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Abstract

The basic distinction between already known algorithmic characterizations of
matroids and antimatroids is in the fact that for antimatroids the ordering of ele-
ments is of great importance.

While antimatroids can also be characterized as set systems, the question whether
there is an algorithmic description of antimatroids in terms of sets and set functions
was open for some period of time.

This article provides a selective look at classical material on algorithmic charac-
terization of antimatroids, i.e., the ordered version, and a new unordered version.
Moreover we empathize formally the correspondence between these two versions.

keywords: antimatroid, greedoid, chain algorithm, greedy algorithm, monotone
linkage function.

1 Introduction

In this paper we compare two algorithmic characterization of antimatroids. There are
many equivalent axiomatizations of antimatroids, that may be separated into two cate-
gories: antimatroids defined as set systems and antimatroids defined as languages. Boyd
and Faigle [1] introduced an algorithmic characterization of antimatroids based on the
language definition. Another characterization of antimatroids, that considers them as set
systems, is the main topic of this paper. This characterization is based on the idea of
optimization using set functions defined as minimum values of linkages between a set and
the elements from the set complement.
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Section 2 gives some basic information about antimatroids as set systems and intro-
duces truncated antimatroids. In Section 3 monotone linkage functions are considered.
Optimization of the functions defined as minimums of monotone linkage functions ex-
tends to truncated antimatroids, and a polynomial algorithm finding an optimal set is
constructed. In Section 4 the results of Boyd and Faigle are connected to our approach
based on monotone linkage functions.

2 Preliminaries

Let E be a finite set. A set system over E is a pair (E,F), where F ⊆ 2E is a family of
subsets of E, called feasible sets. We will use X ∪ x for X ∪ {x}, and X − x for X −{x}.

Definition 2.1 A non-empty set system (E,F) is an antimatroid if
(A1) for each non-empty X ∈ F , there is an x ∈ X such that X − x ∈ F
(A2) for all X, Y ∈ F , and X 6⊆ Y , there exist an x ∈ X − Y such that Y ∪ x ∈ F .

Any set system satisfying (A1) is called accessible.

Definition 2.2 A set system (E,F) has the interval property without upper bounds if for
all X, Y ∈ F with X ⊆ Y and for all x ∈ E − Y , X ∪ x ∈ F implies Y ∪ x ∈ F .

There are some different antimatroid definitions:

Proposition 2.3 [2][3]For an accessible set system (E,F) the following statements are
equivalent:

(i) (E,F) is an antimatroid
(ii) F is closed under union
(iii) (E,F) satisfies the interval property without upper bounds.

For a set X ∈ F , let Γ(X) = {x ∈ E − X : X ∪ x ∈ F} be the set of feasible
continuations of X. It is easy to see that an accessible set system (E,F) satisfies the
interval property without upper bounds if and only if for any X, Y ∈ F , X ⊆ Y implies
Γ(X) ∩ (E − Y ) ⊆ Γ(Y ).

Definition 2.4 The k-truncation of a set system (E,F) is a set system defined by

Fk = {X ∈ F : |X| ≤ k}.

If (E,F) is an antimatroid, then (E,Fk) is a k-truncated antimatroid [1].
The rank of a set X ⊆ E is defined as %(X) = max{|Y | : (Y ∈ F) ∧ (Y ⊆ X)}, the

rank of the set system (E,F) is defined as %(F) = %(E). For a given antimatroid (E,F)
the rank of k-truncated antimatroid %(Fk) = k, whenever k ≤ %(F). Notice, that every
antimatroid (E,F) is also a k-truncated antimatroid, where k = %(F).
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Clearly, a k-truncated antimatroid (E,F) may not satisfy the interval property with-
out upper bounds, but it does satisfy the following condition:

if X, Y ∈ Fk−1 and X ⊆ Y, then x ∈ E − Y, X ∪ x ∈ F imply Y ∪ x ∈ F . (1)

A set system (E,F) has the k-truncated interval property without upper bounds if it
satisfies (1).

Theorem 2.5 An accessible set system (E,F) of rank k is a k-truncated antimatroid if
and only if it satisfies the k-truncated interval property without upper bounds.

Proof. The only thing to show is that the set system (E,F) with k-truncated interval
property without upper bounds is a k-truncated antimatroid. To prove it one has to build
an antimatroid generating the given set system by k-truncation. Define, by analogy with
[1]

Ω = {X ⊆ E : there are some X1, ..., Xp ∈ F such that X = X1 ∪ ... ∪ Xp}. (2)

The set system (E, Ω) is closed under union. Hence to prove that (E, Ω) is an antima-
troid we have only to verify that the set system (E, Ω) is accessible. Let X ∈ Ω, and it
has a decomposition X = X1 ∪ ... ∪Xk. Then there exists x ∈ X1 such that X1 − x ∈ F .
If x /∈ X2, X3, ..., Xk, then X − x = (X1 − x) ∪ X2 ∪ ... ∪ Xk ∈ Ω, otherwise we could
analyze the decomposition X = (X1 − x) ∪ X2 ∪ ... ∪ Xk ∈ Ω.

