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Abstract

The class of square (0, 1,−1)-matrices whose rows are nonzero and mutually
orthogonal is studied. This class generalizes the classes of Hadamard and Weighing
matrices. We prove that if there exists an n by n (0, 1,−1)-matrix whose rows are
nonzero, mutually orthogonal and whose first row has no zeros, then n is not of the
form pk, 2pk or 3p where p is an odd prime, and k is a positive integer.

1 Introduction

A Hadamard matrix of order n is an n by n (1,−1)-matrix H satisfying HHT = nI,
where I denotes the identity matrix and HT denotes the transpose of H . Hadamard
matrices were first introduced by J. Hadamard in 1893 as solutions to a problem about
determinants (see [GS, WSW]). The following well-known, simple result shows that the
standard necessary condition (that is, n = 1, n = 2, or n ≡ 0 mod 4) for the existence
of a Hadamard matrix of order n, is a consequence of the mutual orthogonality of three
(1,−1)-vectors.

Proposition 1 Let u, v, and w be mutually orthogonal, 1 by n (1,−1)-vectors. Then
n ≡ 0 mod 4.

Proof. Each entry in the vectors u + v and u + w is even. Hence (u + v) · (u + w) is a
multiple of 4. Since (u + v) · (u + w) = u · u = n, the result follows.

The famous Hadamard Conjecture asserts that there exists a Hadamard matrix of
order n for every n ≡ 0 mod 4, and has been verified for n < 428 (see [HKS]).

Weighing matrices are generalizations of Hadamard matrices. Let n and w be positive
integers. An (n, w)-weighing matrix is an n by n (0, 1,−1)-matrix W = [wij] satisfying
WW T = wI. Weighing matrices have been extensively studied (see [C] and the references
therein). Several necessary conditions for the existence of an (n, w)-weighing matrix are
known. If n > 1 is odd, then necessarily w is a perfect square and n ≥ w +

√
w + 1 with
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equality only if there exists a projective plane of order
√

w. The first of these conditions
follows from taking determinants of both sides of WW T , and the second from bounding
the number of nonzero entries of CCT , where C = [cij ] is the n by n matrix with cij = 1
when wij = 0, and cij = 0 when wij 6= 0. If n ≡ 2 mod 4, then necessarily w is a
sum of two squares, and n ≤ 2 or w < n. The first of these conditions is a number
theoretic consequence of applying Witt’s cancellation to the congruence WW T = wI, and
the latter follows from the standard necessary condition for Hadamard matrices. The
Weighing Matrix Conjecture asserts that there exists an (n, w)-weighing matrix for each
n of the form n ≡ 0 mod 4 and each w ≤ n. This conjecture has been confirmed for
n ≤ 88.

In this note we consider related combinatorial problems. A matrix A is row-orthogonal
if each of its rows is nonzero, and its rows are mutually orthogonal. Thus the (0, 1,−1)
row-orthogonal matrices generalize both Hadamard and Weighing matrices. The sparsity
of row-orthogonal (0, 1,−1)-matrices (actually their transposes) has been studied in [GZ].
A row or column of A is full if each of its entries is nonzero. Each row of a Hadamard
matrix is full, and a weighing matrix has a full row if and only if it is a Hadamard matrix.
The problem studied in this note is: determine the positive integers n for which there
exists an n by n, row-orthogonal (0, 1,−1)-matrix with a full row. As such matrices
are not required to have the same type of regularity (i.e. each row and column has the
same number of nonzeros) as Hadamard and Weighing matrices, it appears that suitably
adapted, and even different techniques are needed to study this problem.

In section 2, we develop some basic properties of row-orthogonal (0, 1,−1)-matrices.
In section 3, we use these basic properties to give several non-existence results. We show
that the existence of a row-orthogonal (0, 1,−1)-matrix of order n with full column is
equivalent to the existence of a Hadamard matrix of order n. We also show that a row-
orthogonal (0, 1,−1)-matrix of order n with a full row does not exist if n has the form pk,
2pk, or 3p where p is an odd prime and k is a positive integer.

2 Basic Results

In this section we establish some notation and observe several basic results that we will
use throughout the remainder of the note. We are interested in determining the n for
which there exists a row-orthogonal (0, 1,−1)-matrix A of order n with a full row. Note
that scaling certain rows of a row-orthogonal (0, 1,−1)-matrix results in a row-orthogonal
(0, 1,−1)-matrix. Certainly if H is a Hadamard matrix, then H satisfies our requirements
of row orthogonality and full row. Thus, if the Hadamard conjecture is true, then such
an A exists for n = 1, n = 2, and n = 4k for each positive integer k. Two questions,
which we only begin to study here, come to mind: can one prove the existence of such A
of order n = 4k for each positive integer k? and must such a matrix have order 1, 2, or
4k for some positive integer k?

