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Abstract

We completely characterize the appearance of Schur functions corresponding to
partitions of the form ν = (1a, b) (hook shapes) in the Schur function expansion of
the plethysm of two Schur functions,

sλ[sµ] =
∑

ν

aλ,µ,νsν .

Specifically, we show that no Schur functions corresponding to hook shapes occur
unless λ and µ are both hook shapes and give a new proof of a result of Carbonara,
Remmel and Yang that a single hook shape occurs in the expansion of the plethysm
s(1c,d)[s(1a,b)]. We also consider the problem of adding a row or column so that ν

is of the form (1a, b, c) or (1a, 2b, c). This proves considerably more difficult than
the hook case and we discuss these difficulties while deriving explicit formulas for a
special case.

1 Introduction

One of the fundamental problems in the theory of symmetric functions is to expand the
plethysm of two Schur functions, sλ[sµ], as a sum of Schur functions. That is, we want to
find the coefficients aλ,µ,ν where

sλ[sµ] =
∑

ν

aλ,µ,νsν .
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In general, the problem of expanding different products of Schur functions as a sum of
Schur functions arises in the representation theory of the symmetric group Sn. Specifically,
let Cλ be the conjugacy class of Sn associated with a partition λ. Define a function
1λ : Sn → C by setting 1λ(σ) = χ(σ ∈ Cλ) for all σ ∈ Sn, where for a statement A,

χ(A) =

{
0 if A is true
1 if A is false

Let λ ` n denote that λ is a partition of the positive integer n. Then the set {1λ}λ`n

forms a basis for C(Sn), the center of the group algebra of Sn. There is a fundamental
isometry between C(Sn) and Λn, the vector space of homogeneous symmetric polynomials
of degree n. This is defined by setting

F (1λ) =
1

zλ
pλ

for all λ ` n, where pλ is the power-sum symmetric function indexed by λ and zλ is a
constant defined below. This map, called the Frobenius characteristic, has the remarkable
property that irreducible representations of Sn are mapped to Schur functions. That is,
if χλ is the character of the irreducible representation of Sn associated with the partition
λ, then F (χλ) = sλ. So for any character χA of a representation A of Sn, the coefficients
aν in the expansion

F (χA) =
∑
ν`n

aνsν

give the multiplicities of the irreducible representations in A.
For the plethysm of two Schur functions, the representation that arises is the following

(see [9]). For λ ` n, let Uλ denote the irreducible Sn-module corresponding to λ. Also let
µ ` m and U⊗n

µ denote the n-fold tensor product of Uµ. Then the wreath product of Sn

with Sm acts naturally on Uλ ⊗ U⊗n
µ . Let χ be the character of the Sn·m-module which

results by inducing the action of the wreath product of Sn with Sm on Uλ ⊗ U⊗n
µ to a

representation of Sn·m. Then F (χ) = sλ[sµ] so that in the expansion

sλ[sµ] =
∑

aλ,µ,νsν

aλ,µ,ν is the multiplicity of the irreducible representation indexed by ν in the representation
associated with χ.

The notion of plethysm goes back to Littlewood. The problem of computing the aλ,µ,ν

has proven to be difficult and explicit formulas are known only for a few special cases.
For example, Littlewood [8] explicitly evaluated s12 [sn], s2[sn], sn[s2], and sn[s12 ] for all n
using generating functions. Thrall [11] has derived the expansion for s3[sn]. Chen, Garsia,
Remmel [4] have given a combinatorial algorithm for computing pk[sλ]. This algorithm
can be used to find sλ[sµ] by expanding sλ in the power basis and multiplying Schur
functions. Chen, Garsia, Remmel use this algorithm to give formulas for sλ[sn] when λ is
a partition of 3. Foulkes [5] and Howe [6] have shown how to compute sλ[sn] when λ is
a partition of 4. Finally, Carré and Leclerc [3] have found combinatorial interpretations

the electronic journal of combinatorics 11 (2004), #R11 2



for the coefficients in the expansions of s2[sλ] and s12 [sλ], Carbonara, Remmel, Yang [1]
have given explicit formulas for s2[s(1a,b)] and s12 [s(1a,b)], and Carini and Remmel [2] have
found explicit formulas for s2[s(a,b)], s12 [s(a,b)], and s2[skn].

In this work we obtain explicit formulas when ν = (1a, b) (a hook shape), ν = (1a, b, c)
(a hook plus a row), or ν = (1a, 2b, c) (a hook plus a column). For example, the well-known
formula

sλ[X − Y ] =
∑
µ⊆λ

sµ[X](−1)|λ/µ|s(λ/µ)′ [Y ]

shows that sλ[1 − x] = 0 unless λ is a hook. This allows us to prove the somewhat
surprising fact that there are no hook shapes in the expansion of sλ[sµ] unless both λ and
µ are hooks, and also gives a new proof of the following result of Carbonara, Remmel,
Yang [1]:

s(1c,d)[s(1a,b)]
∣∣
hooks

=

{
s(1a(c+d)+c,b(c+d)−c) if a is even
s(1a(c+d)+d−1,b(c+d)−d+1) if a is odd

Similarly, to study shapes that are hooks plus a row, we examine sλ[1+x−y], employing
Sergeev’s formula to simplify calculations. This proves considerably more difficult than
the hook case and we are only able to derive an explicit formula for a special case. The
conjugation rule for plethysm (see below) gives a corresponding formula for shapes of the
form a hook plus a column.

We remark that the approach of using expressions like sλ[1−x] and Sergeev’s formula
was used to find coefficients in the Kronecker product of Schur functions in [10].

We start with the necessary definitions.

2 Notation and Definitions

2.1 Partitions and Symmetric Functions

A partition λ of a positive integer n, denoted λ ` n, is a sequence of positive integers
λ = (λ1, λ2, . . . , λl) with λ1 ≤ λ2 ≤ · · · ≤ λl and λ1 + λ2 + · · · + λl = n. We will often
write a partition in the following way:

(1, 1, 1, 2, 3, 3, 5) = (13, 2, 32, 5)

with the exponent on an entry denoting the number of times that entry appears in the
partition. Each integer in a partition λ is called a part of λ and the number of parts is the
length of λ, denoted l(λ). So l(1, 1, 1, 2, 3, 3, 5) = 7. If λ ` n, we will also write |λ| = n.

A partition λ can be represented as a Ferrers diagram which is a partial array of
squares such that the ith row from the top contains λi squares. For example, the Ferrers
diagram corresponding to the partition (1, 1, 3, 4) is
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The conjugate partition, λ′, is the partition whose Ferrers diagram is the transpose of
the Ferrers diagram of λ, that is, the Ferrers diagram of λ reflected about the diagonal
that extends northeast from the lower left corner. The conjugate of (1, 1, 3, 4) is therefore
(1, 2, 2, 4) with Ferrers diagram

If µ and λ are partitions, then µ ⊆ λ if the Ferrers diagram of µ is contained in the
Ferrers diagram of λ. For example (1, 2) ⊆ (1, 3, 4). If µ ⊆ λ, the Ferrers diagram of the
skew shape λ/µ is the diagram obtained by removing the Ferrers diagram of µ from the
Ferrers diagram of λ. For example (1, 3, 4)/(1, 2) has Ferrers diagram

A tableau of shape λ is a filling of a Ferrers diagram with positive integers. A tableau is
column-strict if the entries are strictly increasing from bottom to top in each column and
weakly increasing from left to right in each row. An example of a column-strict tableau
of shape (1, 2, 2, 4) is

5
3 4
2 2
1 1 1 3

Let SN be the symmetric group on N symbols. A polynomial P (x1, x2, . . . , xN ) is
symmetric if and only if P (xσ1 , xσ2 , . . . , xσN

) = P (x1, x2, . . . , xN ) for all
σ = σ1σ2 · · ·σN ∈ SN .

