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Abstract

We establish three identities involving Dyck paths and alternating Motzkin
paths, whose proofs are based on variants of the same bijection. We interpret
these identities in terms of closed random walks on the halfline. We explain how
these identities arise from combinatorial interpretations of certain properties of the
β-Hermite and β-Laguerre ensembles of random matrix theory. We conclude by
presenting two other identities obtained in the same way, for which finding combi-
natorial proofs is an open problem.

1 Overview

In this paper we present five identities involving Dyck paths and alternating Motzkin
paths. These identities appear as consequences of algebraic properties of certain matrix
models in random matrix theory, as briefly described in Section 2. Three of them describe
statistics on Dyck and alternating Motzkin paths: the average norm of the rise-by-altitude
and vertex-by-altitude vectors for Dyck paths, and the weighted average square norms
of the rise-by-altitude and level-by-altitude vectors for alternating Motzkin paths. We
describe these quantities in detail in Section 2, and provide combinatorial proofs for the
identities in Section 3.

In terms of closed random walks on the halfline, these identities give exact formulas for
the total square-average time spent at a node, as well as the total square-average number
of advances to a higher labeled node.

For the other two identities we have not been able to find simple interpretations or
combinatorial proofs that would complement the algebraic ones; this is a challenge that
we propose to the reader in Section 4.
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2 Definitions, main results, and interpretations

The Catalan numbers Ck count dozens of combinatorial structures, from binary trees and
triangulations of polygons to Dyck paths [5, Exercise 6.19, pages 219-229]. Similar, but
less known, are the Narayana numbers Nk,r [5, Exercise 6.36, page 237]; since they sum up
to Ck, they partition combinatorial structures enumerated by Catalan numbers according
to a certain statistic. In particular, they count alternating Motzkin paths (see Section 3).

The relationship between Catalan numbers and random matrix theory appeared first
in Wigner’s 1955 paper [6]. In computing asymptotics of traces of powers of certain
random (symmetric, hermitian) matrices, Wigner obtained (not explicitly by name) the
Catalan numbers, which he recognized as the moments of the semi-circle law. Later,
Marčenko and Pastur, in their 1967 paper [4] found a similar connection between Narayana
numbers and Wishart (or Laguerre) matrix models (more explicitly, they computed the
generating function for the Narayana polynomial). Both connections have to do with
computing average traces of powers of random matrices, i.e. the moments of the eigenvalue
distribution.

Suppose A is an n × n symmetric random matrix, scaled so that as n → ∞ the
probability that its eigenvalues lie outside of a compact set goes to 0. Denoting by

mk = lim
n→∞

E

[
1

n
tr(Ak)

]
,

one can ask the question of computing mk for certain types of random symmetric matrix
models. In some cases, mk might not even exist, but in the cases of the Gaussian and
Wishart matrix models, it does. For the Gaussian model,

mk =

{
0, if k is odd,
Ck/2, if k is even.

,

while for the Wishart model W = GGT , where G is a rectangular m × n matrix of i.i.d.
Gaussians,

mk = Nk(γ) ,

where Nk(γ) is the Narayana polynomial (defined below), provided that m/n → γ.
In both cases, one way of computing the zeroth-order (i.e. asymptotically relevant)

term in E
[

1
n
tr(Ak)

]
is by writing

tr(Ak) =

n∑
i=1

∑
1≤i1,...,ik−1≤n

aii1ai1i2 . . . aik−2ik−1
aik−1i , (1)

then identifying the asymptotically relevant terms, weighing their contributions, and ig-
noring the rest. For example, if k is even, in the case of the Gaussian models (which have
i.i.d. Gaussians on the off-diagonal, and i.i.d. Gaussians on the diagonal), the only terms
aii1 . . . aik−1i which are asymptotically relevant come from sequences i0 = i, i1, . . . , ik = i
such that each pair ij , ij+1 appears exactly once in this order, and exactly once reversed.
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The connection with the Catalan numbers becomes apparent, as the problem reduces thus
from counting closed random walks of length k on the complete graph (with loops) of size
n, to counting plane trees with k/2 vertices.

