paths in which the terminal vertex of
the nth path is shifted through a distance 2b to

(
2(r + n − 1 + b), 0

)
. These paths are

what we have called Ceratic Hankel paths.
For n = 1

ĥ(1)
r (b) = Cr+b (44)

in agreement with (10), and evaluation of the determinant for n = 2 gives

ĥ(2)
r (b) =

6(b + 1)

(r + 2)(r + b + 3)
CrCr+b+1. (45)

For n ≥ 3, ĥ
(n)
r (b) can be obtained using the following recurrence relation which follows

by applying Dodgson’s formula [13] to the determinant.

ĥ(n)
r (b) = [ĥ(n−1)

r (0)ĥ
(n−1)
r+2 (b)− ĥ

(n−1)
r+1 (0)ĥ

(n−1)
r+1 (b)]/ĥ

(n−2)
r+2 (0). (46)

This relation can be used to verify the following explicit formula.

Theorem 4. The coefficients in the ω expansion (20) of the Hankel n–path contact poly-
nomial can be expressed in the product form

ĥ(n)
r (b) = ĥ(n)

r (0)f (n)
r (b) (47)

where

ĥ(n)
r (0) =

n∏
i=1

(2r + 2i− 2)!(2i− 1)!

(r + i− 1)!(r + i + n− 1)!
(48)

and

f (n)
r (b) =

(
n + b− 1

b

)
(2r + 2n− 1)2b

(r + n)b(r + 2n)b
(49)

Proof. The formula agrees with (44) and (45) for n = 1 and 2 and lengthy manipulation
shows that it also satisfies the recurrence relation (46).
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3.3 Recurrence relations for Ceratic Hankel paths

From (46) using the definition (20), or applying Dodgson’s formula to (35) gives

Ĥ
(n)
2r (ω) = [Ĥ

(n−1)
2r (0)Ĥ

(n−1)
2r+4 (ω)− Ĥ

(n−1)
2r+2 (0)Ĥ

(n−1)
2r+2 (ω)]/Ĥ

(n−2)
2r+4 (0) (50)

where Ĥ
(n)
r (0) = ĥ

(n)
r (0) is given by (48).

The following recurrence relation, which is first order in both n and r follows from
Theorem 4 after lengthy manipulation.

ĥ
(n−1)
r−1 (0)ĥ(n)

r (b− 1) = ĥ(n−1)
r (0)ĥ

(n)
r−1(b)− ĥ

(n)
r−1(0)ĥ(n−1)

r (b). (51)

which implies

ωĤ
(n−1)
2r−2 (0)Ĥ

(n)
2r (ω) = Ĥ

(n−1)
2r (0)Ĥ

(n)
2r−2(ω)− Ĥ

(n)
2r−2(0)Ĥ

(n−1)
2r (ω). (52)

In [5] it was shown, in the context of ẐW
2r (n; κ), that combining this relation with (50)

gives the second order recurrence relation for fixed n

ωĤ
(n)
2r+4(ω)− (ωρ(n)

r + ρ
(n−1)
r+1 )Ĥ

(n)
2r+2(ω) + ρ

(n)
r−1ρ

(n−1)
r+1 (1 +

µ
(n)
r−1

µ
(n−1)
r

)Ĥ
(n)
2r (ω) = 0 (53)

where

ρ(n)
r =

ĥ
(n)
r+1(0)

ĥ
(n)
r (0)

=
(2r + 1)2n

(r + 1)2n
(54)

and

µ(n)
r =

ĥ
(n+1)
r+1 (0)

ĥ
(n)
r+1(0)

=
(2n + 1)!(2r)!

r!(2n + r + 1)!
=

(r + 1)r

(2n + 2)r

. (55)

This leads to the explicit form of the recurrence relation

ω(r + 2n− 2)(r + n− 1)2
n−1Ĥ

(n)
2r (ω)

−4n−1(r − 1

2
)n−1(r + n− 1)n−1(2(2r − 3)ω + r + 2n− 2)Ĥ

(n)
2r−2(ω)

+16n−12(2r − 3)(r − 1

2
)2
n−1Ĥ

(n)
2r−4(ω) = 0 (56)
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