To show that the k-truncation of (E, Ω) is (E,F) it is sufficient to prove that X ∈ F
if and only if X ∈ Ω and |X| ≤ k. Indeed, if X ∈ F , then |X| ≤ k, and X ∈ Ω by
definition of Ω. Conversely, let X ∈ Ω (i.e., there is a decomposition X = A1 ∪ ... ∪ Ap),
and |X| ≤ k. We show that X ∈ F by induction on p. If p = 1, then, clearly, X ∈ F .
Consider A = A1 ∪ ... ∪ Ap−1. By the hypothesis of induction, A ∈ F . Assume |A| < k,
otherwise X = A and then X ∈ F . Since the set system (E,F) is accessible, there exists
a sequence of feasible sets ∅ = X0 ⊂ X1 ⊂ ... ⊂ Xl = A such that Xi = Xi−1 ∪ xi for
1 ≤ i ≤ l < k. Assume A 6⊆ Ap and |Ap| < k, for if it is not true, then X = Ap, i.e.,
X ∈ F . Let j be the least integer for which Xj 6⊆ Ap. Then Xj−1 ⊆ Ap, xj /∈ Ap and
Xj−1 ∪ xj ∈ F , that together with (1) imply Ap ∪ xj ∈ F . Going on with the increasing
of the set Ap we get the set X = Ap ∪ (A − Ap) ∈ F .

3 The Chain Algorithm and monotone linkage func-

tions

In general, to optimize a set function is an NP -hard problem, but for some specific func-
tions and for some specific set systems polynomial algorithms are known. In this section
we investigate set functions defined as minimum values of monotone linkage functions.
Such set functions can be maximized by a greedy type algorithm over a family of all
subsets of E (see [7]). Here we extend this result to antimatroids.
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Monotone linkage functions were introduced by Mullat [6]. We will give some necessary
basic notions.

Let π : E × 2E → R be a monotone linkage function such that

if X, Y ⊆ E and x ∈ E, then X ⊆ Y implies π(x, X) ≥ π(x, Y ). (3)

For example, π(x, X) = miny∈X dxy, where dxy is a distance between two objects, is a
monotone linkage function.

Consider F : 2E → R defined for each X ⊂ E

F (X) = min
x∈E−X

π(x, X). (4)

These functions were studied in [7],[4], where a simple polynomial algorithm finding a
set X ⊂ E such that

F (X) = max{F (Y ) : Y ⊂ E}
was developed. The idea of this algorithm was also used in searching of a protein sequence
alignment [5]. In this section we extend these results to truncated antimatroids. For this
purpose we define on a set system (E,F) a new set function as follows:

FF(X) =

{
minx∈Γ(X) π(x, X), Γ(X) 6= ∅
−∞, otherwise

. (5)

It should be pointed out that the definition (5) is not limited to antimatroids, but for
each k-truncated antimatroid (E,F), the function FF is well defined ( 6= −∞) on the set
system (E,Fk−1).

Consider the following optimization problem.
Given: a monotone linkage function π , and a set system (E,F).
Find: the feasible set X ∈ F such that FF(X) = max{FF(Y ) : Y ∈ F}, where

function FF defined by (5).
To solve this problem we build the following algorithm.

The Chain Algorithm (E,F , π)
1. Set X0 := ∅
2. Set X := ∅
3. While Γ(X) 6= ∅ do

3.1 If FF(X) > FF(X0), set X0 := X
3.2 Choose x ∈ Γ(X) such that π(x, X) ≤ π(y, X) for all y ∈ Γ(X)
3.3 Set X := X ∪ x

4. Return X0

Thus, the Chain Algorithm generates the chain of sets

∅ = X0 ⊂ X1 ⊂ ... ⊂ Xk,

where Xi = Xi−1 ∪ xi and xi ∈ Γ(Xi−1) for 1 ≤ i ≤ k, and returns the minimal set X0 of
the chain on which the value FF(X0) is maximal.
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Theorem 3.1 Let (E,F) be an accessible set system of rank k. If the set of feasible
continuations of X is not empty for each X ∈ Fk−1, then the following statements are
equivalent:

(1) the set system (E,F) is a k-truncated antimatroid.
(2) The Chain Algorithm finds a feasible set that maximizes the function FF for every

monotone linkage function π.

