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Abstract

A set of cycles C1, . . . , Ck in a graph G is said to identify the vertices v if the sets

{j : v ∈ Cj} are all nonempty and di�erent. In this paper, bounds for the minimum

possible k are given when G is the graph Z
n
p endowed with the Lee or Hamming

metric or G is a complete bipartite graph.

1 Introduction

For basic notions of graph theory we use the terminology of [2]. Especially, we will use
the following notions.

A walk in a graph is a �nite non-null sequence W = v0v1 · · · vn of vertices such that
vi and vi+1 are adjacent for all i = 0, . . . , n − 1. We also say that W is a walk from v0

to vn. The number n is the length of W . If v = vi for some i, we say that W visits the
vertex v and write (by a slight abuse of notation) v ∈ W . If v0 = vn and the length of W
is positive, we say that the walk W is closed.

If all the vertices in a walk W = v0v1 · · · vn are distinct, then W is called a path. If W
is closed, n ≥ 3, and vi 6= vj whenever i 6= j and i, j = 0, . . . , n− 1, then W is a cycle. A
path of length one is essentially nothing but an edge.

A Hamilton cycle of a graph G is a cycle which visits every vertex of G. A graph is
said to be Hamiltonian if it contains a Hamilton cycle (as a subgraph).

De�nition 1. A collection A1, A2, . . . , Ak of subsets of a set S is called identifying if the
sets {i : x ∈ Ai} (x ∈ S) are nonempty and di�erent.
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An obvious test whether or not A1, . . . , Ak is an identifying collection of subsets of an
s-element set S, is provided by a k×s matrix A whose columns are indexed with elements
of S and whose rows are characteristic vectors of the subsets Ai. Namely, A1, . . . , Ak is
identifying if and only if the columns of A are nonzero and distinct. Even if the sets Ai

are required to have some kind of structure, A can sometimes be used to solve existence
questions (see Theorem 12).

The identi�cation problem can be interpreted as a (graph) coloring problem in the
following way. Suppose that we want to colour the vertices of a graph, each with a
di�erent colour. How many colours are needed initially, when the same vertex may be
colored with several di�erent colours and mixtures of di�erent colours are assumed to
produce a new colour?

For arbitrary sets we have the following obvious lower bound for the number of iden-
tifying subsets.

Theorem 2. An identifying collection of subsets of an s-element set contains at least
dlog2(s + 1)e subsets.

The lower bound given in Theorem 2 can always be attained if there is no requirement
for the structure of the identifying subsets.

Lemma 3. For an s-element set S there is an identifying collection A1, . . . , Ak of subsets
such that k = dlog2(s + 1)e and |Ai| = ds/2e for all i = 1, . . . , k.

Proof. Clearly there is an identifying collection of dlog2(s+1)e subsets. Assume that A1,
for instance, contains less than ds/2e elements. Then the corresponding matrix A has
less columns beginning with 1 than columns beginning with 0. Thus there is a column
beginning with 0 whose k−1 last bits do not appear as k−1 last bits of any other column.
Now the �rst bit of this column can be changed to 1. The same argument holds for zeros
too (except that we have to avoid the zero column).

The study of identifying collections of subsets is motivated by fault diagnosis in mul-
tiprocessor architectures, i.e., these collections are used for locating a malfunctioning
processor. As usual, a multiprocessor architecture is represented as a graph. Each vertex
corresponds to a processor and each edge represents a link between two processors. In the
simplest variant we assume that at most one of the processors is malfunctioning, and we
wish to identify it (or to �nd that none of them is malfunctioning). We use the following
scheme. Let S be the set of vertices. We choose the identifying subsets A1, . . . , Ak of S.
The set of processors in each Ai is checked and we get YES/NO answers telling whether or
not any problems were detected in Ai. Based on these k YES/NO answers we are able to
identify the malfunctioning processor (or to tell that there is none). It is natural to pose
various constraints on the sets Ai, e.g., to require that that they are balls with respect to
the graphic distance, or that they are cycles or closed walks. For more details, see [8], [7]
and [4]. This problem is also related to fault-tolerant message routing in multiprocessor
architectures, see [9] and [10]. Yet another kind of routing problem and multiprocessor
diagnosis technique is treated in [1].
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Identi�cation problems have been studied in various graphs, see e.g. [3] and [5] for
further references.