Let Λn be the vector space of all symmetric polynomials that are homogeneous of
degree n. The Schur functions are a basis of this space, defined combinatorially as follows.
For a tableau T , let Ti,j be the entry in the cell (i, j) where (1, 1) is the bottom left cell.
We assign a monomial to T by defining the weight of T , w(T ), to be

w(T ) =
∏
(i,j)

xTi,j

The Schur functions, {sλ}λ`n, are defined by

sλ(x1, x2, . . . , xN ) =
∑

T∈CS(λ)

w(T )

where CS(λ) is the set of all column-strict tableau of shape λ with entries in the set
{1, 2, . . . , N}. We note that the Schur function indexed by a partition with one part,
λ = (n), is the corresponding homogeneous symmetric function hn, and that the Schur
function indexed by the partition (1n) is the elementary symmetric function en.

We can also extend the definition of Schur functions to skew Schur functions by sum-
ming over column-strict fillings of a skew diagram.
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2.2 Plethysm

We now define plethysm as follows. Let R be the ring of formal power series in some
set of variables with integer coefficients. Any element r ∈ R can be written uniquely
as r =

∑
v cvv where v ranges over all monomials in the xi’s and each cv is an integer.

For k ≥ 1, let pk =
∑

i≥1 xk
i , the usual power-sum symmetric function. Then define the

plethysm of pk and r by

pk

[∑
v

cvv

]
=

∑
v

cvv
k.

For any r ∈ R and any symmetric function f , we then define the plethysm f [r] by the
requirement that the map f → f [r] is a homomorphism from the ring of symmetric
functions to R.

In particular, for Schur functions, we use the well-known expansion in terms of the
power basis to obtain

sλ[X] =
∑
µ`n

χλ
µ

zµ

pµ[X]

where X =
∑

i≥1 xi, χλ
µ is the irreducible Sn character indexed by λ evaluated at the

conjugacy class indexed by µ, and

zµ = 1m1(µ)2m2(µ) · · ·nmn(µ)m1(µ)!m2(µ)! · · ·mn(µ)!

where mi(µ) denotes the number of parts of size i in µ.
We will need the following well-known properties (see [9]).

Theorem 2.1 Let X =
∑

i≥1 xi and Y =
∑

i≥1 yi. Then

1. sλ[X + Y ] =
∑
µ⊆λ

sµ[X]sλ/µ[Y ].

2. sλ/µ[−X] = (−1)|λ/µ|s(λ/µ)′ [X].

3. sλ[X − Y ] =
∑
µ⊆λ

sµ[X](−1)|λ/µ|s(λ/µ)′ [Y ].

We now turn to the problem of finding the coefficients aλ,µ,ν in the expansion

sλ[sµ] =
∑

ν

aλ,µ,νsν

when ν is a hook or a hook plus a row or column. Since a hook plus a row is the conjugate
shape of a hook plus a column, we will need the following conjugation formula:

sλ[sµ]′ =

{
sλ[sµ′ ] if |µ| is even
sλ′ [sµ′ ] if |µ| is odd

(1)

where for any sum
∑

cνsν , (
∑

cνsν)
′ denotes the sum

∑
cνsν′ .
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3 The Plethysm sλ[sµ] at Hook Shapes

If sλ[sµ] =
∑

ν aνsν , define sλ[sµ]|hooks =
∑

ν a hook

aνsν . Then we have the following theorem.

Theorem 3.1

1. sλ[sµ]|hooks = 0 unless both λ and µ are hooks.

2. If λ = (1c, d) and µ = (1a, b),

s(1c,d)[s(1a,b)]
∣∣
hooks

=

{
s(1a(c+d)+c,b(c+d)−c) if a is even
s(1a(c+d)+d−1,b(c+d)−d+1) if a is odd

Again, we note that statement 2 is due to Carbonara, Remmel, Yang [1] but we will
give a new, simplified proof here.

Proof. We procede by considering sλ[sµ][X − Y ] with the substitution X = 1 and Y = x.
If sλ[sµ] =

∑
ν aνsν , then

sλ[sµ][1 − x] =
∑

ν

aνsν [1 − x].

Setting X = 1 and Y = x in statement 3 of Theorem 2.1 yields

sν [1 − x] =
∑
ρ⊆ν

sρ[1](−1)|ν/ρ|s(ν/ρ)′ [x]

Now, a Schur function with one parameter can only be nonzero if the Schur function is
indexed by a shape with no columns of height two or more. This follows from the definition
in terms of column-strict tableaux. If a Ferrers diagram has a column of height two, a
column-strict filling must contain at least two different entries, giving rise to a monomial
in at least two variables. So since each Schur function in the sum has one parameter, the
terms in the sum are nonzero only if ρ is a row and (ν/ρ)′ is a skew-row, that is, it has no
columns of height two or more. This can only happen if ν = (1a, b) and ρ = (b) or (b− 1)
(see Figure 1). So ν must be a hook. Therefore we have

sλ[sµ][1 − x] =
∑

ν

aνsν [1 − x]

=
∑

ν a hook

aνsν [1 − x]

Now, when ν = (1a, b), again referring to Figure 1, we have

sν [1 − x] = s(1a,b)[1 − x]

=
∑

ρ⊆(1a,b)

sρ[1](−1)|(1
a,b)/ρ|s((1a,b)/ρ)′ [x]

= sb−1[1](−1)a+1(s1sa)[x] + sb[1](−1)asa[x]

= (−1)a+1xa+1 + (−1)axa (2)
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ν/ρ2 = (ν/ρ2)
′ =

ρ1 = ν/ρ1 = (ν/ρ1)
′ =

ν =

Figure 1: The only ways for (ν/ρ)′ to be a skew row when ρ is a row. In particular ν
must be a hook.

So we want to look for sums of this form in the expansion of sλ[sµ][1 − x].
Since sλ[sµ][1 − x] = sλ[sµ[1 − x]], we have sλ[sµ][1 − x] = 0 unless µ is a hook. If

µ = (1a, b),

sλ[s(1a,b)][1 − x] = sλ[s(1a,b)[1 − x]]

= sλ[(−1)a+1xa+1 + (−1)axa]

Since the expression in sλ has one positive and one negative term, the same argument
used above for sν [1 − x] shows that sλ[s(1a,b)][1 − x] = 0 unless λ is a hook. So we have
shown that sλ[sµ]|hooks = 0 unless both λ and µ are hooks, proving statement 1.

