On the g-analogue of the sum of cubes

S. Ole Warnaar*

Department of Mathematics and Statistics,
The University of Melbourne, VIC 3010, Australia
warnaar@ms.unimelb.edu.au

Submitted: Apr 7, 2004; Accepted: Aug 17, 2004; Published: August 23, 2004
2000 Mathematics Subject Classification: 05A19

Abstract

A simple g-analogue of the sum of cubes is given. This answers a question posed
in this journal by Garrett and Hummel.

The sum of cubes and its g-analogues

It is well-known that the first n consecutive cubes can be summed in closed form as

Recently, Garrett and Hummel discovered the following g-analogue of this result:
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is a g-binomial coefficient.

In their paper Garrett and Hummel commiserate the fact that (1) is not as simple as
one might have hoped, and ask for a simpler sum of ¢g-cubes. In response to this I propose

the identity
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Proof. Since
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equation (2) immediately follows by induction on n. O

The form of (2) should not really come as a surprise in view of the fact that the
g-analogue of the sum of squares
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is given by

n

3 gk (1-¢"01-=¢") (A=¢")1—-q¢"H{1—¢g"")

24 1-91-¢)  (1-9-¢)(1-¢)

kz”;k:(n—gl)

and the g-analogue of
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