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Abstract

In the context of finite metric spaces with integer distances, we investigate the
new Ramsey-type question of how many points can a space contain and yet be free
of equilateral triangles. In particular, for finite metric spaces with distances in the
set {1, . . . , n}, the number Dn is defined as the least number of points the space
must contain in order to be sure that there will be an equilateral triangle in it.
Several issues related to these numbers are studied, mostly focusing on low values
of n. Apart from the trivial D1 = 3, D2 = 6, we prove that D3 = 12, D4 = 33 and
81 ≤ D5 ≤ 95.

In classical combinatorial theory the following is a well-known, widely open problem:
determine the minimal order of a complete graph such that when coloring the edges with
n colors (with n ∈ N fixed) we can find at least one monochromatic triangle. Such a
smallest integer has been (among others) proved to exist by Ramsey [10] and is typically
denoted by

Rn[3, 3, . . . , 3︸ ︷︷ ︸
n times

]

(since we won’t consider any of the many variations of the problem, we will be using
the simpler notation Rn for short). People not acquainted with the theory are invariably
surprised when learning that very little is known about Rn (see [9] for Radziszowski’s
continuously updated survey of results): beyond the trivial cases R1 = 3, R2 = 6, the
only known value is R3 = 17, while for R4 just the range 51 ≤ R4 ≤ 62 has been
established: the quality of the latter result should not be underestimated, since it took
almost fifty years to improve the upper bound from 66 to 62 (a computer-free proof due
to R.L. Kramer that R4 ≤ 62 is more than 100 pages long [3, 7]).

In this paper we will study a very much related, but technically different problem
(to the best of our knowledge this problem appears to be new, which explains the lack
of direct references). The distances between points of any finite metric space (“fms” for
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short) always belong to a finite set, and so the theory of fms reduces to when the distances
are non-negative integers from, say, a set S ⊂ N. Let us call such an fms an S-space. If an
S-space M is given, we may consider the points of M as vertices of a complete graph, and
the distances as colors applied to the edges. The difference, of course, is that distances
must satisfy the triangle inequality, while in the classical Ramsey problem described above
no such restriction is made on colors. In the following we will talk about metric spaces
with distances in sets not containing 0: this slight abuse of language is only meant to
simplify the discourse, since while 0 is a distance in every metric space, it only appears
in the trivial expressions of the form d(a, a) = 0: in other words, by “distance” we will
routinely mean “distance between different points.”

Definition 1. For S ⊂ N we define D[S] to be the smallest integer m such that any
finite metric space (= fms) consisting of m points and with distances in the set S must
contain an equilateral triangle (i.e., three points a, b, c with d(a, b) = d(b, c) = d(c, a)).
For simplicity, we may drop the braces, as in D[{1, 2, 4}] =: D[1, 2, 4], and we also define
Dn := D[1, 2, . . . , n]. Finally, let us call an fms eq-free if no three points in it form an
equilateral triangle.

To summarize our main results on the low-index Dns, and to put them in perspective
compared to the known facts about the Rns, we can look at the following table (exact
references for all the results on Rn, are given in [9]):

n Dn Rn

1 3 3
2 6 6
3 12 17
4 33 51 ≤ R4 ≤ 62
5 81 ≤ D5 ≤ 95 162 ≤ R5 ≤ 307
6 251 ≤ D6 ≤ 389 538 ≤ R6 ≤ 1838
7 551 ≤ D7 ≤ 1659 1682 ≤ R7 ≤ 12861

Apart from the asymptotics discussed at the very end, essentially this paper is about
proving the results listed in the Dn column (proved below in Theorems 2, 11, 19, 22 and
23; see also the inequality in Theorem 21). We will complement these statements with
uniqueness-type results for eq-free spaces with a maximal number of points (Theorems 4,
14, 15, 16 and 20). In particular, a good deal of work will be needed in order to obtain
the fact that there only exist two non-isomorphic 32-point eq-free fms with distances in
{1, 2, 3, 4} (see Theorem 20): despite the complications, though, the proof of this result
is made a lot easier by the known results by Kalbfleisch and Stanton [6] (see also [8]) on
the two possible 3-colorings of the edges of K16 with no monochromatic triangles. It thus
appears that the theories of the Rn and the Dn numbers, though technically different,
may end up helping each other.