In Section 2 we consider vertex identi�cation in the p-ary Lee space Z
n
p and in the

Hamming space Z
n
p . The identifying sets are required to consist of vertices of a cycle.

In Section 3 we construct a vertex identifying collection of cycles in the complete
bipartite graph Km,m and also consider the more general case Km,n.

2 Cycles for identi�cation in the Hamming and Lee

spaces

By a Lee space we mean the set Z
n
p endowed with the Lee metric. In other words two

vertices are adjacent if and only if they di�er by ±1 mod p in exactly one coordinate and
the other coordinates coincide. The smallest cardinality of a vertex identifying collection
(if there is one) of cycles in the p-ary n-dimensional Lee space is denoted by VL(p, n).
Respectively, in the Hamming space, this number is denoted by VH(p, n). Note that
VL(p, 1), VH(p, 1), and VH(2, 2) are not de�ned.

In the case of vertex identi�cation, constructions proved for the Lee space are also
valid in the Hamming space, i.e., VH(p, n) ≤ VL(p, n), since the edge set of the former
is a subset of the edge set of the latter. Note also that when p = 2 or p = 3, then the
Hamming and Lee spaces are the same, and thus in this case VH(p, n) = VL(p, n).

We note here that the graphs Z
n
p are always Hamiltonian, with respect to both Lee

and Hamming metric, when pn ≥ 3. This can be easily proved by induction.
We begin with an example.

Example 4. By writing down the corresponding matrix, the following �ve cycles Ci are
seen to be vertex identifying in Z

3
3. The trivial lower bound dlog2 28e given in Theorem 2

is thus attained in this case. Hence VL(3, 3) = VH(3, 3) = 5.
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C1 C2 C3 C4 C5

000 001 011 001 021
200 201 010 101 121
202 221 020 102 120
222 222 021 100 100
122 122 121 110 101
022 121 122 210 201
012 120 022 200 200
212 100 222 220 202
210 200 212 221 212
110 202 202 211 211
111 002 201 212 111
101 012 221 222 112
001 011 220 202 102
011 001 210 201 122
010 211 001 022
000 011 021

Theorem 5. If p > 2, then VL(p, m+n) ≤ VL(p, m)+VL(p, n) for all m, n ≥ 2. If p = 2,
the same is valid for all m, n ≥ 3.

Proof. Let C = u1u2 . . . uku1 be any cycle in Z
n
p . First we show that there is a cycle

through every vertex of the set

Zp × C = {(x, y) ∈ Z
n+1
p : x ∈ Zp, y ∈ C}.

Consider the cycles Ci where i = 0, 1, . . . , p − 1 and Ci = {(i, y) ∈ Z
n+1
p : y ∈ C}. We

form the required cycle as follows. First we visit every vertex and edge of C0 except for
the last edge. Being now at the vertex (0, uk) we move to vertex (1, uk). Now we visit
every vertex of C1 counterclockwise except for (1, u1) and move to C2, which is traveled
clockwise and without (2, u1). We proceed in this way, i.e., every other cycle is traveled
counterclockwise and vertices (i, u1) are not visited for 1 < i < p−1, and �nally arrive at
the cycle Cp−1. This time we visit also the vertex (p− 1, u1) and then complete the cycle
with vertices (p − 2, u1),. . . ,(1, u1) and (0, u1).

