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Abstract

A combinatorial bijection between k-edge colored trees and colored Prüfer codes
for labelled trees is established. This bijection gives a simple combinatorial proof
for the number k(n − 2)!

(nk−n
n−2

)
of k-edge colored trees with n vertices.

1 Introduction

A k-edge colored tree is a labelled tree whose edges are colored from a set of k colors
such that any two edges with a common vertex have different colors [2, p81, 5.28]. For a
pair (n, k) of positive integers, let Cn,k denote the set of all k-edge colored trees on vertex
set [n] = {1, 2, . . . , n}, with color set [k]. The number of k-edge colored trees in Cn,k is
already known:

Theorem 1. The number of k-edge colored trees on vertex set [n], n ≥ 2, is

k(nk − n)(nk − n− 1) · · · (nk − 2n+ 3) = k(n− 2)!

(
nk − n

n− 2

)
.

Stanley in [2, p124] introduces a proof of the above formula and asks whether there
is a simple bijective proof. In this paper we provide a combinatorial bijection between
k-edge colored trees and ‘colored Prüfer codes’, thus establishing a simple bijective proof
of the above formula.

The Prüfer code ϕ(T ) = (a1, . . . , an−2, 1) of a labelled tree T with vertex set [n] is
obtained from the tree by successively pruning the leaf with the largest label. To obtain
the code from T , we remove the largest leaf in each step, recording its neighbor ai, from
the tree, until the single vertex 1 is left. The inverse of ϕ can be described easily. Let
σ = (a1, . . . , an−2, 1) be a sequence of positive integers with ai ∈ [n] for all i. We can find
the tree T whose code is σ as follows:
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• Let V = {1} and E = ∅.
• For each i from n− 2 to 1,

– if ai 6∈ V , then set bi+1 = ai,

– otherwise set bi+1 = min{x : x ∈ [n] \ V };
– set V := V ∪ {bi+1} and E := E ∪ {{ai+1, bi+1}}.

• Let b1 be the unique element in [n] \ V .

• Finally, set V := V ∪ {b1} and E := E ∪ {{a1, b1}}.
• Let T be the tree with vertex set V and edge set E.

Example. Let T be the tree in Figure 1. The Prüfer code of T is (1, 6, 1, 3, 3, 1). We
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Figure 1: The tree T corresponding to (1, 6, 1, 3, 3, 1)

can recover T from its Prüfer code by the above algorithm.

Clearly, Prüfer codes are in one-to-one correspondence with labelled trees. The fol-
lowing is a well known result. See [1, 2].

Theorem 2. The number of the tree on [n] vertices is nn−2.

Proof. Any sequence (a1, a2, . . . , an−2) ∈ [n]n−2 of integers corresponds to a Prüfer code
(a1, a2, . . . , an−2, 1) which in turn determines a unique labelled tree with vertex set [n].

2 Colored Prüfer code

Let Pn,k denote the set of all arrays of the form(
a1 a2 · · · an−2 1
c1 c2 · · · cn−2 cn−1

)
,

such that (a1, c1), (a2, c2), . . . , (an−2, cn−2) ∈ [n] × [k − 1] are distinct and cn−1 ∈ [k]. An
array like the above is called a colored Prüfer code, since its first row is a Prüfer code and
its second row can be interpreted as an edge-coloring.
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Lemma 3. The cardinality of Pn,k is

k(n− 2)!

(
nk − n
n− 2

)
.

Proof. Consider an element σ ∈ Pn,k:

σ =

(
a1 a2 · · · an−2 1
c1 c2 · · · cn−2 cn−1

)
.

The conditions for σ are: (ai, ci) ∈ [n] × [k − 1] for 1 ≤ i ≤ n− 2, cn−1 ∈ [k] and the first
n− 2 columns of σ are distinct. So the number of possible σ is

k(nk − n)(nk − n− 1)(nk − n− 2) · · · (nk − 2n+ 3) = k(n− 2)!

(
nk − n
n− 2

)
.

Recall that Cn,k is the set of all k-edge colored trees on vertex set [n] with color set
[k]. Let T be a k-edge colored tree in Cn,k with vertex set V (T ) and edge set E(T ). Let
CT : E(T ) → [k] denote the edge-coloring of T , i.e. CT (e) is the color of edge e in T .

For each pair of distinct edges e and e′ in T , define the distance between e and e′,
denoted by d(e, e′), to be l− 1 when l is the shortest length of paths containing e and e′.
Note that the distance between edges sharing a vertex is one.

When x is the smallest neighbor of 1 in T , we call the edge α = {1, x} the root edge
of T . For any two edges e, e′ in T with a common vertex, we call e the parent edge of e′

and e′ the child edge of e, if d(e, α) + 1 = d(e′, α).

Let C̃n,k denote the set of labelled trees with vertex set [n] whose edges are colored
from a set of k colors, say [k], in such a way that

1. the root edge is colored from [k],

2. any pair of edges sharing a vertex with a common parent edge have distinct colors,
and

3. edges which are not the root edge are colored from [k − 1].

For a tree T in C̃n,k, let C̃T denote the edge-coloring of T , i.e. C̃T (e) is the color of edge
e in T .

Bijection φ

We define a mapping φ : C̃n,k → Pn,k through the following steps:

• Set T0 := T .
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• For any i, 1 ≤ i ≤ n− 1, assuming that Ti−1 is defined already, define ai, bi, ci and
Ti: bi is the largest leaf in Ti−1, ai is the vertex adjacent to bi, Ti is the tree obtained
by removing the vertex bi and the edge {ai, bi} from Ti−1, and ci = C̃T ({ai, bi}).

• Define φ(T ) by

φ(T ) =

(
a1 a2 · · · an−2 1
c1 c2 · · · cn−2 cn−1

)
Note that the first row of φ(T ) is the Prüfer code of T , so φ is one-to-one.

Clearly, the first n− 2 columns of φ(T ) are distinct, and ci ∈ [k− 1] for 1 ≤ i ≤ n− 2,
cn−1 ∈ [k]. So φ(T ) is an element in Pn,k.

Bijection ψ

We now define a mapping ψ : Pn,k → C̃n,k, which is the inverse of φ. Let σ be an element
in Pn,k:

σ =

(
a1 a2 · · · an−2 1
c1 c2 · · · cn−2 cn−1

)
.

We construct, by the following algorithm, a labelled tree whose Prüfer code is the first
row of σ, with an edge-coloring C̃T :

• Let V = {1} and E = ∅.
• For each i from n− 2 to 1,

– if ai 6∈ V , then set bi+1 = ai,

– otherwise set bi+1 = min{x : x ∈ [n] \ V };
– set V := V ∪ {bi+1} and E := E ∪ {{ai+1, bi+1}}.

• Let b1 be the unique element in [n] \ V .

• Finally, set V := V ∪ {b1} and E := E ∪ {{a1, b1}}.
• Let T be the tree with vertex set V and edge set E.

• Set C̃T ({ai, bi}) = ci for i ∈ [n− 2] and C̃T ({1, bn−1}) = cn−1.

Let ψ(σ) be the resulting tree with edge-coloring C̃T . Clearly ψ(σ) is in C̃n,k and ψ is the
inverse of φ. So we have the following.

Lemma 4. The mapping φ : C̃n,k → Pn,k is a bijection and thus the cardinality of C̃n,k is

k(n− 2)!

(
nk − n
n− 2

)
.
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Main result

We now define a mapping ∆ from Cn,k to C̃n,k. For any T ∈ Cn,k, define C̃T : E(T ) → [k]
as follows:

• Let x be the smallest neighbor of 1 and α denote edge {1, x}. Set C̃T (α) = CT (α).

• Assume that C̃T (f) is defined for all edges f such that d(α, f) < i. For an edge g
with d(α, g) = i, let h be the unique edge such that d(α, h) = i− 1 and d(h, g) = 1.

Define C̃T (g) by

C̃T (g) =

{
CT (g), if CT (g) ≤ C̃T (h),

CT (g) − 1, otherwise.

Note that C̃T (f) ≤ k− 1 for all f 6= α. Let ∆(T ) be the tree T with its edge-coloring CT

replaced by C̃T . Clearly ∆(T ) is an element in C̃n,k.

We next define a mapping Λ from C̃n,k to Cn,k. For any T ∈ C̃n,k, define CT : E(T ) → [k]
as follows:

• Let x be the smallest neighbor of 1 and α denote the edge {1, x}. Set CT (α) =

C̃T (α).

• Assume that CT (f) is defined for all edges f such that d(α, f) < i. For an edge g
with d(α, g) = i, let h be the unique edge such that d(α, h) = i− 1 and d(h, g) = 1.
Define CT (g) by

CT (g) =

{
C̃T (g), if C̃T (g) < CT (h),

C̃T (g) + 1, otherwise.

Note that CT (f) ≤ k for all f and no pair of two edges with a common vertex have the

same color. Let Λ(T ) be the tree T with its edge-coloring C̃T replaced by CT . Clearly
Λ(T ) is an element in Cn,k.

Clearly, Λ is the inverse of ∆. Hence we have the following crucial lemma:

Lemma 5. The mapping ∆ : Cn,k → C̃n,k is a bijection.

Example. A k-edge colored tree T in C10,5 and its ∆(T ) are in Figures 2 and 3. The
edge {1, 3} is the root edge.

We can now count the number of the k-edge colored trees with n vertices. The following
is the restatement of Theorem 1.

Theorem 6 (Main theorem). The number of k-edge colored trees on [n] is

k(n− 2)!

(
nk − n
n− 2

)
.

the electronic journal of combinatorics 11 (2004), #N10 5



������

HHHHHH ������

HHHHHH

������

4

2

3 1

7

5

10

9

8

6s

s

s

s

s

s

s s

s

s

i4

i2
i3

i5

i2

i1

i4

i3

i1

Figure 2: A k-edge colored tree T in C10,5
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Figure 3: ∆(T ) in C̃10,5, i.e. T with C̃T

Proof. Since ∆ : Cn,k → C̃n,k and φ : C̃n,k → Pn,k are bijections, it follows from Lemma 3
or 4.

The colored Prüfer codes can be used to count certain sets of labelled trees with edge-
coloring. Recall that a k-edge colored tree is a labelled tree whose edges are colored from
a set of k colors such that any two edges with a common vertex have different colors. We
now consider slightly different edge-colorings of labelled trees.

Theorem 7. The number of different labelled trees with vertex set [n] whose edges are
colored from a set of k colors in such a way that the color of each edge is different from
that of its parent edge is

k(nk − n)n−2.

Proof. Let T be a tree with the property in the statement. Following the steps for the
definition of φ, we can obtain an array σ corresponding to T :

σ =

(
a1 a2 · · · an−2 1
c1 c2 · · · cn−2 cn−1

)
.

There are k possible ways to choose the cn−1. Next, the number of possible ways to choose
the (n− 2)-th column of σ is n(k − 1), since the color of an edge is different from that of
its parent edge. The i-th column of σ has always n(k − 1) choices. Hence the number of
such trees is k(nk − n)n−2.

Note that the above theorem can be proved by using a generalization of ∆. The
mapping ∆ can be defined as long as the colors of children edges are different from that of
their parent edge. Then the image of ∆ of a tree considered in the theorem just satisfies
that non-root edges are colored with [k− 1], so that each of the first n− 2 columns of its
colored Prüfer code is an arbitrary element in [n] × [k − 1].
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Theorem 8. The number of different labelled trees with vertex set [n] whose edges are
colored from a set of k colors in such a way that any pair of edges sharing a vertex with
a common parent edge have distinct colors is

k(n− 2)!

(
nk
n− 2

)
.

Proof. Let T be a tree with the property in the statement. Following the steps for the
definition of φ, we can obtain an array σ corresponding to T :

σ =

(
a1 a2 · · · an−2 1
c1 c2 · · · cn−2 cn−1

)
.

There are k possible ways to choose cn−1. Since the cn−2 may be identical with cn−1, the
number of possible ways to choose the (n−2)-th column of σ is nk. Since the i-th column
of T is different from the columns from the (i+ 1)-th to the (n− 2)-th for 1 ≤ i ≤ n− 3,
the number of possible ways to choose the i-th column decreases by 1 when i changes
from n− 2 to 1. So the number of such trees is

k(nk)(nk − 1)(nk − 2) · · · (nk − n+ 3) = k(n− 2)!

(
nk
n− 2

)
.
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