The above assumes full matrix models A; using the (equivalent) tridiagonal matrix
models T associated with a larger class of Gaussian and Wishart ensembles described in
[2], we can replace the problem of counting closed random walks on the complete graph
to counting closed random walks on a line.

Using the tridiagonal model simplifies (1) to

tr(T k) =
n∑

i=1

∑
1≤i1,...,ik−1≤n

tii1ti1i2 . . . tik−2ik−1
tik−1i , (2)

where tij ij+1
is non-zero iff |ij − ij+1| ∈ {0,±1}. These correspond to closed walks on the

line with loops.
For the Gaussian models, when k is even, the only asymptotically relevant terms

can be shown to be given by closed walks which use no loops, which are in one-to-one
correspondence with the Dyck paths of length k/2. For the Wishart models, these are
closed walks on the line with loops that go right only on even time-steps, and left only
on odd time-steps. In turn, these are in one-to-one correspondence with the alternating
Motzkin paths.

The connection between Dyck paths, alternating Motzkin paths, and random matrix
theory can be pushed further. In computing the variance of the traces of these powers
for the Hermite and Laguerre ensembles, it can be shown algebraically [3] that the zeroth
and first-order terms in n disappear. When one examines the expansion (2) applied to the
tridiagonal models for Hermite and Laguerre ensembles, this translates into Theorems 1,
2, and 3.

First, we recall the definitions of Catalan and Narayana numbers.

Definition 1. The kth Catalan number Ck is defined as

Ck =
1

k + 1

(
2k

k

)
.

Definition 2. The (k, r) Narayana number is defined as

Nk,r =
1

r + 1

(
k

r

)(
k − 1

r

)
.

The associated Narayana polynomial (or generating function) is defined as

Nk(γ) ≡
k−1∑
r=0

γrNk,r =

k−1∑
r=0

γr 1

r + 1

(
k

r

)(
k − 1

r

)
.

Note that Nk(1) = Ck.
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The Catalan numbers count many different combinatorial structures; in particular,
they count Dyck paths.

Definition 3. A Dyck path of length 2k is a lattice path consisting of “rise” steps or
“rises” (↗) and “fall” steps or “falls” (↘), which starts at (0, 0) and ends at (2k, 0), and
does not go below the x-axis (see Figure 1). We denote by Dk the set of Dyck paths of
length 2k.

Figure 1: A Dyck path of length 24.

The Narayana numbers Nk,r count alternating Motzkin paths of length 2k with r rises;
we recall the definition of Motzkin paths and define alternating Motzkin paths below.

Definition 4. A Motzkin path of length 2k is a path consisting of “rise” steps or “rises”
(↗), “fall” steps or “falls” (↘), and “level” steps (→), which starts at (0, 0), ends at
(2k, 0), and does not go below the x-axis.

Definition 5. An alternating Motzkin path of length 2k is a Motzkin path in which rises
are allowed only on even numbered steps, and falls are only allowed on odd numbered
steps. See Figure 2. We denote by AMk the set of alternating Motzkin paths of length
2k.

Remark 1. It follows from the definition that an alternating Motzkin path starts and
ends with a level step.

4
3
2
1
0

Figure 2: An alternating Motzkin path of length 24, with a total of 7 rises.

Next, we introduce three statistics on Dyck and alternating Motzkin paths.

Definition 6. Let p be a Dyck or alternating Motzkin path of length 2k. We define
the vectors ~R = ~R(p) = (R0, R1, . . . , Rk−1) and ~V = ~V (p) = (V0, V1, . . . , Vk) to be the
rise-by-altitude and vertex-by-altitude vectors, i.e. Ri is the number of rises from level i
to level i + 1 in p, and Vi is the number of vertices at level i in p.
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For example, for the Dyck path of Figure 1, for which k = 12,

~R = (2, 4, 2, 1, 2, 1, 0, 0, 0, 0, 0, 0) ,

~V = (3, 6, 6, 3, 3, 3, 1, 0, 0, 0, 0, 0, 0) .

Note that for a Dyck path of length 2k,
∑k−1

i=0 Ri = k, while
∑k

i=0 Vi = 2k + 1. For an

alternating Motzkin path of length 2k with r rises,
∑k−1

i=0 Ri = r, while
∑k

i=0 Vi = 2k + 1.