If we now let λ = (1c, d), and for the moment say that a is odd, we have

s(1c,d)[s(1a,b)][1 − x] = s(1c,d)[(−1)a+1xa+1 + (−1)axa]

= s(1c,d)[x
a+1 − xa]

= sd−1[x
a+1](−1)c+1(s1sc)[x

a] + sd[x
a+1](−1)csc[x

a]

= (x(a+1))(d−1)(−1)c+1(xa)c+1 + (xa+1)d(−1)c(xa)c

= xad+d−a−1+ac+a(−1)c+1 + xad+d+ac(−1)c

= xa(c+d)+d−1(−1)c+1 + xa(c+d)+d(−1)c

Now, this is almost of the form (2). We just need to verify that a(c + d) + d and c have
the same parity. Since a(c + d) + d = ac + d(a + 1) and a is odd, a(c + d) + d has the
same parity as ac, which has the same parity as c. So we have

s(1c,d)[s(1a,b)][1 − x] = xa(c+d)+d−1(−1)a(c+d)+d−1 + xa(c+d)+d(−1)a(c+d)+d

Again referring to (2), we see that

s(1c,d)[s(1a,b)][1 − x] = s(1a(c+d)+d−1,l)[1 − x]
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for some l. It follows from the definition of plethysm that the Schur functions in the
expansion

sλ[sµ] =
∑

ν

aνsν

correspond to partitions of size |ν| = |λ||µ|, so we need

(c + d)(a + b) = a(c + d) + d − 1 + l.

So

l = ac + bc + ad + bd − ac − ad − d + 1

= bc + bd − d + 1

= b(c + d) − d + 1

and therefore s(1c,d)[s(1a,b)]
∣∣
hooks

= s(1a(c+d)+d−1,b(c+d)−d+1) when a is odd.
Similarly, when a is even we have

s(1c,d)[s(1a,b)][1 − x] = s(1c,d)[(−1)a+1xa+1 + (−1)axa]

= s(1c,d)[x
a − xa+1]

= sd−1[x
a](−1)c+1(s1sc)[x

a+1] + sd[x
a](−1)csc[x

a+1]

= (xa)(d−1)(−1)c+1(xa+1)c+1 + (xa)d(−1)c(xa+1)c

= xad−a+ac+a+c+1(−1)c+1 + xa(c+d)+c(−1)c

= xa(c+d)+c+1(−1)c+1 + xa(c+d)+c(−1)c

= xa(c+d)+c+1(−1)a(c+d)+c+1 + xa(c+d)+c(−1)a(c+d)+c

= s(1a(c+d)+c,b(c+d)−c)[1 − x]

which completes the proof.

4 The Plethysm sλ[sµ] at Near-Hook Shapes

We now consider the problem of finding shapes of the form (1a, b, c) or (1a, 2b, c) in the
expansion of sλ[sµ]. This is considerably more difficult than the hook case and we will
only be able to determine an explicit formula for a special case.

To extract shapes that are a hook plus a row, we need to examine sν [1 + x − y]. In
particular, we show below that sν [1 + x − y] = 0 unless ν is contained in a hook plus
a row. We will translate our results about hooks plus a row to shapes that are hooks
plus a column by using the conjugation rule (1) (we could also compute these directly
using sν [x − 1 − y]). To simplify our calculations we will use a result known as Sergeev’s
formula. We note that the calculations can also be performed using techniques similar to
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those in the previous section. Specifically, we can set X = 1 + x and Y = y in statement
3 of Theorem 2.1 to obtain

sν [1 + x − y] =
∑
ρ⊆ν

sρ[1 + x](−1)|ν/ρ|s(ν/ρ)′ [y]

and perform an analysis similar to that in Section 3.
Sergeev’s formula also allows us to state a general result about when certain shapes

occur in the expansion sλ[sµ] =
∑

ν aνsν based on a restriction on µ.
Before introducing Sergeev’s formula, we need a few definitions. First, let Xm =

x1 + x2 + · · ·+ xm be a finite alphabet and let

δm = (m − 1, m − 2, . . . , 1, 0).

Then define
Xδm

m = xm−1
1 xm−2

2 · · ·xm−1

Next, for a permutation σ = σ1σ2 · · ·σn, we say that an ordered pair (i, j) is an
inversion of σ if i < j and σi > σj . Let inv(σ) denote the number of inversions in σ.
Then for a polynomial P (x1, . . . , xn), define the alternant Ax

n by

Ax
nP =

∑
σ∈Sn

(−1)inv(σ)P (xσ1, . . . , xσn)

Finally, let ∆ be the operation of taking the Vandermonde determinant of an alphabet.
Specifically,

∆(Xm) = det(xm−j
i )m

i,j=1

Then we have the following result (see [9]).

Theorem 4.1 (Sergeev’s Formula) Let Xm = x1 + · · ·+ xm and Yn = y1 + · · ·+ yn be
two alphabets. Then

sλ[Xm − Yn] =
1

∆(Xm)∆(Yn)
Ax

mAy
nXδm

m Y δn
n

∏
(i,j)∈λ

(xj − yi)

where (i, j) ∈ λ means that the cell (i, j) is in the Ferrers diagram of λ and (1, 1) denotes
the bottom left cell. We also set xj = 0 for j > m and yi = 0 for i > n.

We need a few more definitions for our first result. Define an n-hook to be a partition
of the form (1k1 , 2k2, . . . , nkn , l1, l2, . . . , ln) where ki ≥ 1 for 1 ≤ i ≤ n and l1 > n. Similarly
define an n-hook plus a row to be a partition of the form (1k1, 2k2, . . . , nkn, l1, l2, . . . , ln, ln+1)
where ki ≥ 1 for 1 ≤ i ≤ n and l1 > n and an n-hook plus a column to be a partition of
the form (1k1, 2k2, . . . , nkn, (n + 1)kn+1, l1, l2, . . . , ln) where ki ≥ 1 for 1 ≤ i ≤ n + 1 and
l1 > n (see Figure 2). Note that every partition is an n-hook, an n-hook plus a row, or
an n-hook plus a column for some n.
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Figure 2: A 2-hook, a 2-hook plus a row, and a 2-hook plus a column.

Also , if sλ[sµ] =
∑

ν aνsν , set

sλ[sµ]|⊆(n-hook) =
∑

ν contained in an n-hook

aνsν

and similarly for sλ[sµ]|⊆(n-hook+row) and sλ[sµ]|⊆(n-hook+col) .
Our first application of Sergeev’s formula is the following:

Theorem 4.2

1. sλ[sµ]|⊆(n-hook) = 0 if µ is not contained in an n-hook.

2. sλ[sµ]|⊆(n-hook+row) = 0 if µ is not contained in an n-hook plus a row.

3. sλ[sµ]|⊆(n-hook+col) = 0 if µ is not contained in an n-hook plus a column.

