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Abstract

A petal graph is a connected graph G with maximum degree three, minimum
degree two, and such that the set of vertices of degree three induces a 2–regular
graph and the set of vertices of degree two induces an empty graph. We prove here
that, with the single exception of the graph obtained from the Petersen graph by
deleting one vertex, all petal graphs are Class 1. This settles a particular case of a
conjecture of Hilton and Zhao.

∗corresponding author.
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1 Introduction

All graphs considered in this paper are finite, undirected, and without loops or multiple
edges. If G is a graph, we let V (G) and E(G) denote, respectively, the vertex and the
edge set of G. If S is a set of vertices or edges of G, we let G[S] denote the graph induced
by S in G. ∆(G) and δ(G) denote the maximum and minimum degree of G, respectively.
The core of G, denoted by G∆, is the subgraph of G induced by the vertices of degree
∆(G). If H is a subgraph of G, we let Γ(H) denote the set of vertices of G which are
adjacent in G to at least one vertex of H . For standard graph theoretic terminology, not
explicitly defined here, we follow [1].

A petal graph is a connected graph G such that:

1. ∆(G) = 3, δ(G) = 2;

2. G∆ is 2-regular;

3. Every edge of G is incident with at least one vertex in G∆.

If G is a petal graph and w is a vertex of G of degree two, having neighbours v1, v2, then
the path Pw = v1wv2 is a petal of G. We name w the centre of the petal and v1, v2 the
basepoints. By property 3, the basepoints of the petal Pw are in G∆. If distG∆

(v1, v2) = k,
we say that the size of the petal Pw is k, or that Pw is a k-petal (we assume the distance
between vertices belonging to distinct connected components of a graph to be infinite).
The petal size of G, denoted p(G), is the minimum size of the petals of G.

A (proper) k-edge colouring of a graph G is a map ϕ : E(G) → C, where |C| = k
and ϕ(e1) 6= ϕ(e2) for each pair (e1, e2) of adjacent edges of G. We say that the vertex
v is missing colour c ∈ C (with respect to the colouring ϕ) if no edge incident with v
is assigned colour c by the colouring ϕ. The chromatic index of G, denoted χ1(G), is
the minimum k for which G has a k-edge colouring. For a general introduction to edge
colouring, the interested reader is referred to [5]. As we shall only consider edge colourings
in this paper, the terms “colouring” and “edge colouring” will be used as synonyms.

A fundamental theorem due to Vizing [13] states that, for any graph G, we have

∆(G) ≤ χ1(G) ≤ ∆(G) + 1.

Correspondingly we say that G is Class 1 if χ1(G) = ∆(G) and Class 2 if χ1(G) =
∆(G) + 1. We say that G is critical if it is connected, Class 2, and G − e is Class 1 for
every edge e ∈ E(G). G is overfull if |E(G)| > b|V (G)|/2c · ∆(G), and it is easy to see
that, if G is overfull, then G is Class 2. For more information about overfull graphs see
[7].

Classifying a graph as Class 1 or Class 2 is a difficult problem in general (indeed, NP-
hard), even when restricted to the class of graphs with maximum degree three (see [12]).
As a consequence, this problem is usually considered on particular classes of graphs. One
possibility is to consider graphs whose core has a simple structure (see [2, 3, 4, 6, 8, 9,
10, 11, 14]). Vizing [14] proved that, if G∆ has at most two vertices, then G is Class 1.
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Fournier [6] generalized Vizing’s result by proving that, if G∆ contains no cycles, then
G is Class 1. Thus a necessary condition for a graph to be Class 2 is to have a core
that contains cycles. Hilton and Zhao [9, 10] considered the problem of classifying graphs
whose core is the disjoint union of cycles. Only a few such graphs are known to be Class 2.
These include the overfull graphs and the graph P ∗, which is obtained from the Petersen
graph by removing one vertex (see Fig.1). Notice that P ∗ is a petal graph and is not
overfull.

In [9] Hilton and Zhao posed the following conjecture:

Conjecture 1 Let G be a connected graph such that ∆(G∆) ≤ 2. Let G 6= P ∗. Then G
is Class 2 if and only if G is overfull.

