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Abstract

It was conjectured by Tutte that every 4-edge-connected graph admits a nowhere-
zero 3-flow. In this paper, we give a complete characterization of graphs whose
squares admit nowhere-zero 3-flows and thus confirm Tutte’s 3-flow conjecture for
the family of squares of graphs.

1 Introduction

All graphs considered in this paper are simple. Let G = (V, E) be a graph with vertex set
V and edge set E. For any v € V(G), we use dg(v), Ng(v) to denote the degree and the
neighbor set of v in GG, respectively. The minimal degree of a vertex of G is denoted by
d(G). We use K,, for a complete graph on m vertices, P, for a path of length ¢ and W,
for a graph obtained from a 4-circuit by adding a new vertex x and edges joining x to all
the vertices on the circuit. We call = the center of this W, and each edge with x as one
end is called a center edge. Let D be an orientation of G. Then the set of all edges with
tails (or heads) at a vertex v is denoted by E*(v) (or E~(v)). If an edge uv is oriented
from u to v under D, then we say D(uv) = u — v. The square of G, denoted by G?, is
the graph obtained from G by adding all the edges that join distance 2 vertices in G. We
refer the reader to [1] for terminology not defined in this paper.

Definition 1.1 Let D be an orientation of G and f be a function: E(G) — Z. Then
(1). The ordered pair (D, f) is called a k-flow of G if —k+1 < f(e) < k—1 for every
edge e € E(G) and X .cp+(v) f(€) = Xeep-) f(e) for every v € V(G).
(2). The ordered pair (D, f) is called a Modular k-flow of G if for every v € V(G),
ZEGEJ"(U) f(@) = ZeGE*(U) f(@) (mOd k)
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The support of a k-flow (Modular k-flow) (D, f) of G is the set of edges of G with
fle) # 0 (f(e) Z 0 (mod k)), and is denoted by supp(f). A k-flow (D, f) (Modular
k-flow) of G is nowhere-zero if supp(f) = E(G).

For convenience, a nowhere-zero k-flow is abbreviated as a k-INZF. The concept of
integer-flow was introduced by Tutte([7, 8] also see [9, 4]) as a refinement and generaliza-
tion of the face-coloring and edge-3-coloring problems. One of the most well known open
problems in this subject is the following conjecture due to Tutte:

Conjecture 1.2 (Tutte, unsolved problem 48 in [1]) Every 4-edge-connected graph admits
a 3-NZF.

Squares of graphs admitting 3-NZF’s are to be characterized in this paper. The fol-
lowing families of graphs are the exceptions in the main theorem.

Definition 1.3 7,3 ={T | T is a tree and dp(v) =1 or 3 for every v € V(T')}

Definition 1.4 7,3 ={T | T € Ty 3 or T is a 4-circuit or T can be obtained from some
T" € T, 3 by adding some edges each of which joins a pair of distance 2 leaves of T'}

The following is the main result of this paper.

Theorem 1.5 Let G be a connected simple graph. Then G? admits a 3-NZF if and only
if G ¢ Tp3.

An immediate corollary of Theorem 1.5 is the following partial result to Tutte’s 3-flow
conjecture (Conjecture 1.2).

Corollary 1.6 Let G be a graph. If §(G?) > 4 then G* admits a 3-NZF.
This research is motivated by Conjecture 1.2 and the following open problem:

Conjecture 1.7 (Zhang [11]) If every edge of a 4-edge-connected graph G is contained
in a circuit of length at most 3 or 4, then G admits a 3-NZF.

Theorem 1.5 and the following early results are partial results of the open problem
above.

Theorem 1.8 (Catlin [2]) If every edge of a graph G is contained in a circuit of length
at most 4, then G admits a 4-NZF.

Theorem 1.9 (Lai [5]) Every 2-edge-connected, locally 3-edge-connected graph admits a
3-NZF.

Theorem 1.10 (Imrich and Skrekovski [3]) Let G and H be two graphs. Then G x H
admits a 3-NZF if both G and H are bipartite.
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2 Splitting operation, flow extension and lemmas

Definition 2.1 (A special splitting operation) Let G be a graph and e = xy € E(G). The
graph G, is obtained from G by deleting the edge e and adding two new vertices ' and
y' and adding two new edges, e, and ey, joining v and y', y and x', respectively.

Definition 2.2 Let G be a graph, let (D, f) be a 3-flow of G and let F' C E(G)\ supp(f).
A 3-flow (D', ') of G is called an (F, f)-changer if F'U supp(f) C supp(f’).