Definition 7. Let p be an alternating Motzkin path of length 2k. We define the vector
~L = ~L(p) = (L0, L1, . . . , Lk−1) be the even level-by-altitude vector, i.e. Li is the number
of level steps at altitude i in p which are on even steps.

Remark 2. In the closed walk on a line interpretation, a rise from altitude i to level i+1
corresponds to entering node i+1 from the left; a level step at altitude i corresponds to a
loop from node i, and the number of vertices at altitude i counts the number of time-steps
when the walk is at node i.

We are now able to state the three results, proved in Section 3.

Theorem 1. Let FDk
be the uniform distribution on the set of Dyck paths of length 2k.

Then

‖E[~R]‖2
2 ≡ 1

C2
k

∑
p1,p2∈Dk

k−1∑
i=0

Ri(p1)Ri(p2) =
C2k

C2
k

− 1 ,

where E denotes expectation with respect to FDk
.

Remark 3. In the closed random walk on the halfline interpretation, this identity gives
a closed form for the total square-average number of advances to a higher labeled node.

Example 1. Here is an example for k = 3 of computing the average rise-by-altitude
vector ~R and the average vertex-by-altitude vector ~V for Dyck paths of length 6.

~R = (3, 0, 0) ~R = (2, 1, 0) ~R = (2, 1, 0) ~R = (1, 2, 0) ~R = (1, 1, 1)
~V = (4, 3, 0, 0) ~V = (3, 3, 1, 0) ~V = (4, 3, 0, 0) ~V = (2, 3, 2, 0) ~V = (2, 2, 2, 1)

E[~R] =
1

5
(9, 5, 1) E[~V ] =

1

5
(14, 14, 6, 1)

Hence, for k = 3,

‖E[~R]‖2
2 =

81 + 25 + 1

25
=

107

25
=

C6

C2
3

− 1 .
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Theorem 2. Let FDk
be the uniform distribution on the set of Dyck paths of length 2k.

Then

‖E[~V ]‖2
2 ≡ 1

C2
k

∑
p1,p2∈Dk

k∑
i=0

Vi(p1)Vi(p2) =
C2k+1

C2
k

,

where E denotes expectation with respect to FDk
.

Remark 4. In the closed random walk on the halfline setup, this gives a closed form for
the total square-average time spent at a node.

We use once again Figure 1;

‖E[~V ]‖2
2 =

196 + 196 + 36 + 1

25
=

429

25
=

C7

C2
3

.

Finally, the third main result.

Theorem 3. Let γ > 0, and let FAMk
(γ) be the distribution on AMk which associates

to each alternating Motzkin path p a probability proportional to γr, where r is the number
of rises in p. Then

‖E[~R]‖2
2 + γ ‖E[~L]‖2

2 ≡ 1

Nk(γ)2

∑
p1,p2∈AMk

γr1+r2

(
k−1∑
i=0

Ri(p1)Ri(p2) + γ

k−1∑
i=0

Li(p1)Li(p2)

)

=
N2k(γ)

Nk(γ)2
− 1 ,

where r1 and r2 are the number of rises in p1 and p2, and E denotes expectation with
respect to FAMk

(γ).

Remark 5. In the closed random walk on the halfline setup, this gives a relationship
between the total square-average number of advances to a higher labeled node and the
total square-average number of loops at a node.

Remark 6. It is worth noting that if we let γ evolve from 0 to 1, the distribution
FAMk

(γ) changes considerably: at γ = 0, the only path produced with probability 1 is
the one path which has no rises, whereas at γ = 1, each path is produced with equal
probability (FAMk

(1) is the uniform distribution on alternating Motzkin paths). This
phenomenon is reminiscent of percolation processes.

Example 2. For k = 3, we compute the average rise-by-altitude vector ~R and the average
level-by-altitude vector ~L for alternating Motzkin paths of length 6 as follows.

