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CEA/DSM/SPhT, Unité de recherche associée au CNRS

F-91191 Gif sur Yvette Cedex, France
zuber@spht.saclay.cea.fr

Submitted: Nov 25, 2003; Accepted: Jan 27, 2004; Published: Feb 14, 2004
MR Subject Classifications: Primary 05A19; Secondary 52C20, 82B20

Abstract

New conjectures are proposed on the numbers of FPL configurations pertaining
to certain types of link patterns. Making use of the Razumov and Stroganov
Ansatz, these conjectures are based on the analysis of the ground state of the
Temperley-Lieb chain, for periodic boundary conditions and so-called “identi-
fied connectivities”, up to size 2n = 22.

1. Introduction

Fig. 1: The n × n grid (here n = 3 and n = 4) with 2n external links
occupied

Consider a n×n square grid, with its 4n external links, see Figure 1. We are interested
in Fully Packed Loops (FPL in short), i.e. sets of disconnected paths which pass through
each of the n2 vertices of the grid and exit through 2n of the external links, every second
of them being occupied (see figure 2 for the case n = 4).

There is a simple one-to-one correspondence between such FPL and alternating-
sign matrices (ASM), obtained as follows: divide the n2 vertices into odd and even
as usual, and associate +1 (resp. −1) to each horizontal segment of the path passing
through an even (resp. odd) vertex, the opposite if the segment is vertical, and 0 if the
path has a corner at that vertex.
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Fig. 2: The 42 FPL configurations on a 4 × 4 grid. Configurations
corresponding to distinct link patterns are separated by semi-colons.
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Fig. 3: FPL–ASM correspondence

This prescription associates an n × n ASM matrix to the FPL configuration in a
one-to-one way. Thanks to the celebrated result on ASM’s [1,2], the total number of
FPL is thus known to be

An =
n∏

j=1

(3j − 2)!
(n + j − 1)!

. (1.1)

For a review, see [3,4,5].
Considering FPL rather than ASM enables one to ask different questions, which are

more natural in the path picture. Each FPL configuration defines a certain connectivity
pattern, or link pattern, between the 2n occupied external links. Let An(π) be the
number of FPL configurations for a given link pattern π. We want to collect results and
conjectures about these numbers An(π). The next two sections recall well-known results
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and conjectures, while the following one gathers a certain number of conjectures which
had not appeared in print before to the best of my knowledge. It is hoped that they will
stimulate someone else’s interest or suggest to an ingenious reader a connection with a
different problem.

2. Counting the orbits

Fig. 4: The three link patterns up to rotations and reflections for n = 4

Although the problem of evaluating the An(π) seems to admit only the symmetries of
the square, it is convenient to represent the link patterns by arches connecting 2n points
regularly distributed on a circle (see figure 4).

Wieland [6] has proved the remarkable result that An(π) depends only on the
equivalence class of π under the action of the dihedral group Dn generated by the
rotations by 2π/2n and reflections across any diameter passing through a pair of these
points. While it is easy to convince oneself that the number of link patterns equals Cn =

(2n)!
n!(n+1)! (the Catalan number), computing the number On of orbits under the action of
Dn, i.e. of independent link patterns, is more subtle and appeals to Polya’s theory of
orbit counting (see for example [7]). In fact, using an alternative representation by the
dual graph (see Figure 5), one realizes that these orbits are in one-to-one correspondence
with the projective planar trees (PPT’s) on n + 1 points, whose generating function
T (x) =

∑
n=1 Onxn has been computed by Stockmeyer [8]. We recall here his result

for the convenience of the reader. Let z1, z2, · · · , zn and y be n + 1 indeterminates and
define the modified cycle index of the dihedral group Dn as

Z(D∗
n; z1, z2, · · · , zn, y) =

1
2n

∑
i|n

φ(i)zn/i
i +

{
1
2yz

(n−1)/2
2 if n is odd

1
4y2z

(n−2)/2
2 + z

n/2
2 if n is even,

(2.1)

where φ(n) is the Euler totient function, counting the number of positive integers less
than n which are relatively prime to n. Let c(x) =

∑
n=0

(2n)!
n!(n+1)!x

n+1 be the generating
function of the Catalan numbers and define a(x) = x/(1 − x − c(x2)). The generating
function R(x) of the numbers of rooted planar projective trees is then given by

R(x) = xZ(D∗
n; c(x), c(x2), · · · , c(xn), a(x)) (2.2)

while the one of unrooted PPT’s, which we want, is

T (x) = R(x) − Z(D∗
2 ; c(x), c(x2), a(x)) + c(x2) . (2.3)
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Fig. 5: The dual picture of a link pattern as a planar tree

One finds

T (x) = x+x2+2x3+3x4+6x5+12x6+27x7+65x8+175x9+490x10+1473x11+4588x12+· · ·
(2.4)

In Table 1, we list the values of An, Cn and On for low values of n.

n : 1 2 3 4 5 6 7 8 9 10 11
An : 1 2 7 42 429 7436 218348 10850216 911835460 129534272700 31095744852375

Cn : 1 2 5 14 42 132 429 1430 4862 16796 58786
On : 1 1 2 3 6 12 27 65 175 490 1473

Table 1.

In the following, we use either the notation of link patterns with arches, or their dual
PPT graphs, or both. The 2n external links are numbered from 1 to 2n in cyclic order.
A link pattern πa may be regarded as an involutive permutation on {1, · · · , 2n}, with
πa(i) = j for each arch connecting i and j.

3. The An(π) as solutions of a linear problem

The work of Razumov and Stroganov [9] and Batchelor, de Gier and Nienhuis [10]
contains a certain number of conjectures on the numbers An(π). The most remarkable
one connects them to a linear problem, as follows.

The periodic Temperley-Lieb algebra PTLp(β) is the algebra generated by the
identity and p generators ei, with the index i running on {1, · · · , p} modulo p, satisfying
(1)

e2
i = βei

eiei±1ei = ei (3.1)
eiej = ejei if |i − j| mod p > 1 .

(1) Note that because we are working on a disk rather than a cylinder (more precisely we let

the e’s act on link patterns on a disk), we don’t have to consider non-contractible loops nor

to introduce additional relations between the e’s: we are working in the so-called “identified

connectivities” periodic sector [11].
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Fig. 6: The graphical representation of the Temperley-Lieb algebra
PTLp(β), with i = 1, · · · , p mod p.

There exists a faithful graphical representation of PTLp, see figure.
Now take β = 1 and let PTL2n(1) act on the link patterns πa, a = 1, · · · , Cn: using

the graphical representation above, it is clear that ei maps πa on itself if πa(i) = i + 1,
while πb = eiπa connects j and k (as well as i and i + 1) if πa(i) = j, πa(i + 1) = k.
Define

H =
2n∑
i=1

ei . (3.2)

In the basis {πa}, H admits (1, 1, · · · , 1) as a left eigenvector of eigenvalue 2n. This is its
largest eigenvalue, and as the matrix H is irreducible and has non negative entries, one
may use Perron-Frobenius theorem to assert that the right eigenvector for that largest
eigenvalue must have non negative components. According to [9], one has
Conjecture 1. [9] The right eigenvector of H of eigenvalue 2n is Ψ =

∑
a An(πa)πa

2n∑
i=1

ei

∑
a

An(πa)πa = 2n
∑

a

An(πa)πa . (3.3)

(a) (b)

Fig. 7: the configurations of (a) smallest, (b) largest component

This assumes that the eigenvector has been normalised in such a way that its
smallest component be equal to 1. This smallest component corresponds to the link
patterns shown on figure 7(a), with n nested arches, or in the alternative dual picture,
to linear trees, and it is possible to prove, independently of Conjecture 1, that there is
a unique FPL configuration for each such link pattern [12].
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Then, another conjecture deals with the largest component:
Conjecture 2. [10] The largest component of the eigenvector occurs for link patterns
of n level 1 arches, see figure 7(b), and equals An−1, i.e. the total number of FPL (or
ASM) of size n − 1.

In the present work, we have taken Conjecture 1 for granted and used the linear
problem to compute the An(π) up to n = 11. We have found helpful to use the symmetry
properties of sect. 1 to reduce the dimension of the problem. The Hamiltonian H
commutes with the generators of the group Dn and the eigenvector of largest eigenvalue
is expected to be completely symmetric under these symmetries, in agreement with
Conjecture 1 and Wieland’s theorem. One may thus determine the An(π) by looking at
a reduced Hamiltonian acting on orbits. As a glance at Table 1 above will convince the
reader, this results in a large gain of computing time and size. In practice, we have been
able to determine all the An(π) up to n = 11 with an unsophisticated Mathematica code.
The following conjectures have been extracted from the analysis and extrapolation of
these data (which are available on request).

4. New results and conjectures

4.1. Expression of An(π) for several classes of link patterns π

In view of its frequent occurrence, it is convenient to introduce a new notation for the
“superfactorial”

m¡ :=
m∏

r=1

r! =
m∏

j=1

(m − j + 1)j , (−1)¡ = 0¡ = 1. (4.1)

Then all the results up to n = 11 are consistent with

Conjecture 3.
..
.... p

q

r

=
(p + q + r − 1)¡ (p − 1)¡ (q − 1)¡ (r − 1)¡

(p + q − 1)¡ (q + r − 1)¡ (r + p − 1)¡
p, q, r,≥ 0 .

