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Abstract

When can a d-dimensional rectangular box R be tiled by translates of two given
d-dimensional rectangular bricks B1 and B2? We prove that R can be tiled by
translates of B1 and B2 if and only if R can be partitioned by a hyperplane into
two sub-boxes R1 and R2 such that Ri can be tiled by translates of the brick Bi

alone (i = 1, 2). Thus an obvious sufficient condition for a tiling is also a necessary
condition. (However, there may be tilings that do not give rise to a bipartition of
R.)

There is an equivalent formulation in terms of the (not necessarily integer) edge
lengths of R, B1, and B2. Let R be of size z1 × z2 × · · · × zd, and let B1 and B2 be
of respective sizes v1 × v2 × · · · × vd and w1 × w2 × · · · × wd. Then there is a tiling
of the box R with translates of the bricks B1 and B2 if and only if

(a) zi/vi is an integer for i = 1, 2, . . . , d; or
(b) zi/wi is an integer for i = 1, 2, . . . , d; or
(c) there is an index k such that zi/vi and zi/wi are integers for all i 6= k, and

zk = αvk + βwk for some nonnegative integers α and β.
Our theorem extends some well known results (due to de Bruijn and Klarner)

on tilings of rectangles by rectangles with integer edge lengths.

1 Introduction and Main Theorem

A d-dimensional rectangular box or brick of size v1 × v2 × · · · × vd is any translate of the
set

{(x1, x2, . . . , xd) ∈ Rd : 0 ≤ xi ≤ vi for i = 1, 2, . . . , d}.
∗Corresponding author. Partially supported by the Naval Academy Research Council
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Thus a box or brick in dimension d = 2 is simply a rectangle with sides parallel to the
coordinate axes. We study the problem of tiling a d-dimensional rectangular box with
translates of two given d-dimensional rectangular bricks. We use the term tile in the
following sense: The interiors of the bricks must be disjoint, and their union must be the
entire box.

We will provide two different characterizations of the boxes that can be tiled by trans-
lates of two given bricks. One characterization is geometric. The other is arithmetic and
involves the edge lengths of the bricks and the box. We do not require that the bricks and
the box have integer edge lengths, although this special case is a crucial element of our
analysis. Our main theorem extends several 2-dimensional tiling theorems in a pleasing
manner.

Tilings of a box with translates of a single brick are readily characterized. We say that
the z1 × z2 × · · · × zd box is a multiple of the v1 × v2 × · · · × vd brick provided zi/vi is an
integer for i = 1, 2, . . . , d. The following observation is clear.

Observation. The d-dimensional box R can be tiled by translates of a given brick B if
and only if R is a multiple of B. Moreover, any such tiling is unique.

When we have two bricks at our disposal, the situation is more complicated. Note that
a tiling of a box with translates of two bricks need not be unique. For instance, Figure 1
shows two tilings of a box R with translates of two rectangular bricks B1 and B2. In (a)
the box R is partitioned by a plane into two sub-boxes R1 and R2, and the sub-box Ri

is a multiple of the brick Bi for i = 1, 2. We refer to such a tiling as a bipartite tiling of
R with B1 and B2. In (b) we exhibit a non-bipartite tiling of R with the same bricks B1

and B2. Because the trivial box of size 0 × 0 × · · · × 0 is a multiple of every non-trivial
d-dimensional box, either of the two sub-boxes may be trivial in a bipartite tiling of a box
R; this degenerate situation occurs precisely when R is a multiple of B1 or B2.
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(a) (b)

Figure 1: (a) A bipartite tiling (b) A non-bipartite tiling

Clearly, the existence of a bipartite tiling is sufficient for the existence of a tiling of
a box with translates of two given bricks. The thrust of our main theorem is that this
obvious sufficient condition is also necessary:

Theorem 1 (Geometric). The d-dimensional box R can be tiled by translates of two
given d-dimensional bricks B1 and B2 if and only if R can be partitioned by a hyperplane
into two sub-boxes R1 and R2 such that Ri is a multiple of Bi for i = 1, 2.
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We emphasize that Theorem 1 does not say that every tiling must be bipartite. How-
ever, the existence of a non-bipartite tiling implies the existence of bipartite tiling.