~R = (0, 0, 0) ~R = (1, 0, 0) ~R = (1, 0, 0) ~R = (1, 0, 0) ~R = (2, 0, 0)
~L = (3, 0, 0) ~L = (1, 1, 0) ~L = (2, 0, 0) ~L = (2, 0, 0) ~L = (1, 0, 0)
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E[~R] =
1

1 + 3γ + γ2
(3γ + 2γ2, 0, 0) E[~L] =

1

1 + 3γ + γ2
(3 + 5γ + γ2, γ, 0)

This gives

‖E[~R]‖2
2 + γ ‖E[~L]‖2

2 =
((3γ + 2γ2)2 + γ ((3 + 5γ + γ2)2 + γ2)))

(1 + 3γ + γ2)2

=
9γ + 39γ2 + 44γ3 + 14γ4 + γ5

(3γ + 2γ2)2

=
N6(γ)

N3(γ)2
− 1 .

In addition to the three theorems proved in Section 3, we give below two more iden-
tities involving Catalan and Narayana numbers, for which we do not have combinatorial
proofs. These arise as the first-order terms in the asymptotic expansions of the moments
of the eigenvalue distribution of β-Hermite and β-Laguerre ensembles, and are proved
algebraically in [1]. We discuss these in Section 4.

Theorem 4. Using the notations defined above,

∑
p∈Dk

k−1∑
i=0

Ri

2
(2i + 3 − Ri) =

∑
q∈Dk

k−1∑
i=0

(
Vi + 1

2

)
.

Theorem 5. Using the notations defined above,

∑
p∈AMk

γr

(
k−1∑
i=0

(i + 1)Ri + γ

k−1∑
i=0

iLi

)
=

∑
p∈AMk

γr

(
k−1∑
i=0

(
Ri

2

)
+ γ

k−1∑
i=0

(
Li

2

))
.

3 The bijection and its variations

In this section we present one basic construction and three modifications; we use the first
two to prove Theorems 1 and 2, and the last two to prove Theorem 3.

3.1 Basic construction

We prove Theorem 1 by constructing a bijection.
Given an integer k, let p1 and p2 be two Dyck paths of length 2k. Let i be an integer

between 0 and k− 1, x1 be a rise in p1 from altitude i to altitude i+1, and x2 be a fall in
p2 from altitude i + 1 to altitude i. To the five-tuplet (p1, p2, i, x1, x2) we will associate a
Dyck path P of length 4k which has altitude 2i + 2 in the middle, between steps 2k and
2k + 1.

We construct P from p1 and p2 as described below; each move on p1 is followed by a
mirror-reversed move in p2, i.e. instead of going left we go right, instead of looking for
rises we look for falls and the reverse, instead of flipping up we flip down, etc.
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4
3
2
1
0

Figure 3: Choosing a rise x1 from altitude i = 2 in p1 (left) and a fall x2 from altitude 3
in p2 (right).

Step 1a. In p1 start at x1, and go left along the path as in Figure 3, the picture on the
left, then find the first rise from altitude i−1 to altitude i, then go left and mark the first
rise from i − 2 to i − 1, etc. Each of these i + 1 edges (x1 included) has a “closing” fall
on the right side of x1, which we find and mark as in the diagram on the left of Figure 4.

Step 1b. In p2, start at x2, and go right as in the right diagram of Figure 3. Perform the
same operations as in Step 1a, but mirror-reversed as in the right diagram of Figure 4.

4
3
2
1
0

Figure 4: Finding the “first rise” steps from 0 to 2 in p1 (left), and the “first fall” steps
from 2 to 0 in p2 (right); the curved arrows point them, and the horizontal double arrows
find their respective marked “closing” steps.

Step 2a. Flip all the closing marked falls in p1 to rises; each flip increases the final altitude
of the path by 2, so the end vertex is at altitude 2i + 2. Note that that the flipped edges
correspond, in the new path, to the rightmost rise from altitude i + 1, the rightmost rise
from altitude i + 2, etc. Hence, given a path of length 2k made of k + i + 1 rises and
k − i− 1 falls which does not go below the x-axis, there is a simple transformation which
flips the i + 1 rightmost rises from altitude i + 1, i + 2, etc, to falls to get a Dyck path.
Thus this process is reversible as demonstrated in Figure 5 (on the left).

Step 2b. Perform the mirror-reversed process on p2, flipping the marked rises to falls;
each flip increases the altitude of the initial vertex by 2, so that at the end, the initial
vertex is at altitude 2i + 2. The process is reversible as demonstrated in Figure 5 (on the
right).