Let us now start the investigation. First (as we restate below in Corollary 5 for easier
reference), note that we always have Dn ≤ Rn: still, clearly the numbers Dn are expected

the electronic journal of combinatorics 11 (2004), #R18 2



to be smaller than their Rn counterparts except for the cases n = 1 and n = 2: in fact,
the study of D1 and D2 is just the same as the one of R1 and R2, and this simply because
in any {1}- or {1, 2}-space any triangle is “legal.” In these cases we are back to full
equivalence between distances and colors and the problem is exactly the classical Ramsey
problem. We thus have the following easy

Theorem 2. We have D1 = 3, and D2 = 6. More generally, let 1 ≤ k ≤ l (k, l ∈ N):

D[k] = 3

D[k, l] =

{
5 , 2k ≥ l
6 , 2k < l

Proof. The only part we need to discuss is where the distance set S = {k, l} satisfies the
inequality 2k < l, and therefore triangles with sides of length k, k, l are not allowed. First,
it should be clear that D[k, l] ≤ D2 = 6. On the other hand, a four-point eq-free fms can
easily be constructed: just label the points a1, a2, a3, a4 and define d(a1, a2) = d(a3, a4) =
k, with all the other pairs being at distance l. To the reader we leave the verification that
no eq-free {k, l}-space can exist with five points.

As in the classical Ramsey case, things start getting dicey with D3. The rest of the
paper is dedicated to the study of the numbers Dn and of some variations thereof, as
defined in Definition 1. To get some concrete examples of eq-free fms out of the way, and
to have them readily available later, we start by looking at a general idea to stay eq-free
with increasing number of different distances:

Example 3. Let M have m := 3 · 2n−1 − 1 points, and label them as v1, . . . , vm. We
can think of M as the complete graph Km with vertex set Zm, and for i, j ∈ {1, . . . , m}
define a “cyclic metric” by d(vi, vj) = k iff the distance between i − 1 and j − 1 in Zm is
in {2k−1, 2k−1 +1, . . . , 2k − 1}. More explicitly, for every pair of indices 1 ≤ i < j ≤ m we
define

d(vi, vj) :=




1 : j − i ∈ {1, m − 1}
2 : j − i ∈ {2, 3, m − 3, m − 2}
3 : j − i ∈ {4, 5, 6, 7, m− 7, m − 6, m − 5, m − 4}
. . . : . . .

n − 1 : j − i ∈ {2n−2, . . . , 2n−1 − 1, m − (2n−1 − 1), . . . , m − 2n−2}
n : j − i ∈ {2n−1, 2n−1 + 1, . . . , 2n − 1}

This gives (it’s boring, but the reader is welcome to check!) an eq-free fms with 3 ·2n−1−1
points and distances in {1, 2, . . . , n}, and thus shows that Dn ≥ 3 · 2n−1. We will call this
particular example Mn.

By a maximal eq-free S-space we mean an fms M with the largest possible number of
points among all S-spaces that are eq-free (by definition, we then have |M | + 1 = D[S]).

Note that M1 (just two points at distance 1) and M2 (five points arranged as vertices of
a pentagon with edge length 1, and with all the other distances being 2) are easily seen to
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be unique in the class of maximal eq-free fms with distances in the respective sets {1} and
{1, 2}. Below we will prove that D3 = 12 (Theorem 11), and so M3 (with its 11 points)
is a maximal eq-free {1, 2, 3}-space (with 11 points). The uniqueness of M3 is a more
delicate question than in the trivial cases of M1 and M2, and will be proved in Theorem
14. Similarly, we will prove the result D4 = 33 in Theorem 19 and the corresponding
uniqueness result (though in this case there will be two non-isomorphic maximal spaces)
in Theorem 20. Of course, we will always understand that an isomorphism of fms is a
distance-preserving, bijective function between two fms.

For the record, let us now state the uniqueness result for M1 and M2.

Theorem 4. M1 (resp. M2) are unique (up to isomorphism) among all maximal eq-free
{1}- (resp. {1, 2}-) spaces.

A perhaps more noteworthy consequence of Example 3 is the first inequality in the
next corollary (the second one being a straight consequence of the definitions), but we
will substantially improve on it in Theorem 21 further below:

Corollary 5. 3·2n−1 ≤ Dn ≤ Rn (for all n ≥ 1).

