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Abstract

Let O(a1,az,---,a;) denote the graph obtained by connecting two distinct ver-
tices with k independent paths of lengths ay, a9, - - -, ap respectively. Assume that
2<a; <ag <--- <ag. We prove that the graph 0(aj,as,---,ax) is chromatically
unique if a; < ay + ag, and find examples showing that 6(ay, as,- -, ax) may not be
chromatically unique if a; = a1 + as.

Keywords: Chromatic polynomials, y-unique, y-closed, polygon-tree

1 Introduction

All graphs considered here are simple graphs. For a graph G, let V(G), E(G),v(G), e(G),
g(@G), P(G, \) respectively be the vertex set, edge set, order, size, girth and chromatic poly-
nomial of G. Two graphs G and H are chromatically equivalent (or simply x-equivalent),

*Corresponding author.
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symbolically denoted by G ~ H, if P(G,\) = P(H,)\). Note that if H ~ G, then
v(H) = v(G) and e(H) = e(G). The chromatic equivalence class of G, denoted by [G],
is the set of graphs H such that H ~ G. A graph G is chromatically unique (or simply
x-unique) if [G] = {G}. Whenever we talk about the chromaticity of a graph G, we are
referring to questions about the chromatic equivalence class of G.

Let k be an integer with & > 2 and let a;, as, - - -, a;, be positive integers with a;+a; > 3
for all 7, j with 1 <1i < j <k. Let 6(ay, az, - -, ax) denote the graph obtained by connect-
ing two distinct vertices with &k independent (internally disjoint) paths of lengths ay, as,
-+, ay respectively. The graph 6(aq, as, - -, ax) is called a multibridge (more specifically
k-bridge) graph (see Figure 1).

Wy 2

W11

Wk 1
Wk 2
(3, &, ..., &)
Figure 1
Given positive integers ay, as, - - -, ar, where k > 2, what is a necessary and sufficient
condition on ay,as,...,ay for O(ay,as, ..., ax) to be chromatically unique? Many papers

2,4, 10, 6, 11, 12, 13, 14] have been published on this problem, but it is still far from being
completely solved [8, 9]. In this paper, we shall solve this problem under the condition

that max a; < min (a; + a;).
1<i<k 1<i<j<k

2 Known results

For two non-empty graphs G and H, an edge-gluing of G and H is a graph obtained from
GG and H by identifying one edge of G with one edge of H. For example, the graph K, —e
(obtained from K, by deleting one edge) is an edge-gluing of K3 and K3. There are many
edge-gluings of G and H. Let Go(G, H) denote the family of all edge-gluings of G and H.
Zykov [15] showed that any member of Go(G, H) has chromatic polynomial

P(G, N P(H,\)/(A(A = 1)). (1)

Thus any two members in Go(G, H) are x-equivalent.
For any integer k£ > 2 and non-empty graphs Gy, G1, - - -, G, we can recursively define
gQ(G07Gl7“'7Gk) = U gQ(Gi7G/)' (2)

0<i<k
G'€G2(Go, G 1,Giq1,,GL)
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Each graph in Go(Go, Gy, - - -, Gy) is also called an edge-gluing of Gy, Gy, - - -, Gi. By (1),
any two graphs in Go(Go, Gy, - - -, Gy) are x-equivalent.

Let C, denote the cycle of order p. It was shown independently in [12] and [13] that
if G is x-equivalent to a graph in Go(C;y, Cyy, -+ -, Ci,), then G € Go(Cy, Ciy, -+, Cy, ). In
other words, this family is a y-equivalence class.

For k = 2,3, the graph 6(aj,as,---,ax) is a cycle or a generalized #-graph respec-
tively, and it is y-unique in both cases (see [10]). Assume therefore that k& > 4. It
is clear that if a; = 1 for some i, say ¢ = 1, then 0(aj,as,---,a;) is a member of
Go(Cayi1, Cagi1, -+, Copr1) and thus 6(aq, as, - - -, ay) is not y-unique. Assume therefore
that a; > 2 for all i. For k = 4, Chen, Bao and Ouyang [2] found that 6(ay, as, as, ay)
may not be y-unique.

