On the functions with values in $[\alpha(G), \bar{\chi}(G)]$

V. Dobrynin, M. Pliskin and E. Prosolupov
St. Petersburg State University, St. Petersburg, Russia
\{vdobr, pev\}@oasis.apmath.spbu.ru

Submitted: Nov 25, 2003; Accepted: Mar 15, 2004; Published: Mar 22, 2004
MR Subject Classification: 05C50

Abstract

Let $$
\mathcal{B}(G)=\left\{X: X \in \mathbb{R}^{n \times n}, X=X^{T}, I \leq X \leq I+A(G)\right\}
$$

and

$$
\mathcal{C}(G)=\left\{X: X \in \mathbb{R}^{n \times n}, X=X^{T}, I-A(G) \leq X \leq I+A(G)\right\}
$$

be classes of matrices associated with graph G. Here n is the number of vertices in graph G, and $A(G)$ is the adjacency matrix of this graph. Denote $r(G)=$ $\min _{X \in \mathcal{C}(G)} \operatorname{rank}(X), r_{+}(G)=\min _{X \in \mathcal{B}(G)} \operatorname{rank}(X)$. We have shown previously that for every graph $G, \alpha(G) \leq r_{+}(G) \leq \bar{\chi}(G)$ holds and $\alpha(G)=r_{+}(G)$ implies $\alpha(G)=\bar{\chi}(G)$. In this article we show that there is a graph G such that $\alpha(G)=r(G)$ but $\alpha(G)<\bar{\chi}(G)$. In the case when the graph G doesn't contain two chordless cycles C_{4} with a common edge, the equality $\alpha(G)=r(G)$ implies $\alpha(G)=\bar{\chi}(G)$. Corollary: the last statement holds for $d(G)$ - the minimal dimension of the orthonormal representation of the graph G.

Let G be a graph with vertex set $V(G)=\{1, \ldots, n\}$ and edge set $E(G)$. We are interested in studying the functions of the graph G whose values belong to the interval $[\alpha(G), \bar{\chi}(G)]$. Here $\alpha(G)$ is the size of the largest stable set in G and $\bar{\chi}(G)$ is the smallest number of cliques that cover the vertices of G.

It is well known (see, for example, [1]) that for some $\epsilon>0$ it is impossible to approximate in polynomial time $\alpha(G)$ and $\bar{\chi}(G)$ within a factor of n^{ϵ}, assuming $P \neq N P$. We suppose that better approximation could be obtained for narrow classes of graphs determined on the basis of a system of functions of graph G "sandwiched" between $\alpha(G)$ and $\bar{\chi}(G)$.

One such function is the well known Lovász function $\theta(G)[7]$, which has many alternative definitions. One of them is based on the notion of the orthonormal labeling of the graph. Orthonormal labeling of dimension k of the graph G is a mapping

$$
f: V(G) \rightarrow \mathbb{R}^{k}
$$

such that $\|f(v)\|_{2}=1$ for all $v \in V(G)$ and $f\left(v_{i}\right) \cdot f\left(v_{j}\right)=0$ if $\left\{v_{i}, v_{j}\right\} \notin E(G)$.

Let $e_{i} \in \mathbb{R}^{k}$ be a unit vector which is 0 in all coordinates except the i th coordinate which is equal 1. Then

$$
\theta(G)=\min _{f} \max _{v \in V(G)} \frac{1}{\left(e_{1} \cdot f(v)\right)^{2}}
$$

and

$$
\alpha(G) \leq \theta(G) \leq d(G) \leq \bar{\chi}(G)
$$

where $d(G)$ is the minimum dimension of the orthonormal labeling of the graph G.
Let

$$
\mathcal{B}(G)=\left\{X: X \in \mathbb{R}^{n \times n}, X=X^{T}, I \leq X \leq I+A(G)\right\}
$$

and

$$
\mathcal{C}(G)=\left\{X: X \in \mathbb{R}^{n \times n}, X=X^{T}, I-A(G) \leq X \leq I+A(G)\right\}
$$

be classes of matrices associated with graph G. Here n is the number of vertices of graph G, I is identity matrix and $A(G)$ is the adjacency matrix of this graph. Consider two functions of graph G based on these classes:

$$
\begin{aligned}
r(G) & =\min _{X \in \mathcal{C}(G)} \operatorname{rank}(X) \\
r_{+}(G) & =\min _{X \in \mathcal{B}(G)} \operatorname{rank}(X)
\end{aligned}
$$