The purpose of the next “irregular” examples will be clear later, but we anticipate
them now just so as not to interrupt the flow of later proofs.

Example 6. There exists a 10-point eq-free {1, 2, 4}-space: label the points in M as
a1, . . . , a10, and assign them to five pairs Si := {a2i−1, a2i}. Define a metric by setting

d(a, b) :=




1 : a, b ∈ Sj

2 : a ∈ Sj and b ∈ Sj+1

4 : a ∈ Sj and b ∈ Sj+2

where we understand that the pairs Sj are ordered cyclically (i.e., S6 := S1, S7 = S2). To
see that this indeed is a metric, note that the only triangles that might fail the triangle
inequality in a {1, 2, 4}-space would be those with sides of length 1,1,4 or those with sides
of length 1,2,4. Now, if a triangle in M has two sides of length 1 and 4, by the definition
it must contain two points a, b in the same pair (wlog, S1), and the third point c in, say,
S3. This means that both d(a, c) and d(b, c) must be of length 4, and so we see that the
triangle must have sides of length 1,4,4, which is perfectly legal.

An example of a 10-point eq-free {1, 3, 4}-space would be quite similar, with the only
spot to change being the distance 2 in the definition of d(·, ·), which of course needs to
be replaced by 3. Note that in the case of {1, 3, 4}-spaces the only illegal triangles would
be those with side lengths 1,1,3 or 1,1,4, but the same argument as given for the {1, 2, 4}
case shows that this example indeed gives an fms, too.

Example 7. To allow us to give “logical” and “constructive” names to more complex
examples of fms, we now define the operation ⊗: given two fms E and F , define E ⊗ F
to be the set obtained by replacing every point of F by an isomorphic copy of E, and
defining the distances between points of two different copies of E as the distance between
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the points of F they had replaced: depending on E and F , this may not be an fms, but
we will only use the construction to simplify notation, not to define a general “algebra”
of fms. Also, given an fms E and an integer k ∈ N, we define the fms kE to be space E
where all the original distances in E have been multiplied times k. Similarly, we define
E + k to be the space E where every distance has been augmented by k.

To put this in practice, the {1, 2, 4}-space defined in Example 6 would be called M1 ⊗
2M2. The similar {1, 3, 4} space mentioned at the end of Example 6 would be called
M1 ⊗ (M2 + 2).

The following Lemma will prove useful when dealing with maximal eq-free fms:

Lemma 8. Let M be a maximal eq-free S-space. Then for every point a ∈ M and
δ ∈ S ∩ {1, 2} there exists a point b ∈ M such that d(a, b) = δ.

Proof. Suppose not, that is, let a ∈ M and δ ∈ S ∩ {1, 2} be such that for no b ∈ M we
have d(a, b) = δ. Create a new point ã and add it to M as follows: for b ∈ M \ {a} define
d(ã, b) := d(a, b), while we set d(a, ã) := δ. Notice that M̃ := M ∪ {ã} is still metric (the
only new triangles that may give us trouble are the “isosceles” ones with third side aã,
and the latter can only have length 1 or 2). Also, it is immediate to see that M̃ is still
eq-free and yet is larger than M , which contradicts M ’s maximality.

Definition 9. In the rest of this paper we will freely abuse graph-theoretic language as
follows: given an fms M where distance 1 is allowed, we will tacitly consider a graph
whose vertices are the points of M , and whose edges connect exactly those pairs of points
that are at distance 1 (we will call these points at distance 1 “neighbors”). Let’s call this
graph GM for the moment. If a cycle Cm should be a subgraph of GM , we will say that
“M contains a Cm” (and often, if no confusion arises, we will just call the corresponding
subspace of M with the name Cm). Similarly, if GM contains a path Pn as a subgraph,
we will say “M contains a Pn.” In contrast to common graph-theoretic usage, we will use
Pn to denote a path with n vertices (and not with n edges, as usual), since our emphasis
is on the number of points.

In order to make the language in the following proofs more bearable, we will adapt
standard graph theory notation to our needs:

Definition 10. Let M be an S-space. For a ∈ M and k ∈ S, define the “k-neighborhood”
of a as Nk(a) := {b ∈ M : d(a, b) = k}. “Distance patterns” for a specific element of
M play a major role in the combinatorial arguments to follow. Assume that we have
arranged the distances in S in order, say, k1 < k2 < . . . < kr: we say that a ