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Abstract

Let
B(G) = {X : X ∈ R

n×n,X = XT , I ≤ X ≤ I + A(G)}
and

C(G) = {X : X ∈ R
n×n,X = XT , I − A(G) ≤ X ≤ I + A(G)}

be classes of matrices associated with graph G. Here n is the number of ver-
tices in graph G, and A(G) is the adjacency matrix of this graph. Denote r(G) =
minX∈C(G) rank(X), r+(G) = minX∈B(G) rank(X). We have shown previously that
for every graph G, α(G) ≤ r+(G) ≤ χ(G) holds and α(G) = r+(G) implies
α(G) = χ(G). In this article we show that there is a graph G such that α(G) = r(G)
but α(G) < χ(G). In the case when the graph G doesn’t contain two chordless cycles
C4 with a common edge, the equality α(G) = r(G) implies α(G) = χ(G). Corol-
lary: the last statement holds for d(G) – the minimal dimension of the orthonormal
representation of the graph G.

Let G be a graph with vertex set V (G) = {1, . . . , n} and edge set E(G). We are
interested in studying the functions of the graph G whose values belong to the interval
[α(G), χ(G)]. Here α(G) is the size of the largest stable set in G and χ(G) is the smallest
number of cliques that cover the vertices of G.

It is well known (see, for example, [1]) that for some ε > 0 it is impossible to ap-
proximate in polynomial time α(G) and χ(G) within a factor of nε, assuming P 6= NP.
We suppose that better approximation could be obtained for narrow classes of graphs
determined on the basis of a system of functions of graph G “sandwiched” between α(G)
and χ(G).

One such function is the well known Lovász function θ(G) [7], which has many alter-
native definitions. One of them is based on the notion of the orthonormal labeling of the
graph. Orthonormal labeling of dimension k of the graph G is a mapping

f : V (G) → R
k,

such that ||f(v)||2 = 1 for all v ∈ V (G) and f(vi) · f(vj) = 0 if {vi, vj} /∈ E(G).
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Let ei ∈ R
k be a unit vector which is 0 in all coordinates except the ith coordinate

which is equal 1. Then

θ(G) = min
f

max
v∈V (G)

1

(e1 · f(v))2

and
α(G) ≤ θ(G) ≤ d(G) ≤ χ(G),

where d(G) is the minimum dimension of the orthonormal labeling of the graph G.
Let

B(G) = {X : X ∈ R
n×n, X = XT , I ≤ X ≤ I + A(G)}

and
C(G) = {X : X ∈ R

n×n, X = XT , I − A(G) ≤ X ≤ I + A(G)}
be classes of matrices associated with graph G. Here n is the number of vertices of graph
G, I is identity matrix and A(G) is the adjacency matrix of this graph. Consider two
functions of graph G based on these classes:

r(G) = min
X∈C(G)

rank(X),

r+(G) = min
X∈B(G)

rank(X).

The function r+(G) was studied in [2]. It was shown that for every graph G

α(G) ≤ r+(G) ≤ χ(G)

holds and
α(G) = r+(G) implies α(G) = χ(G). (1)

It is obvious that
α(G) ≤ r(G) ≤ d(G), r+(G) ≤ χ(G).

It is was shown in[3] that for i = 1, 2, 3 r(G) = i iff d(G) = i.
Recent results on well known related problem concerning upper bound on χ(G) in

terms of rank of adjacency matrix A(G) are presented in [4, 5, 6].
In this paper we are interested in the following question: can we use the functions

θ(G), r(G) and d(G) in (1) instead of r+(G)? In the common case the answer is negative.
The proof is based on the following lemmas.

Lemma 1 If α(G) = d(G) implies α(G) = χ(G) for every graph G then for every set
of unit vectors S = {s1, . . . , sn} with si ∈ R

k there exists an orthogonality-preserving
mapping

ϕ : S → R
k
+

of vectors from S into non-negative unit vectors from R
k such that si · sj = 0 implies

ϕ(si) · ϕ(sj) = 0.
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Proof. Suppose that α(G) = d(G) implies α(G) = χ(G) for every graph G. Then we
can construct above mentioned mapping ϕ for every vector set S.

Let S = {s1, . . . , sn}, si ∈ R
k be a given vector set. Then we can construct graph

G = (V (G), E(G)), where V (G) = A∪B, A∩B = ∅, A = {a1, . . . , ak}, B = {b1, . . . , bn}.
Assign unit vector ei ∈ R

k to vertex ai ∈ A and vector sj to vertex bj ∈ B for i =
1, . . . , k, j = 1, . . . , n.

To form edge set E(G):

• join every vertex from A with every vertex from B;

• join bi and bj from B iff si · sj 6= 0.

It is obvious that A is a maximum stable set of the graph G and α(G) = d(G) = k.
Our assumption implies that α(G) = χ(G) and there exists a decomposition

B = B1 ∪ · · · ∪ Bk,

such that every Bi induces a clique in G. So ϕ : ϕ(si) = ej when bi ∈ Bj, is the required
orthogonality-preserving mapping of S into R

k
+.

Now we’ll construct a system of unit vectors from R
3 such that orthogonal-preserving

mapping of this set into R
3
+ does not exists.

Lemma 2 Let
S = {a, b1, b2, b3, c1, c2, c3, d1, d2, d3, e1, e2, e3},

be a system of vectors from R
3, where

a = (1, 1, 1)T ,

b1 = (−1, 1, 0)T , b2 = (1, 0,−1)T , b3 = (0,−1, 1)T ,

c1 = (1, 1, 0)T , c2 = (1, 0, 1)T , c3 = (0, 1, 1)T ,

d1 = (−1, 1, 1)T , d2 = (1,−1, 1)T , d3 = (1, 1,−1)T ,

e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .

Then orthogonality-preserving mapping ϕ of the set S into a set of unit vectors from
R

3
+ does not exists.

Proof. Suppose that the above mentioned mapping ϕ exists. Then ϕ can be chosen in
such a way that every vector from S is mapped into one of the vectors from {e1, e2, e3}.

Indeed, let ϕ′ be a orthogonality-preserving mapping from S into a set of unit vectors
from R

3
+. Then for every s ∈ S and any i such that ei · ϕ′(s) > 0 let ϕ(s) = ei.

We may suppose without loss of generality that ϕ(ei) = ei, i = 1, 2, 3.
Let’s suppose that ϕ(a) = e1. This implies ϕ(b1) = e2, ϕ(b2) = e3, ϕ(c1) = e1, ϕ(c2) =

e1, ϕ(d2) = e2, ϕ(d3) = e3. But then ϕ(c3) has to be orthogonal to every vector from
{e1, e2, e3}.
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Let’s suppose that ϕ(a) = e2. This implies ϕ(b1) = e1, ϕ(b3) = e3, ϕ(c1) = e2, ϕ(c3) =
e2, ϕ(d1) = e1, ϕ(d3) = e3. But then ϕ(c2) has to be orthogonal to every vector from
{e1, e2, e3}.

Let’s suppose that ϕ(a) = e3. This implies ϕ(b2) = e1, ϕ(b3) = e2, ϕ(c2) = e3, ϕ(c3) =
e3, ϕ(d1) = e1, ϕ(d2) = e2. But then ϕ(c1) has to be orthogonal to every vector from
{e1, e2, e3}.

Lemmas 1 and 2 imply the following theorem.

Theorem 1 There exists a graph G such that α(G) = d(G) and α(G) < χ(G).

Corollary 1 There exists graphs G such that α(G) = θ(G) = r(G) and α(G) < χ(G).

The following theorem shows that implication (1) holds for the function r(G) (and,
hence, for d(G)) in some cases.

Theorem 2 If the graph G is free of two chordless cycles C4 with a common edge then
α(G) = r(G) implies α(G) = χ(G).

Proof. Suppose that α(G) = r(G) and α(G) = rank(X), X ∈ C(G). Without loss of
generality M = {1, . . . , α(G)} is the maximum stable set of the graph G with n vertices.
Then

X =

(
Iα(G) Y
Y T Z

)

and Z = Y T Y.
This means that the following orthonormal labeling f of dimension α(G) of the graph

G exists. If vertex i ∈ M then f(i) = ei ∈ R
α(G), if vertex j ∈ V \M then f(j) is equal to

the (j − α(G))th column of the matrix Y.
Let’s show that for any three vertices l, i, j such that l ∈ M, i, j ∈ V \M, if vertices

i and j are non-adjacent and el · f(i) 6= 0, el · f(j) 6= 0 (hence, l is adjacent to i and j),
then a vertex m ∈ M (m 6= l) exists such that em · f(i) 6= 0 and em · f(j) 6= 0 (hence, m
is adjacent to vertices i and j also).

Because i and j are non-adjacent, we have

f(i) · f(j) =

α(G)∑
s=1

(es · f(i))(es · f(j)) = 0.

But the summand (el · f(i))(el · f(j)) isn’t equal 0 in the last sum. Hence, at least one
more non-zero summand exists. Let it be mth summand

(em · f(i))(em · f(j)) 6= 0.

Hence, vertex m ∈ M is adjacent to vertices i and j.
Let

V (G) = V1 ∪ · · · ∪ Vq, q ≥ α(G)

be a decomposition of the vertex set of the graph G into q non-empty subsets such that
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• l ∈ Vl, l = 1, . . . , α(G);

• if i ∈ V (G)\M, i ∈ Vl, 1 ≤ l ≤ α(G), then el · f(i) 6= 0;

• if i, j ∈ Vl, 1 ≤ l ≤ q, then vertices i and j are adjacent.

It is obvious that such a decomposition exists. For example, V (G) can be decomposed
into n non-empty subsets.

Every Vi induces a clique in the G and, hence, χ(G) ≤ q.
We suppose without loss of generality that no set Vi from {V1, . . . , Vα(G)} can be

extended with vertices from Vα(G)+1, . . . , Vq.
Let’s suppose that α(G) < χ(G). Then S = Vα(G)+1 ∪ · · · ∪ Vq 6= �. Let x ∈ S be

an arbitrary vertex from S. Then vertex l ∈ M exists such that el · f(x) 6= 0 (because
f(x) 6= 0). The set Vl can’t be extended with vertex x. Hence the vertex xl ∈ Vl exists
that isn’t adjacent to x. Then the vertex m ∈ M, m 6= l should exist that is adjacent to
x and xl and em · f(x) 6= 0, em · f(xl) 6= 0.

A vertex xm ∈ Vm exists that is non-adjacent to x because the set Vm can’t be extended
with x. Then vertex y ∈ M exists such that y 6= m and y is adjacent to x and xm. Note,
that vertices l and y may coincide.

If y 6= l, then there are two chordless cycles C4 with common edge in G : (l, xl, m, x, l)
and (m, x, y, xm, m). If y = l, then such cycles exist also. They are (l, xl, m, x, l) and
(l, x, m, xm, l).

Corollary 2 Let the graph G be free of two chordless cycles C4 with a common edge.
Then α(G) = d(G) implies α(G) = χ(G).
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