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Abstract

It is shown that if a d-regular graph contains s vertices so that the distance
between any pair is at least 4k, then its adjacency matrix has at least s eigenvalues
which are at least 2

√
d − 1 cos( π

2k ). A similar result has been proved by Friedman
using more sophisticated tools.

1 The main result

Let G = (V, E) be a simple d-regular graph on n vertices. let A be its adjacency matrix,
and let λ1(G) = d ≥ λ2(G) ≥ . . . ≥ λn(G) be its eigenvalues. Alon and Boppana ([1],
see also [9], [11]) proved that for any fixed d and for any infinite family of of d-regular
graphs Gi, lim inf λ2(Gi) ≥ 2

√
d − 1. This bound is sharp (at least when d − 1 is a

prime congruent to 1 modulo 4), as shown by the construction of Lubotzky, Phillips and
Sarnak [9], obtained, independently, by Margulis [10]. In fact, in [1] it is conjectured that
almost all d-regular graphs G on n vertices satisfy λ2(G) ≤ 2

√
d − 1 + o(1) (as n tends to

infinity). This has recently been proved by Friedman [6].
More generally, Serre has shown (see [3], [4] ) that for any fixed r and for any infinite

family of d-regular graphs Gi, lim inf λr(Gi) ≥ 2
√

d − 1. The same result has been proved
by Friedman already in [5].

In this note we give an elementary, simple proof of this result, following the method
of [11]. Our estimate is a bit better than that of [11] even for the case r = 2 (also studied
by Kahale in [7]), and matches in the first two terms the estimate of Friedman in [5], but
the proof is completely elementary.

Theorem 1 Let G be a d-regular graph containing s vertices so that the distance between
any pair of them is at least 4k. Then λs(G) ≥ 2

√
d − 1 cos( π

2k
).
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2 The proof

Let G = (V, E) be a d-regular graph, where d ≥ 3. Let v ∈ V be a vertex, define V0 = {v},
and let Vi be the set of all vertices of distance i from v. Put α = π

2k
, ni = |Vi|, and define

yi =
cos((i − k)α)

(d − 1)i/2
.

Therefore, y0 = y2k = 0 and yi ≥ 0 for all 0 ≤ i ≤ 2k. It is not difficult to check that the
sequence yi is unimodal, that is, there exists a unique i0 such that

y0 < y1 < . . . < yi0 < yi0+1 ≥ . . . ≥ y2k.

For d ≥ 5, i0 = 0, whereas for d = 4 or 3 it may be 1 or 2.
To see that this is indeed the case note that the ratio yi+1/yi is precisely

cos α − tan((i − k)α) sin α√
d − 1

,

which is a decreasing function of i for all admissible values of i, and hence we simply
let i0 + 1 be the smallest i for which this ratio is at most 1. (Such an i exists, as for
i = k the ratio is cos α/

√
d − 1 ≤ 1.) If d ≥ 5, then the above ratio is at most 1

already for i = 1, since in this case the ratio y2/y1 = 2 cos α/
√

d − 1 ≤ 1. Thus, in this

case, i0 + 1 = 1. For d = 3, 4 note that the ratio yi+1/yi is also equal to sin((i+1)α)√
d−1 sin(iα)

.

The function fi(α) = sin((i+1)α)
sin(iα)

is at most (i + 1)/i for all admissible values of α, since

g(α) = i sin(iα)fi(α)− (i+1) sin(iα) satisfies g(0) = 0 and g′(α) = i(i+1) cos((i+1)α)−
i(i + 1) cos(iα) ≤ 0 whenever 0 ≤ iα ≤ (i + 1)α ≤ π. Therefore, yi+1

yi
≤ i+1

i
√

d−1
which is

at most 1 for i = 2 and d = 4, and at most 1 for i = 3 and d = 3. It follows that for all
d ≥ 3, i0 + 1 ≤ 3, whereas for d ≥ 5, i0 + 1 = 1.

