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Abstract

Using n-color partitions we provide new number theoretic interpretations of four
mock theta functions of S. Ramanujan.

1 Introduction

In his last letter to G.H. Hardy, S. Ramanujan listed 17 functions which he called mock
theta functions. He separated these 17 functions into three classes. First containing 4
functions of order 3, second containing 10 functions of order 5 and the third containg 3
functions of order 7. Watson [8] found three more functions of order 3 and two more of
order 5 appear in the lost notebook [7]. Mock theta functions of order 6 and 8 have also
been studied in [3] and [4], respectively. For the definitions of mock theta functions and
their order the reader is referred to [6]. The object of this paper is to provide new number
theoretic interpretations of the following mock theta functions:

Ψ(q) =
∞∑

m=1

qm2

(q; q2)m
, (1.1)

F0(q) =
∞∑

m=0

q2m2

(q; q2)m

, (1.2)

Φ0(q) =
∞∑

m=0

qm2

(−q; q2)m, (1.3)
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and

Φ1(q) =
∞∑

m=0

q(m+1)2(−q; q2)m, (1.4)

where

(a; q)n =
∞∏

i=0

(1 − aqi)

(1 − aqn+i)
,

for any constant a.
We remark that Ψ(q) is of order 3 while the remaining three are of order 5.
Number theoretic interpretations of some of the mock theta functions are found in the lit-
erature. For example, Ψ(q) has been interpreted as generating function for partitions into
odd parts without gaps [5]. We in this paper use n-color partitions (also called partitions
with n copies of n and studied first by Agarwal and Andrews in [2]) to give new number
theoretic interpretations of the mock theta functions defined above by (1.1)-(1.4). Before
we state our main results we recall some definitions from [2].

Definition 1.1. An n-color partition (also called a partition with ’n copies of n’) of
a positive integer ν is a partition in which a part of size n can come in n different colors
denoted by subscripts:n1, n2, ..., nn and the parts satisfy the order 11 < 21 < 22 < 31 <
32 < 33 < 41 < 42 < 43 < 44 < .... Thus, for example, the n-color partitions of 3 are

31, 32, 33, 2111, 2211, 111111.

Definition 1.2. The weighted difference of two parts mi, nj , m ≥ n is defined by
m − n − i − j and denoted by ((mi − nj)).

We shall prove that the mock theta functions defined by (1.1)-(1.4) have, respectively,
the following number theoretic interpretations:

Theorem 1. For ν ≥ 1, let A1(ν) denote the number of n-color partitions of ν such
that even parts appear with even subscripts and odd with odd, for some k, kk is a part,
and the weighted difference of any two consecutive parts is 0. Then,

∞∑

ν=1

A1(ν)qν = Ψ(q). (1.5)

Example. A1(8) = 3. The relevant n-color partitions are 88, 75 + 11, 62 + 22.

Theorem 2. For ν ≥ 0, let A2(ν) denote the number of n-color partitions of ν such
that even parts appear with even subscripts and odd with odd greater than 1, for some
k, kk is a part, and the weighted difference of any two consecutive parts is 0. Then,

∞∑

ν=0

A2(ν)qν = F0(q). (1.6)
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Theorem 3. For ν ≥ 0, let A3(ν) denote the number of n-color partitions of ν such that
only the first copy of the odd parts and the second copy of the even parts are used, that
is, the parts are of the type (2k − 1)1 or (2k)2, the minimum part is 11 or 22, and the
weighted difference of any two consecutive parts is 0. Then,

∞∑

ν=0

A3(ν)qν = Φ0(q). (1.7)

Theorem 4. For ν ≥ 1, let A4(ν) denote the number of n-color partitions of ν such that
only the first copy of the odd parts and the second copy of the even parts are used, the
minimum part is 11, and the weighted difference of any two consecutive parts is 0. Then,

∞∑

ν=1

A4(ν) = Φ1(q). (1.8)

Remark. We remark that there are 160 n-color partitions of 8 but only one partition
viz., 62 + 22 is relevant for Theorem 3 and none is relevant for Theorem 4. Out of 859
n-color partitions of 11, none is relevant for Theorems 3-4. Among 18334 n-color par-
titions of 17 only two viz., 91 + 62 + 22 and 82 + 51 + 31 + 11 satisfy the conditions of
Theorem 3, whereas the lone partition 82+51+31+11 satisfies the conditions of Theoem 4.

Following the method of [1], we give in our next section the detail proof of Theorem 1
and the shortest possible proofs for the remaining theorems. In the sequel Ai(m, ν), (1 ≤
i ≤ 4), will denote the number of partitions of ν enumerated by Ai(ν) into m parts, and
we shall write

fi(z, q) =
∞∑

ν=0

∞∑

m=0

Ai(m, ν)zmqν . (1.9)

In our last section we illustrate how our new results can be used to yield new combinatorial
identities.