Lemma 2.3 ([7]) A graph G admits a k-flow (D, f1) if and only if G admits a Modular
k-flow (D, f3) such that fi(e) = fo(e)( mod k) for each e € E(G).

An orientation of a graph G is called a modular 3-orientation if | E™ (v)| = |E~(v)| (mod 3),
for every v € V(G). The following result appears in [4, 6, 9], but by Lemma 2.3, we can
attribute it to Tutte.

Lemma 2.4 ([7]) Let G be a graph. Then G admits a 3-NZF if and only if G has a
modular 3-orientation.

A partial 3-orientation D of GG is an orientation of some edges of G satisfying
|Et(v)] = |E~(v)] (mod 3), for any v € V(G). The support of D is the set of edges
oriented under D and is denoted by supp(D). Clearly the partial orientation obtained by
reversing every oriented edge of a partial 3-orientation is also a partial 3-orientation.

Let D be a partial 3-orientation of G' and let C' = vgvy - - - vi_109 be a circuit of G. A
circuit-operation along C is defined as following: For 0 < i < k—1, if D(v;v;41) = v; —
vip1 (mod k), then reverse the direction of this edge; if (v;v;41) (mod k) is not oriented
under D, then orient it as v; — vi1; if D(v;vi11) = viy1 — v; (mod k) then vyv;4; loses
it’s orientation.

Lemma 2.5 Let G be a graph, (D, f) be a 3-flow of G and H be a subgraph of G

(1). If H= W, and e € E(H) \ supp(f) is a center edge, then an ({e}, f)-changer
exists.

(2). If H is a circuit of length 3 with E(H )N supp(f) = {e}, then an (E(H)\ {e}, f)-
changer exists.

Proof. (1). Since H = Wy, let x be the center of H and let ujusuzusu; be the 4-
circuit H \ z. Since G has a 3-flow (D, f), then G has a partial 3-orientation D* with
supp(D*) = supp(f). We need only to find a partial 3-orientation D’ such that supp(D*)U
{e} C supp(D’). Since e is a center edge, without loss of generality, assume that e = zu;.
First we assume E(H)\{e} C supp(D*). Without loss of generality, assume D*(ujuy) =
u; — ug. Then D*(ugx) = & — ug. Otherwise, we do a circuit-operation along wujuszu;
and then get a needed partial 3-orientation D" of G. For the same reason, u, must be the
tail (or head) of both ujus and zu,. By symmetry, we consider the following two cases.
Case 1. D*(uyuy) = ug — uyg and D*(xuy) = © — uy.

THE ELECTRONIC JOURNAL OF COMBINATORICS 10 (2003), #R5 3



We may assume that ug is the tail (or head) of all edges incident with it in H. Oth-
erwise, there exists a directed 2-path zusu; (or w;uzx) for some i € {2,4}. Then we
do circuit-operations along zusu;x (or u;ugzru;) and along uju;zu;. Therefore, we get a
needed partial 3-orientation of D’ of G.

If all edges in H have uz as a tail, then we do circuit-operations along zu usz, along
ugruzuy, along rususr and along usxuqus; If all edges in H have ugz as a head, then we
do circuit-operations along uyususzru; and along usrusus. In both cases, we get a needed
partial 3-orientation D’ of G.

Case 2. D*(uquy) = ug — uy and D*(xuy) = ug — x.

Similar to Case 1, we may assume ug be the tail (or head) of all edges incident with
it in H. If all edges in H have ug as a tail, then we do circuit-operations along zru usz,
along ususuiusus and along uszrusus; If all edges in H have uz as a head, then we do
circuit-operations along u,rusuy, along usuusuzuy and along ugzrusuy. In both cases, we
get a needed partial 3-orientation D’ of G.

If supp(D*) misses some other edges of F(H), say e* = ab € E(H) \ supp(D*), then
we define D*(ab) = a — b or b — a, by the proof of Case 1 and Case 2, we can find a
needed D’ of G.