Inductively we see that we can form cycles also from vertices of the set

Z
l
p × C = {(x, y) ∈ Z

n+l
p : x ∈ Z

l
p, y ∈ C},

for every l ≥ 1.
Suppose that D1, . . . , Ds are vertex identifying cycles in Z

m
p and E1, . . . , Et are vertex

identifying cycles in Z
n
p . Then the s+ t cycles Di ×Z

n
p and Z

m
p ×Ei are vertex identifying

in Z
m+n
p . Indeed, every vertex lies in some cycle and if u and v lie in the same set of cycles

then their �rst m coordinates must coincide and their last n coordinates must coincide
too.
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From now on the vertices of Z
n
p are denoted by boldface letters, e.g., x. The i-th

coordinate of a vertex is then speci�ed by a subscript, e.g., xi.
In the Hamming space Z

n
p we have the following theorem. Note that this says that if

p is a power of two, then the trivial lower bound given in Theorem 2 can be achieved.

Theorem 6. Assume that n ≥ 2. If p is a power of two, then excluding the case p = 2
and n = 2, we have VH(p, n) = n log2 p + 1. If p is not a power of two, then VH(p, n) ≤
ndlog2 pe.
Proof. Let k = dlog2 pe. We choose k subsets As of Zp such that the sets {s : x ∈ As} are
distinct for x ∈ Zp. Furthermore, they are required to be nonempty if p is not a power of
two. We construct the sets Cij , where i = 1, . . . , n and j = 1, . . . , k, by the rule:

Cij consists of those vertices whose i-th component is in the set Aj.

If p is a power of two then there is an element x ∈ Zp which lies in none of the sets As

and in this case we add to our collection any cycle which visits the vertex (x, x, . . . , x).
Clearly every vertex lies in at least one of the constructed subgraphs. Moreover, if

x 6= y then xi 6= yi for some i, and thus Cij contains either x or y, but not both, for some
j.

Lastly, we have to show that there is a cycle consisting of the vertices of Cij . To begin
with, we note that there is a cycle C through every vertex of Z

n−1
p . Thus the required

cycle can be constructed in the same way as in the proof of Theorem 5.

Remark 7. It is proved in [7] and [6] that VH(2, n) = n+1 for all n ≥ 3. The construction
is brie�y as follows. For i = 1, . . . , n take a cycle consisting of those vertices which have 0
as the i-th coordinate (e.g. Gray code of dimension n−1), and then take any cycle which
contains the all-one vector. It is straightforward to show that the set of these n+1 cycles
is identifying.

Theorem 8. We have VL(4, n) = 2n + 1, for all n ≥ 2.

Proof. By Theorem 2 VL(4, n) ≥ 2n + 1. We map the elements of Z
n
4 onto Z

2n
2 by the

Gray map 0 7→ 00, 1 7→ 01, 2 7→ 11 and 3 7→ 10. Since two elements of the Lee space Z
n
4

are adjacent if and only if their images are adjacent in the Hamming space Z
2n
2 , we get

from the remark above (and also by Theorem 6) that VL(4, n) ≤ 2n + 1.

In the sequel the identity dlog2(s + 1)e = blog2 sc + 1 is used. To see this, choose a k
such that 2k ≤ s < 2k+1 and observe that both sides equal k + 1.

It is proved in [7] and [6] that

VL(p, 2) ≤ 2dlog2(p + 1)e + 1,

for all p ≥ 4. We give an upper bound in the case n ≥ 3.

Theorem 9. In the Lee space Z
n
p , where p ≥ 4 and n ≥ 3, we have bn log2 pc + 1 ≤

VL(p, n) ≤ ndlog2(p + 1)e + 2.
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Proof. Theorem 2 gives the lower bound.
To prove the upper bound we give a construction. The idea of this construction is

brie�y as follows. The cycles Ci,j are used to decide the i-th coordinate of the vertex v
which is to be identi�ed. The auxiliary cycles Bi are needed in the construction (and they
will not be in the �nal collection of cycles). The cycles D and E are needed in identi�cation
of the vertices in the cycles Bi, since the cycles Ci,j may leave two possibilities for v.

