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Abstract

We prove that the Turán density of PG(3, 2) is at least 27
32 = 0.84375 and at most

27
28 = 0.96428 . . . .

1 Introduction

For n ≥ 2, let PG(n, 2) be the finite projective geometry of dimension n over F2, the field
of order 2. The elements or points of PG(n, 2) are the one-dimensional vector subspaces of
F

n+1
2 ; the lines of PG(n, 2) are the two-dimensional vector subspaces of F

n+1
2 . Each such

one-dimensional subspace {0, x} is represented by the non-zero vector x contained in it.
For ease of notation, if {e0, e1, . . . , en} is a basis of F

n+1
2 and x is an element of PG(n, 2),

then we denote x by a1 . . . as, where x = ea1 + · · ·+ eas is the unique expansion of x in the
given basis. For example, the element x = e0 + e2 + e3 is denoted 023. For an r-uniform
hypergraph F , the Turán number ex(n,F) is the maximum number of edges in an r-
uniform hypergraph with n vertices not containing a copy of F . The Turán density of an
r-uniform hypergraph F is π(F) = limn→∞

ex(n,F)

(n
r)

. A 3-uniform hypergraph is also called

a triple system. The points and the lines of PG(n, 2) form a triple system Hn with vertex
set V (Hn) = F

n+1
2 \ {0} and edge set E(Hn) = {xyz : x, y, z ∈ V (Hn), x + y + z = 0}.

The Turán number(density) of PG(n, 2) is the Turán number(density) of Hn. It was
proved in [1] that the Turán density of PG(2, 2), also known as the Fano plane, is 3

4
.

The exact Turán number of the Fano plane was later determined for n sufficiently large:
it is ex(n, PG(2, 2)) =

(
n
3

) − (bn
2
c

3

) − (dn
2
e

3

)
. This result was proved simultaneously and

independently in [2] and [4]. In the following sections, we present bounds on the Turán
density of PG(3, 2).
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2 A lower bound

Let G be the triple system on n ≥ 1 vertices with vertex set A ∪ B ∪ C, where A, B

and C are disjoint, |A| = b d 3n
4
e

2
c ∼ 3n

8
, |B| = d d 3n

4
e

2
e ∼ 3n

8
and |C| = bn

4
c ∼ n

4
. Also let

C = C1 ∪ C2 ∪ C3 ∪ C4 where C1, C2, C3 and C4 are disjoint and |Ci| = b bn
4
c+i−1

4
c ∼ n

16

for 1 ≤ i ≤ 4. The edge set of G is obtained by removing from the set of all 3-subsets of
V = A ∪ B ∪ C the following triples

{xyz : x, y, z ∈ A} ∪ {xyz : x, y, z ∈ B} ∪ {xyz : x, y, z ∈ C}
∪{xyz : x ∈ A ∪ B, y, z ∈ Ci, 1 ≤ i ≤ 4} (1)

The number of edges of G is 27
32

(
n
3

)
+ O(n2).

Theorem 2.1. G does not contain H3.

Proof. It was proved in [5] that the chromatic number of H3 is 3 and for any 3-coloring
of H3, all three color classes have cardinality 5.

Suppose H3 is contained in G. Color the vertices in A with color 1, the vertices in B
with color 2 and the vertices in C with color 3. From the definition of the edge set of G,
it follows that no edge of G is monochromatic. Since H3 is contained in G, it follows that
H must admit a 3-coloring such that one color class is included in A, another in B and
the other in C. Thus, we have a color class D of H3 in C = C1 ∪C2 ∪C3 ∪C4. Since this
color class has 5 vertices, from the pigeonhole principle we get that there exists 1 ≤ i ≤ 4
such that at least 2 of the vertices of D are in Ci. Without loss of any generality, we can
assume i = 1; let x and y be two of the vertices of D which are contained in C1. From
the definition of H3, it follows that there exists a unique vertex z in V (H3) such that
xyz ∈ E(H3). But z cannot be contained in C, therefore z ∈ A ∪ B.

Thus, we have found that G contains an edge with one endpoint in A ∪ B and two
endpoints in C1; this is impossible by (1). Hence, H3 is not contained in G.

This implies

π(PG(3, 2)) ≥ 27

32
= 0.84375.

3 An upper bound

It follows from [6] that π(PG(3, 2)) ≤ 1 − 1
|E(H3)| = 34

35
= 0.971 . . . . In this section, we

provide a slight improvement of this bound and show that π(PG(3, 2)) ≤ 27
38

= 0.964 . . . .
Let m(n, k, r) denote the maximum number of edges in a graph on n vertices with the

property that any k vertices span at most r edges. It was proved in [3] that the asymp-

totic density ex(k, r) = limn→∞
m(n,k,r)

(n
2)

exists for all k and r ≥ 0 and that m(n, k, r) =

ex(k, r)
(

n
2

)
+ O(n).

Let G be a triple system with n vertices such that G doesn’t contain H3. In obtaining
an upper bound on π(H3), we may assume that G contains a copy F of the Fano plane,

the electronic journal of combinatorics 11 (2004), #N3 2



otherwise π(H3) ≤ π(F) = 3
4

= 0.75 which contradicts π(H3) ≥ 0.84375. Given any
vertex a ∈ V (G), the link LS(a) of a restricted to a subset S of V (G) is {{b, c} : {a, b, c} ∈
E(G), b, c ∈ S}. The proof of the next result is technical and it is presented in the next
section.

Theorem 3.1. Let G be a triple system that contains a Fano plane F . Suppose there is
a subset S of 8 elements of V (G) \ V (F) so that the link multigraph of F restricted to S
has 192 edges. Then G contains H3.

Thus, for any set S of 8 vertices included in V (G) \ V (F), the union ∪x∈FLS(x)
contains at most 191 edges. It follows that the number of edges in ∪x∈FLS(x) is at most
m(n, 8, 191) + O(n). This implies that there exists a vertex x in F that is contained in

at most m(n,8,191)
7

+ O(n) edges of G. From Theorem 9(page 24) in [3] it follows that
ex(8, 191) = 6+ex(8, 23) = 6+ 3

4
= 27

4
. Thus, x will be contained in at most 27

28

(
n
2

)
+O(n)

edges of G. Deleting x and applying the same argument as before to G \ {x}, we get that
the number of edges in G is at most 27

28

(
n
3

)
+ O(n2) which implies

π(PG(3, 2)) ≤ 27

28
= 0.96428 . . . .

Hence,

0.84375 =
27

32
≤ π(PG(3, 2)) ≤ 27

28
= 0.96428 . . . .

4 Proof of theorem 3.1.

As usual, C4 will denote the cycle on 4 vertices, K4 will be the complete graph on 4
vertices and Q3 will be the cube on 8 vertices.

Proof. Let F = {0, 1, 2, 01, 02, 12, 012} be the Fano plane included in G. For a ∈ F , we
will denote by L(a) the link of a restricted to S. Let x1, x2, . . . , x7 denote the sizes of the
links of the vertices of F restricted to S with x1 ≤ x2 ≤ · · · ≤ x7 ≤ 28.

The solutions (y1, y2, . . . , y7) of the equation y1+y2+ · · ·+y7 = 192, y1 ≤ y2 ≤ · · · ≤ y7

and yi ∈ N for all 1 ≤ i ≤ 7 are the following:

1. (24,28,28,28,28,28,28)

2. (25,27,28,28,28,28,28)

3. (26,26,28,28,28,28,28)

4. (26,27,27,28,28,28,28)

5. (27,27,27,27,28,28,28)

Then (x1, x2, . . . , x7) is one of the 7-tuples above. The following result is folklore and it
will be used in the proof of our theorem.
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Lemma 4.1. If G is a graph on 2n vertices and
(
2n−1

2

)
+ 1 edges, then G contains a

perfect matching.

The automorphism group of PG(2, 2) acts transitively on the lines of PG(2, 2) and
also, acts transitively on the 3-subsets of PG(2, 2) that are not lines. This fact is used in
analyzing Case 4 and Case 5.

• Case 1 (x1, x2, x3, x4, x5, x6, x7) = (24, 28, 28, 28, 28, 28, 28)

We can assume that |L(0)| = 24. It follows that there exists a perfect matching
M(0) of S that is included in L(0). Label this matching as
M(0) = {{3, 03}, {13, 013}, {23, 023}, {123, 0123}}. The choices of perfect match-
ings for the remaining vertices of F are obvious since xi = 28 for all i, 2 ≤ i ≤ 7.
We choose

M(01) = {{3, 013}, {03, 13}, {23, 0123}, {123, 023}},
M(1) = {{3, 13}, {03, 013}, {23, 123}, {023, 0123}},
M(2) = {{3, 23}, {13, 123}, {03, 023}, {013, 0123}},
M(02) = {{3, 023}, {03, 23}, {13, 0123}, {013, 123}},
M(12) = {{3, 123}, {03, 0123}, {13, 23}, {013, 023}} and
M(012) = {{3, 0123}, {03, 123}, {13, 023}, {23, 013}}.