(4.2)
This may also be written in a simpler but less symmetric form, using the notation
n = p + q + r (

n−1
p

)(
n−2

p

) · · · (n−q
p

)
same for n = p + q

. (4.3)

But the expert will also recognize in (4.2) MacMahon’s formula for plane partitions in
a box of size (p, q, r) (2), i.e.

p∏
i=1

q∏
j=1

r∏
k=1

i + j + k − 1
i + j + k − 2

.

(2) Many thanks to S. Mitra and D. Wilson for this observation. A similar connection between

FPL with different boundary conditions and a tiling problem had been observed and proved

by de Gier [5].
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It would be very interesting to find a bijection between FPL configurations with those
link patterns and these plane partitions (3).

The factorized form does not persist for more complicated configurations. For example,
Conjecture 4.(4) For p ≥ 1, q, r,≥ 0,

..
..

q

r

.. p−1 =
(q − 1)¡ (r − 1)¡

(q + r − 1)¡
p¡ (p + q + r)¡

(p + q + 1)¡ (p + r + 1)¡
(p + q)!(p + r)! × (4.4)

× [p3 + 2p2(q + r + 1) + p(q2 + qr + r2 + 3(q + r) + 1) + q(q + 1) + r(r + 1)]

Conjecture 5. (4) For p ≥ 1, q, r,≥ 0,

q ..
..

r

.. p-1} =
(q − 1)¡ (r − 1)¡
2(q + r − 1)¡

(p + 1)¡ (p + q + r + 1)¡
(p + q + 3)¡ (p + r + 3)¡

×(p + q + 2)! (p + q + 1)! (p + r + 3)! (p + r)! (p + 2)

×
[
p5 + p4(7 + 4 q + 4 r) + p3(17 + 22 q + 6 q2 + 24 r + 10 q r + 6 r2)

+p2(17 + 40 q + 24 q2 + 4 q3 + 46 r + 42 q r + 8 q2 r + 30 r2 + 8 q r2 + 4 r3)
+p(6 + 28 q + 29 q2 + 10 q3 + q4 + 32 r + 49 q r + 17 q2 r + 2 q3 r + 41 r2 (4.5)

+23 q r2 + 3 q2 r2 + 16 r3 + 2 q r3 + r4)

+6 q+11 q2+6 q3+q4+6 r+13 q r+3 q2 r+15 r2+15 q r2+3 q2 r2+12 r3+2 q r3+3 r4
]

4.2. Polynomial behavior in n and asymptotic behaviour for large n

..
n−6

.. ..n−6

Y=

Fig. 8: Describing a configuration by a Dyck path or a Young diagram

Let us consider link patterns π made of a given set S of r arches plus n − r nested
arches as in Conjectures 3 and 4 above, and let n vary, while keeping S fixed. Any such
link pattern is also encoded by a (Dyck) path, or by the complementary Young diagram

(3) Note added : This has now been achieved in [18], thus proving Conjecture 3.
(4) Note added: This has now been proved by Caselli and Krattenthaler [19]. Note that the

proofs of Conjectures 3-5 are independent of Conjecture 1, but that the results are consistent

with it.
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Y , see Figure 8(5). We denote by |Y | the number of boxes of Y and by dim Y the
dimension of the representation of the symmetric group S|Y | labelled by Y . We recall
(see for example [13]) the useful expression for the ratio dim Y

|Y |! = 1
hl(Y )

, the inverse hook
length of the diagram, i.e. the inverse product of the hook lengths of all its boxes. Finally,
we denote by F (Y ) the set of diagrams obtained by adjonction of one box to Y according
to the usual rules. Alternatively, if DY is the corresponding irreducible representation
of Sl(N), F (Y ) labels the set of representations appearing in the decomposition into
irreducibles of D ⊗ DY . Then
Conjecture 6. For n ≥ r

An(π) =
1

|Y |!PY (n) (4.6)

where PY (n) is a polynomial of degree |Y | with coefficients in Z and its highest degree
coefficient is equal to dimY .
For example, in the case covered by equation (4.3), Y is a rectangular p × q Young
diagram, |Y | = pq and (pq)! 2!···(q−1)!

p!(p+1)!···(p+q−1)! is indeed an integer. See more examples
in Appendix A.

..