Proof. For statement 1, we consider sν [Xn − Yn]. If ν is not contained in an n-hook, then
the Ferrers diagram of ν contains the cell (n + 1, n + 1). So the product∏

(i,j)∈ν

(xj − yi)

in Sergeev’s formula for sν [Xn −Yn] is zero since the factor xn+1 − yn+1 is zero. Therefore
sν [Xn − Yn] = 0 unless ν is contained in an n-hook. So if sλ[sµ] =

∑
ν aνsν ,

sλ[sµ][Xn − Yn] =
∑

ν

aνsν [Xn − Yn]

=
∑

ν⊆(n-hook)

aνsν [Xn − Yn]

But
sλ[sµ][Xn − Yn] = sλ[sµ[Xn − Yn]] = 0
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unless µ is contained in an n-hook. So sλ[sµ]|⊆(n−hook) = 0 if µ is not contained in an
n-hook.

For statement 2, we just need to look at sν [Xn+1 − Yn]. If ν is not contained in an
n-hook plus a row, then the Ferrers diagram of ν contains the cell (n + 1, n + 2). So the
product ∏

(i,j)∈ν

(xj − yi)

in Sergeev’s formula for sν [Xn+1−Yn] is zero since the factor xn+2−yn+1 is zero. Therefore
sν [Xn+1 − Yn] = 0 unless ν is contained in an n-hook plus a row and the result follows as
with statement 1.

An analogous argument considering sν [Xn − Yn+1] proves statement 3.

We now turn to the special case of a hook plus a row or column. As a special case of
Theorem 4.2, we can start with the following result.

Theorem 4.3

1. sλ[sµ]|⊆hook+row = 0 unless µ is contained in a hook plus a row.

2. sλ[sµ]|⊆hook+col = 0 unless µ is contained in a hook plus a column.

As in the proof of Theorem 4.2, statement 1 follows from Sergeev’s formula for sν [x1 +
x2 − y1]. For our next theorem we will need this formula evaluated at x1 = 1, x2 = x, and
y1 = y. We state this result as a lemma:

Lemma 4.4

1. sν [1 + x − y] = 0 unless ν is contained in a partition of the form (1a, b, c).

2. For b ≥ 1, c ≥ 2,

s(1a,b,c)[1 + x − y] = xb−1(1 + x + x2 + · · ·+ xc−b)(−y)a(1 − y)(x− y).

3. xi(−y)js(1a,b,c)[1 + x − y] = s(1a+j ,b+i,c+i)[1 + x − y].

Proof. We apply Sergeev’s formula with X2 = x1 + x2 , Y1 = y1 and then substitute
x1 = 1, x2 = x, and y1 = y. The proof of statement 1 is a special case of the proof of
Theorem 4.2. For statement 2, we have ∆(X2) = x1 − x2, ∆(Y1) = 1, Xδ2

2 = x1, Y δ1
1 = 1,

Ax
2P (x1, x2) = P (x1, x2) − P (x2, x1), and Ay

1P (y1) = P (y1). Also, for λ = (1a, b, c),∏
(i,j)∈λ

(xj − yi) = (x1 − y1)x
c−1
1 (x2 − y1)x

b−1
2 (−y1)

a
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So

s(1a,b,c)[x1 + x2 − y1] =
1

x1 − x2
Ax

2(x
c
1x

b−1
2 (−y1)

a(x1 − y1)(x2 − y1))

=
1

x1 − x2
(xc

1x
b−1
2 − xb−1

1 xc
2)(−y1)

a(x1 − y1)(x2 − y1)

=
xc−b+1

1 − xc−b+1
2

x1 − x2
(x1x2)

b−1(−y1)
a(x1 − y1)(x2 − y1)

= (xc−b
1 + xc−b−1

1 x2 + · · · + x1x
c−b−1
2 + xc−b

2 )

×(x1x2)
b−1(−y1)

a(x1 − y1)(x2 − y1)

Substituting x1 = 1, x2 = x, and y1 = y gives the result.
Statement 3 follows immediately from statement 2.

Note that in particular this lemma says that if sλ[sµ] =
∑

ν aνsν then

sλ[sµ][1 + x − y] =
∑

ν

aνsν [1 + x − y]

=
∑

ν⊆ hook plus a row

aνsν [1 + x − y]

So we need to look for expressions like those in statement 2 of Lemma 4.4 in the ex-
pansion of sλ[sµ][1 + x− y]. This is considerably more difficult than the hook case in the
previous section where we were looking for expressions of the form (−1)a+1xa+1 +(−1)axa

since the factor 1 + x + x2 + · · ·+ xc−b in statement 2 of Lemma 4.4 becomes difficult to
deal with when c 6= b. As such, we will only derive an explicit formula for the case b = c,
as follows.

Theorem 4.5

1. sλ[s(1a,b,b)]
∣∣
⊆(hook+row)

= 0 unless λ is contained in a 2-hook.

2. For λ = (1n),

s(1n)[s(1a,b,b)]
∣∣
⊆(hook+row)

=




s(1na+n−1,n(b−1)+1,n(b−1)+n) if a is even

∑n
i=1 s(1na+2n−2i,n(b−1)+i,n(b−1)+i) if a is odd

3. For λ = (n),

s(n)[s(1a,b,b)]
∣∣
⊆(hook+row)

=




∑n
i=1 s(1na+2n−2i,n(b−1)+i,n(b−1)+i) if a is even

s(1na+n−1,n(b−1)+1,n(b−1)+n) if a is odd
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4. For λ = (1k, n − k), with k ≥ 1, n − k > 1, and a even,

s(1k ,n−k)[s(1a,b,b)]
∣∣
⊆(hook+row)

=
n−k∑
i=1

s(1na+2n−k−2i,n(b−1)+i,n(b−1)+k+i)

+
n−k−1∑

i=1

s(1na+2n−k−1−2i,n(b−1)+1+i,n(b−1)+k+i)

5. For λ = (1k, n − k), with k ≥ 1, n − k > 1, and a odd,

s(1k,n−k)[s(1a,b,b)]
∣∣
⊆(hook+row)

=
k+1∑
i=1

s(1na+n+k+1−2i,n(b−1)+i,n(b−1)+n−k−1+i)

+
k∑

i=1

s(1na+n+k−2i,n(b−1)+1+i,n(b−1)+n−k−1+i)

6. For λ = (1k, 2l, r, s) ` n, with k ≥ 0, l ≥ 0, r ≥ 2, s ≥ 2, and a even,

s(1k ,2l,r,s)[s(1a,b,b)]
∣∣
⊆(hook+row)

= s(1na+k+2l+2s,n(b−1)+l+r,n(b−1)+k+l+r)

+2
s−r−1∑
j=0

s(1na+k+2l+2r+2j ,n(b−1)+l+s−j,n(b−1)+k+l+s−j)

+s(1na+k+2l+2r−2,n(b−1)+l+s+1,n(b−1)+k+l+s+1)

+

s−r∑
i=0

(
s(1na+k+2l+2r−1+2i,n(b−1)+l+s−i,n(b−1)+k+l+s+1−i)

+ s(1na+k+2l+2r−1+2i,n(b−1)+l+s+1−i,n(b−1)+k+l+s−i)

)
where the first summation is taken to be empty if r = s and the second term in the
second summation only occurs if k 6= 0.