Then F with the edges containing all these perfect matchings will form H3.

• Case 2 (x1, x2, x3, x4, x5, x6, x7) = (25, 27, 28, 28, 28, 28, 28)

We can assume that |L(0)| = 25 and |L(1)| = 27. There exists a perfect matching
M(0) of S that is included in L(0). It can be easily checked that there are exactly
12 perfect matchings Q of S such that M(0) ∪ Q = 2C4. Also, for every pair
{u, v} /∈ M(0) with u, v ∈ S, there exist precisely 2 perfect matchings R of S such
that M(0) ∪ R = 2C4 and {u, v} ∈ R. Thus, for every pair {u, v} /∈ M(0) with
u, v ∈ S, there exist exactly 10 perfect matchings Q of S such that M(0)∪Q = 2C4

and {u, v} /∈ Q. Since |L(1)| = 27, it follows that there exist at least 10 perfect
matchings Q of S such that Q ⊂ L(1) and M(0)∪Q = 2C4. We choose one of these
Q’s to be M(1). Thus, we have M(0) ⊂ L(0), M(1) ⊂ L(1) and M(0)∪M(1) = 2C4.
We label these two matchings as follows:

M(0) = {{3, 03}, {13, 013}, {23, 023}, {123, 0123}} and
M(1) = {{3, 13}, {03, 013}, {23, 123}, {023, 0123}}.

We can continue the labelling as in Case 1.

• Case 3 (x1, x2, x3, x4, x5, x6, x7) = (26, 26, 28, 28, 28, 28, 28)

We can assume that |L(0)| = 26 and |L(1)| = 26. There exists a perfect matching
M(0) of S that is included in L(0). Again, there are exactly 12 perfect matchings
Q of S such that M(0) ∪ Q = 2C4. A pair {u, v} /∈ M(0) with u, v ∈ S belongs
to exactly 2 perfect matchings Q of S such that M(0) ∪ Q = 2C4. It follows that
for any two pairs {u, v}, {u′, v′} /∈ M(0) with u, v, u′, v′ ∈ S, there exist at most 4
perfect matchings R of S such that M(0) ∪R = 2C4 and {{u, v}, {u′, v′}} ∩R 6= ∅.
Since |L(1)| = 26, it follows that there are at least 8 perfect matchings Q of S such
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that Q ⊂ L(1) and M(0)∪Q = 2C4. We choose one of these Q’s to be M(1). Thus,
we have M(0) ⊂ L(0), M(1) ⊂ L(1) and M(0) ∪ M(1) = 2C4. We label these two
matchings as follows:

M(0) = {{3, 03}, {13, 013}, {23, 023}, {123, 0123}} and
M(1) = {{3, 13}, {03, 013}, {23, 123}, {023, 0123}}.

We can continue the labelling as in Case 1.

• Case 4 (x1, x2, x3, x4, x5, x6, x7) = (26, 27, 27, 28, 28, 28, 28)

Without loss of generality we can assume that |L(0)| = 26 and |L(1)| = |L(01)| = 27
or |L(0)| = 26 and |L(1)| = |L(2)| = 27. There exists a perfect matching M(0) of S
that is included in L(0).

Suppose that |L(1)| = |L(01)| = 27. There exist 24 ordered pairs (Q, R) of perfect
matchings of S such that M(0) ∪ Q ∪ R = 2K4. For a pair {u, v} /∈ M(0) with
u, v ∈ S, there are 4 ordered pairs (Q, R) of perfect matchings of S such that
M(0)∪Q∪R = 2K4 and {u, v} ∈ Q∪R. Thus, for two pairs {u, v}, {u′, v′} /∈ M(0)
with u, v, u′, v′ ∈ S, there are at most 16 ordered pairs (Q, R) of perfect matchings
of S such that M(0) ∪ Q ∪ R = 2K4 and {{u, v}, {u′, v′}} ∩ (Q ∪ R) 6= ∅. Since
|L(1)| = |L(01)| = 27, it follows that there exist at least 8 ordered pairs (Q, R) of
perfect matchings of S such that Q ⊂ L(1), R ⊂ L(01) and M(0) ∪ Q ∪ R = 2K4.
Choose one of these pairs and let M(1) = Q and M(01) = R. We label these
matchings as follows:

M(0) = {{3, 03}, {13, 013}, {23, 023}, {123, 0123}},
M(1) = {{3, 13}, {03, 013}, {23, 123}, {023, 0123}} and
M(01) = {{3, 013}, {03, 13}, {23, 0123}, {123, 023}}.

