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Abstract

We show that a graph has an orientation under which every circuit of even length
is clockwise odd if and only if the graph contains no subgraph which is, after the
contraction of at most one circuit of odd length, an even subdivision of K2,3. In fact
we give a more general characterisation of graphs that have an orientation under
which every even circuit has a prescribed clockwise parity. Moreover we show that
this characterisation has an equivalent analogue for signed graphs.

We were motivated to study the original problem by our work on Pfaffian graphs,
which are the graphs that have an orientation under which every alternating circuit
is clockwise odd. Their significance is that they are precisely the graphs to which
Kasteleyn’s powerful method for enumerating perfect matchings may be applied.
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1 Introduction

Consider the three (even) circuits in K2,3. Is it possible to find an orientation under
which all these circuits are clockwise odd, if the clockwise parity of a circuit of even
length is defined as the parity of the number of edges that are directed in agreement
with a specified sense? However K2,3 is oriented one observes that the total number of
clockwise even circuits is odd and therefore it is not possible to find such an orientation.
In this paper we present a characterisation, in terms of forbidden subgraphs, of the graphs
that have an orientation under which every even circuit is clockwise odd. It will turn out
that the non-existence of such an orientation can in a sense always be put down to an
even subdivision of K2,3. (See Corollary 1.)

We were motivated to study this problem by our work on a characterisation of Pfaffian
graphs. A Pfaffian orientation of a graph is an orientation under which every alternating
circuit is clockwise odd, an alternating circuit being a circuit which is the symmetric
difference of two perfect matchings. A Pfaffian graph is a graph that admits a Pfaffian
orientation. In [3] Kasteleyn introduced a remarkable method for enumerating perfect
matchings in Pfaffian graphs, reducing the enumeration to the evaluation of the determi-
nant of the skew adjacency matrix of the Pfaffian directed graph. He has shown that all
planar graphs are Pfaffian. However a general characterisation of Pfaffian graphs is still
not known. For research in this direction see [4, 5, 6, 1, 7].

Our characterisation of the graphs that admit an orientation under which every even
circuit is clockwise odd will be an easy consequence of our main theorem (Theorem 1),
which gives a more general characterisation of the graphs that have an orientation un-
der which every even circuit has a prescribed (not necessarily odd) clockwise parity. In
Section 2 we will introduce the concept of a signed graph and present an analogue of
Theorem 1 for signed graphs (Theorem 2). We will show that each of these theorems
implies the other. Finally we prove the theorem for ordinary graphs.

The following definition is fundamental.

Definition 1 Let G be a graph and J an assignment of clockwise parities to the even
circuits of G. An even circuit of G is said to be J-oriented under a given orientation of G
if it has the clockwise parity assigned by J . An orientation of G is said to be J-compatible
or a J-orientation if every even circuit of G is J-oriented. Otherwise the orientation is
J-incompatible. The graph G is said to be J-orientable if G admits a J-orientation, and
J-nonorientable otherwise.

Our main theorem (Theorem 1) characterises J-orientable graphs in terms of forbidden
subgraphs. Before we are able to formulate it, we have to introduce two relevant graph
operations. To this end we need the following important definition and two lemmas.

Definition 2 Let G be a graph and J an assignment of clockwise parities to the even
circuits of G. A set S of even circuits in G is said to be J-intractable if the symmetric
difference of the circuits in S is empty and under some orientation of G there are an odd
number of circuits in S that are not J-oriented.
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Observe that the parity of the number of even circuits in a J-intractable set S that are
not J-oriented, with respect to a given orientation, does not depend on the orientation
since the reorientation of a single edge changes the clockwise parity of an even number of
circuits in S. Therefore under any orientation of G there are an odd number of circuits
in S that are not J-oriented.

Lemma 1 Let G be a graph and J an assignment of clockwise parities to the even circuits
of G. Then G is J-nonorientable if and only if G contains a J-intractable set of even
circuits.

Proof. The existence of a J-intractable set implies that G is J-nonorientable, as can
be seen from the remark preceding the formulation of the lemma.

Suppose that G is J-nonorientable and orient G arbitrarily. The existence of a J-
orientation of G is equivalent to the solvability of a certain system of linear equations
over the field F2. In these equations the variables correspond to the edges of the even
circuits of G. For every even circuit C there is a corresponding equation in which the sum
of the variables corresponding to the edges of C is 1 if and only if the clockwise parity of
C is not that prescribed by J . A solution of this system is an assignment of zeros and
ones to the edges of the even circuits of G. A J-orientation of G can be obtained from
the fixed orientation by reorienting precisely those edges to which the solution assigns a
1. The lemma now follows from the solvability criteria for systems of linear equations.

2

Let G be a graph and let H be a graph obtained from G by the contraction of the
two edges e and f incident on some vertex v in G of degree 2. Thus EH = EG − {e, f}.
We may describe G as an even vertex splitting of H . (See Figure 1.) Any even circuit
CH in H is the intersection with EH of a unique even circuit C in G. To any assignment
J of clockwise parities to the even circuits in G there corresponds an assignment JH of
clockwise parities to the even circuits in H so that any even circuit CH in H is assigned
the same clockwise parity as C in G. We say that JH is induced by J . If either e or f
is incident on a vertex of degree 2 other than v, then it is also true that the intersection
with EH of any even circuit C in G yields an even circuit CH in H . In this case any
assignment JH of clockwise parities to the even circuits in H corresponds to a unique
assignment J of clockwise parities to the even circuits in G so that JH is the assignment
induced by J . We then say that J is also induced by JH .

