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Abstract
Let θ(a1, a2, · · · , ak) denote the graph obtained by connecting two distinct ver-

tices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that
2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ(a1, a2, · · · , ak) is chromatically
unique if ak < a1 + a2, and find examples showing that θ(a1, a2, · · · , ak) may not be
chromatically unique if ak = a1 + a2.

Keywords: Chromatic polynomials, χ-unique, χ-closed, polygon-tree

1 Introduction

All graphs considered here are simple graphs. For a graph G, let V (G), E(G), v(G), e(G),
g(G), P (G, λ) respectively be the vertex set, edge set, order, size, girth and chromatic poly-
nomial of G. Two graphs G and H are chromatically equivalent (or simply χ-equivalent),
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symbolically denoted by G ∼ H , if P (G, λ) = P (H, λ). Note that if H ∼ G, then
v(H) = v(G) and e(H) = e(G). The chromatic equivalence class of G, denoted by [G],
is the set of graphs H such that H ∼ G. A graph G is chromatically unique (or simply
χ-unique) if [G] = {G}. Whenever we talk about the chromaticity of a graph G, we are
referring to questions about the chromatic equivalence class of G.

Let k be an integer with k ≥ 2 and let a1, a2, · · · , ak be positive integers with ai+aj ≥ 3
for all i, j with 1 ≤ i < j ≤ k. Let θ(a1, a2, · · · , ak) denote the graph obtained by connect-
ing two distinct vertices with k independent (internally disjoint) paths of lengths a1, a2,
· · · , ak respectively. The graph θ(a1, a2, · · · , ak) is called a multibridge (more specifically
k-bridge) graph (see Figure 1).
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Figure 1
Given positive integers a1, a2, · · · , ak, where k ≥ 2, what is a necessary and sufficient

condition on a1, a2, . . . , ak for θ(a1, a2, . . . , ak) to be chromatically unique? Many papers
[2, 4, 10, 6, 11, 12, 13, 14] have been published on this problem, but it is still far from being
completely solved [8, 9]. In this paper, we shall solve this problem under the condition
that max

1≤i≤k
ai ≤ min

1≤i<j≤k
(ai + aj).

2 Known results

For two non-empty graphs G and H , an edge-gluing of G and H is a graph obtained from
G and H by identifying one edge of G with one edge of H . For example, the graph K4−e
(obtained from K4 by deleting one edge) is an edge-gluing of K3 and K3. There are many
edge-gluings of G and H . Let G2(G, H) denote the family of all edge-gluings of G and H .
Zykov [15] showed that any member of G2(G, H) has chromatic polynomial

P (G, λ)P (H, λ)/(λ(λ− 1)). (1)

Thus any two members in G2(G, H) are χ-equivalent.
For any integer k ≥ 2 and non-empty graphs G0, G1, · · · , Gk, we can recursively define

G2(G0, G1, · · · , Gk) =
⋃

0≤i≤k
G′∈G2(G0,···,Gi−1,Gi+1,···,Gk)

G2(Gi, G
′). (2)
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Each graph in G2(G0, G1, · · · , Gk) is also called an edge-gluing of G0, G1, · · ·, Gk. By (1),
any two graphs in G2(G0, G1, · · · , Gk) are χ-equivalent.

Let Cp denote the cycle of order p. It was shown independently in [12] and [13] that
if G is χ-equivalent to a graph in G2(Ci0, Ci1 , · · · , Cik), then G ∈ G2(Ci0 , Ci1, · · · , Cik). In
other words, this family is a χ-equivalence class.

For k = 2, 3, the graph θ(a1, a2, · · · , ak) is a cycle or a generalized θ-graph respec-
tively, and it is χ-unique in both cases (see [10]). Assume therefore that k ≥ 4. It
is clear that if ai = 1 for some i, say i = 1, then θ(a1, a2, · · · , ak) is a member of
G2(Ca2+1, Ca3+1, · · · , Cak+1) and thus θ(a1, a2, · · · , ak) is not χ-unique. Assume therefore
that ai ≥ 2 for all i. For k = 4, Chen, Bao and Ouyang [2] found that θ(a1, a2, a3, a4)
may not be χ-unique.

Theorem 2.1 ([2]) (a) Let a1, a2, a3, a4 be integers with 2 ≤ a1 ≤ a2 ≤ a3 ≤ a4. Then
θ(a1, a2, a3, a4) is χ-unique if and only if (a1, a2, a3, a4) 6= (2, b, b+1, b+2) for any integer
b ≥ 2.