Theorem 2.1 ([2]) (a) Let a1, as, as, ay be integers with 2 < a; < ay < az < ay. Then
0(ay, as, as, ay) is x-unique if and only if (ay, as, as, as) # (2,b,b+1,b+2) for any integer
b>2.

(b) The x-equivalence class of 0(2,b,b+ 1,b+ 2) is

{0(27 b,b+1,0+ 2)} U 92(9(3, b,b+ 1)7 Cb+2)'
O
Thus the problem of the chromaticity of 6(ay, as, - -, ax) has been completely settled
for k < 4. For k > 5, we have
Theorem 2.2 ([14]) For k > 5, 0(ay,aq,---,ax) is x-unique if a; > k — 1 for i =

1,2, k. m

Theorem 2.3 ([11]) Leth>s+1>2ors=h+1. Then fork > 5, 0(ay,aq, -, a)
is x-unique if as —1 =ay = h, aj =h+s(j=3,---,k—1), a > h+s and a;, ¢
{2h,2h + s,2h + s — 1}. O

Theorems 2.2 and 2.3 do not include the case where ay = ay = -+ - =a; < k — 1.

Theorem 2.4 ([4], [6] and [13])  O(ay,az, -, ax) is x-unique if k > 2 and a1 = ay =
e e — a/k‘ Z 2 D

3 x-closed families of g.p. trees

A k-polygon tree is a graph obtained by edge-gluing a collection of k cycles successively,
ie., a graph in Go(Cy,,Ci,, -+, C;, ) for some integers iy, s, - -, 4 with i; > 3 for all
j=1,2,--- k. A polygon-tree is a k-polygon tree for some integer k£ with £k > 1. A graph
is called a generalized polygon tree (g.p. tree) if it is a subdivision of some polygon tree.
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Let GP denote the set of all g.p. trees. Dirac [3] and Duffin [5] proved independently that
a 2-connected graph is a g.p. tree if and only if it contains no subdivision of Kj.
A family S of graphs is said to be chromatically closed (or simply x-closed) if U [G] =
Ges

S. By using Dirac’s and Duffin’s result, Chao and Zhao [1] obtained the following result.
Theorem 3.1 ([1])  The set GP is x-closed. O

The family GP can be partitioned further into y-closed subfamilies. Let G € GP. A
pair {z,y} of non-adjacent vertices of G is called a communication pair if there are at
least three independent x — y paths in G. Let ¢(G) denote the number of communication
pairs in G. For any integer r > 1, let GP,. be the family of all g.p. trees G with ¢(G) = r.

Theorem 3.2 ([13])  The family GP, is x-closed for every integer r > 1. O

Let G be a g.p. tree. We call a pair {z, y} of vertices in G a pre-communication pair of
G if there are at least three independent z-y paths in G. If  and y are non-adjacent, then
{z,y} is a communication pair. Assume that ¢(G) = 1. Then G is a subdivision of a k-
polygon tree H for some k& > 2. It is clear that G and H have the same pre-communication
pairs. But not every pre-communication pair in H is a communication pair. Since ¢(G) =
1, only one pre-communication pair in H is transformed into a communication pair in G.
If G has only one pre-communication pair, then G is a multibridge graph. Otherwise, G
is an edge-gluing of a multibridge graph and some cycles. Therefore

GP, = U U g2(9(bla b27 N bt)a Cbt+1+17 M) Cbk+1>' (3)

k>3 3<t<k
- by ,b2,~»,bk22

Hence we have

Lemma 3.1 Let a; > 2 fori = 1,2,--- k, where k > 3. If H ~ 0(ay,aq,---,a),

then H is either a k-bridge graph 0(by, - - -, by) with b; > 2 for all i or an edge-gluing of a

t-bridge graph (b, ---,b;) with b; > 2 for all i and k —t cycles for some integer t with

3<t<k-1. O
Note that for G I~ gg(e(bl, bg, Tty bt), Cbt+1+1’ trey, Ckarl),

e(G) =v(GQ) + k — 2. (4)

4 A graph function

For any graph G and real number 7, write
V(G,7) = (1)1 - )OO PG 1 - 7). ()

Observe that W(G,7) = V(H,7) if G ~ H. However, the converse is not true. For
example, U(G,7) = V(GUmMK;,7) but G ¢ GUmK]; for any m > 1, where G UmK] is
the graph obtained from G by adding m isolated vertices. However, we have
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Lemma 4.1  For graphs G and H, if G ~ H, then V(G,7) = V(H, 7); if v(G) = v(H)
and V(G, 1) =V (H,T), then G ~ H.

Proof.  We need to prove only the second assertion. Observe from (5) that ¥(G, 1) is
a polynomial in 7 with degree e(G) + 1. Thus e(G) = e(H). Since v(G) = v(H) and
V(G,7)=VY(H, 1), we have P(G,1 —7) = P(H,1— 7). Therefore G ~ H. O

Thus, by Lemma 4.1, for any graph G, [G] is the set of graphs H such that v(H) = v(G)
and U(H,7) = (G, 7). In this paper, we shall use this property to study the chromaticity
of O(ay,as, -+, ar). We first derive an expression for W(0(aq, as, -+, ax), 7).

The following lemma is true even if £k =1 or a; = 1 for some 1.

Lemma 4.2  For positive integers k,ay,as, - - -, a,

U(h(ay,ag, -, a),T) = 7'1:[1(7"“ -1)— H(T“i — 7). (6)

Proof. By the deletion-contraction formula for chromatic polynomials, it can be shown
that

P(0(ar,as, - -+, ag), )
= o (O -0+ - )

k

[T =1+ (=D)™(A=1)).

=1

+)\k71

Let 7=1— A. Then

(_1)1+a1+a2+---+ak(1 o T)kilp(e(&l, A9, -, ak)’ 1 — 7_)
k k

k k
Since v(G) =2 —k+ Y a; and ¢(G) = Y a;, by definition of ¥(G, 7), (6) is obtained. O
i=1 i=1

Corollary 4.1  For positive integers k,ay, as, - -+, ay,

\I/(Q(ah ag, -, CLk), T) = (_1)k(7 o Tk)
Y (R (7 ) peatenteten 0

1<r<k
1<i <ig<--<ir<k
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We are now going to find an expression for W(H, 7) for any H in
Go(0(b1, b2, -+, b)), Copyg1, -+ 5 Cygn).
Lemma 4.3  Let G and H be non-empty graphs, and M € Go(G, H). Then
U(M,7) = W(G,7)¥(H,7)/((—=7)(1 —7)). (8)
Proof.  Since v(M) = v(G) +v(H) — 2, e(M) = e(G) + ¢(H) — 1 and
P(M,\) = P(G,\)P(H,\)/(A(A— 1)), 9)

by (5), (8) is obtained. O

Lemma 4.4  Let k,t,by,by, -, b, be integers with 3 < t < k and b; > 1 for i =
1,2,"',k. [fH I~ gg(e(bl,bg,"',bt>,0bt+l+1,"',Ckarl), then

V(H,7)=T H(Tbi -1)— H(Tbi —7) H (P —1). (10)
i=1 i=1 i=t+1

Proof. By (5), we have ¥(C), 1, 7) = (—7)(1 — 7)(7% — 1). Thus by (6) and (8), (10) is
obtained. O

5 y-unique multibridge graphs

By Lemma 4.2, we can prove that 0(aq, ag, -+, ar) = 0(by, ba, - -, bg) if O(ay, ag, -+, ag) ~
e(bla b27 ) bk)

Lemma 5.1  Let a; and b; be integers with 1 < a1 < as < --- < ag and 1 < by < by <
<o < by, where k > 3. If

‘9(@1,(12,"‘,ak) Ne(blyb%'”?bk)a (11)
then b; = a; forv=1,2,--- k.