Similarly let H be obtained from G by contracting a circuit A of odd length. Thus
EH = EG − A. Any even circuit CH in H is the intersection with EH of a unique even
circuit C in G: we have C ∩ EH = CH and if C 6= CH then C ∩ A is the path of even
length in A joining the ends of the path CH in G. To any assignment J of clockwise
parities to the even circuits in G there corresponds an assignment JH of clockwise parities
to the even circuits in H so that any even circuit CH in H is assigned the same clockwise
parity as C in G. We say that JH is induced by J .

In the following lemma we summarise some basic facts:

the electronic journal of combinatorics 10 (2003), #R45 3



u1 u2 u3

u4 u5

v

u1 u3u2

u4 u5

v2

v
1v

Figure 1: Split vertices to obtain an even vertex splitting.

Lemma 2 Let G be a graph and J an assignment of clockwise parities to the even circuits
of G.

(1) Let H be a subgraph of G and JH the restriction of J to the even circuits of H. If
G is J-orientable then H is JH-orientable.

(2) Let H be obtained from G by contracting the two edges incident on a vertex of
degree 2. The assignment J induces an assignment JH of clockwise parities to the even
circuits in H. If G is J-orientable then H is JH-orientable. If either of the two contracted
edges is incident on another vertex of degree 2 then G is J-orientable if and only if H is
JH-orientable.

(3) Let H be obtained from G by contracting a circuit of odd length. The assignment
J induces an assignment JH of clockwise parities to the even circuits in H. If G is
J-orientable then H is JH-orientable.

Proof. (2) Every JH-intractable set of even circuits in H corresponds to a J-intractable
set of even circuits in G. If either of the two contracted edges is incident on another vertex
of degree two then every J-intractable set of even circuits in G also corresponds to a JH-
intractable set of even circuits in H .

(3) Every JH -intractable set of even circuits in H corresponds to a J-intractable set
of even circuits in G. (Note that if the symmetric difference of some even circuits in H is
empty, then the symmetric difference of the corresponding even circuits in G is empty as
well, for it is obvious that this symmetric difference is both an even cycle and a subset of
EG − EH .)

2

In the following three paragraphs we introduce the minimal J-nonorientable graphs
which we need in the formulation of our main theorem. We say that an assignment J is
odd or even if it assigns, respectively, an odd or an even clockwise parity to every even
circuit.

Let O1 = K2,3 and let O2 be the graph we obtain from K4 by subdividing once all edges
incident on one fixed vertex. (See Figure 2.) Observe that O1 and O2 are J-nonorientable
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Figure 2:

with respect to the odd assignment J . In fact O1 and O2 are J-nonorientable precisely
for those assignments J that prescribe an even number of even circuits of these graphs
to be of even clockwise parity. For these assignments Lemma 2(3) shows that the J-
nonorientability of O2 can be attributed to the fact that O1 is J-nonorientable, since the
contraction of the triangle in O2 gives O1.

Let E1 be the graph consisting of two vertices and three edges joining them, let
E2 = K4 and let E3 be the graph we obtain from K4 by subdividing once each edge in a
fixed even circuit. (See Figure 2.) Then E1, E2 and E3 are J-nonorientable with respect
to the even assignment J . More generally E1, E2 and E3 are J-nonorientable precisely for
those assignments J that prescribe an odd number of even circuits to be of even clockwise
parity. Again by Lemma 2(3) the fact that E2 is J-nonorientable can be put down to the
fact that E1 is J-nonorientable, since the contraction of a triangle in E2 gives E1.

A ∆-graph is one of the 10 non-isomorphic graphs that can be obtained from the
configuration in Figure 3 by replacing the Pi’s independently by paths of length 0, 1 or 2.
Each of these graphs has exactly four even circuits and is J-nonorientable if and only if
J prescribes an odd number of them to be clockwise even. This observation follows from
Lemma 1 because in each of these graphs the set of all even circuits is the only dependent
set of even circuits with respect to symmetric difference.

Let H be a graph and let H0, H1, . . . , Hk be graphs such that H0 = H and, for each
i > 0, the graph Hi is an even vertex splitting of Hi−1. Then Hk is said to be an even
splitting of H . There is a special case in which, for each i > 0, Hi can be obtained from
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Figure 3: ∆-graphs.

Hi−1 by subdividing an edge twice. In this case we describe Hk as an even subdivision of H .
If no vertex of H is of degree greater than 3, then each even splitting of H is also an even
subdivision of H . If G is an even splitting of H and J is an assignment of clockwise parities
to the even circuits in G, then we may apply the definition of an induced assignment
inductively to obtain an assignment JH of clockwise parities to the even circuits in H .
This assignment is also said to be induced by J . By applying Lemma 2(2) inductively we
find that if G is J-orientable then H is JH-orientable. Thus if H is JH-nonorientable then
G is J-nonorientable. The converse also holds if G is an even subdivision of H .

Now we formulate our main theorem.

Theorem 1 Let G be a graph and J an assignment of clockwise parities to the even
circuits of G. Then G is J-nonorientable if and only if G contains a JH-nonorientable
even subdivision H of one of O1, O2, E1, E2, E3 or of a ∆-graph.

The “if” direction in the theorem is obvious by Lemma 1 and Lemma 2.

Remark 1 Note that the fact that H is JH-nonorientable in the assertion of the theorem
is equivalent to the following: if H is an even subdivision of Oi for some i then J prescribes
an even number of clockwise even parities to the three even circuits of H, if H is an even
subdivision of Ei for some i then J prescribes an odd number of clockwise even parities to
the three even circuits of H and if H is an even subdivision of a ∆-graph then J prescribes
an odd number of clockwise even parities to the four even circuits of H.

We obtain the following immediate corollaries.

Corollary 1 A necessary and sufficient condition for a graph to admit an orientation
under which every even circuit is clockwise odd is for it not to contain a subgraph which
is, after the contraction of at most one odd circuit, an even subdivision of K2,3.

Proof. For each even subdivision of E1, E2, E3 or a ∆-graph the odd assignment
prescribes an even number of clockwise even parities to its set of even circuits and therefore
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these subdivisions are J-orientable with respect to the odd assignment J .
2

Corollary 2 A necessary and sufficient condition for a graph to admit an orientation
under which every even circuit is clockwise even is for it not to contain a subgraph which
is, after the contraction of at most one odd circuit, an even subdivision of E1 or E3.

Proof. For each even subdivision of O1 or O2 the even assignment prescribes an odd
number of clockwise even parities to its set of even circuits, for both graphs have three even
circuits. Moreover for each even subdivision of a ∆-graph the even assignment prescribes
an even number of clockwise even parities to its set of even circuits, for these graphs each
have four even circuits. Therefore these subdivisions are J-orientable with respect to the
even assignment J .

2

2 Signed graphs

A signed graph is an ordinary (undirected) graph G together with an assignment of “even”
or “odd” to the edges. A circuit of a signed graph is said to be even if it has an even
number of odd edges. Let J be an assignment of parities to the even circuits of a signed
graph. A signed graph is said to be J-compatible if there is an assignment of zeros and
ones to the edges so that the number of ones in every even circuit has the parity prescribed
by J ; otherwise it is J-incompatible. The notion of a J-intractable set of even circuits is
defined in a manner analogous to the ordinary case, as in Definition 2. In fact it is easy
to see that the analogue of Lemma 1 also holds in the signed case.

The following lemma will lead to the notion of a signed minor.

Lemma 3 Let G be a signed graph and J an assignment of parities to the even circuits
of G.

(1) Let H be a subgraph of G and JH the restriction of J to the even circuits of H. If
G is J-compatible then H is JH-compatible.

(2) Let H be obtained from G by contracting an even edge. The assignment J induces
an assignment JH of parities to the even circuits of H. If G is J-compatible then H is
JH-compatible. If the contracted even edge is incident on a vertex of degree 2 in G then
the converse is also true.

(3) Let H be obtained from G by resigning the edges on a cut of G. A circuit of H is
even if and only if the corresponding circuit in G is even as well and therefore J induces
an assignment JH of parities to the even circuits of H. Then G is J-compatible if and
only if H is JH-compatible.

2
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We say that H is a signed minor of a signed graph G if G contains a subgraph which
can be reduced to H by a sequence of the two signed minor operations: contracting even
edges and resigning on cuts. Given an assignment J of parities to the even circuits in G,
this assignment clearly induces an assignment JH of parities to H . The previous lemma
shows that the JH-incompatibility of H implies the J-incompatibility of G. Note also that
if e and f are the edges incident on a vertex of degree 2, then the signed minor operations
permit the contraction of at least one of them. If either e or f is even this is obvious.
Otherwise we resign the cut {e, f} and afterwards contract either e or f .

Let G be an ordinary unsigned graph. Denote by Go the signed graph obtained
from G by assigning “odd” to every edge. Moreover let ∆∗ denote the signed graph
obtained from K3 by replacing every edge with a pair of edges of opposite sign. The
following characterisation of J-compatible signed graphs is the analogue of Theorem 1.
The advantage of signed graphs is that the number of forbidden minors is smaller than in
Theorem 1. Clearly this comes from the fact that the signed minor operations are more
general than the even subdivision operation we have used for ordinary graphs.

Theorem 2 Let G be a signed graph and J an assignment of parities to the even circuits
of G. Then G is J-incompatible if and only if G contains a JH-incompatible minor H
isomorphic to Eo

1 , Ko
4 or ∆∗.

Theorem 1 and Theorem 2 imply each other. In this section we show that Theorem 1
implies Theorem 2 and indicate briefly how to verify the converse implication.

Let us begin with an overview of the proof that Theorem 1 implies Theorem 2, together
with an example to illustrate the construction. We begin with a signed graph G and an
assignment J of parities to its even circuits. For example, G could be the first graph in
Figure 4, where the even edges are dashed. Thus edges d, e, f are even and the other edges
are odd. The even circuits in this example are therefore C1 = {b, c, d, e}, C2 = {a, b, e, f}
and C3 = {a, c, d, f}. Suppose that they are all given the odd parity by a parity assignment
J . Now let G∗ be the signed graph obtained from G by subdividing each even edge once
and giving every edge the odd parity. In our example G∗ is the second graph given in
Figure 4. Its even circuits are necessarily those of even length: C∗

1 = {b, c, d′, d′′, e′, e′′},
C∗

2 = {a, b, e′, e′′, f ′, f ′′} and C∗
3 = {a, c, d′, d′′, f ′, f ′′}. Each even circuit in G∗ is assigned

the same parity as the corresponding circuit in G by a parity assignment J∗. Thus in our
example each C∗

i is assigned the odd parity by J∗. Now let G′ be the unsigned version
of G∗, and give it an arbitrary orientation. Figure 4 gives an example of an orientation
under which C∗

1 is clockwise even but C∗
2 and C∗

3 are clockwise odd. We construct an
assignment J ′ of clockwise parities to the even circuits of G′ by taking the parity assigned
by J∗ for each clockwise even circuit but the opposite parity for each circuit that is
clockwise odd. Thus in our example C∗

1 is assigned the odd clockwise parity by J ′ but
C∗

2 and C∗
3 are assigned the even clockwise parity. Note that the resulting clockwise

parities assigned to C∗
1 , C∗

2 and C∗
3 are not all equal even though equal parities were

assigned to C1, C2 and C3 by J in our example. On the other hand, if J had assigned
the odd parity to C1 but the even parity to C2 and C3 then C∗

1 , C∗
2 and C∗

3 would all
have been assigned the odd clockwise parity by J ′. Thus if either J or J ′ assigns equal
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parities to all even circuits it is not necessarily the case that the other also does. The
argument to demonstrate that Theorem 1 implies Theorem 2 continues by showing that
G is J-compatible if and only if G′ is J ′-orientable. Certainly a graph is J-incompatible
if it contains one of the JH -compatible minors H mentioned in Theorem 2. Suppose
therefore that G is J-incompatible. Then G′ is J ′-nonorientable, and therefore contains
a J ′-nonorientable subgraph H ′ which is an even subdivision of one of O1, O2, E1, E2,
E3 or a ∆-graph. The proof concludes by applying the signed minor operations to the
corresponding subgraph of G.

Theorem 1 implies Theorem 2. Let G be a signed graph and let J be an assignment
of parities to the even circuits of G.

Suppose first that every edge of G is odd. Then the even circuits in G are those of
even length. Let G′ be the unsigned version of G, fix an arbitrary orientation of G′ and
let K be the assignment of the consequent clockwise parity to each even circuit in G′.
Let J ′ = J + K. Thus J ′ is the assignment of clockwise parities to the even circuits of
G′ under which a given even circuit is assigned the same clockwise parity as under J if
and only if it is assigned the even clockwise parity under K. If G is J-compatible then
there is an assignment of zeros and ones to the edges of G so that the number of ones in
any even circuit has the parity prescribed by J . Reversal of the orientation of every edge
of G′ assigned a 1 in G changes the clockwise parity of a given circuit if and only if the
circuit is prescribed the odd parity under J . The resulting orientation of G′ is therefore
J ′-compatible, so that G′ is J ′-orientable. Conversely if G′ is J ′-orientable then reversal
of this argument shows that G is J-compatible.

On the other hand, suppose some edges of G are even. We may construct a new signed
graph G∗ by subdividing each even edge once and giving each edge of the new graph the
odd parity. Then there is a bijection from the set of even circuits of G onto the set of even
circuits of G∗ under which each even edge of an even circuit in G is replaced by the pair of
odd edges into which it is subdivided in G∗. Therefore G∗ inherits from G an assignment
J∗ of parities to its even circuits so that each even circuit in G is assigned the same parity
by J as its image in G∗ is assigned by J∗. It is now clear that G is J-compatible if and
only if G∗ is J∗-compatible. The conclusions in the paragraph above can be applied to
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G∗. With G′ defined as the unsigned version of G∗ and J ′ defined as in the previous
paragraph, we deduce once again that G is J-compatible if and only if G′ is J ′-orientable.

We have already noted that the existence of a JH -incompatible minor H of G would
imply the J-incompatibility of G. We may therefore suppose that G is J-incompatible.
Then G′ is J ′-nonorientable. Thus, by Theorem 1, G′ contains a J ′-nonorientable subgraph
H ′ which is an even subdivision of one of O1, O2, E1, E2, E3 or a ∆-graph. There is a
unique J-incompatible signed subgraph H of G such that EH ′ consists of the odd edges
in H and the union of the paths of length 2 in G′ that replace the even edges in H . We
shall show that the signed minor operations can be used to reduce H to one of Eo

1 , Ko
4 ,

∆∗.
By sequentially contracting edges incident on vertices of degree 2 we may reduce H

to a J-incompatible signed graph H+ without vertices of degree 2. Note that the parity
of the number of odd edges in a path P whose inner vertices are all of degree 2 does
not change in this procedure, which is effected by a sequence of resignings of pairs of
consecutive odd edges of P and contractions of even edges.

Case 1: Suppose first that H ′ is an even subdivision of E1 or O1. The graph underlying
H+ must be E1 and all edges have the same parity. If this parity is even, then resign the
edges to make them odd. The result is Eo

1 .
Case 2: Suppose next that H ′ is an even subdivision of O2, E2 or E3. The graph

underlying H+ is K4. If H ′ is an even subdivision of O2, then H+ has three even edges
and they are all incident on the same vertex v. Resigning the edges in the vertex cut
defined by v gives Ko

4 . If H ′ is an even subdivision of E2, then H+ is equal to Ko
4 . If

H ′ is an even subdivision of E3, then H+ has four even edges. These four edges form a
circuit C, and if we resign the edges in a cut defined by two vertices in H+ which are
non-adjacent in C then we obtain Ko

4 .
Case 3: Suppose finally that H ′ is an even subdivision of a ∆-graph. The paths in

H+ corresponding to P1, P2 and P3 in the definition of a ∆-graph are of lengths 0 or 1.
Contract every such path that consists of an even edge. The result is isomorphic to one
of the graphs in Figure 5, where the even edges are dashed. In each case resign on any
cut containing all the edges not in a digon, then contract those edges to obtain ∆∗.

2

Theorem 2 implies Theorem 1. The argument in this direction is a bit more com-
plicated because the signed minor operations are more general than the even subdivision
operation we have used for ordinary graphs. We sketch the argument very briefly.

Let G be a graph and J an assignment of clockwise parities to the even circuits of G,
and suppose that G is J-nonorientable. Fix an orientation of G. Let G′ be the signed
graph Go and let J ′ be the assignment of parities to the even circuits of G′ under which
an even circuit is prescribed the parity “even” if and only if, under the fixed orientation,
the corresponding even circuit in G has the clockwise parity prescribed by J . Then G′ is
J ′-incompatible. Thus, by Theorem 2, G′ contains a J ′

H′-incompatible signed subgraph
H ′ which can be reduced to Eo

1 , Ko
4 or ∆∗ by the signed minor operations. The argument

is then completed by investigating the structure of a JH-nonorientable subgraph H of G
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Figure 5:

for which Ho is isomorphic to H ′.

3 An arc decomposition theorem

Circuits, non-empty paths and, more generally, subgraphs without isolated vertices are
determined by their edge sets and are therefore identified with them in this paper. If u
and v are vertices of a path P , then P [u, v] denotes the subpath of P that joins u and v.
Given subsets S and T of V G, a path joining a vertex of S to a vertex of T will be called
an (S, T )-path. If G is a graph and V ′ is a subset of the vertex set V G of G then G[V ′]
denotes the subgraph of G spanned by V ′. Similarly if E ′ is a subset of the edge set EG
of G then G[E ′] denotes the subgraph of G spanned by E ′.

Let H1 and H2 be two sets of edges in G. An H1H2-arc (or an H2H1-arc) is a path
in H1 which joins two distinct vertices in V G[H2] but does not have an inner vertex in
V G[H2]. A GH2-arc is also called an H2-arc.

Definition 3 A graph G without isolated vertices is said to be even-circuit-connected if
for every bipartition {H1, H2} of EG there exists an even circuit C which meets H1 and
H2.

Every even-circuit-connected graph is 2-connected. Indeed, suppose there exists a
vertex v such that G − {v} is disconnected. Let H1, H2, . . . , Hk be the components of
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G−{v} and let H ′
i = G[V Hi ∪ {v}] for each i. Then for every circuit C of G there exists

an i, 1 ≤ i ≤ k, with C ⊆ EH ′
i, a contradiction.

First we prove a decomposition theorem on even-circuit-connected graphs. Note that
in our characterisation of J-nonorientable graphs in terms of forbidden subgraphs, even-
circuit-connected graphs are the only graphs of interest since every J-nonorientable graph
that is minimal with respect to edge deletion is clearly even-circuit-connected.

Let H be a subgraph of G and C an even circuit in G which includes EG − EH
and meets EH . If there are n CH-arcs, then G is said to be obtained from H by
an n-arc adjunction. An arc decomposition of an even-circuit-connected graph G is a
sequence G0, G1, . . . , Gk of even-circuit-connected subgraphs of G such that EG0 is an even
circuit, Gk = G and, for every i > 0, Gi is obtained from Gi−1 by an n-arc adjunction
with n = 1 or n = 2. Moreover we assume that, for each i, every even circuit in Gi

which meets EGi −EGi−1 contains EGi −EGi−1. We shall show that every even-circuit-
connected graph has an arc decomposition. For this purpose we need the following version
of Menger’s theorem.

Theorem 3 [2] Let S and T be sets of at least n vertices in an n-connected graph G.
Then there are n vertex disjoint (S, T )-paths such that no inner vertex of these paths is
in V S ∪ V T .

Lemma 4 Let H be a non-empty proper even-circuit-connected subgraph of an even-
circuit-connected graph G. Then G has an even circuit C that meets EH, admits just
one or two CH-arcs and has the property that G[H ∪C] is even-circuit-connected. More-
over, if G is bipartite or H is not, then C may be chosen to admit just one CH-arc.

Proof. Suppose first that G is bipartite. By hypothesis there is an edge e in EG−EH .
By the 2-connectedness of G and Theorem 3 there are vertex disjoint paths P and Q in
EG−EH joining the ends of e to two distinct vertices u and v, respectively, in V H such
that neither P nor Q has an inner vertex in V H . Since H is even-circuit-connected and
therefore connected, a path R in H joins u to v. Thus P ∪ {e} ∪ Q ∪ R is a circuit C in
G meeting EH (since u 6= v) and having P ∪ {e} ∪Q as its unique CH-arc. Moreover C
is even since G is bipartite.

Suppose therefore that G is not bipartite. Again we may construct the circuit C as
in the previous case, and the proof is complete if C is even. Suppose therefore that C
cannot be chosen to be even. Since G is even-circuit-connected there exists an even circuit
D which meets EH and EG − EH . Let S and T be two distinct DH-arcs, joining w
to x and y to z, respectively. The fact that D meets EH implies w 6= x, y 6= z and
{w, x} 6= {y, z}. Let U be a path in H joining w to x. Since H is 2-connected there exist
two vertex disjoint paths V and W in H joining y and z, respectively, to distinct vertices
of U and such that neither has an inner vertex in V U . Let s and t be the ends of V and
W , respectively, in V U . By assumption S ∪ U is an odd circuit and therefore it includes
a path X, joining s to t, such that

|X| ≡ |T | + |V | + |W | (mod 2).
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Then T ∪ V ∪ W ∪ X is a circuit C of even length, and the only CH-arcs are T and
possibly S.