Y

Y’

n-r-r’

Fig. 9: Configuration described by two Young diagrams

As a corollary of Conjecture 6, the asymptotic behavior for large n is given by

An(π) ≈ dim Y

|Y |! n|Y | . (4.7)

Such an asymptotic behavior had been observed in the case of open boundary conditions
by Di Francesco [14], who derived it as a consequence of the eigenvector equation. The
action of the Temperley-Lieb generator ei on an open link pattern associated with one
Young diagram Y or on the corresponding Dyck path is described by the “raise and
peel” process of [15]: the resulting Young diagram Ȳ is either Y itself if the site i is a
local peak of the path, or has one less box than Y if i is a local minimum of the path
(and then Y ∈ F (Ȳ )), or is a diagram with a larger number of boxes than Y otherwise.
What changes in the case of periodic boundary conditions is the possibility of an action
on the “other side” of the link pattern. In order to carry out the discussion in the
periodic case, we thus have to generalize our considerations to configurations described

(5) The ambiguity between the Young diagram Y and its transpose in this definition will be

immaterial in what follows.
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by two Young diagrams Y and Y ′, with r and r′ arches, separated by a number n−r−r′

of parallel arches (see Fig. 9). Then
Conjecture 7. For n ≥ r + r′

An(π) =: An(Y, Y ′) =
1

|Y |!|Y ′|!PY,Y ′(n) (4.8)

with PY,Y ′(n) a polynomial of degree |Y | + |Y ′| with coefficients in Z and its highest
degree coefficient is dim Y dimY ′.
This is exemplified on the configurations of Conjectures 4 or 5: for given q and r, one
Young diagram is a q × r rectangle, the other is made of one or two boxes, and Y and
Y ′ are separated by p− 1 arches; then in the expressions given in Conj. 4 or 5, the first
factor represents dim Y

|Y |!
dim Y ′
|Y ′|! , the second (the ratio of superfactorials) is seen to be a

polynomial in p, and the degree of the whole expression is easily computed.
Again, one derives from this conjecture the asymptotic behavior

An(Y, Y ′) ≈ dim Y

|Y |!
dimY ′

|Y ′|! n|Y |+|Y ′| (4.9)

We shall now show that this asymptotic behavior is consistent with the eigenvector
equation (3.3). Let πa be a link pattern described by a pair of Young diagrams (Y, Y ′),
as in Fig. 9, and ei be a generator of the periodic Temperley-Lieb algebra. The link
pattern πb = eiπa is described by a pair (Ȳ , Ȳ ′). Identifying the coefficient of πb in (3.3)
and using the Ansatz (4.9), we find that for n large, the only terms to contribute are
either Y = Ȳ , Y ′ ∈ F (Ȳ ′) or Y ∈ F (Ȳ ), Y ′ = Ȳ ′

2nAn(Ȳ , Ȳ ′) =
∑

Y ∈F (Ȳ )

An(Y, Ȳ ′) +
∑

Y ′∈F (Ȳ ′)

An(Ȳ , Y ′) + O(
1
n

) (4.10)

which is consistent with the behaviour (4.9), since

2
dim Ȳ

|Ȳ |!
dim Ȳ ′

|Ȳ ′|! =
∑

Y ∈F (Ȳ )

dim Y

|Y |!
dim Ȳ ′

|Ȳ ′|! +
∑

Y ′∈F (Ȳ ′)

dim Ȳ

|Ȳ |!
dim Y ′

|Y ′|!

which results itself from the identity

dim Ȳ

|Ȳ |! =
∑

Y ∈F (Ȳ )

dimY

|Y |! . (4.11)

4.3. Recursion formulae generalizing Conjecture 2

In the same way as Conjecture 2 relates the number of FPL configurations for a certain
link pattern, made of n simple arches, to the inclusive sum of all FPL configurations
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������
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������
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�������
�������

�������
�������
�������
�������
�������

=

=

=

=

1
2

1 2
3

4

}p

1
p-1

2p-2

p

n-1

n-1

n-1

n-1

= A
n-1,1

= A
n-1,2

Fig. 10: Relating FPL configurations of size n with inclusive configura-
tions of size n − 1

of size n − 1, one finds relations between other configuration numbers of size n and
inclusive sums of size n − 1.
Conjecture 8. (i) [6] We have the relations depicted on Figure 10, where for example
the expression An−1,1 on the r.h.s. is the number of FPL configurations of size n − 1
containing an arch between external links 1 and 2.

