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Abstract

For a set P ⊆ R
2 with 2 ≤ n = |P | < ∞ we prove that mst(P )

bb(P ) ≤ 1√
2

√
n + 3

2

where mst(P ) is the minimum total length of a rectilinear spanning tree for P and
bb(P ) is half the perimeter of the bounding box of P . Since the constant 1√

2
in the

above bound is best-possible, this result settles a problem that was mentioned by
Brenner and Vygen (Networks 38 (2001), 126-139).

1 Introduction

We consider finite sets of point in the plane R
2 where the distance of two points p1 =

(x1, y1) and p2 = (x2, y2) in R
2 is defined as dist(p1, p2) = |x1−x2|+ |y1−y2|, i.e. dist(p, q)

is the so-called Manhattan or l1 distance.
For a finite set P ⊆ R

2 let mst(P ) be the minimum total length of a (rectilinear)
spanning tree for the set P , i.e. mst(P ) is the minimum length of a spanning tree in the
complete graph whose vertex set is P and in which the edge pq for p, q ∈ P with p 6= q
has length dist(p, q). Let steiner(P ) be the minimum total length of a (rectilinear) Steiner
tree for the set P , i.e. steiner(P ) = min{mst(P ′) | P ′ ⊆ R

2 and P ⊆ P ′}. Furthermore,
let bb(P ) =

(
max(x1,y1)∈P x1 − min(x2,y2)∈P x2

)
+

(
max(x3,y3)∈P y3 − min(x4,y4)∈P y4

)
, i.e.

bb(P ) is half the perimeter of the smallest set of the form [a1, a2] × [b1, b2] that contains
P . This unique set is called the bounding box of P .

The three parameters mst(P ), steiner(P ) and bb(P ) are examples of so-called net models
which are of interest in VLSI design. Clearly, mst(P ) ≥ steiner(P ) ≥ bb(P ) and it is an
obvious problem to study upper bounds on mst(P ) or steiner(P ) in terms of bb(P ).

In [1] Brenner and Vygen prove that (provided |P | ≥ 2)

mst(P )

bb(P )
≤ 3

4

⌈√
|P | − 2

⌉
+

9

8
=

3

4

√
|P | + O(1). (1)
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This result follows from the well-known relation mst(P ) ≤ 3
2
steiner(P ) due to Hwang [4]

and the bound steiner(P )
bb(P )

≤ 1
2

⌈√|P | − 2
⌉

+ 3
4

due to Brenner and Vygen [1] (cf. also [2]).

An example in [1] shows that the smallest-possible constant c in an estimate of the form
mst(P )
bb(P )

≤ c
√|P | + O(1) is c = 1√

2
which is smaller than the factor 3

4
in (1). With our

following main result we close this gap.

Theorem 1 If P ⊆ R
2 is such that 2 ≤ n = |P | < ∞, then

mst(P )

bb(P )
≤ 1√

2

√
n +

3

2
. (2)

In the next section we prove Theorem 1.

2 Proof of Theorem 1

The main tool for the proof of Theorem 1 is the following lemma. The construction used
in the proof of this lemma is a variation of a construction that goes back to Few [3] and
has also been used in [1, 2].

Lemma 1 Let P ⊆ [0, a] × [0, b] be such that a ≥ b and 3 ≤ n = |P | < ∞. If t ∈ N is
such that t ≤ n, then mst(P ) ≤ 1

2
(a + 4b + at + 2nb

t
).