Proof. By Lemma 4.1 and Corollary 4.1, we have
Z (_1)k—r (7_ . Tkz—r) 79 +aiy+tai,

1<r<k
1<iq <ig<--<ir<k

D A G (12)

1<r<k
1<y <ig<--<ir<k

after we cancel the terms (—1)¥(7 — 7%) from both sides. The terms with lowest power in
both sides have powers 1 + a; and 1 + b; respectively. Hence a; = b;.
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Suppose that a; = b; for © = 1,---,m but a,,+1 # b,y for some integer m with
1<m<k-—1. Since a; =b; for i =1,2,---,m, by (12), we have

Z (—1)]9*1” (7_ _ kar) 7-ai1+ai2+"'+air

1<r<k
1<i) <ig<--<ip<k
ir>m

R T G et LM (13)
1<iq <1i§2§'k<irgk
ir>m

The terms with lowest power in both sides of (13) have powers 1 + a,,11 and 1 + by,1q
respectively. Hence a,,11 = b,,11, a contradiction. Therefore b; = a; fori=1,2,--- k. O

Let a; be an integer with a; > 2 fori =1,2,---, k and suppose that a; < as < --- < ay.

We shall show that (ay, as, - -, ax) is x-unique if a; < a; + ay. It is well known (see [8])
that

Lemma 5.2 [fG ~ H, then g(G) = g(H). O
Theorem 5.1 [f2<a; <ay <---<a, <ay+ay, where k > 3, then 0(ay,as, -, ay)

18 chromatically unique.

Proof. By Theorem 2.2, we may assume that a; < k — 2.
By Lemmas 3.1 and 5.1, it suffices to show that 6(ay,as,---,ax) # H for any graph
H € Gy(0(b1,ba, -+, b),Cpypr41, - -+, Chpt1), where t and b; are integers with 3 <t < k
and b; > 2 fori=1,2,---, k. We may assume that by < by <--- <band b1 < -+ < by.
Suppose that H ~ 6(aq,as,---,ax). The girth of 6(ay, as,- -, ax) is a; + az. Since

g(H) = min{ min (b; +b;), min (b; + 1)} : (14)

1<i<j<t t+1<i<k

by Lemma 5.2, we have g(H) = a; + ay and

bi+bj2&1+&2, 1< <y <t (15)
biZal—l—ag—l, t—|—1§2§k‘
As e(H) = e(0(ay, az,- - -,ax)), we have
aj+ag+--+ap=>0by +by+ -+ by. (16)
By Lemma 4.1, (6) and (10), we have
k k k ¢ k
7'1_[(7"1Z —-1)— H(T‘“ —T)=1T H(Tbi —-1)— H(Tb’ —T) H (P — 1) (17)
i=1 i=1 i=1 i=1 i=t+1
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We expand both sides of (17), delete (—1)*7 from them and keep only the terms with
powers at most a; + as. Since a; + a; > a; + a and b; + b; > a; + ay for all 4,j with
1 <1<y <k, we have

k
k 127_a1+1 k 1 k_i_(_l)kZkalJrai
=1
= k: IZTb +1 k: th—i—(—l)kzt:Tbi'H_l
=1
b Z rhitt (mod 7+t (18)

i=t+41

Observe that b, +t >a; +ay fort+1<i<kand k—14+a; > a; +ay for 2 <i <k,
Thus

k IZTaZJrl k 1 k + (_1)k7k71+a1
= k 1 ZTb +1 k 17_t + (_1)k zt:Tbithfl (mod Ta1+a2+1).
=1
Hence
k t k
ZTai-f—l + 7_k‘ + ZTbi-f—t—l = ZTbi-f—l + Tt + 7_k—1+a1 (mod Ta1+a2+1). (19)
=1 =1 =1