Theorem 1 gives a satisfying and complete geometric characterization of the boxes that
can be tiled by translates of two given bricks. We now provide an equivalent arithmetic
characterization in terms of the edge lengths of the box and the bricks. For real numbers
v and w we denote the set of all nonnegative integer linear combinations of v and w by

〈v, w〉 = {αv + βw : α = 0, 1, 2, . . . , β = 0, 1, 2, . . .}.

Theorem 1′ (Arithmetic). Let zi, vi, and wi be positive real numbers for i = 1, 2, . . . , d.
There is a tiling of a z1 × z2 × · · · × zd box with translates of v1 × v2 × · · · × vd and
w1 × w2 × · · · × wd bricks if and only if

(a) zi/vi is an integer for i = 1, 2, . . . , d; or
(b) zi/wi is an integer for i = 1, 2, . . . , d; or
(c) there is an index k such that zk is in 〈vk, wk〉, and the numbers zi/vi and zi/wi

are integers for all i 6= k.

Condition (a) or (b) holds when the box is tiled by translates of one of the bricks,
while (c) holds when a tiling uses both bricks.

Example. It is possible to tile a 12 × 12 × 11 box with 4 × 4 × 4 and 3 × 3 × 3 cubical
bricks. Condition (c) of Theorem 1′ is satisfied (with k = 3) because 12/4 and 12/3 are
both integers, and 11 = 2 · 4 + 1 · 3. Figure 2 shows a bipartite tiling. The two sub-boxes
are of sizes 12 × 12 × 8 and 12 × 12 × 3.
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Figure 2: A tiling of a 12 × 12 × 11 box with 4 × 4 × 4 and 3 × 3 × 3 cubical bricks

The preceding example helps reveal the equivalence of Theorem 1 and Theorem 1′.
The two sub-boxes R1 and R2 in Theorem 1 are non-trivial and are separated by a
hyperplane perpendicular to the k-th coordinate axis exactly when k is an index for
which condition (c) holds in Theorem 1′. The integrality conditions imposed on zi/vi and
zi/wi for i 6= k guarantee that that R1 and R2 are multiples of the two respective bricks.

The arithmetic conditions in Theorem 1′ supply us with an algorithm to recognize when
a z1×z2×· · ·×zd box can be tiled by translates of v1×v2×· · ·×vd and w1×w2×· · ·×wd
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bricks. Integrality of the 2d real numbers zi/vi and zi/wi for i = 1, 2, . . . , d is readily
checked, and zk is in 〈vk, wk〉 if and only if the real number (zk − αvk)/wk is an integer
for some α in {0, 1, . . . , bzk/vkc}.

Sections 2 through 6 contain preliminary results and a discussion of important special
cases. The proof of Theorem 1′ is in Section 7. Our discussion is elementary and accessible
to a wide audience.

2 Re-Scaling and a Counting Lemma

We begin with two basic lemmas on tilings. The first result is easy, and we omit the proof.

Lemma 2. Let h be a positive real number. Then there is a tiling of a z1 × z2 rectangle
with translates of v1 × v2 and w1 ×w2 rectangular bricks if and only if there is a tiling of
an (hz1) × z2 rectangle with translates of (hv1) × v2 and (hw1) × w2 rectangular bricks.

The number h represents a re-scaling factor applied to all horizontal edge lengths
of the rectangles. There is a corresponding result for vertical re-scalings, as well as an
extension to re-scalings in higher dimensions.

Our second basic result uses a counting argument to obtain a fundamental necessary
condition for a box to be tiled by translates of two given bricks.

Lemma 3. Suppose that there is a tiling of a z1 × z2 × · · · × zd box with translates of
v1×v2×· · ·×vd and w1×w2×· · ·×wd bricks in d dimensions. Then there are nonnegative
integers αi and βi such that zi = αivi +βiwi for i = 1, 2, . . . , d. Moreover, if vi is irrational
and wi is rational, then αi and βi are unique.