Finally suppose that H is not bipartite. Therefore H has an odd circuit O. Since H is
even-circuit-connected and therefore 2-connected, there are vertex disjoint paths M and
N in H joining w and x, respectively, to distinct vertices p and q in V O but having no
inner vertex in V O. Since O is odd, it includes a path Y joining p and q such that

|Y | ≡ |M | + |N | + |S| (mod 2).

Then M ∪ N ∪ S ∪ Y is an even circuit C in G, and S is the unique CH-arc.
It remains to show that G[H ∪ C] =: H ′ is even-circuit-connected. Suppose that

{K1, K2} is a bipartition of EH ′. If K1 ⊇ EH and K2 ⊆ EH ′ − EH then C is an even
circuit which meets K1 and K2. Thus we may assume that Kl ∩ EH =: K ′

l 6= ∅ for
l = 1, 2. By the assumption that H is even-circuit-connected there exists an even circuit
in H which meets K ′

1 and K ′
2, and therefore K1 and K2.

2

Lemma 4 shows that every even-circuit-connected graph G has an arc decomposition
G0, G1, . . . , Gn with at most one 2-arc adjunction. The single 2-arc adjunction is necessary
if and only if G is not bipartite. In this case the arc decomposition can be chosen so that
G1 is obtained from G0 by a 2-arc adjunction as we see in the following theorem.

Theorem 4 An even-circuit-connected graph G has an arc decomposition G0, G1, . . . , Gk

such that Gi is obtained from Gi−1 by a single arc adjunction for all i > 1.

Proof. By Lemma 4 let H0, H1, . . . , Hn be an arc decomposition of G such that Hi is
obtained from Hi−1 by a 2-arc adjunction for some i > 1 and Hj is obtained from Hj−1

by a single arc adjunction for all j 6= i. If Hi is bipartite, then the theorem holds since
Hi may be constructed from G0 by single arc adjunctions. Therefore we may assume that
Hi is non-bipartite. Let EHi −EHi−1 = P ∪Q, where P and Q are the two HiHi−1-arcs.
Let P join w to x and Q join y to z. We distinguish cases according to whether w, x, y, z
are distinct.

Case 1. Suppose that w, x, y, z are distinct. Since Hi−1 is 2-connected, we may assume
by Theorem 3, the symmetry of w and x and the symmetry of y and z that Hi−1 has
vertex disjoint paths R joining w to y and S joining x to z. Similarly there are two vertex
disjoint (V R, V S)-paths T and U in Hi−1 having no internal vertex in V R ∪ V S. Let T
join vertex a in V R to vertex b in V S and let U join vertex c in V R to vertex d in V S.
With no less generality we may assume that c ∈ V R[a, y]. Then R[c, a] ∪ T ∪ S[b, d] ∪ U
is an even circuit C, since Hi−1 is bipartite. Note also that P ∪ R[w, a] ∪ T ∪ S[b, x] and
Q ∪ R[y, c] ∪ U ∪ S[d, z] are odd circuits A and B, respectively, for neither G[Hi−1 ∪ P ]
nor G[Hi−1 ∪ Q] is an even-circuit-connected graph because Hi is non-bipartite.

Let G0 := G[C] and D = P∪R∪Q∪S. Then D is an even circuit since D = A+B+C.
Furthermore observe that G1 := G[C ∪D] is a non-bipartite even-circuit-connected graph
obtained from G0 by a 2-arc adjunction. Thus the assertion follows from Lemma 4.
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Case 2. In the remaining case observe that w 6= x, y 6= z and {w, x} 6= {y, z} for there
exists an even circuit which includes P ∪Q and meets EHi−1. Thus we may assume that
x = y and |{w, x, z}| = 3 without loss of generality. If there are edges e and f in EHi−1

joining x to w and z respectively, then set R = {e} and S = {f}. Otherwise, since Hi−1

is 2-connected, x is joined in Hi−1 by an edge g to a vertex v not in {w, x, z}. Without
loss of generality we assume that there are vertex disjoint paths R′ and S joining v to w
and x to z, respectively. Set R = R′ ∪ {g}. By the 2-connectedness of Hi−1 there exists
a path T in Hi−1 −{x} joining a vertex a in V R to a vertex b in V S but having no inner
vertex in V R∪V S. Then C := R[a, x]∪S[x, b]∪T is an even circuit for Hi−1 is bipartite.
Set

D = P ∪ R[w, a] ∪ T ∪ S[b, z] ∪ Q.

Observe that D is an even circuit since D = C + P + R + Q + S and P + R and Q + S
are odd circuits. Finally set G0 = G[C] and G1 = G[C ∪ D]. Then G1 is a non-bipartite
even-circuit-connected graph which can be obtained from G0 by a 2-arc adjunction. Again
the assertion follows from Lemma 4.

2

Remark 2 In the previous proof G1 is an even subdivision of E2, E3, O2, V1, V2, V3,
V4 or V5, where V1, V2, V3, V4 and V5 are the graphs depicted in Figure 6. Note that the
graphs in Figure 6 are J-orientable with respect to any assignment J of clockwise parities.