Proof: Let P , a, b, n and t be as in the statement. Since mst(P ) is a continuous functions
of the coordinates of the points in P , we may assume without loss of generality that
x1 6= x2 and y1 6= y2 for different elements (x1, y1) and (x2, y2) of P . This implies the
existence of real numbers

0 = h0 < h1 < h2 < ... < ht = b

such that if we define Li = [0, a] × {hi} for 0 ≤ i ≤ t and Si = [0, a] × [hi−1, hi] for
1 ≤ i ≤ t, then we have P ∩ Li = ∅ for 1 ≤ i ≤ t − 1 and 1 ≤ bn

t
c ≤ |Si ∩ P | ≤ bn

t
c + 1

for 1 ≤ i ≤ t (see Figure 1). Note that this also implies Si ∩Sj ∩P = ∅ for 1 ≤ i < j ≤ t.
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We are now going to assign line segments to each of the Li’s. Let 0 ≤ i ≤ t and let

P ∩ (Si ∪ Si+1) = {(x1, y1), (x2, y2), ..., (xk, yk)}
be such that x1 < x2 < ... < xk where S0 = St+1 = ∅. For 1 ≤ j ≤ k − 1 we assign
to Li the three line segments from (xj, yj) to (xj , hi), from (xj, hi) to (xj+1, hi) and from
(xj+1, hi) to (xj+1, yj+1) (see the left part of Figure 2).
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Furthermore, if i ≤ t − 2, then we will assign more line segments to Li as follows.
If i ≡ 0 mod 4 or i ≡ 1 mod 4 let (x′, y′) be the element of P ∩ (Si+2 ∪ Si+3) with the

smallest first coordinate.
If x1 ≤ x′, then assign to Li the four line segments from (x1, y1) to (x1, hi), from

(x1, hi) to (x1, hi+2), from (x1, hi+2) to (x′, hi+2) and from (x′, hi+2) to (x′, y′).
If x1 > x′, then assign to Li the four line segments from (x1, y1) to (x1, hi), from

(x1, hi) to (x′, hi), from (x′, hi) to (x′, hi+2) and from (x′, hi+2) to (x′, y′).

Among the above line segments the one from (x1, hi) to (x1, hi+2) or from (x′, hi) to
(x′, hi+2) will be called a vertically connecting line segment. Note that if y1 ≥ hi or
y′ ≤ hi+2, the above four segments could be replaced by two or three line segments of
smaller total length in an obvious way.

If i ≡ 2 mod 4 or i ≡ 3 mod 4, then proceed analogously with xk and the element of
P ∩ (Si+2 ∪ Si+3) with the largest first coordinate (see the right part of Figure 2).

Now, the union of all line segments assigned to L0, L2, ..., L2b t
2
c lead to a first spanning

tree Teven for P and the union of all line segments assigned to L1, L3, ..., L2b t−1
2

c+1 lead

to a second spanning tree Todd for P (see Figure 3).
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We will now estimate the total length of all line segments assigned to all Li’s.
The total length of all vertical line segments apart from the vertically connecting line

segments is at most

t∑
i=1

2(hi − hi−1)|Si ∩ P | ≤
t∑

i=1

2(hi − hi−1)
(n

t
+ 1

)
= 2b

(n

t
+ 1

)
.

The total length of all vertically connecting line segments is

2b t
2
c∑

i=1

(h2i − h2(i−1)) +

2b t−1
2

c∑
i=1

(h2i+1 − h2(i−1)+1) = (h2b t
2
c − h0) + (h2b t−1

2
c+1 − h1) ≤ 2b.

The total length of all horizontal line segments is at most a(t + 1).
Altogether, we obtain a total length of a + 4b + at + 2bn

t
. Since no line segment is

used by Teven and Todd simultaneously, one of these two trees has a total length of at most
1
2
(a + 4b + at + 2bn

t
) which implies the desired result. 2

Now we proceed to the proof of Theorem 1. Let P ⊆ R
2 be such that 2 ≤ n = |P | < ∞.

If n = 2, then clearly mst(P )
bb(P )

= 1 < 1√
2

√
n + 3

2
. Hence let n ≥ 3. We may assume

that [0, a] × [0, b] with a ≥ b is the bounding box of P , i.e. bb(P ) = a + b. Now Lemma

1 for t =
⌈√

b
a

√
2n

⌉
≤ n and an easy calculation yields 2mst(P ) ≤ a + 4b + at + 2nb

t
≤

(
3 +

√
2n

)
bb(P ). Thus mst(P )

bb(P )
≤ 1√

2

√
n + 3

2
as desired and the proof is complete. 2
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