Step 3. We concatenate the two paths obtained from p1 and p2 to obtain a Dyck path
of length 4k which has altitude 2i + 2 in the middle, between steps 2k and 2k + 1, as in
Figure 6.
The 3-step process above is reversible in a one-to-one and onto fashion. Thus to each

five-tuplet (p1, p2, i, x1, x2) we have associated bijectively a Dyck path P of length 4k and
altitude 2i + 2 in the middle.
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8
7
6
5
4
3
2
1
0

Figure 5: Flipping the rises in p1 and the falls in p2. The flipped edges correspond to the
rightmost rise from altitude i+1, the rightmost rise from altitude i+2, and so on, in the
new path; same for p2 after reversal.

Figure 6: Concatenating the two paths from Figure 5; the resulting path is a Dyck path
of double length and altitude 6 = 2 × 3 in the middle.

We can now prove Theorem 1 merely by counting the two sets described above.
Proof of Theorem 1. Any Dyck path of length 4k is at an even altitude in the middle.

We separate the Dyck paths which are at altitude 0 in the middle; since both the left
half and the right half of such a path are Dyck paths of length 2k, it follows that the
cardinality of the set

Sright = {P | P ∈ D4k and P has positive altitude in the middle}
is |Sright| = C2k − C2

k .
On the other hand, the cardinality of the set

Sleft = {(p1, p2, i, x1, x2) | p1 ∈ Dk, p2 ∈ Dk, i ∈ {0, . . . , k − 1},
x1 a rise at altitude i in p1,

x2 a fall from altitude i + 1 in p2}
is

Sleft =
∑

p1,p2∈Dk

k−1∑
i=0

Ri(p1)Ri(p2) ;
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dividing both Sleft and Sright by C2
k to compute expectations completes the proof.

3.2 A slight variation

In this section, we slightly modify the construction of Section 3.1 to make it suitable for
the proof of Theorem 2.

Given an integer k, let p1 and p2 be two Dyck paths of length 2k. Let i be an integer
between 0 and k−1, x1 be a vertex in p1 at altitude i, and x2 be a vertex in p2 at altitude
i. To the five-tuplet (p1, p2, i, x1, x2) we will associate a Dyck path P of length 4k + 2
which has altitude 2i + 1 in the middle. Note that all Dyck paths of length 4k + 2 are at
odd altitude in the middle, between steps 2k + 1 and 2k + 2.

Just as before, we construct P from p1 and p2 as described below; each move on p1 is
followed by a mirror-reversed move in p2, i.e. instead of going left we go right, instead of
looking for rises we look for falls, instead of flipping up we flip down, etc.

We rewrite the construction process below.
Step 1a. In p1 start at x1, and go left; if i > 0, find the first rise from altitude i − 1 to
altitude i, then go left and mark the first rise from i − 2 to i − 1, etc. Each of these i
edges has a “closing” fall on the right side of x1, which we find and mark. If i = 0, we
mark nothing in the path.

Step 1b. In p2, start at x2, and go right. Perform the same operations as in Step 1a, but
mirror-reversed.

Step 2a. Flip all the closing marked falls in p1 to rises; each flip increases the final altitude
of the path by 2. In addition, insert a rise to the right of x1; the total increase in the
altitude of the end vertex is 2i + 1.
Note that that the inserted edge corresponds in the new path to the rightmost rise

from altitude i, and the flipped edges correspond to the rightmost rises from altitude i+1,
i + 2, etc. Hence, given a path of length 2k + 1 made out of k + i + 1 rises and k − i falls,
which does not go below the x-axis, there is a simple transformation which deletes the
rightmost rise from altitude i and then flips the i rightmost rises from altitude i, i + 1,
etc, to falls to get a Dyck path.

Step 2b. Perform the mirror-reversed process on p2, flipping the marked rises to falls;
each flip increases the initial altitude by 2. Add a fall to the left of x2; the total increase
in the altitude of the initial vertex is 2i + 1.

Step 3. We concatenate the two paths obtained from p1 and p2 to obtain a Dyck path of
length 4k + 2 which has altitude 2i + 1 in the middle, between steps 2k + 1 and 2k + 2.
The 3-step process above is reversible in a one-to-one and onto fashion. Thus to each

five-tuplet (p1, p2, i, x1, x2) we have associated bijectively a Dyck path P of length 4k + 2
and altitude 2i + 1 in the middle.