In [9] the same authors showed this conjecture to be equivalent to the following:

Conjecture 2 Let G be a connected graph such that ∆(G) < 1
2
(|V (G)|+3) and ∆(G∆) ≤

2. Let G 6= P ∗ and let G not be an odd cycle 1. Then G is Class 1.

In this paper we shall prove that Conjecture 2 (and hence Conjecture 1) holds for all
graphs G with ∆(G) = 3, by proving the following:

Theorem 1 Let G be a connected graph such that ∆(G∆) ≤ 2 and ∆(G) = 3. Let
G 6= P ∗. Then G is Class 1.

The notion of petal graph will be particularly useful because, as we shall see, the proof
of Theorem 1 will be reduced to the proof of the following theorem:

Theorem 2 Let G be a petal graph, and let G 6= P ∗. Then G is Class 1.

Figure 1: The graph P ∗

1note that, in the original cited paper of Hilton and Zhao, by an oversight this conjecture was stated
without the hypothesis that G is not an odd cycle.
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2 Some useful lemmas

The first of the two following lemmas is due to Vizing [14], the second is an important
result of Hilton and Zhao [10] which will be essential for us:

Lemma 1 Let G be a critical graph. Then every vertex of G is adjacent to at least two
vertices of G∆.

Lemma 2 Let G be a connected Class 2 graph with ∆(G∆) ≤ 2. Then:

1. G is critical;

2. δ(G∆) = 2;

3. δ(G) = ∆(G) − 1, unless G is an odd cycle;

4. Γ(G∆) = V (G).

The following lemma motivates the introduction of petal graphs:

Lemma 3 Let G be a connected Class 2 graph with ∆(G) = 3 and ∆(G∆) ≤ 2. Then
G is a petal graph.

Proof. Property 1 and 2 of the definition of petal graph follow immediately from Lemma2.
Property 3 follows from Lemma2 and Lemma1. 2

Notice that Lemma3 reduces Theorem 1 to Theorem 2. From now on G will denote a
petal graph. The colour set will be the set {α, β, γ} and, if D ⊂ {α, β, γ}, D will denote
the set {α, β, γ} \ D. We need the following technical lemma:

Lemma 4 Let Ln denote, for any positive integer n, the graph obtained from a path
v0v1v2 · · · vn−1vn of length n by inserting at each of the inner vertices v1, v2, · · · vn−1 a 2-
path viwiyi, as shown in Fig.2 for n = 10. Let fi = wiyi and let φ : {v0v1, f1, f2, · · · fn−1} →
{α, β, γ} be an arbitrary assignment of colours. Let θ ∈ {φ(fn−1)}. Then φ can be
extended to a proper edge colouring φ̂ : E(Ln) → {α, β, γ}. Moreover such a colouring
can be chosen in order to satisfy the additional requirement that φ̂(vn−1vn) 6= θ.

v0 v1 v9

w1 w9

f1
f9

v10

y9y1

Figure 2: An example of a colouring of L10 under constraints
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Proof. The proof is by induction on n. Notice that the lemma holds trivially for n =
1. Let n ≥ 2, and assume that the lemma holds for all positive integers less than n.
Let H = Ln \ {v0, w1, y1}. Notice that H ∼= Ln−1. Let c ∈ {φ(v0v1), φ(f1)} and let
c′ ∈ {φ(v0v1), c}. Consider the assignment ψ : {v1v2, f2, · · · fn−1} → {α, β, γ} given by
ψ(v1v2) = c′ and ψ(e) = φ(e) for all e ∈ {f2, f3, · · · fn−1}. Using the inductive hypothesis
and the fact that H ∼= Ln−1, there exists a proper 3-colouring ψ̂ : E(H) → {α, β, γ}
extending ψ, and such that ψ̂(vn−1vn) 6= θ. Extend ψ̂ to a colouring φ̂ of G in the following
manner: let φ̂ |E(H)= ψ̂, φ̂(v0v1) = φ(v0v1), φ̂(f1) = φ(f1) and φ̂(v1w1) = c. Notice that