We then continue as in Case 1.

Suppose that |L(1)| = |L(2)| = 27. Since |L(1)| = 27, it is obvious from the
previous cases that we can find a perfect matching M(1) ⊂ L(1) of S such that
M(0) ∪ M(1) = 2C4. Now, because |L(2)| = 27, it is easy to see that there are at
least 6 perfect matchings R of S such that R ⊂ L(2) and M(0) ∪ M(1) ∪ R = Q3.
Choose one of them and let M(2) = R. We now label these matchings as follows:

M(0) = {{3, 03}, {13, 013}, {23, 023}, {123, 0123}},
M(1) = {{3, 13}, {03, 013}, {23, 123}, {023, 0123}} and
M(2) = {{3, 23}, {13, 123}, {03, 023}, {013, 0123}}.

We then continue as in Case 1.

• Case 5 (x1, x2, x3, x4, x5, x6, x7) = (27, 27, 27, 27, 28, 28, 28)

Without loss of generality we can assume that |L(0)| = |L(1)| = |L(01)| = |L(2)| =
27 or |L(0)| = |L(1)| = |L(2)| = |L(012)| = 27.

Suppose that |L(0)| = |L(1)| = |L(01)| = |L(2)| = 27. From Case 4, it follows
that there exist perfect matchings M(0), M(1) and M(01) of S such that M(0) ⊂
L(0), M(1) ⊂ L(1), M(01) ⊂ L(01) and M(0) ∪ M(1) ∪ M(01) = 2K4. Since
|L(2)| = 27, it is easy to observe that we can find a perfect matching M(2) ⊂ L(2)
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of S such that M(2) ∪ M(x) ∪ M(y) = Q3 for any {x, y} ⊂ {0, 1, 01}. We label
these matchings as follows:

M(0) = {{3, 03}, {13, 013}, {23, 023}, {123, 0123}}
M(01) = {{3, 013}, {03, 13}, {23, 0123}, {123, 023}},
M(1) = {{3, 13}, {03, 013}, {23, 123}, {023, 0123}} and
M(2) = {{3, 23}, {13, 123}, {03, 023}, {013, 0123}}.

The rest of the matchings are labelled as in Case 1.

Suppose now that |L(0)| = |L(1)| = |L(2)| = |L(012)| = 27. From Case 4, we
can find perfect matchings M(0), M(1) of S such that M(0) ⊂ L(0), M(1) ⊂ L(1),
and M(0) ∪ M(1) = 2C4. There exist 16 ordered pairs (Q, R) of perfect matchings
of S such that X ∪ Y ∪ Z = Q3 for any {X, Y, Z} ⊂ {M(0), M(1), Q, R}. For
{u, v} /∈ M(0) ∪ M(1) with u, v ∈ S, there are at most 2 perfect matchings Q of S
such that M(0)∪M(1)∪Q = Q3 and {u, v} ∈ Q. It follows that for {u, v}, {u′, v′} /∈
M(0)∪M(1) with u, v, u′, v′ ∈ S, there are at most 8 ordered pairs (Q, R) of perfect
matchings of S such that {{u, v}, {u′, v′}}∩(Q∪R) 6= ∅ and X∪Y ∪Z = Q3 for any
{X, Y, Z} ⊂ {M(0), M(1), Q, R}. This implies that we can find perfect matchings
M(2) ⊂ L(2) and M(012) ⊂ L(012) of S such that M(x) ∪ M(y) ∪ M(z) = Q3 for
any {x, y, z} ⊂ {0, 1, 2, 012}. We label these matchings as follows:

M(0) = {{3, 03}, {13, 013}, {23, 023}, {123, 0123}},
M(1) = {{3, 13}, {03, 013}, {23, 123}, {023, 0123}},
M(2) = {{3, 23}, {13, 123}, {03, 023}, {013, 0123}} and
M(012) = {{3, 0123}, {03, 123}, {13, 023}, {23, 013}}.

We then continue as in Case 1.
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ory and its Applications, Balatonfüred, Hungary, Colloq. Math. Soc. János Bolyai,
4(1969), 869-889.

[6] A. F. Sidorenko, An analytic approach to extremal problems for graphs and hy-
pergraphs, Proc. Conf. on Extremal Problems for Finite Sets, June 1991, Visegrád,
Hungary, Proc. Colloq. Math. Soc. János Bolyai, 3(1994).

the electronic journal of combinatorics 11 (2004), #N3 7