Throughout the proof we will illustrate the construction in the case p = 4 and n = 3.
For notational reasons we write Zp = {1, 2, . . . , p}.

First of all, let k = dlog2(p + 1)e and let C be the k × p matrix whose i-th column is
the binary representation of i − 1. In particular, C does not contain the all-one column.
In our example, we have

C =




0 0 0 0
0 0 1 1
0 1 0 1


 .

For i = 2, . . . , n, let Bi be the cycle which starts from the vertex 1n and the next
vertices are obtained by increasing every other time the (i − 1)-st coordinate by one and
every other time the i-th coordinate by one, the (i−1)-st coordinate being increased �rst.
In addition, we construct the cycle B1. It starts from the vertex 131n−2, then the �rst
coordinate increases by one. Next the second coordinate increases by one, then the �rst,
and so on. Note that the cycles Bi and Bj, i, j ≥ 3 are disjoint except for the vertex
1n. In addition the cycles B1 and B2 are disjoint (here we need the assumption p ≥ 4).
Hence, in our example, B2 consists of vertices 111, 211, 221, 321, 331, 431, 441, 141 and
111. Similarly, B1 consists of 131, 231, 241, 341, 311, 411, 421, 121 and 131. It should be
noted that B3 (and more generally Bi for i ≥ 3) can be obtained from B2 by permuting
the coordinates.

From the matrix C we form the cycles Ci,j, where i = 1, . . . , n and j = 1, . . . , k. The
cycle Ci,j is obtained using the auxiliary cycle Bi and j-th row of C as follows. We start
from the vertex 1n except that in case i = 1 we start from the vertex 131n−2. Then we
move along Bi to the �rst vertex which has 2 as its i-th coordinate, i.e., to the vertex
1i−2221n−i if i > 1 and to the vertex 231n−2 if i = 1. If the second element of the j-th
row of C is one, then the hyperplane xi = 2 is traveled through in such a way that we
end at the vertex 1i−2321n−i which lies in Bi (in the case i = 1 the last vertex is 241n−2

which lies in B1). This is possible by symmetry and the fact that Z
n−1
p is Hamiltonian.

Next we move along Bi to the vertex 1i−2331n−i which lies in Bi (if i = 1 we move to
341n−2). If the second element of the j-th row of C was zero, we move along the cycle Bi

to 1i−2321n−i and 1i−2331n−i (and to 241n−2 and 341n−2 if i = 1) without going through
the hyperplane xi = 2.

Similarly, for all t, the hyperplane xi = t is traveled through if and only if the t-th
element of the j-th row is one, otherwise we move along the cycle Bi to the next plane
xi = t + 1. More formally, denote C = (cij). Then x lies in Ci,j if and only if (i) x lies in
Bi or (ii) xi = t and cjt = 1.

In our example we have C1,1 = B1, C2,1 = B2 and C3,1 = B3. The cycle C1,2 consists
now of vertices 131, 231, 241, 341, 342, 343, 344, 314, 313, 312, 322, 323, 324, 334, 333,
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332, 331, 321, 311, 411, 412, 413, 414, 424, 423, 422, 432, 433, 434, 444, 443, 442, 441, 431,
421, 121 and 131. So it contains all the vertices which have 3 or 4 as the �rst coordinate
and in addition it contains the vertices of B1. As another example we give the cycle C2,3.
It consists of the vertices 111, 211, 221, 222, 223, 224, 324, 323, 322, 422, 423, 424, 124,
123, 122, 121, 421, 321, 331, 431, 441, 442, 443, 444, 144, 143, 142, 242, 243, 244, 344,
343, 342, 341, 241, 141 and 111. As it should, it contains all the vertices of B2 and vertices
which have either 2 or 4 as the second coordinate. Note that the cycle C3,3 is now easily
obtained from C2,3 by permuting the coordinates.

Let D be the cycle 1n, 121n−2, 221n−2, 231n−2, 331n−2, ..., 1n. It has the important
property that every other vertex of both B1 and B2 belong to it.