4 Proof of Theorem 1

For the rest of the paper let G be a graph and J an assignment of clockwise parities to
the even circuits of G. Assume that G is minimally J-nonorientable with respect to the
deletion of an edge. Let G0, G1, . . . , Gk be an arc decomposition of G, where Gi is obtained
from Gi−1 by a single arc adjunction for i > 1 and G1 is isomorphic to an even subdivision
of O1, O2, E1, E2, E3, V1, V2, V3, V4 or V5. Since all possibilities for G1 are either in the
list of graphs in Theorem 1 or J ′-orientable with respect to any assignment J ′, we may
assume that k > 1. Let H := Gk−1 and let P be the unique H-arc. Fix a J-orientation of
H and extend it to an orientation of G arbitrarily. Since G is J-nonorientable there exist
two even circuits A and B including P such that A does not have the clockwise parity
prescribed by J but B does. The following lemma shows that the even circuits A and B
can be chosen with these properties so that G[A ∪ B] is fairly simple.

Lemma 5 The even circuits A and B can be chosen so that G[A ∪ B] is isomorphic to
an even subdivision of O1, O2, E1, E2, E3, V1, V2, V3, V4 or V5.

Proof. We assume that A and B have been chosen with the properties above so that
A ∪ B is minimal.
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Figure 7: G is generated by the even circuits A and B and the two paths S and T . The
paths S and T are dotted because they may intersect X and Y .

Let Q be the first AB-arc we reach when traversing B in a particular direction starting
at P and let R be the first AB-arc we reach when traversing B in the opposite direction,
again starting at P . If there exists an even circuit in A ∪ Q which includes P ∪ Q or an
even circuit in A ∪ R which includes P ∪ R then let B′ be this even circuit. Otherwise
there exists an even circuit B′ in A ∪ Q ∪ R which includes P ∪ Q ∪ R.

First we show that B′ has the clockwise parity prescribed by J . Suppose the contrary.
The minimality of A∪B implies A∪B = B′∪B and therefore A+B′ ⊆ B. Furthermore
A + B′ is non-empty and the union of circuits. Therefore A + B′ = B, a contradiction to
P ⊆ B.

If there is a unique AB′-arc then G[A ∪ B′] is isomorphic to an even subdivision of
either O1 or E1. Otherwise G[A∪B′] is isomorphic to an even subdivision of O2, E2, E3,
V1, V2, V3, V4 or V5.

2

If G[A ∪ B] is an even subdivision of O1, O2, E1, E2 or E3 then we have proved
Theorem 1, for in these cases A+B is an even circuit with the clockwise parity prescribed
by J since A+B ⊆ H . Thus we may assume that for all choices of A and B the symmetric
difference A + B is the union of two edge-disjoint odd circuits U and W in H .

Since H is 2-connected there exist vertex disjoint (V U, V W )-paths S and T in H
having no internal vertex in V U ∪V W . Note that |V U ∩V W | ≤ 1 and if |V U ∩V W | = 1
we may choose S and T so that V S = V U ∩ V W and V T ∩ V U ∩ V W = ∅. Observe also
that G[S∪T∪U∪W ] contains exactly two even circuits C and D, and that C+D = U+W .
In the following lemma we show that G is spanned by the even circuits A and B and the
paths S and T . (See Figure 7.)
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Figure 8: Situation in Lemma 7.

Lemma 6 G = G[A ∪ B ∪ S ∪ T ].

Proof. The set {A, B, C, D} of even circuits is J-intractable, for C and D both have
the clockwise parity prescribed by J since C ∪ D ⊆ EH . The assertion follows by the
minimality of G.

2

The set (A ∪ B) − (U ∪ W ) is the union of two vertex disjoint paths X and Y if
V U ∩ V W = ∅. In this case let X join vertex w in U to vertex y in W and let Y join
vertex x in U to vertex z in W . If V U∩V W 6= ∅ then let X be the path (A∪B)−(U∪W )
and V Y = V U ∩ V W . Again we let X join vertex w in U to vertex y in W , but we also
write V U ∩ V W = {x} and z = x in this case. (See Figure 7.)

We may assume that A and B are chosen to minimise A ∩B. We complete the proof
by showing, in the next series of lemmas, that there is no A ∪ B-arc joining a vertex of
V X to a vertex of V Y , no A ∪ B-arc joining a vertex in V U − {w, x} to a vertex in
V W − {y, z} and no A ∪ B-arc joining a vertex in (V U ∪ V W ) − {w, x, y, z} to a vertex
in V X ∪ V Y , and that in the remaining case G is an even subdivision of a ∆-graph and
J prescribes the even clockwise parity to an odd number of the even circuits in G.

Lemma 7 There is no A ∪ B-arc joining a vertex of V X to a vertex of V Y .

Proof. Suppose such an arc R were to exist and that it connects vertex a in V X to
vertex b in V Y . (See Figure 8.) Being a subpath of S or T by Lemma 6, it cannot join
w to x or y to z. Let C denote the unique even circuit in A∪B ∪R that includes P ∪R.

Suppose first that C is J-oriented. Then {A, C} is a pair of even circuits, both
including P , such that A is not J-oriented but C is. Therefore, by assumption, A + C
is the union of two odd circuits. This is, however, a contradiction to the minimality of
A ∩ B since A ∩ C is either X[w, a] ∪ Y [x, b] or X[a, y] ∪ Y [b, z].