Proof. Let X0 be the set obtained by the Chain Algorithm. To prove that X0 is a
feasible set maximizing FF , we have to show that FF(X) ≤ FF (X0) for each X ∈ Fk−1.
Let X0 ⊂ X1 ⊂ ... ⊂ Xk be the chain generated by the Chain Algorithm. Let j be the
least integer for which Xj 6⊆ X. Then Xj−1 ⊆ X, xj /∈ X and Xj−1∪xj ∈ F , that implies
(from (1)) xj ∈ Γ(X). Hence,

FF (X) ≤ π(xj , X) ≤ π(xj , Xj−1) = FF (Xj−1) ≤ FF(X0).

Conversely, consider an accessible set system (E,F) that is not k-truncated antima-
troid, i.e., there exists A, B ∈ Fk−1 such that A ⊂ B, and there is a ∈ E − B such that
A∪ a ∈ F and B ∪ a /∈ F . Accessibility of the set system (E,F) implies that there exists
a sequence of feasible sets

∅ = A0 ⊂ A1 ⊂ ... ⊂ Ap = A ⊂ Ap+1 = A ∪ a,

where Ai = Ai−1 ∪ ai for 1 ≤ i ≤ p, and ap+1 = a. Define a monotone linkage function π
on pairs (x, X) where X ⊂ E and x ∈ E − X:

π(x, X) =

{
1, X ⊇ Ai−1 and x = ai or A ∪ a ⊆ X ⊂ E and x ∈ E − X
2, otherwise.

.

Then the Chain Algorithm generates a chain A0 ⊂ ... ⊂ Ap ⊂ Ap+1 ⊂ ... ⊂ Ak, on which
the values of the function FF are equal to 1, but FF(B) = 2. Thus, the Chain Algorithm
does not find a feasible set that maximizes the function FF .

The Chain Algorithm is a greedy type algorithm since it is based on the best choice
principle: it chooses on each step the extreme element (with respect to the linkage func-
tion) and, thus, approaches the optimal solution. Let P is the maximum complexity of
π(x, X) computation over all pairs (x, X), where x ∈ E −X. Then the Chain Algorithm
finds the optimal feasible set in O(P |E|2) time. For example, in some clustering problems
the complexity of the Chain Algorithm is O(|E|3) (see [4]).

4 Correspondence between two algorithmic charac-

terization of antimatroids

In this section we consider an algorithmic approach to antimatroids due to Boyd and
Faigle [1]. Their idea is based on the definition of an antimatroid as a formal language.
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Given a finite alphabet E consists of letters. A word over E is a sequence of letters from
E, denoted by the lower case of Greek letters α,β and γ. A language L is a set of words
of E. The concatenation of two words α and β will be denoted αβ, αk will be used to
denote a word of length k and the set of distinct letters in a word α will be denoted α̃.
The language is called simple if there are no words with repeated letters.

Definition 4.1 An antimatroid language is a simple language (E,L) satisfying the fol-
lowing two properties:

(1) If αx ∈ L, then α ∈ L.
(2) If α,β ∈ L and α̃ 6⊆ β̃, then there exists an x ∈ α̃ such that βx ∈ L.

Antimatroids and antimatroid languages are equivalent in the following sense [3].

Theorem 4.2 If (E,L) is an antimatroid language, then

F (L) = {α̃ : α ∈ L}
is an antimatroid (E, F (L)).
Conversely, if (E,F) is an antimatroid, then

L(F) = {x1...xk : {x1, ...xj} ∈ F for 1 ≤ j ≤ k}
is an antimatroid language (E, L(F)). Further, L(F (L)) = L and F (L(F)) = F .

The next problem is considered in [1]: let f : E × 2E → R be a monotone function
such that f(x, A) ≤ f(x, B) whenever B ⊆ A. Define a maximum nesting function

W (x1...xk) = max{f(x1, {x1}), ..., f(xk, {x1, ..., xk})}.
The minimax nesting problem is defined as follows: given a simple language (E,L)

with a monotone function f and a nonnegative integer k ≤ %(L), find αk ∈ L such that

W (αk) = min{W (βk) : βk ∈ L}.
The main theorem proved in [1] reads as follows.

Theorem 4.3 Let (E,L) be a simple language. The greedy algorithm solves the mini-
max nesting problem for every monotone function f if and only if (E,L) is a truncated
antimatroid.

In the sequel we will discuss the correspondence between the set system and language
characterizations of antimatroids.