Lastly, we construct a cycle E, which will include every other vertex of each of the
cycles B3, ..., Bn. To begin with, we construct a path Pi for i = 3, ..., n. The path Pi

starts with the vertex whose (i − 1)-st and i-th coordinates are 2 and other coordinates
are 1. The next vertices are obtained by increasing every second time the i-th coordinate
and every second time the (i− 1)-st coordinate, the i-th coordinate being increased �rst.
The path Pi ends in the vertex whose (i − 1)-st and i-th coordinates are p and the other
coordinates are 1. In our example the path P3 consists of 122, 123, 133, 134 and 144. Now
we use Pi as the building blocks of the cycle E as follows. Firstly, we visit the vertices
of P3. Next, if n > 3, we change the fourth coordinate to 2, decrease in steps of one the
third coordinate to 2 and change the second coordinate to 1. We are now at the vertex
11221n−4, which lies in P4. Now we travel the vertices of P4. If n > 4, we repeat the
process above. This process is repeated until we are at the last vertex of Pn, i.e., 1n−2pp.
Now we move to vertices p1n−3pp, p1n−2p and p1n−1. The �rst coordinate is now changed
to 1 and thus the all-one vertex is in the cycle E. Now we change the �rst coordinate to 2
and then move to the vertex 2221n−3 via 221n−2. Now we change the �rst coordinate to 1
and the cycle E is complete. The cycle E contains now every second vertex of B3, . . . , Bn

and some vertices which are in none of the B3, . . . , Bn.
In our example n = 3 and the cycle E consists of the vertices 122, 123, 133, 134, 144,

444, 414, 411, 111, 211, 221, 222 and 122. As an other example, consider the case n = 4
and p = 4. Now the cycle E consists of the vertices 1221, 1231, 1331, 1341, 1441, 1442,
1432, 1422, 1122, 1123, 1133, 1134, 1144, 4144, 4114, 4111, 1111, 2111, 2211, 2221 and
1221.

We claim that the cycles Ci,j together with the cycles D and E form an identifying
collection. Clearly the number of the constructed cycles is as claimed.

First we have to show that every vertex lies in at least one of the constructed cycles.
So, let x = (x1, . . . , xn) ∈ Z

n
p . Suppose for the moment that xi = t 6= 1 for some i. Since

the matrix C has a row, say the j-th row, which has 1 as its t-th element we conclude
that x lies in Ci,j. The vertex 1n lies in E, for example.

We observe here that if v /∈ Bi, then the i-th coordinate of v can be decided by testing
for which j = 1, . . . , k we have v ∈ Ci,j.

Let v ∈ Z
n
p . We use the cycles D, C1,j and C2,j to determine the �rst and second

coordinates of v in the following way. If v lies in every cycle C1,j, then it lies in the
cycle B1 (C does not contain the all-one column) and thus cannot lie in B2. Thus we
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can determine v2 using the cycles C2,j. This leaves two possibilities for v1, and since
v ∈ B1, two possibilities for v. Furthermore, these are consecutive in the cycle B1. Since
D contains every second vertex of B1, we can decide which one v is. If v lies in B2 we
determine v1 �rst and proceed similarly. If v lies in neither B1 nor B2 there is no di�culty.

Suppose now that the coordinates v1, ..., vt , where t ≥ 2, have been determined. We
have to determine the coordinate vt+1. Firstly, if v lies in all the cycles Ct+1,j then it lies
in Bt+1. Since we know vt, there is only two possibilities for vt+1, and thus also for v.
These are consecutive in the cycle Bt+1 and thus we can use E to decide which one v is.
Secondly, if v does not lie in all of the cycles Ct+1,j, then there is no di�culty.

To cover the case p = 3 we give the following bounds.

Theorem 10. b3n log2 3c + 1 ≤ VL(3, 3n) = VH(3, 3n) ≤ 5n.