7. For λ = (1k, 2l, r, s) ` n, with k ≥ 0, l ≥ 0, r ≥ 2, s ≥ 2, and a odd,

s(1k ,2l,r,s)[s(1a,b,b)]
∣∣
⊆(hook+row)

= s(1na+2k+2l+r+s,n(b−1)+l+r,n(b−1)+l+s)

+2
k−1∑
j=0

s(1na+2l+r+s+2j ,n(b−1)+k+l+r−j,n(b−1)+k+l+s−j)

+s(1na+2l+r+s−2,n(b−1)+k+l+r+1,n(b−1)+k+l+s+1)

+

k∑
i=0

(
s(1na+2l+r+s−1+2i,n(b−1)+k+l+r−i,n(b−1)+k+l+s+1−i)

+ s(1na+2l+r+s−1+2i,n(b−1)+k+l+r+1−i,n(b−1)+k+l+s−i)

)
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where the first summation is taken to be empty if k = 0 and the second term in the
second summation only occurs if r < s.

Before we give a proof, we note that each Schur function indexed by a hook plus a
row appears in at most one summation in each of the above formulas. So we can state
the following corollary.

Corollary 4.6 Let sλ[s(1a,b,b)] =
∑

ν aνsν. Then if ν is a hook plus a row, we have

1. aν = 0 if λ is not contained in a 2-hook.

2. aν = 0 or 1 if λ is contained in a hook.

3. aν = 0, 1, or 2 if λ is contained in a 2-hook and the Ferrers diagram of λ contains
the cell (2, 2).

We note that this nice bound on the coefficients does not hold in the general case
sλ[s(1a,b,c)]. Indeed, the coefficients grow without bound as c − b becomes large. The first
author examines this phenomenon in the special case of two-row shapes in [7].

We now turn to the proof of Theorem 4.5.

Proof of Theorem 4.5. We start by applying Lemma 4.4 to sλ[s(1a,b,b)][1 + x − y]:

sλ[s(1a,b,b)][1 + x − y] = sλ[s(1a,b,b)[1 + x − y]]

= sλ[x
b−1(−y)a(x + y2 − y − xy)]

= (xb−1ya)|λ|sλ[(−1)a(x + y2 − y − xy)]

This breaks into cases depending on the parity of a:

sλ[s(1a,b,b)][1 + x − y] =

{
x|λ|(b−1)y|λ|asλ[x + y2 − y − xy] if a is even
x|λ|(b−1)y|λ|a(−1)|λ|sλ′[x + y2 − y − xy] if a is odd

where the odd case follows from statement 2 of Theorem 2.1. So we need to examine
sλ[x + y2 − y − xy]. To that end we have the following lemma.

Lemma 4.7

1. sλ[x + y2 − xy − y] = 0 unless λ is contained in a 2-hook.

2. For λ = (1n),
s(1n)[x + y2 − xy − y] = s(1n,n)[1 + x − y]

3. For λ = (n),

s(n)[x + y2 − xy − y] =

n∑
i=1

s(12(n−i) ,i,i)[1 + x − y]
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4. For λ = (1k, n − k), with k ≥ 1, n − k > 1,

s(1k ,n−k)[x + y2 − xy − y] =
n−k∑
i=1

s(12n−k−2i,i,k+i)[1 + x − y]

+
n−k−1∑

i=1

s(12n−k−1−2i ,1+i,k+i)[1 + x − y]

5. λ = (1k, 2l, r, s), with k ≥ 0, l ≥ 0, r ≥ 2, s ≥ 2,

s(1k ,2l,r,s)[x + y2 − xy − y] = s(1k+2l+2s,l+r,k+l+r)[1 + x − y]

+2

s−r−1∑
j=0

s(1k+2l+2r+2j ,l+s−j,k+l+s−j)[1 + x − y]

+s(1k+2l+2r−2,l+s+1,k+l+s+1)[1 + x − y]

+

s−r∑
i=0

(
s(1k+2l+2r−1+2i,l+s−i,k+l+s+1−i)[1 + x − y]

+s(1k+2l+2r−1+2i,l+s+1−i,k+l+s−i)[1 + x − y]
)

where the first summation is taken to be empty if r = s and the second term in the
second summation only occurs if k 6= 0.

Proof of Lemma 4.7. We again apply Sergeev’s formula, this time with X2 = x1 + x2 and
Y2 = y1 + y2. We will then substitute x1 = x, x2 = y2, y1 = xy, and y2 = y. If λ is
not a 2-hook then λ contains the cell (3, 3). So the product

∏
(i,j)∈λ(xj − yi) in Sergeev’s

formula for sλ[x1 +x2−y1−y2] is 0 since x3−y3 = 0. This proves statement 1. Statement
1 of Theorem 4.5 follows immediately since this implies sλ[s(1a,b,b)][1 + x − y] = 0 unless
λ is contained in a 2-hook.

Now, ∆(X2) = x1 − x2, ∆(Y2) = y1 − y2, Xδ2
2 = x1, Y δ2

2 = y1, Ax
2P (x1, x2) =

P (x1, x2) − P (x2, x1), and Ay
2P (y1, y2) = P (y1, y2) − P (y2, y1). For λ = (1n),∏

(i,j)∈λ

(xj − yi) = (x1 − y1)(x2 − y1)(−yn−2
1 )
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So

s(1n)[x1 + x2 − y1 − y2]

=
1

(x1 − x2)(y1 − y2)
Ax

2A
y
2x1y1(x1 − y1)(x2 − y1)(−yn−2

1 )

=
1

(x1 − x2)(y1 − y2)
Ax

2(−1)n−2x1(y
n−1
1 (x1 − y1)(x2 − y1) − yn−1

2 (x1 − y2)(x2 − y2))

=
1

(x1 − x2)(y1 − y2)
(−1)n−2(x1 − x2)(y

n−1
1 (x1 − y1)(x2 − y1) − yn−1

2 (x1 − y2)(x2 − y2))

=
1

(y1 − y2)
(−1)n−2(yn−1

1 (x1 − y1)(x2 − y1) − yn−1
2 (x1 − y2)(x2 − y2))

Substituting x1 = x, x2 = y2, y1 = xy, and y2 = y gives

s(1n)[x + y2 − xy − y]

=
1

(xy − y)
(−1)n−2((xy)n−1(x − xy)(y2 − xy) − yn−1(x − y)(y2 − y))

=
1

y(x− 1)
(−1)n−2((xy)n(1 − y)(y − x) − yn(x − y)(y − 1))

=
xn − 1

x − 1
(−y)n−1(1 − y)(x− y)

= (1 + x + · · · + xn−1)(−y)n−1(1 − y)(x − y)

Comparing with the expression

s(1a,b,c)[1 + x − y] = xb−1(1 + x + x2 + · · · + xc−b)(−y)a(1 − y)(x − y)

we see that

s(1n)[x + y2 − xy − y] = s(1n−1,1,n)[1 + x − y] = s(1n,n)[1 + x − y]

which proves statement 2 of the lemma.
For statement 3, when λ = (n) we have∏

(i,j)∈λ

(xj − yi) = (x1 − y1)(x1 − y2)x
n−2
1

So

s(n)[x1 + x2 − y1 − y2]