The function $r_{+}(G)$ was studied in [2]. It was shown that for every graph G

$$
\alpha(G) \leq r_{+}(G) \leq \bar{\chi}(G)
$$

holds and

$$
\begin{equation*}
\alpha(G)=r_{+}(G) \quad \text { implies } \quad \alpha(G)=\bar{\chi}(G) \tag{1}
\end{equation*}
$$

It is obvious that

$$
\alpha(G) \leq r(G) \leq d(G), r_{+}(G) \leq \bar{\chi}(G)
$$

It is was shown in[3] that for $i=1,2,3 \quad r(G)=i$ iff $d(G)=i$.
Recent results on well known related problem concerning upper bound on $\chi(G)$ in terms of rank of adjacency matrix $A(G)$ are presented in $[4,5,6]$.

In this paper we are interested in the following question: can we use the functions $\theta(G), r(G)$ and $d(G)$ in (1) instead of $r_{+}(G)$? In the common case the answer is negative. The proof is based on the following lemmas.

Lemma 1 If $\alpha(G)=d(G)$ implies $\alpha(G)=\bar{\chi}(G)$ for every graph G then for every set of unit vectors $S=\left\{s_{1}, \ldots, s_{n}\right\}$ with $s_{i} \in \mathbb{R}^{k}$ there exists an orthogonality-preserving mapping

$$
\varphi: S \rightarrow \mathbb{R}_{+}^{k}
$$

of vectors from S into non-negative unit vectors from \mathbb{R}^{k} such that $s_{i} \cdot s_{j}=0$ implies $\varphi\left(s_{i}\right) \cdot \varphi\left(s_{j}\right)=0$.

Proof. Suppose that $\alpha(G)=d(G)$ implies $\alpha(G)=\bar{\chi}(G)$ for every graph G. Then we can construct above mentioned mapping φ for every vector set S.

Let $S=\left\{s_{1}, \ldots, s_{n}\right\}, \quad s_{i} \in \mathbb{R}^{k}$ be a given vector set. Then we can construct graph $G=(V(G), E(G))$, where $V(G)=A \cup B, A \cap B=\emptyset, A=\left\{a_{1}, \ldots, a_{k}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$. Assign unit vector $e_{i} \in \mathbb{R}^{k}$ to vertex $a_{i} \in A$ and vector s_{j} to vertex $b_{j} \in B$ for $i=$ $1, \ldots, k, \quad j=1, \ldots, n$.

To form edge set $E(G)$:

- join every vertex from A with every vertex from B;
- join b_{i} and b_{j} from B iff $s_{i} \cdot s_{j} \neq 0$.

It is obvious that A is a maximum stable set of the graph G and $\alpha(G)=d(G)=k$. Our assumption implies that $\alpha(G)=\bar{\chi}(G)$ and there exists a decomposition

$$
B=B_{1} \cup \cdots \cup B_{k},
$$

such that every B_{i} induces a clique in G. So $\varphi: \varphi\left(s_{i}\right)=e_{j}$ when $b_{i} \in B_{j}$, is the required orthogonality-preserving mapping of S into \mathbb{R}_{+}^{k}.

Now we'll construct a system of unit vectors from \mathbb{R}^{3} such that orthogonal-preserving mapping of this set into \mathbb{R}_{+}^{3} does not exists.

Lemma 2 Let

$$
S=\left\{a, b_{1}, b_{2}, b_{3}, c_{1}, c_{2}, c_{3}, d_{1}, d_{2}, d_{3}, e_{1}, e_{2}, e_{3}\right\}
$$

be a system of vectors from \mathbb{R}^{3}, where

$$
\begin{gathered}
a=(1,1,1)^{T}, \\
b_{1}=(-1,1,0)^{T}, b_{2}=(1,0,-1)^{T}, b_{3}=(0,-1,1)^{T}, \\
c_{1}=(1,1,0)^{T}, c_{2}=(1,0,1)^{T}, c_{3}=(0,1,1)^{T} \\
d_{1}=(-1,1,1)^{T}, d_{2}=(1,-1,1)^{T}, d_{3}=(1,1,-1)^{T}, \\
e_{1}=(1,0,0)^{T}, e_{2}=(0,1,0)^{T}, e_{3}=(0,0,1)^{T} .
\end{gathered}
$$

Then orthogonality-preserving mapping φ of the set S into a set of unit vectors from \mathbb{R}_{+}^{3} does not exists.

