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Abstract

We prove that the Turdn density of PG(3,2) is at least % = 0.84375 and at most
3 =0.96428....

1 Introduction

For n > 2, let PG(n, 2) be the finite projective geometry of dimension n over Fy, the field
of order 2. The elements or points of PG(n, 2) are the one-dimensional vector subspaces of
F5+1: the lines of PG(n,2) are the two-dimensional vector subspaces of Fi ™. Each such
one-dimensional subspace {0, 2} is represented by the non-zero vector x contained in it.
For ease of notation, if {eg, e1,...,e,} is a basis of F5*! and x is an element of PG(n, 2),
then we denote x by a; ...as, where z = e,, +- - -+ e,, is the unique expansion of = in the
given basis. For example, the element © = ey + e5 + e3 is denoted 023. For an r-uniform
hypergraph F, the Turdn number ex(n,F) is the maximum number of edges in an -
uniform hypergraph with n vertices not containing a copy of F. The Turan density of an

r-uniform hypergraph F is m(F) = lim, BXEZ’)F). A 3-uniform hypergraph is also called

a triple system. The points and the lines of PG(n,2) form a triple system H,, with vertex
set V(H,) = Fyt'\ {0} and edge set E(H,) = {zyz : x,y,2 € V(H,),z +y+ 2 = 0}.
The Turan number(density) of PG(n,2) is the Turdn number(density) of H,. It was
proved in [1] that the Turdn density of PG(2,2), also known as the Fano plane, is %.
The exact Turan number of the Fano plane was later determined for n sufficiently large:
it is ex(n,PG(2,2)) = (g) — (%J) — (%1). This result was proved simultaneously and
independently in [2] and [4]. In the following sections, we present bounds on the Turan

density of PG(3,2).
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2 A lower bound

Let G be the triple system on n > 1 vertices with vertex set A U B U C, where A, B

and C' are disjoint, |A| = |[51) ~ 2 3| = [L] ~ 22 and |€] = [2] ~ 2. Also let

C = C,UCyUC3UCy where C,Cy, C3 and Cy are disjoint and |C;| = LL%JT’AJ ~ 16

for 1 <4 < 4. The edge set of G is obtained by removing from the set of all 3-subsets of
V = AU B UC the following triples

{zyz:2,y,2 € A}U{zyz:x,y,2 € B} U{zyz:x,y,z € C}

W{zyz :x € AUB,y,z € C;,1 <i <4} (1)
The number of edges of G is 2 (%) + O(n?).

Theorem 2.1. G does not contain Hs.

Proof. Tt was proved in [5] that the chromatic number of Hjz is 3 and for any 3-coloring
of Hs, all three color classes have cardinality 5.

Suppose Hjz is contained in G. Color the vertices in A with color 1, the vertices in B
with color 2 and the vertices in C with color 3. From the definition of the edge set of G,
it follows that no edge of G is monochromatic. Since Hj is contained in G, it follows that
‘H must admit a 3-coloring such that one color class is included in A, another in B and
the other in C. Thus, we have a color class D of Hs in C' = C; U Cy U C3 U Cy. Since this
color class has 5 vertices, from the pigeonhole principle we get that there exists 1 < i <4
such that at least 2 of the vertices of D are in C;. Without loss of any generality, we can
assume ¢ = 1; let = and y be two of the vertices of D which are contained in C;. From
the definition of Hj, it follows that there exists a unique vertex z in V(Hs) such that
xyz € E(H3). But z cannot be contained in C', therefore z € AU B.

Thus, we have found that G contains an edge with one endpoint in A U B and two
endpoints in Cy; this is impossible by (1). Hence, H3 is not contained in G. O

This implies
27

3 An upper bound

It follows from [6] that 7(PG(3,2)) < 1 — \E(7113)| = 31 = 0.971.... In this section, we
provide a slight improvement of this bound and show that m(PG(3,2)) < 21 = 0.964 . . ..