(2). it is trivial. W

Lemma 2.6 For each G € T, 3 and each eq € E(G), the graph G* admits a 3-flow (D, f)
such that supp(f) = E(G?) \ {eo}

Proof. Induction on |E(G)|. It is obviously true for graphs G with G* = K, (including
G = (4, the circuit of length 4). So, assume that |V(G)| > 5 and let D be any fixed
orientation of G

Let e = zy with dg(z) = dg(y) = 3. Then G, consists of two components, say G4
and Gy. Clearly, Gy, Gy € T, 3. Without loss of generality, let ey € E(G). By induction,
G? admits a 3-flow (D, f;) such that supp(f1) = E(G?) \ {eo} and G% admits a 3-flow
(D, f) that supp(fa) = E(G3) \ {e}-

Then, identifying the split vertices and edges, back to G, (D, f1+ f2) is a 3-flow (D, f)
with supp(f) = E(G?) \ {eo}. W

Lemma 2.7 (1). Let G be a k-path with k > 2 or an m-circuit with m = 3 or m > 5.
Then G? admits a 3-NZF.

(2). Let G be a graph obtained from an r-circuit xoxy - - - x._1x9 by attaching an edge
zv; at each x; for 0 < i <r —1, where v; # v; if i # j. Then G* admits a 3-NZF.

(8). Let G be a graph obtained from an m-circuit xoxy - - - Tpy_1%0 by attaching an edge
Tn_1V at Ty, alone, where m > 5. Then G? admits a 3-NZF.

Proof. (1). If G is an m-circuit with m = 3 or m > 5, then G? is a cycle (every vertex
is of even degree) and G? admits 2-NZF. If G is a k-path with k£ > 2, by induction on k
and using Lemma 2.5-(2), G* admits a 3-NZF.

(2). For r > 5 (or r = 3): let D be an orientation such that v; (0 < i < r —1)
is the tail of every edge of G? incident with it and all the other edges are oriented as
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Ti — Tiv1, T; — Tipo (mod 1) (or z; — x;41 (mod 3) only for » = 3). Obviously, D is a
modular 3-orientation of G?.

For r = 4: let D be the orientation such that vy and v, be the tail of every edge of G?
incident with it, v; and vs be the head of every edge of G? incident with it, xgz1237270
as a directed circuit and other edges are oriented as x5 — xg, £1 — x2. Obviously, D is a
modular 3-orientation of G?.

(3). Orient all the edges as z; — x;+1, ©; — Xip2 (mod m) for 0 < i < m — 1 and
let v be the tail of every edge of G? incident with it. Then reverse the direction of the
following edges: xox;,_1, ToTm_o. Clearly, this orientation is a modular 3-orientation of

G

3 Proof of the main theorem

Proof. — By contradiction. Suppose G € ’1_'1,3. Let G be a counterexample with
|[V(G)| + |E(G)| as small as possible. Clearly |V(G)| > 5 and G contains no circuits. So
G € T13. Let v € V(G) be a degree 3 vertex such that Ng(v) = {v1,v9,v3}, dg(vy) =
da(vg) = 1. Clearly, G; = G\ {v1,v2} € T13. Since G? has a modular 3-orientation D
and both v; and v, are degree 3 vertices in G2, then this orientation restricted to the edge
set of G? will generate a modular 3-orientation of G3. Therefore, G admits a 3-NZF, a
contradiction.

<= Let G be a counterexample to the theorem such that

(i). |E(G)| — |V(G)| is as small as possible,

(ii). subject to (i), |E(G)]| is as small as possible.

Note that |[E(G)| — |V(G)| + 1 is the rank of the cycle space of G.

Claim 1. Let e = zy € E(G). If dg(x) > 3 and dg(y) > 2, then xy is not a cut edge
of G.

If ey is a cut-edge, then at least one component of G, is not in 7 3, say, Gy is not,
while Gy might be. By induction, let (D, f;) be a 3-flow of G? for each i = 1,2 such that
f1 is nowhere-zero, f, might miss only one edge e, (that is a copy of ey). Without loss of
generality, assume that fi(e,) + fa(e;) # 0 (mod (3)). Then, identifying the split vertices
and edges, back to G, (D, fi+ f») is a nowhere-zero Modular 3-flow of G?. By Lemma 2.3,
G? admits a 3-NZF, a contradiction.

Claim 2. dg(x) <3 for any x € V(G).

Otherwise, assume that dg(z) > 4 for some vertex z € V(G). Clearly G % Ki,
for m > 4 since K, is not a counterexample. So there exists eg = zy € E(G) with
da(y) > 2. By Claim 1, e is not a cut edge of G and G| = G., ¢ T1.3. Then by (i), G2
admits a 3-NZF.