2 Proofs

Proof of Theorem 1. We split the partitions enumerated by A1(m, ν) into two classes: (1)
those that contain 11 as a part, and those that contain kk, (k > 1) as a part. Following
the method of [1] it can be easily proved that the partitions in Class (1) are enumerated
by A1(m − 1, ν − 2m + 1) and in Class (2) by A1(m, ν − 2m + 1), and so

A1(m, ν) = A1(m − 1, ν − 2m + 1) + A1(m, ν − 2m + 1). (2.1)

From (1.9), we have

f1(z, q) =
∞∑

ν=0

∞∑

m=0

A1(m, ν)zmqν . (2.2)

Substituting for A1(m, ν) from (2.1) in (2.2) and then simplifying we get

f1(z, q) = zqf1(zq
2, q) + q−1f1(zq

2, q). (2.3)

the electronic journal of combinatorics 11 (2004), #N14 3



Setting f1(z, q) =
∞∑

n=0

αn(q)zn , and then comparing the cofficients of zn on each side of

(2.3), we see that

αn(q) =
q2n−1

1 − q2n−1
αn−1(q). (2.4)

Iterating (2.4) n times and observing that α0(q) = 1, we find that

αn(q) =
qn2

(q; q2)n

. (2.5)

Therefore

f1(z, q) =
∞∑

n=0

qn2
zn

(q; q2)n

. (2.6)

Now

∞∑

ν=0

A1(ν)qν =
∞∑

ν=0

(
∞∑

m=0

A1(m, ν))qν

= f1(1, q)

=
∞∑

n=0

qn2

(q; q2)n

= Ψ(q).

This completes the proof of Theorem 1.

Proof of Theorem 2.

The proof is similar to that of Theorem 1, hence we omit the details and give only
the q-functional equation used in this case.

f2(z, q) = zq2f2(zq
4, q) + q−1f2(zq, q). (2.7)

Proof of Theorem 3.

We split the partitions enumerated by A3(m, ν) into two classes:(1) those that contain 11

as a part, and (2) those that contain 22 as a part. By using the usual technique we see
that the partitions in Class (1) are enumerated by A3(m − 1, ν − 2m + 1) and in Class
(2) by A3(m − 1, ν − 4m + 2). This leads to the identity

A3(m, ν) = A3(m − 1, ν − 2m + 1) + A3(m − 1, ν − 4m + 2). (2.8)

Using (2.8) one can easily obtain the following q-functional equation

f3(z, q) = zqf3(zq
2, q) + zq2f3(zq

4, q). (2.9)
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Setting f3(z, q) =
∞∑

n=0

βn(q)zn, and noting that f3(0, q) = 1, we can easily check by

coefficient comparison in (2.9) that

βn(q) = qn2

(−q; q2)n. (2.10)

Therefore,

f3(z, q) =
∞∑

n=0

qn2

(−q; q2)nzn. (2.11)

Now ∞∑

ν=0

A3(ν)qν =
∞∑

ν=0

(
∞∑

m=0

A3(m, ν))qν

= f3(1, q)

=
∞∑

n=0

qn2

(−q; q2)n

= Φ0(q).

This proves Theorem 3.

Proof of Theorem 4.

The partitions enumerated by A4(m, ν) are precisely those partitions which belong to
Class 1 of the previous case. Therefore,

A4(z, ν) = A3(m − 1, ν − 2m + 1). (2.12)

Using Equations (2.8) and (2.12), one can easily obtain the following q-functional equation:

f4(z, q) = f3(z, q) − zq2f3(zq
4, q). (2.13)

Setting f4(z, q) =
∞∑

n=0

γn(q)zn, and then comparing the coefficients of zn on each side of

(2.13), we see that
γn(q) = βn(q) − βn−1(q)q

4n−2

= qn2
(−q; q2)n−1.

This implies that

f4(z, q) =
∞∑

n=1

qn2

(−q; q2)n−1z
n.
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Now ∞∑

ν=0

A4(ν)qν =
∞∑

ν=0

(
∞∑

m=0

A4(m, ν))qν

= f4(1, q)

=
∞∑

n=1

qn2

(−q; q2)n−1

=
∞∑

n=0

q(n+1)2(−q; q2)n

= Φ1(q).

This completes the proof of Theorem 4.

3 New combinatorial identities

Our Theorems 1-4 can be combined with the known number theoretic interpretations
of (1.1)-(1.4) to yield new combinatorial identities. For example, Theorem 1 in view of
the known partition theoretic interpretation of Ψ(q) given above in Section 1 gives the
following result:

Theorem 5. For ν ≥ 1, the number of n-color partitions of ν such that even parts
appear with even subscripts and odd with odd, for some k, kk is a part, and the weighted
difference of any two consecutive parts is 0 equals the number of ordinary partitions of ν
into odd parts without gaps.
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