Each of the matrices below is an example of a square, row-orthogonal (0, 1,−1)-matrix

the electronic journal of combinatorics 11 (2004), #N1 2



with a full row.

[1] ,

[
1 1
1 −1

]
,




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1


 .

The number of nonzero entries in row i of A will be denoted by ei. Note that if A is a
row-orthogonal (0, 1,−1)-matrix, then AAT is a diagonal matrix D whose jth diagonal
entry is ej . A simple consequence is the following:

Proposition 2 Let A be an n by n row-orthogonal (0, 1,−1)-matrix. Then e1e2 · · · en is
a perfect square.

Proof. This follows immediately from e1e2 · · · en = det(AAT ) = (det A)2.

Let A = [aij ] be an n by n row-orthogonal matrix. For j = 1, 2, . . . , n, let αj = {i :
aij 6= 0}. Since no row of A is the zero row, each ej is positive, and we define Q by

Q = diag

(
1√
e1

,
1√
e2

, . . . ,
1√
en

)
A.

Since Q is the matrix obtained from A by normalizing each of its rows to have length 1, Q
is an orthogonal matrix. In particular, the columns of Q have length 1, and are mutually
orthogonal. This implies the following:

Proposition 3 Let A be an n by n, row-orthogonal matrix. Then

∑
i∈αj

1

ei
= 1, for 1 ≤ j ≤ n, and,

∑
i∈αj∩αk

aijaik

ei
= 0, for 1 ≤ j < k ≤ n.

Proposition 3 indicates that the study of row-orthogonal (0, 1,−1)-matrices will involve
sums of reciprocals of integers. The following proposition concerns such sums. Let p be
a prime and let Qp denote all rationals q such that q can be expressed as the ratio of
integers r

s
, where p does not divide s. It is well known that Qp (with the usual addition

and multiplication) is a ring. The following is an immediate consequence of the fact that
Qp is closed under addition and subtraction.

Proposition 4 Let f1, f2, . . . , fn, g1, g2, . . . , gn be integers and let p be a prime such that∑n
j=1

gj

fj
is an integer, fj ≡ 0 mod p for j = 1, 2, . . . , k, and fj 6≡ 0 mod p for j =

k + 1, . . . , n. Then
∑k

j=1
gj

fj
∈ Qp.
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3 Non-existence Results

We will begin by considering row-orthogonal matrices with a full column.

Theorem 5 Let A be a row-orthogonal n by n (0, 1,−1)-matrix with a full column. Then
A is a Hadamard matrix.

Proof. Since A has a full column and each ei ≤ n, Proposition 3 implies that

1 =
1

e1

+
1

e2

+ · · ·+ 1

en

≥ 1

n
+

1

n
+ · · ·+ 1

n
= 1

Thus ei = n for each i. Therefore A is Hadamard.

Next we study square, row-orthogonal matrices with a full row. Interestingly, the
condition of full row has much different consequences than the condition of full column.
For example, the matrix

A =




1 1 1 1
1 1 −1 −1
1 −1 0 0
0 0 1 −1




is row-orthogonal with a full row, but is not a Hadamard matrix. So for which n does an
n by n row-orthogonal matrix with a full row exist? We have already seen examples for
n = 1, n = 2, and n = 4. And, to date, we know of no row-orthogonal (0, 1,−1)-matrix
with a full row whose order is not the order of a Hadamard matrix. Each of the results in
the remainder of the note indicate that there are some severe restrictions on the possible
order of a row-orthogonal (0, 1,−1)-matrix with a full row.

Theorem 6 Let A be an n by n row-orthogonal (0, 1,−1)-matrix with a full row. Then
n is not an odd prime.

Proof. Suppose to the contrary that n is an odd prime. Since n is odd, no two full 1 by
n (0, 1,−1)-vectors are orthogonal. By Proposition 2, and the fact that n is prime, A has
an even number of full rows. Therefore, A has no full rows, contrary to assumption.

The 7 by 7 row-orthogonal matrix

A =




0 0 1 0 1 1 −1
−1 0 0 1 0 1 1

1 −1 0 0 1 0 1
1 1 −1 0 0 1 0
0 1 1 −1 0 0 1
1 0 1 1 −1 0 0

−1 1 0 1 1 −1 0




shows the necessity of the assumption that A has a full row in Theorem 6. We now
generalize the previous result to include all powers of an odd prime.
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Theorem 7 Let A be an n by n row-orthogonal (0, 1,−1)-matrix with a full row. Then
n is not of the form pk where p is an odd prime p and k is a positive integer.