Proof. Count the number of bricks of each type incident with an edge of length zi (parallel
to the i-th coordinate axis) of the box. If there are αi bricks of size v1 × v2 × · · ·× vd and
βi bricks of size w1 × w2 × · · · × wd, then this count shows that zi = αivi + βiwi.

Suppose that vi is irrational and wi is rational. Let αi, βi, α
′
i, and β ′

i be nonnegative
integers such that zi = αivi + βiwi = α′

ivi + β ′
iwi. Then (αi − α′

i) vi = (β ′
i − βi)wi. The

expression on the right is rational, and thus α′
i = αi. Then β ′

i = βi, and the uniqueness of
αi and βi is established.

The following elementary result tells us that the necessary counting condition of
Lemma 3 is also sufficient for the tiling of an interval by translates of two given intervals
on the real line. Thus our main theorem is true in dimension 1.

Theorem 4. Let z, v, and w be positive real numbers. The following statements are
equivalent.

(a) An interval of length z can be tiled by translates of intervals of length v and w.
(b) An interval of length z has a bipartite tiling with intervals of length v and w.
(c) There are nonnegative integers α and β such that z = αv + βw.

Proof. If an interval of length z is tiled by α intervals of length v and β intervals of length
w, then z = αv + βw, and we may place α intervals of length v followed by β intervals of
length w to produce a bipartite tiling. Thus (a) implies (b) and (c). This construction
also makes it clear that (c) implies (a).
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3 The Divisibility Lemma for Tilings

In an integer rectangle the length of each edge is an integer. The next result is a key step
in our proof of Theorem 1′.

Divisibility Lemma. Let v and w be positive integers. Suppose that the integer rect-
angle R is tiled by integer rectangular bricks, each of which has width divisible by v or
height divisible by w. Then R itself has width divisible by v or height divisible by w.

Generalizations and variations of the divisibility lemma appear throughout the lit-
erature on tiling. For example, the divisibility lemma can be deduced from Wagon’s [9]
result on “semi-integer rectangles” by using a re-scaling argument. To keep our discussion
self-contained we include a charge-counting proof of the divisibility lemma. The related
checkerboard coloring scheme [4, 5, 8, 9] and polynomial factorizations [1, 3, 6] also work.

Proof. Let R be an n1 × n2 rectangle with a tiling of the specified type. Partition
R into n1n2 unit cells with segments parallel to the edges. Index the rows 1, 2, . . . , n2

from bottom to top. Place a unit positive charge in each of the n1 cells in row j for
j = 1, w + 1, 2w + 1, . . . and a unit negative charge in each of the n1 cells in row j for
j = w, 2w, 3w, . . . , as in Figure 3. All other cells in R receive charge 0.

row 1
row 2

...

row w

row w + 1

...

row n2

A brick with width divisible by v
encloses a net charge divisible by v.

6
A

AAK

A brick with height divisible by w
encloses a net charge of 0.

6
�
���

Figure 3: A charge-counting argument, illustrated for v = 3 and w = 5

Consider the net charge enclosed by R and by each rectangular brick. Observe that
the net charge of the entire rectangle R equals n1 if w does not divide n2 and equals 0
if w does divide n2. Now each rectangular brick with height divisible by w encloses a net
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charge of 0, while each rectangular brick with width divisible by v encloses a net charge
that is divisible by v. It follows that if w does not divide n2, then v must divide n1.

4 Tiling with Integer Rectangles

We now state and prove Theorem 1′ for integer rectangles.

Theorem 5. Let v1, v2, w1, and w2 be positive integers with gcd(v1, w1) = gcd(v2, w2) =
1. Then an integer rectangle of size n1×n2 can be tiled by translates of v1×v2 and w1×w2

rectangular bricks if and only if
(a) v1 divides n1, and v2 divides n2; or
(b) w1 divides n1, and w2 divides n2; or
(c) v1w1 divides n1, and n2 is in 〈v2, w2〉; or
(d) v2w2 divides n2, and n1 is in 〈v1, w1〉.