=
1

(x1 − x2)(y1 − y2)
Ax

2A
y
2x1y1(x1 − y1)(x1 − y2)x

n−2
1

=
1

(x1 − x2)(y1 − y2)
Ax

2x
n−1
1 (y1 − y2)(x1 − y1)(x1 − y2)

=
1

(x1 − x2)
(xn−1

1 (x1 − y1)(x1 − y2) − xn−1
2 (x2 − y1)(x2 − y2))
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Substituting x1 = x, x2 = y2, y1 = xy, and y2 = y gives

sn[x + y2 − xy − y]

=
1

(x − y2)
(xn−1(x − xy)(x − y) − y2(n−1)(y2 − xy)(y2 − y))

=
1

(x − y2)
(xn(1 − y)(x − y) − y2n(1 − y)(x − y))

=
xn − y2n

x − y2
(1 − y)(x− y)

= (y2(n−1) + xy2(n−2) + · · · + xn−2y2 + xn−1)(1 − y)(x − y)

Again comparing with the expression

s(1a,b,c)[1 + x − y] = xb−1(1 + x + x2 + · · · + xc−b)(−y)a(1 − y)(x − y)

we see that

s(n)[x + y2 − xy − y] = s(12(n−1) ,1,1)[1 + x − y] + s(12(n−2) ,2,2)[1 + x − y]

+ · · ·+ s(12,n−1,n−1)[1 + x − y] + s(n,n)[1 + x − y]

=

n∑
i=1

s(12(n−i) ,i,i)[1 + x − y]

which proves statement 3 of the lemma.
With statements 2 and 3 of Lemma 4.7 in hand we can now prove statements 2 and 3

of Theorem 4.5. For this, we return to the expression

sλ[s(1a,b,b)][1 + x − y] =

{
x|λ|(b−1)y|λ|asλ[x + y2 − y − xy] if a is even
x|λ|(b−1)y|λ|a(−1)|λ|sλ′[x + y2 − y − xy] if a is odd

When a is even we just need to multiply the results of Lemma 4.7 by

xn(b−1)yna = xn(b−1)(−y)na.

Applying Lemma 4.4 (3), we see that

xn(b−1)(−y)nas(1d,i,j)[1 + x − y] = s(1na+d,n(b−1)+i,n(b−1)+j)[1 + x − y].

So

s(1n)[s(1a,b,b)][1 + x − y] = xn(b−1)ynas(1n,n)[1 + x − y]

= xn(b−1)ynas(1n−1,1,n)[1 + x − y]

= s(1na+n−1,n(b−1)+1,n(b−1)+n)[1 + x − y]

and therefore
s(1n)[s(1a,b,b)]

∣∣
⊆(hook+row)

= s(1na+n−1,n(b−1)+1,n(b−1)+n)
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when a is even.
Similarly, again applying Lemma 4.4 (3), we have

s(n)[s(1a,b,b)][1 + x − y] = xn(b−1)yna

n∑
i=1

s(12(n−i) ,i,i)[1 + x − y]

=

n∑
i=1

s(1na+2(n−i),n(b−1)+i,n(b−1)+i)[1 + x − y]

and therefore

s(n)[s(1a,b,b)]
∣∣
⊆(hook+row)

=

n∑
i=1

s(1na+2(n−i),n(b−1)+i,n(b−1)+i)

when a is even.
Now, when a is odd, we need to multiply sλ′ [x + y2 − y − xy] by

x|λ|(b−1)y|λ|a(−1)|λ| = x|λ|(b−1)(−y)|λ|a.

Since (n)′ = (1n), we just need to switch the above formulas. This completes the proof of
statements 2 and 3 of Theorem 4.5.

We now turn to statement 4 of Lemma 4.7 and statements 4 and 5 of Theorem 4.5.
For the lemma, if λ = (1k, n − k), we have∏

(i,j)∈λ

(xj − yi) = (x1 − y1)(x1 − y2)x
n−k−2
1 (x2 − y1)(−y1)

k−1

So

s(1k ,n−k)[x1 + x2 − y1 − y2]

=
1

(x1 − x2)(y1 − y2)
Ax

2A
y
2x1y1(x1 − y1)(x1 − y2)x

n−k−2
1 (x2 − y1)(−y1)

k−1

=
1

(x1 − x2)(y1 − y2)
Ax

2(−1)k−1xn−k−1
1 (x1 − y1)(x1 − y2)((x2 − y1)y

k
1 − (x2 − y2)y

k
2)

=
1

(x1 − x2)(y1 − y2)
(−1)k−1

[
xn−k−1

1 (x1 − y1)(x1 − y2)((x2 − y1)y
k
1 − (x2 − y2)y

k
2)

−xn−k−1
2 (x2 − y1)(x2 − y2)((x1 − y1)y

k
1 − (x1 − y2)y

k
2)

]
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Rearranging slightly, we obtain

s(1k ,n−k)[x1 + x2 − y1 − y2]

=
1

(x1 − x2)(y1 − y2)
(−1)k−1

× [
yk

1(x1 − y1)(x2 − y1)(x
n−k−1
1 (x1 − y2) − xn−k−1

2 (x2 − y2))

−yk
2 (x1 − y2)(x2 − y2)(x

n−k−1
1 (x1 − y1) − xn−k−1

2 (x2 − y1))
]

=
1

(x1 − x2)(y1 − y2)
(−1)k−1

× [
yk

1(x1 − y1)(x2 − y1)(x
n−k
1 − xn−k

2 − y2(x
n−k−1
1 − xn−k−1

2 ))

−yk
2 (x1 − y2)(x2 − y2)(x

n−k
1 − xn−k

2 − y1(x
n−k−1
1 − xn−k−1

2 ))
]

=
xn−k

1 − xn−k
2

x1 − x2
(−1)k−1yk

1(x1 − y1)(x2 − y1) − yk
2(x1 − y2)(x2 − y2)

y1 − y2

−xn−k−1
1 − xn−k−1

2

x1 − x2

(−1)k−1yk
1y2(x1 − y1)(x2 − y1) − y1y

k
2(x1 − y2)(x2 − y2)

y1 − y2

Substituting x1 = x, x2 = y2, y1 = xy, and y2 = y gives

s(1k ,n−k)[x + y2 − xy − y]

=
xn−k − y2(n−k)

x − y2
(−1)k−1 (xy)k(x − xy)(y2 − xy) − yk(x − y)(y2 − y)

xy − y

−xn−k−1 − y2(n−k−1)

x − y2
(−1)k−1 (xy)ky(x − xy)(y2 − xy) − xyyk(x − y)(y2 − y)

xy − y

=
xn−k − y2(n−k)

x − y2
(−1)k−1 (xy)k+1(1 − y)(y − x) − yk+1(x − y)(y − 1)

y(x − 1)

−xn−k−1 − y2(n−k−1)

x − y2
(−1)k−1xk+1yk+2(1 − y)(y − x) − xyk+2(x − y)(y − 1)

y(x− 1)

= (−1)k−1(1 − y)(y − x)

(
yk xn−k − y2(n−k)

x − y2
· xk+1 − 1

x − 1

−yk+1xn−k−1 − y2(n−k−1)

x − y2
· x(xk − 1)

x − 1

)
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Expanding the fractions and rearranging, we obtain

s(1k ,n−k)[x + y2 − xy − y]

= (−y)k(1 − y)(x− y)

×(y2(n−k)−2 + xy2(n−k)−4 + · · · + xn−k−2y2 + xn−k−1)(1 + x + · · ·+ xk)

×(y2(n−k)−3 + xy2(n−k)−5 + · · · + xn−k−3y3 + xn−k−2y)x(1 + x + · · · + xk−1)

= (1 − y)(x− y)

×(−y)k+2(n−k)−2(1 + x + · · ·+ xk) + (−y)k+2(n−k)−3x(1 + x + · · ·+ xk−1)

×(−y)k+2(n−k)−4x(1 + x + · · · + xk) + (−y)k+2(n−k)−5x2(1 + x + · · ·+ xk−1)
...