Proof. Suppose to the contrary that n = pk for some odd prime p and positive integer
k. Without loss of generality we can take the first row of A to be full. By Proposition 3,
we have

1

pk
+

∑
i∈α1\{1}

1

ei
= 1.

Multiplying by pk−1 gives the equation

1

p
+

∑
i∈α1\{1}

pk−1

ei
= pk−1.

Proposition 4 implies that at least one of the fractions pk−1

ei
is not in Qp. Hence, pk divides

ei for some i 6= 1. It follows that A has two full rows, which is a contradiction–two n by
1 (1,−1)-vectors are not orthogonal when n is odd.

We next show nonexistence for n of the form n = 2pk, p and odd prime.

Theorem 8 Let A be a row-orthogonal (0, 1,−1)-matrix with a full row. Then n is not
of the form 2pk where p is an odd prime and k is a positive integer.

Proof. Suppose to the contrary that n = 2pk for some odd prime p and positive integer
k. Suppose A has f full rows, and without loss of generality that these are the first f
rows of A. Consider column 1 of A. By Proposition 3, we have

f

2pk
+

∑
i∈α1\{1,2,...,f}

1

ei
= 1.

Multiplying by pk−1 gives the equation

f

2p
+

∑
i∈α1\{1,2,...,f}

pk−1

ei

= pk−1.

Suppose that p does not divide f . By Proposition 4, there is an i ∈ αi \ {1, . . . , f}
such that pk divides ei. Since the first and ith row of A are orthogonal, ei is even. Hence,
n ≥ ei ≥ 2pk. This implies that row i is full, contrary to assumption.

Thus, p divides f . This implies that A has at least 3 full rows, and Proposition 1
further implies that n ≡ 0 mod 4—a contradiction.

We conclude this note, by proving nonexistence for n of the form 3p, p an odd prime.

Theorem 9 Let A be a row-orthogonal (0, 1,−1)-matrix with a full row. Then n is not
3p for some odd prime p.
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Proof. Assume to the contrary that n = 3p for some odd prime p. Without loss of
generality we may take the first row of A to be [1 1 · · · 1]. Since, A is row-orthogonal
and its first row is full, ei is even for i = 2, . . . , n. Thus, if p divides ei, then ei = 2p. For
each j, set Kj = {i : aij 6= 0 and ei = 2p}, and kj = |Kj |.

By Proposition 3, we have

1

3p
+

kj

2p
+

∑
i/∈(Kj∪{1})

1

ei
= 1. (1)

By Proposition 4
1

3p
+

kj

2p
∈ Qp.

It follows that
2 + 3kj ≡ 0 mod p.

Let ` be the unique integer with 0 ≤ ` ≤ p− 1 and 2 + 3` ≡ 0 mod p. Since p ≥ 3, ` 6= 0.
We have kj ≡ ` mod p, and since (1) implies that kj < 2p, and since kj is nonnegative,
either kj = ` or kj = ` + p. Since 1 ≤ ` ≤ p − 1 and p|(3` + 2), we have

3` + 2 = p or 3` + 2 = 2p. (2)

First suppose there is a j with kj = `. Without loss of generality, we may assume that
j = 1, the first j + 1 entries of column one are +1, and e2 = · · · = e`+1 = 2p.

For subsets α and β of {1, 2, . . . , n} the submatrix of Q whose row indices belong
to α and whose column indices belong to β is denoted by Q[α, β]. For m 6= i, let am,

respectively bm, denote the number of times
[

1√
2p

1√
2p

]
, respectively

[
1√
2p

− 1√
2p

]
, occurs

as a row of Q[{1, . . . , n}, {1, m}]. Since the columns of Q are mutually orthogonal and of
length 1, Propositions 3 and 4 imply that

2 + 3(am − bm) ≡ 0 mod p,

and thus
am − bm ≡ ` mod p.

As
|am − bm| ≤ ` < p,

we conclude that either

am − bm = ` or am − bm = ` − p.

Let c2, . . . , cs be the columns of A with am−bm = `. Note that if am−bm = ` then, am =
` and bm = 0, since am and bm are nonnegative and am + bm ≤ `. Set β = {1, c2, . . . , cs},
X = A[{2, . . . , ` + 1}, β], Y = A[{2, . . . , `}, β̄], and Z = A[{2, . . . , `}, {1, 2, . . . , n}].