Let m(n, k,r) denote the maximum number of edges in a graph on n vertices with the
property that any k vertices span at most r edges. It was proved in [3] that the asymp-

totic density ex(k,r) = limy, oo "5 oxists for all k and r > 0 and that m(n, k,r) =

(2)
ex(k,r)(5) + O(n).
Let G be a triple system with n vertices such that G doesn’t contain Hs. In obtaining
an upper bound on 7(H3), we may assume that G contains a copy F of the Fano plane,
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otherwise m(H3) < wn(F) = 2 = 0.75 which contradicts 7(H3z) > 0.84375. Given any
vertex a € V(G), the link Lg(a) of a restricted to a subset S of V/(G) is {{b,c} : {a,b,c} €
E(G),b,c € S}. The proof of the next result is technical and it is presented in the next
section.

o

Q

Theorem 3.1. Let G be a triple system that contains a Fano plane F. Suppose there is
a subset S of 8 elements of V(G) \ V(F) so that the link multigraph of F restricted to S
has 192 edges. Then G contains Hs.

Thus, for any set S of 8 vertices included in V(G) \ V(F), the union U,erLg(z)
contains at most 191 edges. It follows that the number of edges in U,erLg(x) is at most
m(n,8,191) + O(n). This implies that there exists a vertex x in F that is contained in
at most M + O(n) edges of G. From Theorem 9(page 24) in [3] it follows that
ex(8,191) = 6 +ex(8,23) = 6+ 2 = 27 Thus, 2 will be contained in at most 2 (%) 4+ O(n)
edges of G. Deleting x and applying the same argument as before to G \ {z}, we get that
the number of edges in G is at most 22 (%) + O(n?) which implies

27
m(PG(3,2)) < 22 =0.96428 ...

Hence,

27 27
84375 = == < m(PG(3,2)) < == = 0.96428.. ..
084375 = o < m(PG(3,2)) < S = 0.96428

4 Proof of theorem 3.1.

As usual, C; will denote the cycle on 4 vertices, K, will be the complete graph on 4
vertices and (3 will be the cube on 8 vertices.

Proof. Let F = {0,1,2,01,02,12,012} be the Fano plane included in G. For a € F, we
will denote by L(a) the link of a restricted to S. Let x1, o, ..., x7 denote the sizes of the
links of the vertices of F restricted to S with z1 < x9 < -.- < 27 < 28.

The solutions (y1,ya, - . ., y7) of the equation y3 +yo+--+y7r =192, y; < yo < --- < yy
and y; € N for all 1 <4 <7 are the following:

1. (24,28,28,28,28,28.28
2. (25,27,28,28,28,28,28
4. (26,27,27,28,28,28,28

5

- )
- )
3. (26,26,28,28,28,28 28)
- )
. (27,27,27,27,28,28,28)

Then (z1, 3, ...,27) is one of the 7-tuples above. The following result is folklore and it
will be used in the proof of our theorem.
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2n—1

9 ) + 1 edges, then G contains a

Lemma 4.1. If G is a graph on 2n vertices and (
perfect matching.

The automorphism group of PG(2,2) acts transitively on the lines of PG(2,2) and
also, acts transitively on the 3-subsets of PG(2,2) that are not lines. This fact is used in
analyzing Case 4 and Case 5.

e Case 1 (x1,x9, 23,14, x5, 26, T7) = (24,2828, 28,28, 28, 28)

We can assume that |L(0)] = 24. It follows that there exists a perfect matching
M(0) of S that is included in L(0). Label this matching as
M(0) = {{3,03}, {13,013}, {23,023}, {123,0123}}. The choices of perfect match-
ings for the remaining vertices of F are obvious since x; = 28 for all 2,2 <7 < 7.
We choose

M(01) = {{3,013}, {03, 13}, {23,0123}, {123,023} },

M(1) = {{3,13}, {03,013}, {23,123}, {023, 0123} },

M(2) = {{3,23}, {13,123}, {03,023}, {013, 0123} },

M(02) = {{3,023}, {03,23}, {13,0123}, {013, 123} },

M(12) = {{3,123},{03,0123}, {13,23}, {013,023} } and

M(012) = {{3,0123}, {03,123}, {13,023}, {23,013} 1.
Then F with the edges containing all these perfect matchings will form Hs.