(b) The χ-equivalence class of θ(2, b, b + 1, b + 2) is

{θ(2, b, b + 1, b + 2)} ∪ G2(θ(3, b, b + 1), Cb+2).

2

Thus the problem of the chromaticity of θ(a1, a2, · · · , ak) has been completely settled
for k ≤ 4. For k ≥ 5, we have

Theorem 2.2 ([14]) For k ≥ 5, θ(a1, a2, · · · , ak) is χ-unique if ai ≥ k − 1 for i =
1, 2, · · · , k. 2

Theorem 2.3 ([11]) Let h ≥ s+1 ≥ 2 or s = h+1. Then for k ≥ 5, θ(a1, a2, · · · , ak)
is χ-unique if a2 − 1 = a1 = h, aj = h + s (j = 3, · · · , k − 1), ak ≥ h + s and ak /∈
{2h, 2h + s, 2h + s − 1}. 2

Theorems 2.2 and 2.3 do not include the case where a1 = a2 = · · · = ak < k − 1.

Theorem 2.4 ([4], [6] and [13]) θ(a1, a2, · · · , ak) is χ-unique if k ≥ 2 and a1 = a2 =
· · · = ak ≥ 2. 2

3 χ-closed families of g.p. trees

A k-polygon tree is a graph obtained by edge-gluing a collection of k cycles successively,
i.e., a graph in G2(Ci1, Ci2, · · · , Cik) for some integers i1, i2, · · · , ik with ij ≥ 3 for all
j = 1, 2, · · · , k. A polygon-tree is a k-polygon tree for some integer k with k ≥ 1. A graph
is called a generalized polygon tree (g.p. tree) if it is a subdivision of some polygon tree.
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Let GP denote the set of all g.p. trees. Dirac [3] and Duffin [5] proved independently that
a 2-connected graph is a g.p. tree if and only if it contains no subdivision of K4.

A family S of graphs is said to be chromatically closed (or simply χ-closed) if
⋃

G∈S
[G] =

S. By using Dirac’s and Duffin’s result, Chao and Zhao [1] obtained the following result.

Theorem 3.1 ([1]) The set GP is χ-closed. 2

The family GP can be partitioned further into χ-closed subfamilies. Let G ∈ GP . A
pair {x, y} of non-adjacent vertices of G is called a communication pair if there are at
least three independent x− y paths in G. Let c(G) denote the number of communication
pairs in G. For any integer r ≥ 1, let GPr be the family of all g.p. trees G with c(G) = r.

Theorem 3.2 ([13]) The family GPr is χ-closed for every integer r ≥ 1. 2

Let G be a g.p. tree. We call a pair {x, y} of vertices in G a pre-communication pair of
G if there are at least three independent x-y paths in G. If x and y are non-adjacent, then
{x, y} is a communication pair. Assume that c(G) = 1. Then G is a subdivision of a k-
polygon tree H for some k ≥ 2. It is clear that G and H have the same pre-communication
pairs. But not every pre-communication pair in H is a communication pair. Since c(G) =
1, only one pre-communication pair in H is transformed into a communication pair in G.
If G has only one pre-communication pair, then G is a multibridge graph. Otherwise, G
is an edge-gluing of a multibridge graph and some cycles. Therefore

GP1 =
⋃
k≥3

⋃
3≤t≤k

b1,b2,···,bk≥2

G2(θ(b1, b2, · · · , bt), Cbt+1+1, · · · , Cbk+1). (3)

Hence we have

Lemma 3.1 Let ai ≥ 2 for i = 1, 2, · · · , k, where k ≥ 3. If H ∼ θ(a1, a2, · · · , ak),
then H is either a k-bridge graph θ(b1, · · · , bk) with bi ≥ 2 for all i or an edge-gluing of a
t-bridge graph θ(b1, · · · , bt) with bi ≥ 2 for all i and k − t cycles for some integer t with
3 ≤ t ≤ k − 1. 2

Note that for G ∈ G2(θ(b1, b2, · · · , bt), Cbt+1+1, · · · , Cbk+1),

e(G) = v(G) + k − 2. (4)

4 A graph function

For any graph G and real number τ , write

Ψ(G, τ) = (−1)1+e(G)(1 − τ)e(G)−v(G)+1P (G, 1 − τ). (5)

Observe that Ψ(G, τ) = Ψ(H, τ) if G ∼ H . However, the converse is not true. For
example, Ψ(G, τ) = Ψ(G ∪mK1, τ) but G 6∼ G ∪ mK1 for any m ≥ 1, where G ∪mK1 is
the graph obtained from G by adding m isolated vertices. However, we have
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Lemma 4.1 For graphs G and H, if G ∼ H, then Ψ(G, τ) = Ψ(H, τ); if v(G) = v(H)
and Ψ(G, τ) = Ψ(H, τ), then G ∼ H.

Proof. We need to prove only the second assertion. Observe from (5) that Ψ(G, τ) is
a polynomial in τ with degree e(G) + 1. Thus e(G) = e(H). Since v(G) = v(H) and
Ψ(G, τ) = Ψ(H, τ), we have P (G, 1 − τ) = P (H, 1 − τ). Therefore G ∼ H . 2

Thus, by Lemma 4.1, for any graph G, [G] is the set of graphs H such that v(H) = v(G)
and Ψ(H, τ) = Ψ(G, τ). In this paper, we shall use this property to study the chromaticity
of θ(a1, a2, · · · , ak). We first derive an expression for Ψ(θ(a1, a2, · · · , ak), τ).

The following lemma is true even if k = 1 or ai = 1 for some i.

Lemma 4.2 For positive integers k, a1, a2, · · · , ak,

Ψ(θ(a1, a2, · · · , ak), τ) = τ
k∏

i=1

(τai − 1) −
k∏

i=1

(τai − τ). (6)

Proof. By the deletion-contraction formula for chromatic polynomials, it can be shown
that

P (θ(a1, a2, · · · , ak), λ)

=
1

λk−1(λ − 1)k−1

k∏
i=1

(
(λ − 1)ai+1 + (−1)ai+1(λ − 1)

)

+
1

λk−1

k∏
i=1

((λ − 1)ai + (−1)ai(λ − 1)) .

Let τ = 1 − λ. Then

(−1)1+a1+a2+···+ak(1 − τ)k−1P (θ(a1, a2, · · · , ak), 1 − τ)

= τ
k∏

i=1

(τai − 1) −
k∏

i=1

(τai − τ).

Since v(G) = 2− k +
k∑

i=1
ai and e(G) =

k∑
i=1

ai, by definition of Ψ(G, τ), (6) is obtained. 2

Corollary 4.1 For positive integers k, a1, a2, · · · , ak,

Ψ(θ(a1, a2, · · · , ak), τ) = (−1)k(τ − τk)

+
∑

1≤r≤k
1≤i1<i2<···<ir≤k

(−1)k−r
(
τ − τk−r

)
τai1

+ai2
+···+air . (7)

2
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We are now going to find an expression for Ψ(H, τ) for any H in

G2(θ(b1, b2, · · · , bt), Cbt+1+1, · · · , Cbk+1).

Lemma 4.3 Let G and H be non-empty graphs, and M ∈ G2(G, H). Then

Ψ(M, τ) = Ψ(G, τ)Ψ(H, τ)/((−τ)(1 − τ)). (8)

Proof. Since v(M) = v(G) + v(H) − 2, e(M) = e(G) + e(H) − 1 and

P (M, λ) = P (G, λ)P (H, λ)/(λ(λ− 1)), (9)

by (5), (8) is obtained. 2

Lemma 4.4 Let k, t, b1, b2, · · · , bk be integers with 3 ≤ t < k and bi ≥ 1 for i =
1, 2, · · · , k. If H ∈ G2(θ(b1, b2, · · · , bt), Cbt+1+1, · · · , Cbk+1), then

Ψ(H, τ) = τ
k∏

i=1

(τ bi − 1) −
t∏

i=1

(τ bi − τ)
k∏

i=t+1

(τ bi − 1). (10)

Proof. By (5), we have Ψ(Cbi+1, τ) = (−τ)(1 − τ)(τ bi − 1). Thus by (6) and (8), (10) is
obtained. 2

5 χ-unique multibridge graphs

By Lemma 4.2, we can prove that θ(a1, a2, · · · , ak) ∼= θ(b1, b2, · · · , bk) if θ(a1, a2, · · · , ak) ∼
θ(b1, b2, · · · , bk).

Lemma 5.1 Let ai and bi be integers with 1 ≤ a1 ≤ a2 ≤ · · · ≤ ak and 1 ≤ b1 ≤ b2 ≤
· · · ≤ bk, where k ≥ 3. If

θ(a1, a2, · · · , ak) ∼ θ(b1, b2, · · · , bk), (11)

then bi = ai for i = 1, 2, · · · , k.

Proof. By Lemma 4.1 and Corollary 4.1, we have

∑
1≤r≤k

1≤i1<i2<···<ir≤k

(−1)k−r
(
τ − τk−r

)
τai1

+ai2
+···+air

=
∑

1≤r≤k
1≤i1<i2<···<ir≤k

(−1)k−r
(
τ − τk−r

)
τ bi1

+bi2
+···+bir , (12)

after we cancel the terms (−1)k(τ − τk) from both sides. The terms with lowest power in
both sides have powers 1 + a1 and 1 + b1 respectively. Hence a1 = b1.
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Suppose that ai = bi for i = 1, · · · , m but am+1 6= bm+1 for some integer m with
1 ≤ m ≤ k − 1. Since ai = bi for i = 1, 2, · · · , m, by (12), we have

∑
1≤r≤k

1≤i1<i2<···<ir≤k
ir>m

(−1)k−r
(
τ − τk−r

)
τai1

+ai2
+···+air

=
∑

1≤r≤k
1≤i1<i2<···<ir≤k

ir>m

(−1)k−r
(
τ − τk−r

)
τ bi1

+bi2
+···+bir . (13)

The terms with lowest power in both sides of (13) have powers 1 + am+1 and 1 + bm+1

respectively. Hence am+1 = bm+1, a contradiction. Therefore bi = ai for i = 1, 2, · · · , k. 2

Let ai be an integer with ai ≥ 2 for i = 1, 2, · · · , k and suppose that a1 ≤ a2 ≤ · · · ≤ ak.
We shall show that θ(a1, a2, · · · , ak) is χ-unique if ak < a1 + a2. It is well known (see [8])
that

Lemma 5.2 If G ∼ H, then g(G) = g(H). 2

Theorem 5.1 If 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak < a1 + a2, where k ≥ 3, then θ(a1, a2, · · · , ak)
is chromatically unique.

Proof. By Theorem 2.2, we may assume that a1 ≤ k − 2.
By Lemmas 3.1 and 5.1, it suffices to show that θ(a1, a2, · · · , ak) 6∼ H for any graph

H ∈ G2(θ(b1, b2, · · · , bt), Cbt+1+1, · · · , Cbk+1), where t and bi are integers with 3 ≤ t < k
and bi ≥ 2 for i = 1, 2, · · · , k. We may assume that b1 ≤ b2 ≤ · · · ≤ bt and bt+1 ≤ · · · ≤ bk.

Suppose that H ∼ θ(a1, a2, · · · , ak). The girth of θ(a1, a2, · · · , ak) is a1 + a2. Since

g(H) = min
{

min
1≤i<j≤t

(bi + bj), min
t+1≤i≤k

(bi + 1)
}

, (14)

by Lemma 5.2, we have g(H) = a1 + a2 and

{
bi + bj ≥ a1 + a2, 1 ≤ i < j ≤ t,
bi ≥ a1 + a2 − 1, t + 1 ≤ i ≤ k.

(15)

As e(H) = e(θ(a1, a2, · · · , ak)), we have

a1 + a2 + · · · + ak = b1 + b2 + · · ·+ bk. (16)

By Lemma 4.1, (6) and (10), we have

τ
k∏

i=1

(τai − 1) −
k∏

i=1

(τai − τ) = τ
k∏

i=1

(τ bi − 1) −
t∏

i=1

(τ bi − τ)
k∏

i=t+1

(τ bi − 1). (17)
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We expand both sides of (17), delete (−1)kτ from them and keep only the terms with
powers at most a1 + a2. Since ai + aj ≥ a1 + a2 and bi + bj ≥ a1 + a2 for all i, j with
1 ≤ i < j ≤ k, we have

(−1)k−1
k∑

i=1

τai+1 + (−1)k−1τk + (−1)k
k∑

i=1

τk−1+ai

≡ (−1)k−1
k∑

i=1

τ bi+1 + (−1)k−1τ t + (−1)k
t∑

i=1

τ bi+t−1

+(−1)k
k∑

i=t+1

τ bi+t (mod τa1+a2+1). (18)

Observe that bi + t > a1 + a2 for t + 1 ≤ i ≤ k and k − 1 + ai > a1 + a2 for 2 ≤ i ≤ k.
Thus

(−1)k−1
k∑

i=1

τai+1 + (−1)k−1τk + (−1)kτk−1+a1

≡ (−1)k−1
k∑

i=1

τ bi+1 + (−1)k−1τ t + (−1)k
t∑

i=1

τ bi+t−1 (mod τa1+a2+1).