(ii) The rhs of these relations, at size n, take respectively the values

An,0 = An , An,1 =
3
2

n2 + 1
(2n − 1)(2n + 1)

An ,

An,2 =
1
16

59n6 + 299n4 + 866n2 + 576
(2n − 3)(2n − 1)2(2n + 1)2(2n + 3)

An
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and

An,3 = 3
512

2579 n12+39364 n10+374412 n8+2174092 n6+6601109 n4+11674044 n2+6350400
(2n−5)(2n−3)2(2n−1)3(2n+1)3(2n+3)2(2n+5)

An

It is easy to guess the general form of An,p = (Pp(p+1)(n2)/
∏p

`=1(4n2 − (2` −
1)2)p+1−`)An as a ratio of two even polynomials of degree p(p + 1) in n, although
the detailed form of the numerator remains unclear. The expressions of An,p, p = 1, 2
in (ii) were known to D. Wilson [16], while the one of An,3 seems to be new.

= C
n-1

������
������
������
������
������

������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

= D
n-1= n-1+

1 2
3

4

n-1

n-1

3

4

21

+ =

1 2
3

4

5
6

5

6

Fig. 11: Relating FPL configurations of size n with inclusive configura-
tions of size n − 1, cont’d

Conjecture 9. There are equalities as shown on Figure 11 between the sum of two
configuration numbers An(π) and an inclusive sum Cn−1 of size n − 1, or vice versa,
with

Cn =
97 n6 + 82 n4 − 107 n2 − 792

8(2n − 3)(2n − 1)2(2n + 1)2(2n + 3)
An

Dn = 9
256

5977 n12+16622 n10+54681 n8−216784 n6−2071808 n4−337488 n2+3456000
(2n−5)(2n−3)2(2n−1)3(2n+1)3(2n+3)2(2n+5)

An .

By combining the previous formulae it follows that for n ≥ 3

∣∣∣∣∣
n+1

=
33.5
24

(n2 − 4)(n4 + 3n2 + 4)
(2n − 3)(2n − 1)2(2n + 1)2(2n + 3)

An .
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These identities are just the beginning of a host of relations, such as

������
������
������
������
������
������

������
������
������
������
������
������

+ n−1
}

������
������
������
������
������
������

������
������
������
������
������
������

n−1
}

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

n−1

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

n−1 }

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

n−1

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

n−1
}

������
������
������
������
������
������
������

������
������
������
������
������
������
������

������
������
������
������
������

������
������
������
������
������

=
}

=
}

+ + +

=} +

}n−1

n−1 } p

p

p+2

..
p−1

p+1

p−1

p

p

.. 2

p
..

p−1

p−1

..

but their systematics has remained elusive so far.

One may also conjecture that
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

n and
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

n are again both of the form

P12(n)An/
(
(4n2 − 25)(4n2 − 9)2(4n2 − 1)3

)
with the even polynomials P12(n) equal to respectively

3
512 (12631n12+101096n10+586518n8+1237988n6−5800349 n4−19336284n2−23976000)

and

3
512(23231n12−1364 n10−258432n8−2538692 n6−6630499 n4+17311356 n2+44712000) .

The expression of An,3 +
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

n was known to D. Wilson [16].

5. Discussion

This paper has presented a certain number of conjectural expressions and recursion
formulae for the numbers of configurations of FPL with periodic boundary conditions.
At this stage all these expressions remain empirical, and based on the actual data of
the linear problem. The connection with the numbers of FPL thus relies on another
conjecture (Conjecture 1). In some cases, however, the numbers given in this paper
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have been tested against the direct computation of FPL configurations [12]. A similar
discussion is currently being carried out for the other types of boundary conditions by
another group [17].

More conjectural expressions have been collected for other types of configurations
(see Appendix A), but this seems a gratuitous game in the absence of a guiding principle.
Observe however the simplicity of the “three-point-functions” (Conjecture 3) as com-
pared to the cumbersomeness of the others. Could this suggest that the latter may be
obtained from the former, in the same way as higher correlation functions in Conformal
Field Theories, say, may be constructed from the 3-point functions ?
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Appendix A. More configurations

..
n-3

= (n−2)
6 (2n2 − 5n + 9)

n-4

.. = (n−1)(n−3)
180 (4n4 − 32n3 + 155n2 − 394n + 540)

n-5.. = (n−1)(n−3)(n−4)
720 (5n4 − 38n3 + 197n2 − 522n + 840)

..
n-5

= (n−1)(n−4)
20160 (45n6−635n5+4639n4−21865n3+68924n2−136740n+146160)

n-5.. = (n−1)(n−2)(n−3)(n−4)
4!5! (5n4 − 46n3 + 275n2 − 802n + 1440)

..
n-5

= (n−4)
2520

(10n6−135n5+853n4−3378n3+9343n2−17403n+18270)
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