Proof of Theorem 2. Once again, we count the sizes of the sets between which we have
constructed a bijection; the right set has cardinality C2k+1, since any Dyck path of length
4k + 2 has altitude 2i + 1 in the middle, for some i. So

Sright = C2k+1 .
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On the other hand, the cardinality of the set

Sleft = {(p1, p2, i, x1, x2) | p1 ∈ Dk, p2 ∈ Dk, i ∈ {0, . . . , k},
x1 a vertex at altitude i in p1,

x2 a vertex at altitude i in p2}
is

Sleft =
∑

p1,p2∈Dk

k∑
i=0

Vi(p1)Vi(p2) .

We then divide both Sleft and Sright by C2
k to compute expectations and complete the

proof.

3.3 A version for alternating Motzkin paths

The basic version of the construction and its slight modification presented in Sections
3.1 and 3.2 work for Dyck paths; in this section we adapt the construction to work
for alternating Motzkin paths. We present two more bijections which we use to prove
Theorem 3.

To each Motzkin path of length r we will from now on associate a weight γr.
First we need the following lemma.

Lemma 1. Let p be an alternating Motzkin path of length 2k, and i an integer between 0
and k − 1. The number of level steps taken in p at altitude i is even, and exactly half of
them are on even-numbered steps.

Proof. Let us examine a maximal sequence of level steps at altitude i; we use “maximal”
to express the fact that the steps preceding and succeeding the sequence of level steps (if
they exist) are rises or falls. For the benefit of the reader, we include Figure 7.

Assume i > 0, so that there are steps preceding and succeeding the sequence of level
steps.

If the sequence of level steps has even length, then half of them are on even-numbered
steps. Moreover, due to the alternating constraint, they have to either be preceded by a
rise and succeeded by a fall, or the reverse, as in the regions B, D of Figure 7.

If the sequence of steps has odd length, there are two possibilities: either both the
preceding and the succeeding steps are rises as in region A in Figure 7), or they are both
falls as in region C. It is enough to examine the first case (region A). We call the maximal
sequence of level steps a.

In the first case, the path climbs to a higher altitude, and since it ends at (2k, 0), it
will have to eventually go below altitude i; there is a closest place where the path descends
below altitude i. The only way in which the path can return to, and then leave, level i
is by a sequence fall, level, level, . . ., level, fall (see region C). This sequence contains
a maximal sequence of level steps (which we call c), which has odd length. Moreover,
because of the alternating property, the pair of maximal level-i sequences (a, c) will have
exactly half of its steps on odd-numbered steps.
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A B DC

Figure 7: The four types of maximal sequences of level steps found at some level i in an
alternating Motzkin path: even-length ones (B, D) and odd-length ones (A, C).

Note that the path cannot have two regions of type A without a region of type C
between them (nor the converse), since a region of type A implies that a descent to
altitude i − 1 has already taken place and the only way in which this can happen is by
passing through a region of type C. So the regions of types A and C alternate in the path,
with a region of type A being first and a region of type C being last.

Thus, we can pair all the odd-length maximal level sequences at altitude i (each region
of type A gets paired with the following region of type C), so that each pair has exactly
half of its steps on odd-numbered steps; this shows the claim for i > 0.

Assume now i = 0. If there are both preceding and succeeding steps, they can only
be a fall and a rise (in this order); in this case the sequence of level steps has even length.
Suppose that either the preceding step or the succeeding step is missing (i.e. we are at
one end of the path or at the other).

In the first case the succeeding step can only be a rise, so the path has odd length
and one more odd-numbered step than even-numbered steps. We thus know that any
alternating Motzkin path starts with an odd-length sequence of level steps. Similarly,
it ends with an odd-length sequence of level steps; this sequence has one more even-
numbered step. Hence the pair formed by the first and last maximal sequences of level
steps at level 0 has exactly as many odd-numbered steps as even-numbered steps.

This concludes the proof.

