Bounds on the Turán density of PG(3, 2)

Sebastian M. Cioabă

Department of Mathematics Queen's University, Kingston, Canada sebi@mast.queensu.ca

Submitted: Oct 27, 2003; Accepted: Feb 18, 2004; Published: Mar 5, 2004 MR Subject Classifications: 05C35, 05D05

Abstract

We prove that the Turán density of PG(3,2) is at least $\frac{27}{32} = 0.84375$ and at most $\frac{27}{28} = 0.96428...$

1 Introduction

For $n \geq 2$, let PG(n, 2) be the finite projective geometry of dimension n over \mathbb{F}_2 , the field of order 2. The elements or points of PG(n, 2) are the one-dimensional vector subspaces of \mathbb{F}_2^{n+1} ; the lines of $\mathrm{PG}(n,2)$ are the two-dimensional vector subspaces of \mathbb{F}_2^{n+1} . Each such one-dimensional subspace $\{0, x\}$ is represented by the non-zero vector x contained in it. For ease of notation, if $\{e_0, e_1, \ldots, e_n\}$ is a basis of \mathbb{F}_2^{n+1} and x is an element of $\mathrm{PG}(n, 2)$, then we denote x by $a_1 \ldots a_s$, where $x = e_{a_1} + \cdots + e_{a_s}$ is the unique expansion of x in the given basis. For example, the element $x = e_0 + e_2 + e_3$ is denoted 023. For an r-uniform hypergraph \mathcal{F} , the Turán number $ex(n, \mathcal{F})$ is the maximum number of edges in an runiform hypergraph with n vertices not containing a copy of \mathcal{F} . The Turán density of an *r*-uniform hypergraph \mathcal{F} is $\pi(\mathcal{F}) = \lim_{n \to \infty} \frac{\operatorname{ex}(n,\mathcal{F})}{\binom{n}{r}}$. A 3-uniform hypergraph is also called a triple system. The points and the lines of PG(n, 2) form a triple system \mathcal{H}_n with vertex set $V(\mathcal{H}_n) = \mathbb{F}_2^{n+1} \setminus \{0\}$ and edge set $E(\mathcal{H}_n) = \{xyz : x, y, z \in V(\mathcal{H}_n), x + y + z = 0\}.$ The Turán number(density) of PG(n,2) is the Turán number(density) of \mathcal{H}_n . It was proved in [1] that the Turán density of PG(2,2), also known as the Fano plane, is $\frac{3}{4}$. The exact Turán number of the Fano plane was later determined for n sufficiently large: it is $ex(n, PG(2, 2)) = {n \choose 3} - {\lfloor \frac{n}{2} \rfloor \choose 3} - {\lceil \frac{n}{2} \rceil \choose 3}$. This result was proved simultaneously and independently in [2] and [4]. In the following sections, we present bounds on the Turán density of PG(3, 2).

2 A lower bound

Let \mathcal{G} be the triple system on $n \geq 1$ vertices with vertex set $A \cup B \cup C$, where A, Band C are disjoint, $|A| = \lfloor \frac{\lceil \frac{3n}{4} \rceil}{2} \rfloor \sim \frac{3n}{8}, |B| = \lceil \frac{\lceil \frac{3n}{4} \rceil}{2} \rceil \sim \frac{3n}{8}$ and $|C| = \lfloor \frac{n}{4} \rfloor \sim \frac{n}{4}$. Also let $C = C_1 \cup C_2 \cup C_3 \cup C_4$ where C_1, C_2, C_3 and C_4 are disjoint and $|C_i| = \lfloor \frac{\lfloor \frac{n}{4} \rfloor + i - 1}{4} \rfloor \sim \frac{n}{16}$ for $1 \leq i \leq 4$. The edge set of \mathcal{G} is obtained by removing from the set of all 3-subsets of $V = A \cup B \cup C$ the following triples

$$\{xyz : x, y, z \in A\} \cup \{xyz : x, y, z \in B\} \cup \{xyz : x, y, z \in C\}$$
$$\cup \{xyz : x \in A \cup B, y, z \in C_i, 1 \le i \le 4\}$$
(1)

The number of edges of \mathcal{G} is $\frac{27}{32}\binom{n}{3} + O(n^2)$.

Theorem 2.1. \mathcal{G} does not contain \mathcal{H}_3 .

Proof. It was proved in [5] that the chromatic number of \mathcal{H}_3 is 3 and for any 3-coloring of \mathcal{H}_3 , all three color classes have cardinality 5.

Suppose \mathcal{H}_3 is contained in \mathcal{G} . Color the vertices in A with color 1, the vertices in B with color 2 and the vertices in C with color 3. From the definition of the edge set of \mathcal{G} , it follows that no edge of \mathcal{G} is monochromatic. Since \mathcal{H}_3 is contained in \mathcal{G} , it follows that \mathcal{H} must admit a 3-coloring such that one color class is included in A, another in B and the other in C. Thus, we have a color class D of \mathcal{H}_3 in $C = C_1 \cup C_2 \cup C_3 \cup C_4$. Since this color class has 5 vertices, from the pigeonhole principle we get that there exists $1 \leq i \leq 4$ such that at least 2 of the vertices of D are in C_i . Without loss of any generality, we can assume i = 1; let x and y be two of the vertices of D which are contained in C_1 . From the definition of \mathcal{H}_3 , it follows that there exists a unique vertex z in $V(\mathcal{H}_3)$ such that $xyz \in E(\mathcal{H}_3)$. But z cannot be contained in C, therefore $z \in A \cup B$.

Thus, we have found that \mathcal{G} contains an edge with one endpoint in $A \cup B$ and two endpoints in C_1 ; this is impossible by (1). Hence, \mathcal{H}_3 is not contained in \mathcal{G} .

This implies

$$\pi(\mathrm{PG}(3,2)) \ge \frac{27}{32} = 0.84375.$$

3 An upper bound

It follows from [6] that $\pi(\operatorname{PG}(3,2)) \leq 1 - \frac{1}{|E(\mathcal{H}_3)|} = \frac{34}{35} = 0.971...$ In this section, we provide a slight improvement of this bound and show that $\pi(\operatorname{PG}(3,2)) \leq \frac{27}{38} = 0.964...$

Let m(n, k, r) denote the maximum number of edges in a graph on n vertices with the property that any k vertices span at most r edges. It was proved in [3] that the asymptotic density $\exp(k, r) = \lim_{n \to \infty} \frac{m(n, k, r)}{\binom{n}{2}}$ exists for all k and $r \ge 0$ and that $m(n, k, r) = \exp(k, r)\binom{n}{2} + O(n)$.

Let \mathcal{G} be a triple system with *n* vertices such that \mathcal{G} doesn't contain \mathcal{H}_3 . In obtaining an upper bound on $\pi(\mathcal{H}_3)$, we may assume that \mathcal{G} contains a copy \mathcal{F} of the Fano plane, otherwise $\pi(\mathcal{H}_3) \leq \pi(\mathcal{F}) = \frac{3}{4} = 0.75$ which contradicts $\pi(\mathcal{H}_3) \geq 0.84375$. Given any vertex $a \in V(\mathcal{G})$, the link $L_S(a)$ of a restricted to a subset S of $V(\mathcal{G})$ is $\{\{b, c\} : \{a, b, c\} \in E(\mathcal{G}), b, c \in S\}$. The proof of the next result is technical and it is presented in the next section.

Theorem 3.1. Let \mathcal{G} be a triple system that contains a Fano plane \mathcal{F} . Suppose there is a subset S of 8 elements of $V(\mathcal{G}) \setminus V(\mathcal{F})$ so that the link multigraph of \mathcal{F} restricted to Shas 192 edges. Then \mathcal{G} contains \mathcal{H}_3 .

Thus, for any set S of 8 vertices included in $V(\mathcal{G}) \setminus V(\mathcal{F})$, the union $\bigcup_{x \in \mathcal{F}} L_S(x)$ contains at most 191 edges. It follows that the number of edges in $\bigcup_{x \in \mathcal{F}} L_S(x)$ is at most m(n, 8, 191) + O(n). This implies that there exists a vertex x in \mathcal{F} that is contained in at most $\frac{m(n,8,191)}{7} + O(n)$ edges of \mathcal{G} . From Theorem 9(page 24) in [3] it follows that $ex(8, 191) = 6 + ex(8, 23) = 6 + \frac{3}{4} = \frac{27}{4}$. Thus, x will be contained in at most $\frac{27}{28} {n \choose 2} + O(n)$ edges of \mathcal{G} . Deleting x and applying the same argument as before to $\mathcal{G} \setminus \{x\}$, we get that the number of edges in \mathcal{G} is at most $\frac{27}{28} {n \choose 3} + O(n^2)$ which implies

$$\pi(\mathrm{PG}(3,2)) \le \frac{27}{28} = 0.96428\dots$$

Hence,

$$0.84375 = \frac{27}{32} \le \pi(\mathrm{PG}(3,2)) \le \frac{27}{28} = 0.96428\dots$$

4 Proof of theorem 3.1.

As usual, C_4 will denote the cycle on 4 vertices, K_4 will be the complete graph on 4 vertices and Q_3 will be the cube on 8 vertices.

Proof. Let $\mathcal{F} = \{0, 1, 2, 01, 02, 12, 012\}$ be the Fano plane included in \mathcal{G} . For $a \in \mathcal{F}$, we will denote by L(a) the link of a restricted to S. Let x_1, x_2, \ldots, x_7 denote the sizes of the links of the vertices of \mathcal{F} restricted to S with $x_1 \leq x_2 \leq \cdots \leq x_7 \leq 28$.

The solutions (y_1, y_2, \ldots, y_7) of the equation $y_1 + y_2 + \cdots + y_7 = 192, y_1 \le y_2 \le \cdots \le y_7$ and $y_i \in \mathbb{N}$ for all $1 \le i \le 7$ are the following:

- 1. (24, 28, 28, 28, 28, 28, 28, 28)
- 2. (25, 27, 28, 28, 28, 28, 28)
- 3. (26, 26, 28, 28, 28, 28, 28)
- $4. \ (26, 27, 27, 28, 28, 28, 28)$
- 5. (27, 27, 27, 27, 28, 28, 28)

Then (x_1, x_2, \ldots, x_7) is one of the 7-tuples above. The following result is folklore and it will be used in the proof of our theorem.

Lemma 4.1. If G is a graph on 2n vertices and $\binom{2n-1}{2} + 1$ edges, then G contains a perfect matching.

The automorphism group of PG(2,2) acts transitively on the lines of PG(2,2) and also, acts transitively on the 3-subsets of PG(2,2) that are not lines. This fact is used in analyzing **Case 4** and **Case 5**.

• Case 1 $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (24, 28, 28, 28, 28, 28, 28)$

We can assume that |L(0)| = 24. It follows that there exists a perfect matching M(0) of S that is included in L(0). Label this matching as $M(0) = \{\{3, 03\}, \{13, 013\}, \{23, 023\}, \{123, 0123\}\}$. The choices of perfect matchings for the remaining vertices of \mathcal{F} are obvious since $x_i = 28$ for all $i, 2 \leq i \leq 7$. We choose

$$\begin{split} &M(01) = \{\{3,013\},\{03,13\},\{23,0123\},\{123,023\}\}, \\ &M(1) = \{\{3,13\},\{03,013\},\{23,123\},\{023,0123\}\}, \\ &M(2) = \{\{3,23\},\{13,123\},\{03,023\},\{013,0123\}\}, \\ &M(02) = \{\{3,023\},\{03,23\},\{13,0123\},\{013,123\}\}, \\ &M(12) = \{\{3,123\},\{03,0123\},\{13,23\},\{013,023\}\} \text{ and } \\ &M(012) = \{\{3,0123\},\{03,123\},\{13,023\},\{23,013\}\}. \end{split}$$

Then \mathcal{F} with the edges containing all these perfect matchings will form \mathcal{H}_3 .

• Case 2 $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (25, 27, 28, 28, 28, 28, 28)$

We can assume that |L(0)| = 25 and |L(1)| = 27. There exists a perfect matching M(0) of S that is included in L(0). It can be easily checked that there are exactly 12 perfect matchings Q of S such that $M(0) \cup Q = 2C_4$. Also, for every pair $\{u, v\} \notin M(0)$ with $u, v \in S$, there exist precisely 2 perfect matchings R of S such that $M(0) \cup R = 2C_4$ and $\{u, v\} \in R$. Thus, for every pair $\{u, v\} \notin M(0)$ with $u, v \in S$, there exist exactly 10 perfect matchings Q of S such that $M(0) \cup Q = 2C_4$ and $\{u, v\} \notin Q$. Since |L(1)| = 27, it follows that there exist at least 10 perfect matchings Q of S such that $Q \subset L(1)$ and $M(0) \cup Q = 2C_4$. We choose one of these Q's to be M(1). Thus, we have $M(0) \subset L(0), M(1) \subset L(1)$ and $M(0) \cup M(1) = 2C_4$. We label these two matchings as follows:

 $M(0) = \{\{3, 03\}, \{13, 013\}, \{23, 023\}, \{123, 0123\}\}$ and

 $M(1) = \{\{3, 13\}, \{03, 013\}, \{23, 123\}, \{023, 0123\}\}.$

We can continue the labelling as in **Case 1**.

• Case 3 $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (26, 26, 28, 28, 28, 28, 28)$

We can assume that |L(0)| = 26 and |L(1)| = 26. There exists a perfect matching M(0) of S that is included in L(0). Again, there are exactly 12 perfect matchings Q of S such that $M(0) \cup Q = 2C_4$. A pair $\{u, v\} \notin M(0)$ with $u, v \in S$ belongs to exactly 2 perfect matchings Q of S such that $M(0) \cup Q = 2C_4$. It follows that for any two pairs $\{u, v\}, \{u', v'\} \notin M(0)$ with $u, v, u', v' \in S$, there exist at most 4 perfect matchings R of S such that $M(0) \cup R = 2C_4$ and $\{\{u, v\}, \{u', v'\}\} \cap R \neq \emptyset$. Since |L(1)| = 26, it follows that there are at least 8 perfect matchings Q of S such

that $Q \subset L(1)$ and $M(0) \cup Q = 2C_4$. We choose one of these Q's to be M(1). Thus, we have $M(0) \subset L(0), M(1) \subset L(1)$ and $M(0) \cup M(1) = 2C_4$. We label these two matchings as follows:

 $M(0) = \{\{3, 03\}, \{13, 013\}, \{23, 023\}, \{123, 0123\}\} \text{ and } M(1) = \{\{3, 13\}, \{03, 013\}, \{23, 123\}, \{023, 0123\}\}.$

We can continue the labelling as in **Case 1**.

• Case 4 $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (26, 27, 27, 28, 28, 28, 28)$

Without loss of generality we can assume that |L(0)| = 26 and |L(1)| = |L(01)| = 27or |L(0)| = 26 and |L(1)| = |L(2)| = 27. There exists a perfect matching M(0) of S that is included in L(0).

Suppose that |L(1)| = |L(01)| = 27. There exist 24 ordered pairs (Q, R) of perfect matchings of S such that $M(0) \cup Q \cup R = 2K_4$. For a pair $\{u, v\} \notin M(0)$ with $u, v \in S$, there are 4 ordered pairs (Q, R) of perfect matchings of S such that $M(0) \cup Q \cup R = 2K_4$ and $\{u, v\} \in Q \cup R$. Thus, for two pairs $\{u, v\}, \{u', v'\} \notin M(0)$ with $u, v, u', v' \in S$, there are at most 16 ordered pairs (Q, R) of perfect matchings of S such that $M(0) \cup Q \cup R = 2K_4$ and $\{\{u, v\}, \{u', v'\}\} \cap (Q \cup R) \neq \emptyset$. Since |L(1)| = |L(01)| = 27, it follows that there exist at least 8 ordered pairs (Q, R) of perfect matchings of S such that $Q \subset L(1), R \subset L(01)$ and $M(0) \cup Q \cup R = 2K_4$. Choose one of these pairs and let M(1) = Q and M(01) = R. We label these matchings as follows:

$$\begin{split} M(0) &= \{\{3,03\}, \{13,013\}, \{23,023\}, \{123,0123\}\}, \\ M(1) &= \{\{3,13\}, \{03,013\}, \{23,123\}, \{023,0123\}\} \text{ and } \\ M(01) &= \{\{3,013\}, \{03,13\}, \{23,0123\}, \{123,023\}\}. \end{split}$$

We then continue as in **Case 1**.

Suppose that |L(1)| = |L(2)| = 27. Since |L(1)| = 27, it is obvious from the previous cases that we can find a perfect matching $M(1) \subset L(1)$ of S such that $M(0) \cup M(1) = 2C_4$. Now, because |L(2)| = 27, it is easy to see that there are at least 6 perfect matchings R of S such that $R \subset L(2)$ and $M(0) \cup M(1) \cup R = Q_3$. Choose one of them and let M(2) = R. We now label these matchings as follows:

 $M(0) = \{\{3, 03\}, \{13, 013\}, \{23, 023\}, \{123, 0123\}\},\$ $M(1) = \{\{3, 13\}, \{03, 013\}, \{23, 123\}, \{023, 0123\}\} \text{ and }\$ $M(2) = \{\{3, 23\}, \{13, 123\}, \{03, 023\}, \{013, 0123\}\}.$

We then continue as in **Case 1**.

• Case 5 $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (27, 27, 27, 27, 28, 28, 28)$

Without loss of generality we can assume that |L(0)| = |L(1)| = |L(01)| = |L(2)| = 27 or |L(0)| = |L(1)| = |L(2)| = |L(012)| = 27.