Proof. This follows from Theorem 5 and the fact VL(3, 3) = VH(3, 3) = 5 proven in
Example 4.

It is not di�cult to see that VL(3, 2) = VH(3, 2) = 4. Together with the preceding
theorem we obtain an upper bound for all VL(3, n) and VH(3, n).

3 On the identi�cation of vertices in bipartite graphs

A graph G is a complete bipartite graph if the vertex set of G can be partitioned as
V = V1 ∪ V2 and two vertices v1 and v2 are adjacent if and only if v1 ∈ V1 and v2 ∈ V2. If
|V1| = m and |V2| = n, this graph is denoted by Km,n.

The identi�cation problem for complete bipartite graphs using connected subgraphs
solves trivially.

Theorem 11. For the complete bipartite graph Km,n the smallest cardinality of an iden-
tifying collection of connected subgraphs is dlog2(m + n + 1)e for all m, n ≥ 1.

Proof. The number of vertices is m + n, and from Theorem 2 we get the lower bound.
If m = n = 1 there is nothing to prove. By symmetry we may assume now that m ≥ 2

and n ≥ 1. We have to show that the identifying subsets of V = V1 ∪ V2 can be chosen in
such a way that they contain vertices from both V1 and V2. Let u, v ∈ V1 and w ∈ V2 and
consider the corresponding matrix A de�ned in the Introduction. We take the columns
corresponding to u and v to be 011 · · ·1 and 101 · · ·1. The column corresponding to w is
chosen to be 11 · · ·1. The remaining columns can be chosen freely among the remaining
nonzero vectors.

In the next theorem we use the observation that there is a cycle through every vertex
of a subset S of the vertex set of Km,n if and only if S contains equally many vertices
from V1 and V2 and at least two from both.

Theorem 12. For the complete bipartite graph Km,m (m ≥ 3) the smallest cardinality of
an identifying set of cycles is

the electronic journal of combinatorics 10 (2003), #R7 8



(i) blog2 mc + 3, if m is of the form m = 2k − 1,

(ii) blog2 mc + 2, otherwise.

Proof. From Theorem 2, we have a lower bound dlog2(2m + 1)e = blog2 2mc + 1 =
blog2 mc + 2.

The rest of the proof is now given in several steps. First we give a construction which
proves an upper bound which equals the lower bound if m is even. If m is odd, this bound
is blog2 mc + 3. Secondly, we show that the lower bound is not reachable if m = 2k − 1
for some k. Lastly, we assume that m is odd but not of the form m = 2k − 1, and give a
construction which equals the lower bound.

If m is even, there is a very simple construction. For every vertex in V1 we choose
a counterpart in V2. Next we choose an identifying collection S of dlog2(m + 1)e =
blog2 mc+1 subsets of V1 such that each of these subsets contains at least two vertices (this
can be done by Lemma 3), and from V2 this determines subsets consisting of counterpart
vertices. The union of a subset in S and its counterpart subset can be made connected
with one cycle. Since S is an identifying set of V1, the collection of cycles constructed so
far is identifying except that it does not separate a vertex from its counterpart. Since m
is even all such pairs can be separated with one cycle.

In the odd case a similar construction works also, but this time we need two cycles to
separate vertices of V1 from their counterparts in V2. This gives an upper bound.

To prove (i), let m = 2k − 1 and C1, . . . , Ck+1 be a collection of subsets of the vertex
set of Km,m. Let A be the corresponding matrix (as in the Introduction). Suppose that
the columns of A are distinct and nonzero. If A contained all 2k+1 − 1 nonzero vectors
of length k + 1 as columns, then every Ci would contain an even number of vertices.
However, as is the case, leaving one vector out forces at least one Ci to have an odd
number of vertices. Thus one Ci cannot be a cycle.