We can now present the new constructions.
Given three integers k > 0, k−1 ≥ r1, r2 ≥ 0, let p1 and p2 be two alternating Motzkin

paths of length 2k, with r1 and r2 rises respectively.
Let i be an integer between 0 and k − 1, x1 be a rise in p1 from altitude i to altitude

i + 1, and x2 be a fall in p2 from altitude i + 1 to altitude i. Also, let y1 be a level step in
p1 at altitude i which is on an even-numbered step, and y2 a level step in p2 at altitude i
which is on an odd-numbered step.

To the five-tuplet (p1, p2, i, x1, x2) we will associate an alternating Motzkin path P of
length 4k which has altitude 2i + 2 in the middle, and r1 + r2 rises.

To the five-tuplet (p1, p2, i, y1, y2) we will associate an alternating Motzkin path Q of
length 4k which has altitude 2i + 1 in the middle, and r1 + r2 + 1 rises.
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Just as before, we construct P and Q from p1 and p2 as described below; each move
on p1 is followed by a mirror-reversed move in p2.

Note that we no longer can flip rises to falls and vice-versa, since the alternating
property would not be respected.

We present the two constructions below.
Step 1a. In p1 start at x1, and go left; find the first rise from altitude i − 1 to altitude
i, then go left and mark the first rise from i − 2 to i − 1, etc. Each of these i + 1 edges
has a closing fall on the right side of x1, which we find and mark as in Figure 8. Each of
these marked edges has a closest level step at altitude i− 1 to the right of it; these are on
even-numbered steps. We find them and mark them, as in Figure 9.

Remark 7. The first descent from i to i − 1 after the descent from i + 1 to i must be
preceded by a level step, since if it were preceded by a rise, it could not be the first. This
is the closest level step at altitude i, and it is on an even-numbered step.

Step 1b. In p2, start at x2, and go right. Perform the same operations as in Step 1a, but
mirror-reversed.

0

1

2

3

4

Figure 8: Choosing the rise; finding the corresponding ascending sequence, the closing
one, and the closest level steps. The thick lines represent the ascending sequence, the
tripled lines – the closing one, and the hatched lines are the closest level steps.

0

1

2

3

4

Figure 9: The marked falls and their corresponding closest level steps to the right.

Step 2a. Switch each of the i + 1 marked falls with its corresponding closest level step to
the right, then flip all falls to rises. The new rises are on even-numbered steps, hence the
alternation is preserved. Each flip increases the final altitude of the path by 2, for a total
increase in the altitude of the final vertex of 2i + 2, as in Figure 9.
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Note that to reconstruct the original path, we choose the i + 1 rightmost rises from
i + 1, i + 2, etc, find the closest level step to the left of them, switch them and flip the
rises to falls to get an alternating Motzkin path.

Step 2b. Perform the mirror-reversed process on p2, switching the closest left level steps
with the marked rises, and then flipping the marked rises to falls; each flip increases the
altitude of the initial vertex by 2 for a total increase of 2i + 2.

0

1

2

3

4

Figure 10: Switching each closing fall with the corresponding level step, and then flipping
the falls to rises.

Step 3. We concatenate the two paths obtained from p1 and p2 to obtain an alternating
Motzkin path of length 4k which has altitude 2i + 2 in the middle.
As before, the 3-step process above is reversible in a one-to-one and onto fashion. Thus

to each five-tuplet (p1, p2, i, x1, x2) we have associated bijectively an alternating Motzkin
path P of length 4k and altitude 2i+2 in the middle. Moreover, we have not changed the
overall number of rises – we have added i+1 rises in p1, but we have flipped i+1 rises to
falls in p2, and hence the total number of rises in the resulting alternating Motzkin path
of length 4k is r1 + r2.

The last construction takes a five-tuplet (p1, p2, i, y1, y2), and produces an alternating
Motzkin path of length 4k which is at altitude 2i + 1 in the middle.

The only way in which the last construction differs from the previous one is that it
replaces y1 with a rise and y2 with a fall, thus increasing the total number of rises to
r1 + r2 + 1.

Proof of Theorem 3. We compute the weight of all the alternating Motzkin paths of
length 4k which are not at altitude 0 in the middle; the total weight is

Wleft = N2k(γ) − Nk(γ)2 .