Put xi = yi+i0 for all i, 0 ≤ i ≤ 2k − i0. Therefore, xi is monotone non-increasing for
i ≥ 1, and x2k−i0 = 0. Let A be the adjacency matrix of G, whose rows and columns are
indexed by the vertices of G, and define a vector x(v)v∈V , by putting x(v) = xi for all
v ∈ Vi and x(v) = 0 otherwise. The main part of the proof is the following lemma.

Lemma 1 The following inequality holds

xtAx ≥ [2
√

d − 1 cos α] · xtx.

Proof : For any two subsets X, Y of V , let e(X, Y ) = {(x, y) : x ∈ X, y ∈ Y, xy ∈ E}
denote the number of edges between X and Y (note that if X = Y then each edge with
both ends in X is counted twice).

First note that

xtx =
2k−i0∑

i=0

nix
2
i . (1)
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Also:

xtAx = dx0x1 +
2k−i0−1∑

i=1

[e(Vi−1, Vi)xi−1 + e(Vi, Vi)xi + e(Vi, Vi+1)xi+1]xi. (2)

Since 0 ≤ x0 < x1

dx0x1 ≥ dx2
0 ≥ [2

√
d − 1 cos α]x2

0 (3)

Consider the term

e(Vi−1, Vi)xi−1 + e(Vi, Vi)xi + e(Vi, Vi+1)xi+1. (4)

Note that e(Vi−1, Vi) ≥ ni, and that e(Vi−1, Vi) + e(Vi, Vi) + e(Vi, Vi+1) = dni. Also note
that if i > 1, then, by our definition of the values xi = yi+i0, xi−1 ≥ xi ≥ xi+1, and
therefore the minimum possible value of the term (4) is obtained when e(Vi−1, Vi) = ni,
e(Vi, Vi) = 0 and e(Vi, Vi+1) = (d − 1)ni. For i = 1, V0 consists of a single vertex and
hence certainly e(V0, V1) = n1 = d, and since x1 ≥ x2 the minimum of the term (4) is
again obtained when e(V1, V1) = 0 and e(V1, V2) = (d − 1)n1. It follows that in any case
the term (4) satisfies

e(Vi−1, Vi)xi−1 + e(Vi, Vi)xi + e(Vi, Vi+1)xi+1 ≥ nixi−1 + (d − 1)nixi+1

= ni

√
d − 1

(d − 1)(i+i0)/2
( cos[(i + i0 − k − 1)α] + cos[(i + i0 − k + 1)α] )

= ni
2
√

d − 1

(d − 1)(i+i0)/2
cos α cos[(i + i0 − k)α] = [2

√
d − 1 cos α]nixi.

Substituting this and (3) in (2) we conclude that xtAx ≥ [2
√

d − 1 cos α]
∑2k−i0−1

i=0 nix
2
i .

This, together with (1) and the fact that x2k−i0 = 0 implies the assertion of the lemma.
2

To complete the proof of the theorem note that by the variational definition of the
eigenvalue λs(G) it is equal to the maximum, over all subspaces W of dimension s, of the
minimum value of ztAz as z ranges over all unit vectors in W . Given s vertices vi as in
the theorem, we can construct for each of them a vector x(i) as in the lemma, and observe
that as the distance between the supports of any two of these vectors exceeds 1, for every
vector z in their span

ztAz ≥ [2
√

d − 1 cos α]ztz.

This completes the proof of the theorem. 2

3 Concluding remarks

• For large k, cos( π
2k

) is 1− π2

8k2 +O( 1
k4 ). In particular, for any d-regular graph G with

diameter r, λ2(G) ≥ 2
√

d − 1[1 − 2π2

r2 + O( 1
r4 )], matching the estimate in [5].
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• Similar arguments can be used to show that if a d-regular graph G contains s
vertices so that the distance between any pair is at least 4k and so that there is
no odd cycle that lies within distance 2k of any of the vertices, then G has at least
s eigenvalues which are smaller than −2

√
d − 1 cos( π

2k
). The proof is analogous to

that of Theorem 1, one simply defines the numbers xi with the same absolute values
as in this proof, but with alternating signs. This has also been proved by Friedman
in [5], see also [8] and [2] for related results.
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