Proof. Let B1 and B2 be v1 × v2 and w1 ×w2 rectangular bricks, respectively, and let R
be an n1 × n2 rectangle. Suppose that R is tiled by translates of B1 and B2. Lemma 3
tells us that n1 is in 〈v1, w1〉 and n2 is in 〈v2, w2〉. The brick B1 has width v1, while B2 has
height w2. The divisibility lemma implies that v1 divides n1, or w2 divides n2. Similarly,
B2 has width w1, while B1 has height v2, and so the divisibility lemma implies that w1

divides n1, or v2 divides n2. It follows that one of the four conditions (a)–(d) must hold.

R2 : n1 × βw2

R1 : n1 × αv2

n1 = γv1w1

n2 = αv2 + βw2

-�

6

?

Figure 4: The proof of Theorem 5

We now show that R can be tiled by translates of B1 and B2 if any of (a)–(d) holds. If
(a) or (b) holds, then R is a multiple of B1 or B2, and the desired tiling certainly exists.
Suppose that (c) holds, where n1 = γv1w1 and n2 = αv2 + βw2. Then a horizontal line
partitions R into a rectangle R1 of size n1 × αv2 and a rectangle R2 of size n1 × βw2, as
in Figure 4. Now R1 is a multiple of the brick B1, while R2 is a multiple of the brick B2.
Thus R has a bipartite tiling with B1 and B2. Condition (d) is treated similarly.

As is clear from the proof of Theorem 5, each of the conditions (a)–(d) implies the
existence of a bipartite tiling of R with B1 and B2.
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The hypothesis that corresponding edge lengths of the bricks be relatively prime is
not an obstacle in applying Theorem 5; a re-scaling argument allows us to treat the cases
where this hypothesis is not met, as in the proof of Corollary 6 below.

5 Corollaries

Theorem 5 contains several important tiling results as special cases.

Corollary 6 (de Bruijn [3] and Klarner [7]). Let v and w be positive integers. An integer
rectangle of size n1 × n2 can be tiled by v ×w rectangular bricks (with both orientations
allowed) if and only if

(a) v divides n1 or n2; and
(b) w divides n1 or n2; and
(c) n1 is in 〈v, w〉; and
(d) n2 is in 〈v, w〉.

Proof. If v and w are relatively prime, then the result follows from Theorem 5 with
v1 = w2 = v and w1 = v2 = w. If v and w are not relatively prime, then we first divide
n1, n2, v, and w by gcd(v, w). The re-scaled rectangle must be an integer rectangle for a
tiling to exist, and we are in the previous situation. By Lemma 2 there is a tiling with
the original rectangular bricks if and only if there is a tiling with the re-scaled bricks.

We also obtain the following less well known result, which appeared in 1995.

Corollary 7 (Fricke [4]). Let v and w be relatively prime positive integers. An n1 × n2

rectangle can be tiled by v × v and w × w squares if and only if
(a) v divides n1 and n2; or
(b) w divides n1 and n2; or
(c) vw divides n1, and n2 is in 〈v, w〉; or
(d) vw divides n2 and n1 is in 〈v, w〉.

Proof. In Theorem 5 let v1 = v2 = v and w1 = w2 = w.

6 Tiling Rectangles with Rectangles

We now extend Theorem 5 to obtain necessary and sufficient conditions for a rectangle
to be tiled by translates of two (not necessarily integer) rectangles. In other words, we
prove our main theorem in dimension 2. We will see that the 2-dimensional case is the
crucial one for establishing the general theorem.

Theorem 8 (Geometric). The rectangle R can be tiled by translates of two given
rectangular bricks B1 and B2 if and only if R can be partitioned by a line into two
sub-rectangles R1 and R2 such that Ri is a multiple of Bi for i = 1, 2.

Proof. Clearly, if R can be partitioned into a multiple of B1 and a multiple of B2, then
R has a tiling with translates of B1 and B2.
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Suppose that R can be tiled by translates of the bricks B1 and B2. Without loss of
generality B1 is a v × 1 rectangle and B2 is a 1 × w rectangle, as suitable horizontal and
vertical re-scalings bring about this situation. Let R be a z1 × z2 rectangle and consider a
particular tiling of R with translates of B1 and B2. If this tiling uses translates of only one
of the two bricks, then R is a multiple of that brick, and we have our desired (degenerate)
bipartition of R. We henceforth suppose that the tiling uses translates of both B1 and B2.