Hence

k∑
i=1

τai+1 + τk +
t∑

i=1

τ bi+t−1 ≡
k∑

i=1

τ bi+1 + τ t + τk−1+a1 (mod τa1+a2+1). (19)

Since t ≥ 3, we have bi + t − 1 > a1 + a2 for i ≥ t + 1. If b2 + t − 1 ≤ a1 + a2, then since
k− 1 + a1 > k, the left side of (19) contains more terms with powers at most a1 + a2 than
does the right side, a contradiction. Hence bi + t − 1 > a1 + a2 for 2 ≤ i ≤ t. Therefore

k∑
i=1

τai+1 + τk + τ b1+t−1 ≡
k∑

i=1

τ bi+1 + τ t + τk−1+a1 (mod τa1+a2+1). (20)

Note that t ≤ a1 + a2; otherwise, since k > t and a1, b1 ≥ 2, (20) becomes

k∑
i=1

τai+1 =
k∑

i=1

τ bi+1,

which implies the equality of the multisets {a1, a2, . . . , ak} and {b1, b2, . . . , bk} in contra-
diction to (17).
Claim 1: There are no i, j such that

{b1, · · · , bi−1, bi+1, · · · , bk} = {a1, · · · , aj−1, aj+1, · · · , ak}
as multisets.

Otherwise, by (16), {b1, · · · , bk} = {a1, · · · , ak} as multisets, which leads to a contra-
diction by (17).
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Claim 2: a2 ≥ k − 1.
If a2 < k − 1, then a1 + k − 1 > a1 + a2. But ai + 1 ≤ a1 + a2 for 1 ≤ i ≤ k. So, by

(20), the multiset {a1, · · · , aj−1, aj+1, · · · , ak} is a subset of the multiset {b1, · · · , bk} for
some j with 1 ≤ j ≤ k, which contradicts Claim 1.
Claim 3: a1 = t − 1.

Since τ t is a term of the right side of (20), the left side also contains τ t. But k > t,
b1 + t − 1 > t and, by Claim 2, ai + 1 ≥ k > t for i ≥ 2. Therefore a1 + 1 = t.

By Claim 3, (20) is simplified to

k∑
i=2

τai+1 + τk + τ b1+t−1 ≡
k∑

i=1

τ bi+1 + τk−1+a1 (mod τa1+a2+1). (21)

Claim 4: b1 = k − 1.
Note that k < a1 + a2, by Claim 2. As τk is a term of the left side of (21), the right

side also contains this term. Thus bi +1 = k for some i. If i > t, then by (15) and Claims
2 and 3, we

bi ≥ a1 + a2 − 1 ≥ k + t − 3 ≥ k,

a contradiction. Thus i ≤ t and b1 ≤ bi = k − 1. If b1 ≤ k − 2, then the right side of (21)
has a term with power at most k− 1. But the left side has no such term, a contradiction.
Hence b1 = k − 1.

By Claims 3 and 4, we have τ b1+t−1 = τk−1+a1 . Thus (21) is further simplified to

k∑
i=2

τai+1 + τk ≡
k∑

i=1

τ bi+1 (mod τa1+a2+1). (22)

Therefore the multiset {a2, a3, · · · , ak} is a subset of the multiset {b1, b2, · · · , bk}, in con-
tradiction to Claim 1.

Therefore H 6∼ θ(a1, a2, · · · , ak) and we conclude that θ(a1, a2, · · · , ak) is χ-unique. 2

6 χ-equivalent graphs

In Section 5, we proved that θ(a1, a2, · · · , ak) is χ-unique if

max
1≤i≤k

ai < min
1≤i<j≤k

(ai + aj). (23)

Lemma 6.1 shows that, for any non-negative integer n, there exist examples where the
graph θ(a1, a2, . . . , ak) is not χ-unique and

max
1≤i≤k

ai − min
1≤i<j≤k

(ai + aj) = n. (24)

Lemma 6.1 (i) θ(2, 2, 2, 3, 4) ∼ H for every H ∈ G2(θ(2, 2, 3), C4, C4).
(ii) For k ≥ 4 and a ≥ 2, θ(k − 2, a, a + 1, · · · , a + k − 2) ∼ H for every H ∈

G2(θ(k − 1, a, a + 1, · · · , a + k − 3), Ca+k−2).
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(iii) For k ≥ 5, θ(2, 3, · · · , k− 1, k, k− 3) ∼ H for every graph H in G2(θ(2, 3, · · · , k−
1), Ck−1, Ck). 2

It is straightforward to verify Lemma 6.1 by using Lemmas 4.1, 4.2 and 4.4.
It is natural to ask the following question: for which choices of (a1, a2, . . . , ak) satisfying

k ≥ 5 and
max
1≤i≤k

ai = min
1≤i<j≤k

(ai + aj)

is the graph θ(a1, a2, . . . , ak) chromatically unique? If θ(a1, a2, · · · , ak) is not χ-unique,
what is its χ-equivalence class? The solution to this question will be given in another
paper.
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