e Case 2 (1, x9, 3,14, x5, Te, T7) = (25,27,28, 28,28, 28, 28)

We can assume that |L(0)| = 25 and |L(1)| = 27. There exists a perfect matching
M(0) of S that is included in L(0). It can be easily checked that there are exactly
12 perfect matchings @ of S such that M(0) U Q = 2C,. Also, for every pair
{u,v} ¢ M(0) with u,v € S, there exist precisely 2 perfect matchings R of S such
that M(0) U R = 2Cy and {u,v} € R. Thus, for every pair {u,v} ¢ M(0) with
u,v € S, there exist exactly 10 perfect matchings @ of S such that M(0)UQ = 2C,
and {u,v} ¢ Q. Since |L(1)| = 27, it follows that there exist at least 10 perfect
matchings @) of S such that @ C L(1) and M(0)UQ = 2Cy. We choose one of these
Q’s to be M(1). Thus, we have M (0) C L(0), M(1) C L(1) and M(0)UM (1) = 2C4.
We label these two matchings as follows:

M(0) = {{3,03}, {13,013}, {23,023}, {123,0123}} and

M(1) = {{3,13}, {03,013}, {23,123}, {023, 0123} }.
We can continue the labelling as in Case 1.

e Case 3 (11, %9, 23,14, x5, T6, T7) = (26, 26,28, 28,28, 28, 28)

We can assume that |L(0)| = 26 and |L(1)| = 26. There exists a perfect matching
M(0) of S that is included in L(0). Again, there are exactly 12 perfect matchings
Q@ of S such that M(0) U@ = 2Cy. A pair {u,v} ¢ M(0) with u,v € S belongs
to exactly 2 perfect matchings @ of S such that M(0) U@ = 2Cy. It follows that
for any two pairs {u, v}, {u/,v'} ¢ M(0) with u,v,u’,v" € S, there exist at most 4
perfect matchings R of S such that M(0) U R = 2Cy and {{u, v}, {u/,v'}} N R # 0.
Since |L(1)| = 26, it follows that there are at least 8 perfect matchings @ of S such

THE ELECTRONIC JOURNAL OF COMBINATORICS 11 (2004), #N3 4



that @ C L(1) and M(0)UQ@ = 2C,. We choose one of these @’s to be M(1). Thus,
we have M(0) C L(0), M (1) C L(1) and M(0) U M(1) = 2C4. We label these two
matchings as follows:

M(0) = {{3,03}, {13,013}, {23,023}, {123, 0123} } and

M(1) = {{3,13}, {03,013}, {23,123}, {023, 0123} }.
We can continue the labelling as in Case 1.

e Case 4 (r1,x9, 23,14, x5, Te, T7) = (26,27,27, 28,28, 28, 28)

Without loss of generality we can assume that |L(0)| = 26 and |L(1)| = |L(01)] = 27
or |L(0)| = 26 and |L(1)| = |L(2)| = 27. There exists a perfect matching M (0) of S
that is included in L(0).

Suppose that |L(1)| = |L(01)] = 27. There exist 24 ordered pairs (Q, R) of perfect
matchings of S such that M(0) UQ U R = 2K,. For a pair {u,v} ¢ M(0) with
u,v € S, there are 4 ordered pairs (@, R) of perfect matchings of S such that
M(0)UQUR = 2K, and {u,v} € QUR. Thus, for two pairs {u,v}, {u/,v'} ¢ M(0)
with u,v,u’,v" € S, there are at most 16 ordered pairs (Q, R) of perfect matchings
of S such that M(0) UQ U R = 2K, and {{u,v},{u,v'}} N (Q U R) # 0. Since
|L(1)| = |L(01)| = 27, it follows that there exist at least 8 ordered pairs (@, R) of
perfect matchings of S such that @ C L(1), R C L(01) and M(0) UQ U R = 2K}.
Choose one of these pairs and let M(1) = @ and M(01) = R. We label these
matchings as follows:

M(0) = {{3,03}, {13,013}, {23,023}, {123, 0123} },

M(1) = {{3,13}, {03,013}, {23,123}, {023, 0123} } and

M(01) = {{3,013}, {03,13}, {23,0123}, {123,023} }.
We then continue as in Case 1.