Case 1: Suppose that v and w are both rational. Then after suitable horizontal and
vertical re-scalings we may assume that B1, B2, and R are integer rectangles and that the
corresponding edge lengths of B1 and B2 are relatively prime. Theorem 5 establishes the
existence of the desired bipartite tiling.

Case 2: Suppose that at least one of v and w is irrational. Without loss of generality
v is irrational. By Lemma 3

z1 = αv + β, (1)

where α and β are unique nonnegative integers. Now a vertical line partitions R into the
sub-rectangles R1 and R2 of respective sizes (αv) × z2 and β × z2. We will show that Ri

is a multiple of the brick Bi for i = 1, 2, which will complete the proof.

Claim 1: The sub-rectangle R1 of size (αv) × z2 is a multiple of the brick B1 of
size v × 1. Clearly, (αv)/v = α is an integer. We use a tile-sliding argument to show that
z2/1 = z2 is an integer, which will establish the claim. First remove the translates of the
brick B2 from the tiling. Then draw a horizontal line k units from the bottom of R for
k = 1, 2, . . . , bz2c to slice R into horizontal strips. Beginning from the lowest strip and
working upward, we see that (1) implies that each strip in turn wholly contains exactly
α copies of the v × 1 brick B1. We slide the bricks to the left within each successive strip
to tile a portion of the sub-rectangle R1 with translates of B1, as shown in Figure 5. If
z2 is not an integer, then in the final step we see that the topmost horizontal strip of
size z1 × (z2 − bz2c) must contain α bricks of size v × 1, which is impossible because
0 < z2 − bz2c < 1. Therefore z2 in an integer, and our claim is true.
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z2

R1 R2

� Slide bricks to the left
to fill the rectangle R1

Figure 5: The proof of Claim 1

Claim 2: The sub-rectangle R2 of size β × z2 is a multiple of the brick B2 of size
1×w. The argument is almost identical to the one given above; we remove the bricks B1,
slice R into strips with horizontal lines at height w, 2w, . . . , bz2/wcw, and slide the bricks
B2 to the right to fill R2.
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Here is the equivalent arithmetic formulation of Theorem 8; the equivalence is clear
from our discussion following the example in Section 1.

Theorem 8′ (Arithmetic). A z1 × z2 rectangle can be tiled by translates of v1 × v2 and
w1 × w2 rectangles if and only if

(a) z1/v1 and z2/v2 are integers; or
(b) z2/w1 and z2/w2 are integers; or
(c) z1 is in 〈v1, w1〉, and the numbers z2/v2 and z2/w2 are integers; or
(d) z2 is in 〈v2, w2〉, and the numbers z1/v1 and z1/w1 are integers.

7 Proof of Theorem 1′

We prove our main theorem in its arithmetic formulation. We have seen that Theorem 1′

is true in dimension 1 (Theorem 4) and dimension 2 (Theorem 8′). We henceforth suppose
that d ≥ 3. If either (a) or (b) is true, then the box can be tiled by translates of one brick,
while if (c) is true, then there is a bipartite tiling.

Conversely, suppose that a z1 × z2 × · · · × zd box R is tiled by translates of bricks of
size v1 ×v2 ×· · ·×vd and w1×w2 ×· · ·×wd. Also, suppose that neither (a) nor (b) holds.
We will show that condition (c) must hold, which will complete the proof. Because (a)
and (b) fail, there are indices j and k such that neither zj/vj nor zk/wk is an integer. We
claim that j must equal k. For if j 6= k, then an inspection of a suitable 2-dimensional
face of R reveals a tiling of a zj × zk rectangle with translates of vj × vk and wj × wk

rectangular bricks. However, each of the conditions in Theorem 8′ fails, and therefore no
such tiling exists. Therefore j = k. Of course, zk is in 〈vk, wk〉 by Lemma 3. We have
shown that (c) holds.
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