φ̂(vn−1vn) 6= θ. Thus φ̂ satisfies all the requirements of the statement of the lemma, so
that the lemma holds for the integer n as well. By induction, the proof is completed. 2

The next few lemmas concern the colourability of particular classes of petal graphs.
The following notation will be useful: if G is a petal graph and ϕ is a 3-colouring of
G, we let G(α, β) denote the subgraph of G induced by the set of edges coloured by ϕ
either α or β. Note that this graph has maximum degree two, so its connected components
consist of paths and even cycles. If e ∈ E(G(α, β)), we let G(α, β; e) denote the connected
component of G(α, β) containing the edge e.

Lemma 5 Let G be a petal graph such that p(G) = 1. Then G is Class 1.

Proof. Suppose that G is Class 2. By Lemma 2 , G is critical. Let Pw = v1wv2 be a
1-petal of G. Let G1 = G − w − v1v2. Since G is critical, G1 is 3-colourable. Suppose
that the length of the cycle of G∆ containing v1, v2 is at least four. Let u1v1, u2v2 be the
two edges adjacent to the edge v1v2 in G∆. Let G∗ be the graph obtained from G1 by
the identification of v1 and v2, and let v∗ be the vertex obtained from this identification.
Notice that there is a natural one-to-one correspondence between the set of 3-colourings
of G∗ and the set of those 3-colourings of G1 which assign different colours to the edges
u1v1 and u2v2. It is immediate to see that the graph G∗ is not a petal graph, but G∗

is connected, ∆(G∗) = 3 and ∆(G∗
∆) ≤ 2. Applying Lemma 3, we then have that G∗

is Class 1. By the above remark, there exists a 3-colouring of G1 under which u1v1 and
u2v2 get different colours. However, this colouring can easily be extended to a 3-colouring
of G, which gives a contradiction. Therefore we can assume that the cycle K of G∆

containing v1, v2 has length three, say K = uv1v2u. However, in this case, any 3-colouring
of G1 satisfies the property of assigning different colours to the edges uv1 and uv2. Again,
any such colouring can easily be extended to a 3-colouring of G, which gives another
contradiction. Therefore G cannot be Class 2 and hence is Class 1. 2

Lemma 6 Let G be a petal graph such that p(G) = 2. Then G is Class 1.

Proof. We will argue by contradiction, as before, so suppose that G is Class 2. By
Lemma 2, G is critical. Let Pw = v1wv2 be a 2-petal of G with centre w. Let u1v1xv2u2

be a 4-path (or possibly a 4-cycle) in G∆ containing v1v2 and let Pt = xty be the petal
of G containing the vertex x. Since G is critical, G − w is Class 1. Notice that under
no 3-colouring of G − w the vertices v1 and v2 can miss different colours, otherwise the
colouring itself can be immediately extended to a 3-colouring of G, thus contradicting the
assumption that G is Class 2. Let then ϕ0 be a 3-colouring of G−w. By the above remark,
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we can assume, without loss of generality, that ϕ0(u1v1) = α, ϕ0(v1x) = β, ϕ0(xv2) =
α, ϕ0(v2u2) = β, ϕ0(xt) = γ. Assume also, without loss of generality, that ϕ0(ty) = β.
Exchanging the colours between the edge xv2 and the edge xt, we obtain a colouring of
G − w under which the vertices v1 and v2 miss different colours, which contradicts the
above remark. Therefore G cannot be Class 2, and hence is Class 1. 2

Lemma 7 Let G be a petal graph such that p(G) = ∞. Then G is Class 1.