Proof. Suppose that the above mentioned mapping φ exists. Then φ can be chosen in such a way that every vector from S is mapped into one of the vectors from $\left\{e_{1}, e_{2}, e_{3}\right\}$.

Indeed, let φ^{\prime} be a orthogonality-preserving mapping from S into a set of unit vectors from \mathbb{R}_{+}^{3}. Then for every $s \in S$ and any i such that $e_{i} \cdot \varphi^{\prime}(s)>0$ let $\varphi(s)=e_{i}$.

We may suppose without loss of generality that $\varphi\left(e_{i}\right)=e_{i}, i=1,2,3$.
Let's suppose that $\varphi(a)=e_{1}$. This implies $\varphi\left(b_{1}\right)=e_{2}, \varphi\left(b_{2}\right)=e_{3}, \varphi\left(c_{1}\right)=e_{1}, \varphi\left(c_{2}\right)=$ $e_{1}, \varphi\left(d_{2}\right)=e_{2}, \varphi\left(d_{3}\right)=e_{3}$. But then $\varphi\left(c_{3}\right)$ has to be orthogonal to every vector from $\left\{e_{1}, e_{2}, e_{3}\right\}$.

Let's suppose that $\varphi(a)=e_{2}$. This implies $\varphi\left(b_{1}\right)=e_{1}, \varphi\left(b_{3}\right)=e_{3}, \varphi\left(c_{1}\right)=e_{2}, \varphi\left(c_{3}\right)=$ $e_{2}, \varphi\left(d_{1}\right)=e_{1}, \varphi\left(d_{3}\right)=e_{3}$. But then $\varphi\left(c_{2}\right)$ has to be orthogonal to every vector from $\left\{e_{1}, e_{2}, e_{3}\right\}$.

Let's suppose that $\varphi(a)=e_{3}$. This implies $\varphi\left(b_{2}\right)=e_{1}, \varphi\left(b_{3}\right)=e_{2}, \varphi\left(c_{2}\right)=e_{3}, \varphi\left(c_{3}\right)=$ $e_{3}, \varphi\left(d_{1}\right)=e_{1}, \varphi\left(d_{2}\right)=e_{2}$. But then $\varphi\left(c_{1}\right)$ has to be orthogonal to every vector from $\left\{e_{1}, e_{2}, e_{3}\right\}$.

Lemmas 1 and 2 imply the following theorem.
Theorem 1 There exists a graph G such that $\alpha(G)=d(G)$ and $\alpha(G)<\bar{\chi}(G)$.
Corollary 1 There exists graphs G such that $\alpha(G)=\theta(G)=r(G)$ and $\alpha(G)<\bar{\chi}(G)$.
The following theorem shows that implication (1) holds for the function $r(G)$ (and, hence, for $d(G))$ in some cases.

Theorem 2 If the graph G is free of two chordless cycles C_{4} with a common edge then $\alpha(G)=r(G)$ implies $\alpha(G)=\bar{\chi}(G)$.

Proof. Suppose that $\alpha(G)=r(G)$ and $\alpha(G)=\operatorname{rank}(X), X \in \mathcal{C}(G)$. Without loss of generality $M=\{1, \ldots, \alpha(G)\}$ is the maximum stable set of the graph G with n vertices. Then

$$
X=\left(\begin{array}{cc}
I_{\alpha(G)} & Y \\
Y^{T} & Z
\end{array}\right)
$$

and $Z=Y^{T} Y$.
This means that the following orthonormal labeling f of dimension $\alpha(G)$ of the graph G exists. If vertex $i \in M$ then $f(i)=e_{i} \in \mathbb{R}^{\alpha(G)}$, if vertex $j \in V \backslash M$ then $f(j)$ is equal to the $(j-\alpha(G))$ th column of the matrix Y.

Let's show that for any three vertices l, i, j such that $l \in M, i, j \in V \backslash M$, if vertices i and j are non-adjacent and $e_{l} \cdot f(i) \neq 0, e_{l} \cdot f(j) \neq 0$ (hence, l is adjacent to i and j), then a vertex $m \in M(m \neq l)$ exists such that $e_{m} \cdot f(i) \neq 0$ and $e_{m} \cdot f(j) \neq 0$ (hence, m is adjacent to vertices i and j also).