There are s` 1’s in X. Let y+, respectively y−, denote the number of 1’s, respectively
−1’s, in Y . Each row of Z has 2p nonzero entries, and is orthogonal to the vector of all
1’s. Thus each row in Z contains p 1’s and p −1’s, there are `p 1’s and `p −1’s in Z, and

s` + y+ = `p = y−.
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Thus,
s` = y− − y+ and s ≤ p. (3)

Since each column of Y has sum ` − p,

y+ − y− = (` − p)(n − s).

Thus
(n − s)` = (n − s)p + y+ − y−. (4)

Thus by (3) and (4),
3p` = n` = s` + (n − s)` = (n − s)p.

This implies that s = 3p − 3`. Equation (2) implies s ≥ 3p − (2p − 2) = p + 2, which
contradicts (3). Therefore every column of Q has ` + p entries equal to 1√

2p
.

Let γ = {i : row i of A has 2p nonzero entries}. Then A[γ, {1, 2, . . . , n}] has 2p
nonzero entries in each row, and ` + p nonzero entries in each column. Thus 3p(` + p) =
2p|γ|. Since p is odd, ` must be odd. In particular, 3` + 2 6= 2p. From (2) we conclude
that ` = p−2

3
.

Let aj and bj be as previously defined. Then by Propositions 3 and 4, we see that for
j 6= 1

aj − bj ≡ ` mod p.

As |aj − bj | ≤ ` + p = (4p − 2)/3, we have

aj − bj ∈
{

4p − 2

3
,
p − 2

3
,
−2p − 2

3

}
.

For each j, let xj = A[{i : i 6∈ γ ∪ {1}}; {j}].
First suppose that there exists a column j 6= 1 with aj − bj = (4p−2)/3 = `+p. Then

by Proposition 3, we have
1

3p
+

` + p

2p
+ x1 · xj = 0.

This implies that

|x1 · xj | =
2 + 3` + 3p

6p
=

2

3
.

Similarly,

‖x1‖2 = ‖xj‖2 =
3p − 2 − 3`

6p
=

1

3
.

By the Cauchy-Schwartz inequality, 2/3 = |x1 · xj | ≤ ‖x1‖‖xj‖ = 1/3, which is a
contradiction. Therefore, for each j 6= 1, either aj − bj = (−2p − 2)/3 = ` − p or
aj − bj = (p − 2)/3 = `.

Let s be the number of j such that aj − bj = `. The matrix A[K1, {1, 2, . . . , n}] has
row sums 0, 1 column with sum `+ p, s columns with sum `, and 3p−1− s columns with
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sum ` − p. Hence,

0 = (` + p) + s` + (n − 1 − s)(` − p)

= 2p + n` − np + sp

= p(s − 3p + 3` + 2),

which implies that s = 2p.
Since the rows of A are mutually orthogonal,

0 =
∑

i1,i2∈γ,i1<i2

A[{i1}, {1, 2 . . . , n}] · A[{i2}, {1, 2 . . . , n}]. (5)

Column 1 of A contributes
(

`+p
2

)
and column j (j 6= 1) of A contributes

(
aj

2

)
+
(

bj

2

)
− ajbj

to the sum on the righthand-side of (5). Hence,

0 =

(
` + p

2

)
+

n∑
j=2

((
aj

2

)
+

(
bj

2

)
− ajbj

)
. (6)

Note that aj + bj ≤ p + ` = (4p − 2)/3 and hence

(
aj

2

)
+

(
bj

2

)
− ajbj =

1

2
((aj − bj)

2 − (aj + bj))

≥



1
2

[
(p−2

3
)2 − 4p−2

3

]
if aj − bj = p−2

3
,

1
2

[
(2p+2

3
)2 − 4p−2

3

]
if aj − bj = −2p−2

3
.

Hence, by (6) and the fact s = 2p, we have

0 ≥
(
` + p

2

)
+

s

2

((
p − 2

3

)2

− 4p − 2

3

)
+

3p − 1 − s

2

((
2p + 2

3

)2

− 4p − 2

3

)

=

(
(4p − 2)/3

2

)
+ p

((
p − 2

3

)2

− 4p − 2

3

)
+

p − 1

2

((
2p + 2

3

)2

− 4p − 2

3

)

=
p(p2 − 4p + 1)

3
.

It is easy to verify that p2 − 4p + 1 > 0 for p ≥ 4. We are led to the contradiction
that p is an odd prime with p < 4 and ` = (p− 2)/3 an integer. Therefore, n is not of the
form 3p where p is an odd prime.
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