Proof. Again we will argue by contradiction, so let us assume that G is Class 2. Let
v0 ∈ V (G∆) and let K = v0v1 · · · vkv0 be the cycle of G∆ containing v0. For each i =
0, 1, 2, · · ·k, let Pwi

= viwiyi be the petal of G containing vi, and let fi = wiyi. Let
G0 = G− v0w0 and let G1 = G \ V (K). By Lemma2 , G is critical so that G1 is Class 1.
Suppose that there exists a 3-colouring ϕ1 : E(G1) → {α, β, γ} such that ϕ1(fk) 6= ϕ1(f0),
say ϕ1(fk) = β and ϕ1(f0) = α. Consider the graph H = G[E(K) ∪ ⋃k

i=1E(Pwi
)]. Let H∗

be the graph obtained fromH by splitting the vertex v0 into a pair of vertices z1, zk, with z1
adjacent to v1 and zk adjacent to vk in H∗. Note that H∗ ∼= Lk+1, where Lk+1 is the graph
defined in Lemma4. Also note that there is an obvious one-to-one correspondence between
the 3-colourings ofH and those 3-colourings ofH∗ in which the edges z1v1 and zkvk receive
different colours. By Lemma 4, there exists a proper colouring ϕ∗ : E(H∗) → {α, β, γ}
of H∗ satisfying the conditions ϕ∗(z1v1) = α, ϕ∗(fi) = ϕ1(fi) for each i = 1, 2, · · ·k and
ϕ∗(zkvk) 6= α. By the above observation, this implies the existence of a 3-colouring of H ,
which we still denote by ϕ∗, which satisfies ϕ∗(fi) = ϕ1(fi) for each i = 1, 2, · · ·k, and
ϕ∗(v0v1) = α. This colouring can be extended to a 3-colouring ϕ of G in the following
way: we let ϕ |E(G1)= ϕ1, ϕ |E(H)= ϕ∗ and ϕ(v0w0) ∈ {ϕ∗(v0vk), α}. However this is in
contradiction with the assumption that G is Class 2, so that the condition ϕ1(fk) 6= ϕ1(f0)
cannot hold. Similarly, ϕ1(f1) 6= ϕ1(f0) cannot hold, so that, for all 3-colourings ϕ1 of
G1, we have:

ϕ1(f1) = ϕ1(f0) = ϕ1(fk) . (1)

Let then ϕ1 be one such colouring, and assume ϕ1(f0) = α. Consider the graph G1(α, β).
In this graph the vertices wk, w0, w1 all have degree one, so that not all of them belong
to the same connected component of G1(α, β). In particular, by exchanging the colours
of the edges in G1(α, β; f0), we obtain a proper colouring of G1 in which not all the edges
fk, f0, f1 receive the same colour, which contradicts (1). This contradiction shows that G
cannot be Class 2, and thus G is Class 1. 2

3 Proof of the main result

In this section we prove Theorem 1 and Theorem 2. We begin with Theorem 2, which we
prove by using all the previous lemmas. We first show that no Class 2 petal graph can
have petal size other than three. We then continue the proof by induction on the order
of G. In particular, by associating to each petal graph G 6= P ∗, with p(G) = 3, a smaller
petal graph G∗, whose colourability implies the colourability of G, we conclude that any
petal graph G, other than P ∗, must be Class 1.
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Proof of Theorem 2. Let G be a petal graph, G 6= P ∗, and let p = p(G). By Lemma5,
Lemma 6 and Lemma 7, we can assume that 3 ≤ p < ∞. We argue by contradiction, so
suppose that G is Class 2. By Lemma 2, G is critical. Let u0v0v1v2 · · · vpup be a (p + 2)-
path in G∆ containing the p-path Y = v0v1v2 · · · vp, where Pw0 = v0w0vp is a p-petal of
G. For each i = 1, 2, · · ·p − 1, let Pwi

= viwiyi be the petal of G containing vi, and let
fi = wiyi. Notice that, by the definition of p, all the wi’s and yi’s are distinct, and none
of the vertices yi lies in Y , for i = 1, 2, · · ·p− 1. Let G0 = G−w0. Since G is critical, G0

is Class 1.
We will repeatedly use the fact that, for each 3-colouring ϕ0 of G0, the vertices v0 and

vp miss the same colour (otherwise the colouring ϕ0 could immediately be extended to
a proper 3-colouring of G). Suppose that there exists a 3-colouring ϕ0 of G0 such that
ϕ0(u0v0) = ϕ0(f1), or ϕ0(upvp) = ϕ0(fp−1). Exchanging the colours between the edges
v0v1 and v1w1 (or vpvp−1 and vp−1wp−1), we obtain a proper colouring of G0 under which
the vertices v0 and vp miss different colours. This is a contradiction, as observed above.
Therefore, for any 3-colouring ϕ0 of G0, we have:

ϕ0(f1) 6= ϕ0(u0v0) and ϕ0(fp−1) 6= ϕ0(upvp). (2)

Next, consider the graph G1 = G0 − {v1, v2, · · · , vp−1}. Obviously G1 is Class 1. We
consider the interrelation between colourings of G1 and colourings of G0. Let ϕ1 be a
3-colouring of G1 satisfying (2) (for example consider the restriction of any colouring of
G0 to G1). Without loss of generality, assume ϕ1(u0v0) = α. Suppose that ϕ1(upvp) 6= α,
say ϕ1(upvp) = β. Let H = G0[

⋃p−1
i=1 E(Pwi

)∪E(Y )]. Notice that H ∼= Lp, where Lp is the
graph introduced by Lemma 4. Applying Lemma 4 to the graphH , there exists a proper 3-
colouring ϕ̂ of H such that ϕ̂(v0v1) = γ, ϕ̂(fi) = ϕ1(fi) for 1 ≤ i ≤ p−1, and ϕ̂(vpvp−1) 6=
β. But now the colouring ϕ̃ of G0 given by

ϕ̃(e) =

{
ϕ1(e) if e ∈ E(G1)
ϕ̂(e) if e ∈ E(H)

is a proper 3-colouring of G0 under which v0 misses colour β but vp does not! This is a
contradiction, hence we must conclude that

ϕ1(upvp) = ϕ1(u0v0) = α. (3)

Suppose now that ϕ1(fp−2) 6= ϕ1(fp−1). By (2) and (3), ϕ1(fp−1) 6= α. Without loss of
generality, assume that ϕ1(fp−1) = γ. Let H1 = H − {vp, wp−1, yp−1}. Clearly H1

∼= Lp−1.
Notice that, by our assumption, ϕ1(fp−2) 6= γ. By Lemma 4 , there exists a proper 3-
colouring ϕ̂ of H1 such that ϕ̂(v0v1) = β, ϕ̂(fi) = ϕ1(fi) for each i = 1, 2, · · ·p − 2, and
ϕ̂(vp−2vp−1) 6= γ. Extend this to a colouring ϕ̂ of H by letting ϕ̂(vpvp−1) = γ, ϕ̂(fp−1) = γ,
and ϕ̂(vp−1wp−1) ∈ {ϕ̂(vp−1vp−2), γ}. Now define a colouring ϕ̃ of G0 as follows:

ϕ̃(e) =

{
ϕ1(e) if e ∈ E(G1)
ϕ̂(e) if e ∈ E(H).

Notice that this is a proper 3-colouring of G0 in which vertex vp misses colour β and
vertex v0 does not! This a contradiction, so that it must be the case that ϕ1(fp−2) = γ.
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By considering the graph H2 = H1 − {vp−1, wp−2, yp−2} ∼= Lp−2, we can repeat the same
argument to show that ϕ1(fp−3) = γ and, similarly, that

ϕ1(fp−i) = ϕ1(fp−1) for all i = 1, 2, · · ·p− 1. (4)

Suppose now that p > 3. Since in G1(β, γ) the vertices w1, w2, wp−1 have degree 1, not
all of them belong to the same component of G1(β, γ). By interchanging the colours in
G1(β, γ; f2) we obtain a colouring ϕ̃ of G1 which still satisfies (2), but does not satisfy (4).
However this is a contradiction, and therefore G cannot be Class 2 and hence is Class 1.