Since t > 3, we have b; +t —1 > a1 +as fort >t + 1. If by +t — 1 < ay + as, then since
k—14a; > k, the left side of (19) contains more terms with powers at most a; + a than
does the right side, a contradiction. Hence b; +t — 1 > a; + a for 2 < ¢ < t. Therefore

k k
Z ot Lo gk phitt=l = Z Ot ot g gk lta (mod Ta1+a2+1)‘ (20)
i=1 =1

Note that ¢ < a; + ag; otherwise, since k > t and aq,b; > 2, (20) becomes

k k
Z 7_a¢+1 — Z Tbi+1,
i=1 i=1
which implies the equality of the multisets {aj, as,...,ar} and {by, b, ..., by} in contra-

diction to (17).
Claim 1: There are no 7, j such that

{bh : ’L labz—l—lf”abk}:{ah'"7aj—17aj+17"'7ak}

as multisets.
Otherwise, by (16), {b1,---,bx} = {a1,-- -, ax} as multisets, which leads to a contra-
diction by (17).

THE ELECTRONIC JOURNAL OF COMBINATORICS 11 (2004), #R12 8



Claim 2: ay > k — 1.

Ifas <k—1,thena;+k—1>a;+as. Buta;+1<a;+ayforl<i<Ek. So, by
(20), the multiset {ay,---,a;_1,a;41, -+, ax} is a subset of the multiset {b;,---,bs} for
some j with 1 < 7 <k, which contradicts Claim 1.

Claim 3: a; =t — 1.

Since 7' is a term of the right side of (20), the left side also contains 7¢. But k > ¢,
by +t— 1>t and, by Claim 2, a; +1 > k >t for ¢« > 2. Therefore a; +1 =t.

By Claim 3, (20) is simplified to

k Tai+1 + 7.k + 7_b1+t71 = zk:TbiJrl + 7_kfler (mOd Ta1+a2+1)' (21)
i=2 i=1
Claim 4: by = k — 1.

Note that k < a; + ag, by Claim 2. As 7% is a term of the left side of (21), the right
side also contains this term. Thus b; +1 = k for some 4. If i > ¢, then by (15) and Claims
2 and 3, we

bi>a1+ay—1>k+t—3>k,

a contradiction. Thus i <t and by <b; =k — 1. If by <k — 2, then the right side of (21)
has a term with power at most £ — 1. But the left side has no such term, a contradiction.
Hence b; = k — 1.

By Claims 3 and 4, we have 701+~ = rF=1+a1 Thyg (21) is further simplified to

k k
Z A L ZTbiH (mod 7o ta2th), (22)
i=2 i=1
Therefore the multiset {ag, as, -, ax} is a subset of the multiset {by, b, -, bx}, in con-
tradiction to Claim 1.
Therefore H # 0(ay,aq, - -+, a;) and we conclude that 0(ay, as, - - -, ax) is x-unique. O

6 y-equivalent graphs

In Section 5, we proved that 6(ay, as, - - -, ax) is x-unique if
lrg?g)% a; < 1gr?<1?gk(ai + a;). (23)

Lemma 6.1 shows that, for any non-negative integer n, there exist examples where the
graph 6(ay, as, ..., a;) is not y-unique and

max a; — lgrin<1]n§k(ai +a;) = n. (24)

Lemma 6.1 (i) 6(2,2,2,3,4) ~ H for every H € G3(0(2,2,3),Cy,Cy).
(ii) For k > 4 and a > 2, 0(k — 2,a,a+ 1,---;a+k —2) ~ H for every H €
gQ(e(k - 1,@,&+ 17 e, at k— 3)7 CaJrka)'
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(iii) Fork >5,0(2,3,---,k—1,k,k—3) ~ H for every graph H in Go(0(2,3,- -,k —
1), Cr—1,Cy). U

It is straightforward to verify Lemma 6.1 by using Lemmas 4.1, 4.2 and 4.4.

It is natural to ask the following question: for which choices of (a1, as, . . ., ax) satisfying
k> 5 and
e 1§r?<1?§k(&i + )
is the graph 0(ay,as, ..., ax) chromatically unique? If 0(aq, a9, -, ax) is not y-unique,

what is its y-equivalence class? The solution to this question will be given in another
paper.
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