Suppose that |L(1)] = |L(2)| = 27. Since |L(1)| = 27, it is obvious from the
previous cases that we can find a perfect matching M (1) C L(1) of S such that
M(0) U M(1) = 2Cy. Now, because |L(2)| = 27, it is easy to see that there are at
least 6 perfect matchings R of S such that R C L(2) and M(0) U M(1) U R = Q3.
Choose one of them and let M(2) = R. We now label these matchings as follows:

M(0) = {{3,03}, {13,013}, {23,023}, {123,0123}},

M(1) = {{3,13}, {03,013}, {23, 123}, {023,0123} } and

M(2) = {{3,23}, {13,123}, {03,023}, {013, 0123} }.
We then continue as in Case 1.

e Case 5 (11,9, 3,14, x5, Te, x7) = (27,27,27, 27,28, 28, 28)

Without loss of generality we can assume that |L(0)| = |L(1)| = |L(01)| = |L(2)| =
27 or |L(0)] = |L(1)] = |L(2)| = |L(012)] = 27.

Suppose that |L(0)| = |L(1)| = |L(01)] = |L(2)| = 27. From Case 4, it follows
that there exist perfect matchings M (0), M (1) and M(01) of S such that M(0) C
L(0),M(1) ¢ L(1),M(01) c L(01) and M(0) U M(1) U M(01) = 2K,. Since
|L(2)| = 27, it is easy to observe that we can find a perfect matching M (2) C L(2)
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of S such that M(2) U M(z) U M(y) = Q3 for any {z,y} C {0,1,01}. We label
these matchings as follows:

M(0) = {{3,03}, {13,013}, {23,023}, {123,0123}}

M(01) = {{3,013},{03,13},{23,0123}, {123,023} },

M(1) = {{3,13},{03,013}, {23,123}, {023,0123}} and

M(2) = {{3,23},{13,123},{03,023},{013,0123}}.
The rest of the matchings are labelled as in Case 1.

Suppose now that |L(0)| = |L(1)] = |L(2)] = |L(012)| = 27. From Case 4, we
can find perfect matchings M (0), M (1) of S such that M (0) C L(0), M(1) C L(1),
and M(0) U M (1) = 2Cy. There exist 16 ordered pairs (@, R) of perfect matchings
of S such that X UY U Z = Q3 for any {X,Y,Z} C {M(0),M(1),Q,R}. For
{u,v} ¢ M(0) U M(1) with u,v € S, there are at most 2 perfect matchings @ of S
such that M(0)UM(1)UQ = Q3 and {u,v} € Q. It follows that for {u, v}, {v/,v'} ¢
M(O)UM(1) with u,v,u/,v" € S, there are at most 8 ordered pairs (@, R) of perfect
matchings of S such that {{u,v},{v/,v'}}N(QUR) # 0 and X UY UZ = Q3 for any
{X,Y,Z} Cc {M(0),M(1),Q, R}. This implies that we can find perfect matchings
M(2) C L(2) and M(012) C L(012) of S such that M(z) U M(y) U M(z) = Q3 for
any {x,y,z} C {0,1,2,012}. We label these matchings as follows:

M(0) = {{3,03}, {13,013}, {23,023}, {123,0123}},

M(1) = {{3,13}, {03,013}, {23,123}, {023, 0123} },

M(2) = {{3,23}, {13,123}, {03,023}, {013, 0123} } and

M(012) = {{3,0123}, {03, 123}, {13,023}, {23,013} }.
We then continue as in Case 1.
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