We are left with the case p = 3. The proof continues by induction on the order of G.
Let n = |V (G)|. Since P ∗ is the only petal graph with p = 3 and n ≤ 9, the statement of
the theorem holds trivially for n ≤ 9. Assume now that n > 9, and that the statement
of the theorem holds for any petal graph with order less than n. Continuing with the
notations introduced earlier, let K be the cycle of G∆ containing the path Y = v0v1v2v3,
and let k be the length of K. Suppose that k > 6. Let G∗ be the graph obtained from G1

by deleting v0 and v3, joining u0, u3 by an edge, and identifying w1 and w2. Let w∗ denote
the vertex of G∗ obtained by means of the identification of w1 and w2. It is easy to see
that G∗ is a petal graph of order n − 6. By the inductive hypothesis, G∗ is Class 1, or
G∗ = P ∗. If G∗ = P ∗, then G is necessarily one of the three graphs shown in Fig. 3, all of
which are Class 1. Therefore we can assume that G∗ is Class 1. Let ϕ∗ be a 3-colouring
of G∗. Define a colouring of G1 in the following way:

ϕ1(e) =



ϕ∗(e) if e ∈ E(G1) − {u0v0, u3v3, f1, f2}
ϕ∗(u0u3) if e = u0v0 or e = u3v3

ϕ∗(w∗y1) if e = f1

ϕ∗(w∗y2) if e = f2 .

Notice that this is a proper 3-colouring of G1 which either satisfies (2) but not (4),
which is a contradiction, or is immediately extendable to a 3-colouring of G0 in which the
vertices v0 and v3 miss two different colours, which is also a contradiction.

Figure 3: A 3-colouring of the only graphs G for which G∗ = P ∗.
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This contradiction shows that we cannot have k > 6.Notice that, by the fact that p = 3,
we cannot have k < 6 either, so that we are left with the only possibility that k = 6.
Thus K = u0v0v1v2v3u3u0. Notice that there are two distinct v0v3-paths in K of length
three. In particular, we can apply all the previous considerations to both paths. Let f ′

1, f
′
2

denote the pair of edges corresponding to f1, f2 with respect to the path v0u0u3v3. Let ϕ0

be a 3-colouring of G0 = G − w0. By considering the restriction of ϕ0 to G0 − {v1, v2}
and G0 − {u0, u3}, and applying (4), we have that ϕ0(f1) = ϕ0(f2) and ϕ0(f

′
1) = ϕ0(f

′
2).

Let ϕ = ϕ0 |E(G0\V (K)) . It is easy to see that, if G has at least one petal of infinite size
based on K, then the colouring ϕ can be extended immediately to a 3-colouring of G
(see Fig. 4). Therefore we can assume that all the petals on K have finite size. Since
G is connected, we then have G∆ = K and, since p(G) = 3, the only possibility left is
that G = P ∗. But we assumed G 6= P ∗, so that we have again a contradiction. This
contradiction concludes the proof of the theorem. 2

Proof of Theorem 1. Follows immediately from Lemma3 and Theorem 2. 2

I II III

f1 f1
f2f1 f2

f ′
1 f ′

1

w0w0
w0

v0 v0 v0

f ′
2

f ′
2f ′

2

v3v3
v3

Figure 4: A 3-colouring of the edges of a 6-cycle component of G∆ containing a petal of
infinite size. Notice that the colouring in I is still valid when the colour of the edge f ′

2 is
assumed to be one of the other two colours, and thus it is representative of the correct
extension of ϕ in the most general situation.
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Conclusions. In this paper we made use of a technique which we believe is a novelty
in edge colouring. More specifically, we used the concept of critical graph to explicitly
construct a 3-colouring of a petal graph G. This technique could be effective in proving
more general results, e.g. other cases of Conjecture 2. One possible way to make further
progress on Conjecture 2 is to obtain some sort of generalization of Lemma3.

The proof of Theorem 2 is intrinsically algorithmic and can be used to construct a
3-colouring of any given petal graph, other than P ∗. We have indeed written a computer
program, using Mathematica, which accepts as an input a petal graph G 6= P ∗ and
returns, in linear time, a proper 3-colouring of G. The program is available on request
from the second author.

We end with the hope that this paper will help stimulating further research around the
mysterious properties of the Petersen graph.
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able suggestions and useful discussions. The authors are also indebted to one of the
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