×(−y)k+2xn−k−2(1 + x + · · ·+ xk) + (−y)k+1xn−k−1(1 + x + · · ·+ xk−1)

×(−y)kxn−k−1(1 + x + · · ·+ xk)

Comparing with the expression

s(1a,b,c)[1 + x − y] = xb−1(1 + x + x2 + · · · + xc−b)(−y)a(1 − y)(x − y)

we have

s(1k ,n−k)[x + y2 − xy − y] = s(12n−k−2,1,k+1)[1 + x − y] + s(12n−k−3,2,k+1)[1 + x − y]

+s(12n−k−4,2,k+2)[1 + x − y] + s(12n−k−5,3,k+2)[1 + x − y]

...

+s(1k+2,n−k−1,n−1)[1 + x − y] + s(1k+1,n−k,n−1)[1 + x − y]

+s(1k ,n−k,n)[1 + x − y]

=
n−k∑
i=1

s(12n−k−2i,i,k+i)[1 + x − y]

+
n−k−1∑

i=1

s(12n−k−1−2i ,1+i,k+i)[1 + x − y]

which proves statement 4 of Lemma 4.7.
To prove statement 4 of Theorem 4.5, as with the proof of statements 2 and 3, when

a is even we just need to multiply the results of Lemma 4.7 by

xn(b−1)yna = xn(b−1)(−y)na.

Recalling that by Lemma 4.4 (3),

xn(b−1)(−y)nas(1d,i,j)[1 + x − y] = s(1na+d,n(b−1)+i,n(b−1)+j)[1 + x − y],
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we have

s(1k,n−k)[s(1a,b,b)][1 + x − y] =
n−k∑
i=1

s(1na+2n−k−2i,n(b−1)+i,n(b−1)+k+i)[1 + x − y]

+
n−k−1∑

i=1

s(1na+2n−k−1−2i ,n(b−1)+1+i,n(b−1)+k+i)[1 + x − y],

which proves statement 4 of Theorem 4.5.
When a is odd, we need to multiply s(1k ,n−k)′[x + y2 − y − xy] by

x|λ|(b−1)y|λ|a(−1)|λ| = x|λ|(b−1)(−y)|λ|a.

Since (1k, n − k)′ = (1n−k−1, k + 1), we just need to substitute n − k − 1 for k and k + 1
for n − k in statement 4 of Theorem 4.5 to obtain statement 5.

Finally, we need to prove statement 5 of Lemma 4.7 and statements 6 and 7 of Theo-
rem 4.5. Setting λ = (1k, 2l, r, s) with r ≥ 2, s ≥ 2, we have∏

(i,j)∈λ

(xj − yi) = (x1 − y1)(x1 − y2)x
s−2
1 (x2 − y1)(x2 − y2)x

r−2
2 (−y1)

k+l(−y2)
l

So

s(1k ,2l,r,s)[x1 + x2 − y1 − y2]

=
1

(x1 − x2)(y1 − y2)
Ax

2A
y
2x1y1(x1 − y1)(x1 − y2)

×xs−2
1 (x2 − y1)(x2 − y2)x

r−2
2 (−y1)

k+l(−y2)
l

=
1

(x1 − x2)(y1 − y2)
Ax

2x
s−1
1 xr−2

2 (x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

×(−1)k(yk+l+1
1 yl

2 − yl
1y

k+l+1
2 )

=
1

(x1 − x2)(y1 − y2)
(xs−1

1 xr−2
2 − xr−2

1 xs−1
2 )(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)

×(−1)k(yk+l+1
1 yl

2 − yl
1y

k+l+1
2 )

= (x1x2)
r−2

(
xs−r+1

1 − xs−r+1
2

x1 − x2

)
(y1y2)

l (−1)k

(
yk+1

1 − yk+1
2

y1 − y2

)
×(x1 − y1)(x1 − y2)(x2 − y1)(x2 − y2)
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Substituting x1 = x, x2 = y2, y1 = xy, and y2 = y gives

s(1k ,2l,r,s)[x + y2 − xy − y]

= (xy2)r−2

(
y2(s−r+1) − xs−r+1

y2 − x

)
(xy2)l(−1)k

(
yk+1 − (xy)k+1

y − xy

)
×(x − xy)(x − y)(y2 − xy)(y2 − y)

= (−1)kxl+r−1yk+2l+2r−2(1 − y)2(x − y)2

(
1 − xk+1

1 − x

) (
y2(s−r+1) − xs−r+1

y2 − x

)

= xl+r−1(−y)k+2l+2r−2(1 + x + · · · + xk)(1 − y)2(x − y)2

×(y2(s−r) + y2(s−r)−2x + · · · + y2xs−r−1 + xs−r)

= (1 − y)(x− y)xl+r−1(−y)k+2l+2r−2(1 + x + · · · + xk)(x + y2 − (1 + x)y)

×(xs−r + xs−r−1y2 + · · ·+ xy2(s−r)−2 + y2(s−r))

= (1 − y)(x− y)xl+r−1(−y)k+2l+2r−2(x + y2)(1 + x + · · · + xk)

×(xs−r + xs−r−1y2 + · · ·+ xy2(s−r)−2 + y2(s−r))

+(1 − y)(x− y)xl+r−1(−y)k+2l+2r−1(1 + x)(1 + x + · · · + xk)

×(xs−r + xs−r−1y2 + · · ·+ xy2(s−r)−2 + y2(s−r))

Referring to Lemma 4.4 (2) and noting that

(1 + x)(1 + x + · · ·+ xk) = 1 + x + · · ·+ xk+1 + x(1 + x + · · · + xk−1)

(where the second term only exists for k > 0), we can write this as

s(1k ,2l,r,s)[x + y2 − xy − y]

= xl+r−1(−y)k+2l+2r−2(x + y2)
s−r∑
i=0

s(12j ,s−r+1−j,k+s−r+1−j)[1 + x − y]

+(1 − y)(x − y)xl+r−1(−y)k+2l+2r−1

× (
1 + x + · · · + xk+1 + x(1 + x + · · ·+ xk−1)

)
×(xs−r + xs−r−1y2 + · · · + xy2(s−r)−2 + y2(s−r))
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This simplifies to

s(1k ,2l,r,s)[x + y2 − xy − y] = xl+r(−y)k+2l+2r−2
s−r∑
i=0

s(12i,s−r+1−i,k+s−r+1−i)[1 + x − y]