On the other hand, each alternating Motzkin path which is not at altitude 0 in the
middle is associated to either a five-tuplet (p1, p2, i, x1, x2), if it is at positive even altitude
in the middle, or (p1, p2, i, y1, y2) if it is at odd altitude in the middle. Hence the total
weight can be counted by

Wright =
∑

p1,p2∈AMk

γr1+r2

(
k−1∑
i=0

Ri(p1)Ri(p2) + γ

k−1∑
i=0

Li(p1)Li(p2)

)
,

and dividing by Nk(γ)2 to compute expectations, one obtains the statement of Theorem
3.
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4 Open problems: two identities

In this section we present two identities involving Catalan and Narayana numbers which
are direct consequences of Theorem 1 in [3]. The proof is algebraic, via random matrix
theory.

Given the nature of the identities, we believe in the existence of a direct combinatorial
proof based on constructing a bijection similar to the ones we presented in Section 3. We
propose the problem of finding such a proof to the interested reader.

Open Problem 1. Given a positive integer k, let Dk be the set of all Dyck paths of
length 2k, and given a path p ∈ Dk, let ~R = (R0, . . . , Rk−1) be the rise-by altitude vector,

and ~V = (V0, . . . , Vk) be the vertex-by-altitude vector.
Find a combinatorial proof of the following identity (given in Theorem 4):

∑
p∈Dk

k−1∑
i=0

Ri

2
(2i + 3 − Ri) =

∑
p∈Dk−1

k−1∑
i=0

(
Vi + 1

2

)
.

For k = 3, we use Example 1 and the diagram below.

~V = (3, 2, 0) ~V = (2, 2, 1)

From Example 1, we deduce that for k = 3, the sum on the left is

Sleft =

(
3

2
(3 − 3)

)
+

(
2

2
(3 − 2) +

1

2
(5 − 1)

)
+

(
2

2
(3 − 2) +

1

2
(5 − 1)

)
+

+

(
1

2
(3 − 1) +

2

2
(5 − 2)

)
+

(
1

2
(3 − 1) +

1

2
(5 − 1) +

1

2
(7 − 1)

)
= 16 .

On the other hand, from the diagram, the sum on the right is

Sright =

( (
4

2

)
+

(
3

2

) )
+

( (
3

2

)
+

(
3

2

)
+

(
2

2

) )
= 16 ,

once again.
Open Problem 2. Given a positive integer k, let AMk be the set of all alternating

Motzkin paths of length 2k, and given a path p ∈ AMk, let ~R = (R0, . . . , Rk−1) be the

rise-by altitude vector, and ~L = (L0, . . . , Lk−1) be the vertex-by-altitude vector.
Find a combinatorial proof of the following identity (given in Theorem 5):

∑
p∈AMk

γr

(
k−1∑
i=0

(i + 1)Ri + γ
k−1∑
i=0

iLi

)
=

∑
p∈AMk−1

γr

(
k−1∑
i=0

(
Ri

2

)
+ γ

k−1∑
i=0

(
Li

2

))
.
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We use Example 2 to illustrate this identity.
The sum on the left is equal to

Sleft = γ0 (0 + 0γ) + γ1 (1 + γ) + γ1 (1 + 0γ) + γ1 (1 + 0γ) + γ2 (2 + 0γ) ,

= 3(γ + γ2) ,

while the sum on the right is equal to

Sright = γ0 (0 + 3γ) + γ1 (0 + 0γ) + γ1 (0 + γ) + γ1 (0 + γ) + γ2(1 + 0γ) ,

= 3(γ + γ2) ,

once again.

5 Acknowledgments

We would like to thank David Jackson, Richard Stanley, Joel Spencer, and especially
Alan Edelman for interesting conversations about these identities.

References

[1] Ioana Dumitriu. Eigenvalue Statistics for Beta-Ensembles. PhD thesis, Massachusetts
Institute of Technology, 2003.

[2] Ioana Dumitriu and Alan Edelman. Matrix models for beta-ensembles. J. Math.
Phys., 43:5830–5847, 2002.

[3] Ioana Dumitriu and Alan Edelman. Central Limit Theorems for all beta-Hermite and
beta-Laguerre ensembles. 2003. preprint.
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