In G%, identify z and 2/, y and ¢/, and use one edge to replace two parallel edges, by
Lemma 2.3, we will get G* and a Modular 3-flow (D, f) of G* such that E(G?)\ supp(f) C
{zv or yw | v € Ng(y), w € Ng(z)}. Let C(x) = G*[Ng(x)U{z}]. Then C(x) is a clique
of order at least 5. We are to adjust (D, f) so that the resulting Modular 3-flow (D, f’)
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of G? misses only edges of {uv | u,v € V(C(z))}. For each edge zv which is missed by
supp(f) and xv ¢ E(C(z)), ryve must be a circuit of G2, so let (D, f,,) be a 3-flow of
G? with supp(fu) = {zy,yv, zv} and fo.(yv) + f(yv) # 0 (mod 3). Now (D, f + fu)
is a Modular 3-flow of G? whose support contains zv, yv, but may miss xy. Repeat this
adjustment and do the similar adjustment for the edges yw not in the support until we
get a Modular 3-flow (D, f’) of G? such that E(G?) \ supp(f’) € E(C(x)). Since each
edge in C'(z) is contained in some K5 and thus is a center edge in some Wy, by Lemma 2.3
and Lemma 2.5-(1), G* admits a 3-NZF, a contradiction.

Claim 3. No degree 2 vertex is contained in a 3-circuit.

By contradiction. Assume zyzzx is a circuit of G with dg(x) = 2. If dg(y) = 2, then
we must have dg(z) = 3. Therefore G; = G\ {ry} ¢ 7,3 and G? = G?, contradicting
(ii). So dg(y) = dg(z) = 3.

Let Ng(y) = {z,v/, 2z} and Ng(2) = {z,y,2'}. Let G; = G — {z}. Since (Ng(y) N
Ng(2)) \ {z} = 0 (otherwise, let Gy = G'\ {yz}, then G2 = G?, G ¢ 7T, 3, contradicting
(ii)) and dg,(y) = 2, then G; € 71 3. So G? admits a 3-NZF. Since E(G?) \ E(G?) =
{zy,xy’, vz, 7'}, by Lemma 2.5-(2), G* admits a 3-NZF, a contradiction.

Claim 4. No degree 2 vertex of G is contained in a 4-circuit.

Assume C' = zujugusx is a 4-circuit of G and dg(z) = 2. By Claim 3, uyus ¢ E(G).
Let u} be the adjacent vertex of u; which is not in V(C') if dg(u;) = 3 for some i € {1, 2, 3}.
Let Gy = G\ {z}. We consider the following 3 cases.

Case 1. dg(uy) = dg(ug) = 2.

Then dg(us) = 3 and dg(uh) > 2 (if dg(uh) = 1, it’s easy to show G? admits a 3-NZF).
Clearly, uqus is a cut edge, contradicting Claim 1.

Case 2. Exactly one of uy,us has degree 3.

Assume dg(u1) = 3 and dg(us) = 2. Since dg, (u1) = 2, if dg, (v]) = 2 then u] is not
contained in a 3-circuit in G (by Claim 3), and so G ¢ 7; 3. By induction, G? admits a
3-NZF. Since E(G?) \ E(G?) = {zu}, zui, vus, uz} and G*[V(C) U {u}}] contains a W,
with x as its center, by Lemma 2.5-(1), G? admits a 3-NZF, a contradiction.

Case 3. dg(u1) = dg(usz) = 3.

If u} = wj, then ujujusug is a 3-path, otherwise ujujuqusufy is 4-path. In both cases
G? admits a 3-NZF. Since F(G?)\ E(G?) = {zu}, vuy, zus, vus, rus} and each edge ru;
or xu; is contained in some W, in G? as a center edge for 1 < i < 3 and j = 1,3, by
Lemma 2.5-(1), G* admits a 3-NZF. a contradiction.

Claim 5. For any v € V(G), dg(v) # 2.

Otherwise, if there exists v € V(G) such that dg(v) = 2, then by Claim 3-4, v is not
contained in any circuits of length 3 or 4. By Lemma 2.7-(1), G cannot be a k-path with
k > 2 or an m-circuit with m = 3 or m > 5. Let us consider the following cases.

Case 1. There exists a path P,, = vivy---v,, such that m > 3, v = v; for some
2<t<m—1,dg(vg) =2for 2<k <m—1and dg(v1) # 2, dg(vm) # 2.

Clearly, at least one of vy,v,, has degree 3. If dg(v;) = 3 for i = 1, or m, let
Ne(v) \ V(P,) = {v,v/}. Clearly, G; = G\ {v2,v3,...,0m_1} ¢ T13 (because by

1) 7
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Claim 3, degree 2 vertices are not contained in any 3-circuits of G). By Claim 1, G}
is connected. So G? admits a 3-NZF (D, f;). By Lemma 2.7-(1), P? admits a 3-NZF
(D, f2). Then G* admits a 3-flow (D, f) with supp(f) = supp(fi) U supp(fs). By Claim
3-4, E(G?) \ supp(f) = {vav}, vov}, vy_10,, V10l }, then by Lemma 2.5-(2), G* admits
a 3-NZF, a contradiction.