Because i and j are non-adjacent, we have

$$
f(i) \cdot f(j)=\sum_{s=1}^{\alpha(G)}\left(e_{s} \cdot f(i)\right)\left(e_{s} \cdot f(j)\right)=0
$$

But the summand $\left(e_{l} \cdot f(i)\right)\left(e_{l} \cdot f(j)\right)$ isn't equal 0 in the last sum. Hence, at least one more non-zero summand exists. Let it be m th summand

$$
\left(e_{m} \cdot f(i)\right)\left(e_{m} \cdot f(j)\right) \neq 0
$$

Hence, vertex $m \in M$ is adjacent to vertices i and j.
Let

$$
V(G)=V_{1} \cup \cdots \cup V_{q}, q \geq \alpha(G)
$$

be a decomposition of the vertex set of the graph G into q non-empty subsets such that

- $l \in V_{l}, l=1, \ldots, \alpha(G)$;
- if $i \in V(G) \backslash M, i \in V_{l}, 1 \leq l \leq \alpha(G)$, then $e_{l} \cdot f(i) \neq 0$;
- if $i, j \in V_{l}, 1 \leq l \leq q$, then vertices i and j are adjacent.

It is obvious that such a decomposition exists. For example, $V(G)$ can be decomposed into n non-empty subsets.

Every V_{i} induces a clique in the G and, hence, $\bar{\chi}(G) \leq q$.
We suppose without loss of generality that no set V_{i} from $\left\{V_{1}, \ldots, V_{\alpha(G)}\right\}$ can be extended with vertices from $V_{\alpha(G)+1}, \ldots, V_{q}$.

Let's suppose that $\alpha(G)<\bar{\chi}(G)$. Then $S=V_{\alpha(G)+1} \cup \cdots \cup V_{q} \neq \oslash$. Let $x \in S$ be an arbitrary vertex from S. Then vertex $l \in M$ exists such that $e_{l} \cdot f(x) \neq 0$ (because $f(x) \neq 0)$. The set V_{l} can't be extended with vertex x. Hence the vertex $x_{l} \in V_{l}$ exists that isn't adjacent to x. Then the vertex $m \in M, m \neq l$ should exist that is adjacent to x and x_{l} and $e_{m} \cdot f(x) \neq 0, e_{m} \cdot f\left(x_{l}\right) \neq 0$.

A vertex $x_{m} \in V_{m}$ exists that is non-adjacent to x because the set V_{m} can't be extended with x. Then vertex $y \in M$ exists such that $y \neq m$ and y is adjacent to x and x_{m}. Note, that vertices l and y may coincide.

If $y \neq l$, then there are two chordless cycles C_{4} with common edge in $G:\left(l, x_{l}, m, x, l\right)$ and $\left(m, x, y, x_{m}, m\right)$. If $y=l$, then such cycles exist also. They are $\left(l, x_{l}, m, x, l\right)$ and $\left(l, x, m, x_{m}, l\right)$.

Corollary 2 Let the graph G be free of two chordless cycles C_{4} with a common edge. Then $\alpha(G)=d(G)$ implies $\alpha(G)=\bar{\chi}(G)$.

References

[1] Approximation Algorithms of NP-hard problems. Edited by D.S. Hochbaum, 1996, PWS Publishing Company, Boston, MA.
[2] V. Dobrynin, On the function "sandwiched" between $\alpha(G)$ and $\bar{\chi}(G)$, Electron. J. Combinat., 4, R19 (1997), 3pp.
[3] V. Dobrynin, On the rank of a matrix associated with a graph, Discrete Mathematics, 276 (2004), 169-175.
[4] D.E. Fishkind, A. Kotlov, Rank, term rank, and chromatic number, Discrete Mathematics, 250 (2002), 253-257.
[5] A. Kotlov, Rank and chromatic number of a graph, J. Graph Theory. 26 (1997) 1, 1-8.
[6] A. Kotlov, L. Lovász, The rank and size of graphs, J. Graph Theory. 23 (1996) 2, 185-189.
[7] L. Lovász, On the Sannon capacity of graphs, IEEE Trans. Inform. Theory, $\mathbf{2 5}$ (1979), 1-7.