Firstly, the word αk = x1...xk constructed with the greedy algorithm satisfies also the
following property:

W (x1...xi) = min{W (βi) : βi ∈ L} for each i such that 1 ≤ i ≤ k (6)

(see [1]).
Secondly, the Chain Algorithm builds a sequence ∅ = X0 ⊂ X1 ⊂ ... ⊂ Xk, where

Xi = Xi−1 ∪ xi for 1 ≤ i ≤ k, i.e., the algorithm generates the sequence x1...xk. So every
set Xi, obtained by the Chain Algorithm, has a natural order: Xi = {x1, ..., xi}, i.e., we
can interpret each set Xi as a word αi = x1...xi. Now we are ready to prove the following.
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Theorem 4.4 Let (E,L) be a k-truncated antimatroid and let

f(xi, {x1, ..., xi}) = π(xi, {x1, ..., xi−1}) for each i such that 1 ≤ i ≤ k

then
(i) if X0 is an optimal set obtained by the Chain Algorithm, then there exists a word

αk ∈ L that satisfies (6) and X0 = {x1, ..., xp} is a shortest prefix of αk such that
W (x1...xp+1) = W (αk) = FL(X0).

(ii) if αk is a solution of the minimax nesting problem obtained by the greedy algorithm,
then a shortest prefix {x1, ..., xp} of αk such that W (x1...xp+1) = W (αk) maximizes the
function FL.

Proof. (i) Let x1...xk be the sequence generating by the Chain Algorithm and let X0 =
{x1, ..., xp}. Set αk = x1...xk and prove that αk satisfies (6). Suppose that the opposite is
true, then let γm = y1...ym be a shortest word such that W (γm) < W (x1...xm). It means
that for each i < m

max{π(x1, ∅), ..., π(xi, {x1, ..., xi−1})} ≤ max{π(y1, ∅), ..., π(yi, {y1, ..., yi−1})}

and for each i ≤ m

π(xm, {x1, ..., xm−1}) > max{π(y1, ∅), ..., π(yi, {y1, ..., yi−1})}. (7)

If {y1...ym−1} = {x1, ..., xm−1}, then ym ∈ Γ({x1, ..., xm−1}), and by (7)

π(ym,{x1, ..., xm−1}) = π(ym, {y1, ..., ym−1}) < π(xm, {x1, ..., xm−1}).

So the Chain Algorithm should choose ym and not xm.
Thus, let j be the smallest index such that {y1, ..., yj−1} ⊆ {x1, ..., xm−1} and yj /∈

{x1, ..., xm−1}. Since yj ∈ Γ({y1, ..., yj−1}), by k-truncated interval property without
upper bounds we get that yj ∈ Γ({x1, ..., xm−1}). Hence, monotonicity of π and (7) imply

π(yj, {x1, ..., xm−1}) ≤ π(yj, {y1, ..., yj−1}) < π(xm, {x1, ..., xm−1}),

which contradicts the optimal choice of xm.
Finally, the Chain Algorithm builds X0 = {x1, ..., xp}, which is the shortest prefix of

αk such that
FL(X0) = π(xp+1, {x1...xp}) = W (x1...xp+1) = W (αk).

(ii) Conversely, let αk be a solution of the minimax nesting problem and let X0 =
x1, ..., xp be the shortest prefix such that W (x1...xp+1) = W (αk). Then

π(xp+1, {x1...xp}) > π(xi+1, {x1...xi}) for i < p,

and
π(xp+1, {x1...xp}) ≥ π(xi+1, {x1...xi}) for i ≥ p.
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Certainly, π(xp+1, {x1...xp}) = minx∈Γ(X0) π(x, {x1...xp}). If not, there is x0 ∈ Γ(X0)
such that π(x0, {x1...xp}) < π(xp+1, {x1...xp}), i.e. W (x1...xpx

0) < W (x1...xp+1) - contra-
diction with (6). So, FL(X0) = π(xp+1, {x1...xp}).

Consider some set X ∈ F (L). If X = {x1...xj} (i.e., X is a prefix of αk), then

FL(X) = min
x∈Γ(X)

π(x, X) ≤ π(xj+1, {x1...xj}) ≤ π(xp+1, {x1...xp}) = FL(X0).

Otherwise, let j be the smallest index such that {x1...xj} ⊆ X and xj+1 /∈ X. Then
xj+1 ∈ Γ(X) by 1. Hence,

FL(X) = min
x∈Γ(X)

π(x, X) ≤ π(xj+1, X) ≤

≤ π(xj+1, {x1...xj}) ≤ π(xp+1, {x1...xp}) = FL(X0).

5 Conclusions

In this article, we discussed a set system algorithmic description of one subclass of gree-
doids, namely, antimatroids. Further we compared a new description with a known one
based on the approach defining greedoids as languages. Actually, there are some more
important subclasses of greedoids also enjoying natural algorithmic characterizations in
terms of their feasible set systems, for instance, matroids and Gaussian greedoids. These
findings may lead to new algorithmic frameworks for additional types of greedoids. We
consider the family of interval greedoids as a strong candidate for the collection of suc-
cesses of the set system algorithmic approach.
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