Case 2. There exists a m-circuit C' = wvjvg---vv; with m > 5, dg(v;)) = 2 for
1<i<m-—1,dg(vy,) =3and v =uv for some 1 <t <m—1.

Suppose that vy € Ng(v,,) \ V(C). By Claim 1, dg(vo) = 1. So by Lemma 2.7-(3), G*
admits a 3-NZF, a contradiction.

Claim 6. Let e = xy € E(G) with dg(x) = dg(y) = 3. Then e is contained in a circuit
of length 3 or 4.

By contradiction. Let G; be the graph obtained from G by deleting the edge e and
adding a new vertex y' and a new edge xy’. Since G contains no degree 2 vertices and
da,(y) = 2, then G ¢ 7, 3. By Claim 1, e is not a cut edge of G, then by (i), G? admits a
3-NZF (D, f1). Identify y and %/, the resulting 3-flow (D, f5) in G? misses only two edges
y1x and yox where N(y) = {y1, 92, ¢} (since zy is not contained a circuit of length 3 or
4). By Lemma 2.5-(2), G? admits a 3-NZF, a contradiction.

Claim 7. For each x € V(G) with dg(x) =3, |Ng(x) N V3| < 2, where V3 is the set of
all the degree 3 vertices of G.

By contradiction. Assume that U = {uy, ug, us} = Ng(z) NV3. Let Gy = G\ {z}. By
Claim 1, G is connected. Since G contains no degree 2 vertices, G ¢ ’2_'173 and G2 admits
a 3-NZF (D, f). By Claim 6, each zu; (1 <1 < 3) is contained a circuit of length at most
4. We consider the following 3 cases.

Case 1. G[U] contains at least 2 edges.

Suppose that wjus, ugus € E(G). Let u € Ng(u;) \ U for i = 1,3. If v} = ufj, then
G?[U U {u},z}] & K5, by Lemma 2.5-(1), we can get a 3-NZF of G?, a contradiction. If
u) # uf, then Gujujuguguly] is a 4-path, by Lemma 2.5-(1) (similar to Case 3 of Claim
4), we can get a 3-NZF of G?, a contradiction.

Case 2. G[U] contains exactly 1 edge.

Assume that wjuy € E(G). By Claim 6, each edge zu; (i = 1,2,3) is contained in
a circuit of length 3 or 4. So we may assume z € (Ng(uz) N Ng(ug)) \ {z}. Clearly,
G* = G?lU U{x,2}] & Ks5. Let u; € Ng(u;) \ (UU{z}) for i = 1,3. Clearly, E(G?)\
supp(f) € E(G*) U {zu}, zuj}. Since zujujz(j = 1,3) is a circuit of G, we can get a
3-flow (D, f1) such that E(G?) \ supp(fi) C E(G*). By Lemma 2.5-(1), we can get a
3-NZF of G?, a contradiction.

Case 3. G[U] contains no edges.

Assume that z; € (Ng(u1) N Ne(uz2)) \ {z} and 2o € (Ng(ui) N Ng(us)) \ {z}. Let
Gy = G\ {zu1}, then Gy ¢ 7,3 and G3 admits a 3-NZF (D, f1). Clearly, E(G?) \
supp(f1) = {zu1}. Since zu; is contained in a Wy which is contained in the graph induced
by {u1, 21, us, u3, v} in G* with z as center, by Lemma 2.5-(1), we can get a 3-NZF of G?,
a contradiction.
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Final Step. By Claim 2, Claim 5 and Claim 7, all vertices of G have degree 1 or 3 and
each degree 3 vertex is adjacent to at most 2 degree 3 vertices. So G[V3] is a path or a
circuit, hence G must be a graph obtained from an r-circuit xoz; - - - x,_129 by attaching
an edge x;v; at each z; for 0 < ¢ < r — 1, where v; # v; if ¢ # j, or a path zgz;--- 2,
by attaching an edge v;z; (1 <i <p—1) at each z;, where v; # v; if 7 # j. Clearly the
latter case is a graph in 7; 3. By Lemma 2.7-(2), G* admits a 3-NZF, a contradiction. H
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