Suppose that |L(0)| = |L(1)| = |L(01)| = |L(2)| = 27. From **Case 4**, it follows that there exist perfect matchings M(0), M(1) and M(01) of S such that $M(0) \subset L(0), M(1) \subset L(1), M(01) \subset L(01)$ and $M(0) \cup M(1) \cup M(01) = 2K_4$. Since |L(2)| = 27, it is easy to observe that we can find a perfect matching $M(2) \subset L(2)$

of S such that $M(2) \cup M(x) \cup M(y) = Q_3$ for any $\{x, y\} \subset \{0, 1, 01\}$. We label these matchings as follows:

 $M(0) = \{\{3, 03\}, \{13, 013\}, \{23, 023\}, \{123, 0123\}\}\$ $M(01) = \{\{3, 013\}, \{03, 13\}, \{23, 0123\}, \{123, 023\}\},\$ $M(1) = \{\{3, 13\}, \{03, 013\}, \{23, 123\}, \{023, 0123\}\} \text{ and }\$ $M(2) = \{\{3, 23\}, \{13, 123\}, \{03, 023\}, \{013, 0123\}\}.$

The rest of the matchings are labelled as in **Case 1**.

Suppose now that |L(0)| = |L(1)| = |L(2)| = |L(012)| = 27. From **Case 4**, we can find perfect matchings M(0), M(1) of S such that $M(0) \subset L(0), M(1) \subset L(1)$, and $M(0) \cup M(1) = 2C_4$. There exist 16 ordered pairs (Q, R) of perfect matchings of S such that $X \cup Y \cup Z = Q_3$ for any $\{X, Y, Z\} \subset \{M(0), M(1), Q, R\}$. For $\{u, v\} \notin M(0) \cup M(1)$ with $u, v \in S$, there are at most 2 perfect matchings Q of S such that $M(0) \cup M(1) \cup Q = Q_3$ and $\{u, v\} \in Q$. It follows that for $\{u, v\}, \{u', v'\} \notin M(0) \cup M(1)$ with $u, v, u', v' \in S$, there are at most 8 ordered pairs (Q, R) of perfect matchings of S such that $\{\{u, v\}, \{u', v'\}\} \cap (Q \cup R) \neq \emptyset$ and $X \cup Y \cup Z = Q_3$ for any $\{X, Y, Z\} \subset \{M(0), M(1), Q, R\}$. This implies that we can find perfect matchings $M(2) \subset L(2)$ and $M(012) \subset L(012)$ of S such that $M(x) \cup M(y) \cup M(z) = Q_3$ for any $\{x, y, z\} \subset \{0, 1, 2, 012\}$. We label these matchings as follows: $M(0) = \{\{3, 03\}, \{13, 013\}, \{23, 023\}, \{123, 0123\}\},$

 $M(1) = \{\{3, 13\}, \{03, 013\}, \{23, 123\}, \{023, 0123\}\},\$

 $M(2) = \{\{3, 23\}, \{13, 123\}, \{03, 023\}, \{013, 0123\}\}$ and

 $M(012) = \{\{3, 0123\}, \{03, 123\}, \{13, 023\}, \{23, 013\}\}.$

We then continue as in Case 1.

Acknowledgements

I thank David Wehlau, David Gregory and André Kündgen for many helpful discussions. I also thank the referees for their comments and suggestions.

References

- [1] D. de Caen, Z. Füredi, The maximum size of 3-uniform hypergraphs not containing a Fano plane, J. Combin. Theory Ser. B, **78**(2000), 274-276.
- [2] P. Keevash, B. Sudakov, The exact Turán number of the Fano plane, *Combinatorica*, to appear.
- [3] Z. Füredi, A. Kündgen, Turán problems for integer-weighted graphs, J. Graph Theory, 40(2002), 195-225.

- [4] Z. Füredi, M. Simonovits, Triple systems not containing a Fano Configuration, *Combinatorics, Probability and Computing*, to appear.
- [5] J. Pelikán, Properties of balanced incomplete block designs, Combinatorial Theory and its Applications, Balatonfüred, Hungary, Colloq. Math. Soc. János Bolyai, 4(1969), 869-889.
- [6] A. F. Sidorenko, An analytic approach to extremal problems for graphs and hypergraphs, Proc. Conf. on Extremal Problems for Finite Sets, June 1991, Visegrád, Hungary, Proc. Colloq. Math. Soc. János Bolyai, 3(1994).