+xl+r−1(−y)k+2l+2r

s−r∑
i=0

s(12i,s−r+1−i,k+s−r+1−i)[1 + x − y]

+xl+r−1(−y)k+2l+2r−1

s−r∑
i=0

s(12i,s−r+1−i,k+s−r+2−i)[1 + x − y]

+xl+r(−y)k+2l+2r−1

s−r∑
i=0

s(12i,s−r+1−i,k+s−r−i)[1 + x − y]

where the last summation only occurs if k > 0. Applying Lemma 4.4 (3), this becomes

s(1k ,2l,r,s)[x + y2 − xy − y] =
s−r∑
i=0

s(1k+2l+2r−2+2i,l+s+1−i,k+l+s+1−i)[1 + x − y]

+
s−r∑
i=0

s(1k+2l+2r+2i,l+s−i,k+l+s−i)[1 + x − y]

+
s−r∑
i=0

s(1k+2l+2r−1+2i,l+s−i,k+l+s+1−i)[1 + x − y]

+

s−r∑
i=0

s(1k+2l+2r−1+2i,l+s+1−i,k+l+s−i)[1 + x − y]

If we peel off the i = 0 term in the first summation and the i = s − r term in the
second summation, and combine the remaining terms, we get the first three expressions
in statement 5 of Lemma 4.7. The remaining two summations are precisely the fourth
expression, so the proof of Lemma 4.7 is complete. To complete the proof of Theorem 4.5,
when a is even we again just need to multiply the result of Lemma 4.7 by

xn(b−1)yna = xn(b−1)(−y)na.

Applying Lemma 4.4 (3) and comparing the expressions in Lemma 4.7 (5) and Theorem 4.5
(6), we see that we have precisely what we need.

Now, when a is odd, we need to multiply sλ′ [x + y2 − y − xy] by

x|λ|(b−1)y|λ|a(−1)|λ| = x|λ|(b−1)(−y)|λ|a.

Since λ = (1k, 2l, r, s), we have

λ′ = (1s−r, 2r−2, l + 2, k + l + 2),
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so the result follows by substituting s− r for k, r − 2 for l, l + 2 for r, and k + l + 2 for s
in statement 6 of the theorem.

We can now apply the conjugation rule to Theorem 4.5 to obtain the following result
about hooks plus a column:

Theorem 4.8

1. sλ[s(2a,b)]
∣∣
⊆(hook+col)

= 0 unless λ is contained in a 2-hook.

2. For λ = (1n),
s(1n)[s(2a,b)]

∣∣
⊆(hook+col)

= s(1n−1,2na,n(b−1)+1)

3. For λ = (n),

s(n)[s(2a,b)]
∣∣
⊆(hook+col)

=

n∑
i=1

s(2na−1+i,nb+2−2i)

4. For λ = (1k, n − k), with k ≥ 1, n − k > 1, and b even,

s(1k ,n−k)[s(2a,b)]
∣∣
⊆(hook+col)

=
n−k∑
i=1

s(1k ,2na−1+i,nb−k+2−2i)

+
n−k−1∑

i=1

s(1k−1,2na+i,nb−k+1−2i)

5. For λ = (1k, n − k), with k ≥ 1, n − k > 1, and b odd,

s(1k ,n−k)[s(2a,b)]
∣∣
⊆(hook+col)

=

k+1∑
i=1

s(1k ,2na−1+i,nb−k+2−2i)

+

k∑
i=1

s(1n−k−2,2na+i,nb−k+1−2i)

6. For (1k, 2l, r, s) ` n with k ≥ 0, l ≥ 0, r ≥ 2, s ≥ 2, and b even,

s(1k ,2l,r,s)[s(2a,b)]
∣∣
⊆(hook+col)

= s(1k ,2na+l+r−1,n(b−2)+k+2l+2s+2)

+2

s−r−1∑
j=0

s(1k,2na+l+s−1−j ,n(b−2)+k+2l+2r+2+2j)

+s(1k ,2na+l+s,n(b−2)+k+2l+2r)

+
s−r∑
i=0

(
s(1k+1,2na+l+s−1−i,n(b−2)+k+2l+2r+1+2i)

+ s(1k−1,2na+l+s−i,n(b−2)+k+2l+2r+1+2i)

)
the electronic journal of combinatorics 11 (2004), #R11 24



7. For (1k, 2l, r, s) ` n with k ≥ 0, l ≥ 0, r ≥ 2, s ≥ 2, and b odd,

s(1k,2l,r,s)[s(2a,b)]
∣∣
⊆(hook+col)

= s(1k ,2na+l+r−1,n(b−2)+k+2l+2s+2)

+2

k−1∑
j=0

s(1k,2na+l+s−1−j ,n(b−2)+k+2l+2r+2+2j)

+s(1k ,2na+l+s,n(b−2)+k+2l+2r)

+

k∑
i=0

(
s(1k+1,2na+l+s−1−i,n(b−2)+k+2l+2r+1+2i)

+ s(1k−1,2na+l+s−i,n(b−2)+k+2l+2r+1+2i)

)

Proof. Applying the conjugation rule, we have

s(1k ,2l,r,s)[s(1a,b,b)]
′ =

{
s(1k ,2l,r,s)[s(1a,b,b)′ ] if a is even
s(1k ,2l,r,s)′[s(1a,b,b)′ ] if a is odd

=

{
s(1k ,2l,r,s)[s(2b−1,a+2)] if a is even
s(1s−r ,2r−2,l+2,k+l+2)[s(2b−1,a+2)] if a is odd

So statement 1 follows immediately by conjugating statement 1 of Theorem 4.5. When
a is even, statement 6 follows by conjugating the formula in statement 6 of Theorem 4.5
and then substituting a for b − 1 and b for a + 2. When a is odd, statement 7 follows by
conjugating the formula in statement 7 of Theorem 4.5 and substituting k for s− r, l for
r − 2, r for l + 2, s for k + l + 2, a for b − 1, and b for a + 2.

For statements 2 and 3, we have

s(1n)[s(1a,b,b)]
′ =

{
s(1n)[s(2b−1,a+2)] if a is even
s(n)[s(2b−1,a+2)] if a is odd

and

s(n)[s(1a,b,b)]
′ =

{
s(n)[s(2b−1,a+2)] if a is even
s(1n)[s(2b−1,a+2)] if a is odd

So statements 2 and 3 follow by substituting a for b− 1 and b for a + 2 into statements 2
and 3 of Theorem 4.5.

Finally, for statements 4 and 5, we have

s(1k ,n−k)[s(1a,b,b)]
′ =

{
s(1k,n−k)[s(2b−1,a+2)] if a is even
s(1n−k−1,k+1)[s(2b−1,a+2)] if a is odd

So statement 4 follows by substituting a for b− 1 and b for a + 2 in statement 4 of Theo-
rem 4.5 and statement 5 follows by substituting a for b − 1, b for a + 2, k for n − k − 1,
and n − k for k + 1 in statement 5 of Theorem 4.5.
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