Assume �nally that m is odd and 2k−1 < m < 2k − 1. We arrange the vertices
v1, . . . , v2m in such a way that vi ∈ V1 if and only if i is odd, and construct a suitable
(k + 1) × 2m matrix. To do this we take 0100 · · ·0, 0110 · · ·0, 0010 · · ·0 and 100 · · ·0
as the �rst four columns. We will not use 110 · · ·0, 1110 · · ·0, 1010 · · ·0 and 00 · · ·0 as
columns; these vectors can be discarded since 2m and 2k+1 di�er by at least four. Now
we choose m−2 di�erent other vectors beginning with 1 and use these as columns from 5
to m+2. The remaining m− 2 columns are the same as the columns just chosen but this
time beginning with zero and written in reverse order, i.e., the columns corresponding to
vertices vm+2−i and vm+3+i , where i = 0, . . . , m − 3, di�er only in the �rst coordinate.
Now it is easy to see that the constructed matrix satis�es the requirements, i.e., there are
as many odd and even vertices in every row and the columns are distinct and nonzero.

Example 13. The matrix for K11,11 is


0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 1 0
0 0 0 0 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1




.
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Note the symmetry around the second vertical line.

The methods given above do not apply if n < m, and in this case the exact cardinality
of the smallest identifying collection of cycles may be hard to �nd. As an example we
treat the case n = 3.

Theorem 14. Let k ≥ 4. The smallest cardinality of an identifying collection of cycles
in K2k−2,3 and K2k−1,3 is k.

Proof. We may assume that in the corresponding matrix A the columns corresponding
to V2 are the last three columns. We refer to the last three columns as the right part of
A and the remaining columns as the left part.

First we give a lower bound. Suppose that k cycles is enough. We note that a
cycle can now contain at most three vertices from both V1 and V2. Moreover, we must
have at least two cycles which have only two vertices from V2. Otherwise it would be
impossible to separate the vertices in V2. Thus the left part of A can contain at most
2× 2 + 3× (k − 2) = 3k − 2 1's. There are only k binary vectors of weight one and hence
we can choose at most ((3k − 2) − k)/2 = k − 1 vectors of weight two. Thus at most
k + (k − 1) = 2k − 1 vertices of V1 can be separated from each other. This proves that at
least k cycles are needed to identify the vertices of K2k−1,3 and K2k−2,3.

Actually, the argument above suggests the way in which we construct the set of iden-
tifying cycles. In the case of K2k−1,3 the �rst k columns are the vectors of Hamming
weight one, i.e., 100...0, 010...0, ...., 00...01. The next k−1 columns are 1100...0, 0110...0,
00110...0, ...., 00....011. The columns corresponding to V2 are now 11...10, 11...1 and
011...1. In the case of K2k−2,3 the �rst k − 1 columns are 10...01, 010...0, ..., 00...010
(instead of the two vectors 10...0 and 00...01 we use their sum). The next k − 1 columns
are again 1100...0, 0110...0, ..., 00...011. The last three columns are the same as in the
case K2k−1,3. The validity of these selections for A is easily checked.

Example 15. The corresponding matrices for K10,3 and K11,3 are


1 0 0 0 0 1 0 0 0 0 1 1 0
0 1 0 0 0 1 1 0 0 0 1 1 1
0 0 1 0 0 0 1 1 0 0 1 1 1
0 0 0 1 0 0 0 1 1 0 1 1 1
0 0 0 0 1 0 0 0 1 1 1 1 1
1 0 0 0 0 0 0 0 0 1 0 1 1




and 


1 0 0 0 0 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 1 1 0 0 0 1 1 1
0 0 1 0 0 0 0 1 1 0 0 1 1 1
0 0 0 1 0 0 0 0 1 1 0 1 1 1
0 0 0 0 1 0 0 0 0 1 1 1 1 1
0 0 0 0 0 1 0 0 0 0 1 0 1 1




.

It is easy to prove that the smallest identifying collection of cycles in K4,3 consist of
three cycles. In K5,3 the smallest identifying collection of cycles consists of four cycles.
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