If C is not J-oriented then the same argument works if we replace A by B in the
argument above.

2
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Either S or T must have an A ∪ B-arc. Without loss of generality suppose that S has
an A ∪ B-arc and, throughout the rest of the paper, let R be the first such arc encountered
as S is traversed from its end in U to its end in W . From Lemma 7 we conclude that R
cannot join a vertex of V X to a vertex of V Y . However the next lemma shows that one
end of R is in V X ∪ V Y .

Lemma 8 There is no A ∪ B-arc that joins a vertex in V U − {w, x} to a vertex in
V W − {y, z}.

Proof. First consider the case that V U ∩ V W = ∅. Let Q be an A ∪ B-arc that joins
a vertex in V U − {w, x} to a vertex in V W − {y, z}.

Let E and F be the two even circuits in U ∪ W ∪ Q ∪ Y ∪ X[a, y], where we assume
without loss of generality that P ⊆ X. Since E ∪ F ⊆ H , E and F are of the prescribed
clockwise parity and {A, B, E, F} is a J-intractable set of even circuits. Therefore G =
G[A ∪ B ∪ Q]. Observe that if G[A ∪ E] = G or G[B ∪ F ] = G then G[A ∪ F ] 6= G and
G[B ∪ E] 6= G. By the symmetry of E and F we therefore assume that G[A ∪ E] 6= G
and G[B ∪ F ] 6= G.

The symmetric difference A + E is an even circuit in U ∪ W ∪ Q ∪ X. Depending on
the clockwise parity of A + E either {A, E, A + E} or {A + E, B, F} is a J-intractable
set of even circuits and therefore either G = G[A ∪ E] or G = G[B ∪ F ], a contradiction.

Now we consider the case that V U ∩ V W 6= ∅ and, therefore, x = z and P ⊆ X.
Let E and F be the two even circuits in U ∪ W ∪ Q. Since E ∪ F ⊆ H , E and F
have the clockwise parity prescribed by J and thus {A, B, E, F} is a J-intractable set
of circuits. There exists at least one even circuit M that includes Q and X. Moreover
either A + E = M or A + F = M . Without loss of generality let A + E = M . Then
either {A, E, M} or {B, F, M} is a J-intractable set of circuits, which is a contradiction
to the minimality of G for both G[A ∪E] and G[B ∪ F ] are graphs with maximal degree
3, whereas x is of degree at least 4 in G.

2

In the following lemma we show that both ends of R are either in V X or in V Y .

Lemma 9 There is no A ∪ B-arc that joins a vertex in (V U ∪ V W ) − {w, x, y, z} to a
vertex in V X ∪ V Y .

Proof. Without loss of generality we assume that Q is an (A ∪ B)-arc that joins a
vertex in V U − {w, x} to a vertex a in V X − {w}. (See Figure 9.)

Let E and F be the two even circuits in U ∪W ∪Q∪Y . If it is not possible to orient P
so that E and F have the clockwise parity prescribed by J then {C, D, E, F} would be a
J-intractable set of circuits. This conclusion would be a contradiction to the minimality
of G: X[w, a] is not contained in C ∪ D ∪ E ∪ F since it cannot be contained in S ∪ T
because S and T are vertex disjoint.

Therefore we may assume that E and F have the prescribed clockwise parity and
{A, B, E, F} is a J-intractable set of even circuits. Either A + E or A + F is equal to the
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Figure 10: Situation in Lemma 10

unique even circuit in U ∪ Q ∪ X. Without loss of generality we assume that A + E is
equal to this even circuit. Then either {A, E, A + E} or {A + E, B, F} is a J-intractable
set of even circuits, which is a contradiction to the minimality of G for neither W ⊆ A∪E
nor W ⊆ B ∪ F .

2

Thus R joins either two vertices in V X or two vertices in V Y , as in Figure 10. In the
following lemma we show that G is generated by the even circuits A and B and by the
arc R and that G is an even subdivision of a ∆-graph.

Lemma 10 If there is an A ∪ B-arc that joins two vertices in V X or two vertices in V Y ,
then G is an even subdivision of a ∆-graph and J prescribes the even clockwise parity to
an odd number of the even circuits of G.
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Proof. Let Q be an A ∪ B-arc which joins two vertices a and b in V X. We assume
that a ∈ V X[w, b]. (See Figure 10.)

First we show that G = G[A ∪ B ∪ Q]. Let E and F be the two even circuits in
U ∪W ∪X[w, a]∪Q∪X[b, y]∪Y . As in the proofs of the previous lemmas we may orient
P so that E and F have the prescribed clockwise parity. Otherwise G = G[C∪D∪E∪F ]
and we reach a contradiction: the fact that S and T are vertex disjoint implies that
Q ∪ X[a, b] 6⊆ S ∪ T , so that X[a, b] 6⊆ C ∪ D ∪ E ∪ F . We conclude that {A, B, E, F} is
a J-intractable set of even circuits.

Suppose Q ∪ X[a, b] is an even circuit M . Then either A + E = M or A + F = M ,
and without loss of generality we assume A + E = M . Consequently, either {A, E, M}
or {B, F, M} is a J-intractable set of even circuits. We now have a contradiction since
neither U ∪ W ⊆ A ∪ E nor U ∪ W ⊆ B ∪ F .

Thus Q ∪ X[a, b] is odd and G is an even subdivision of a ∆-graph.
2
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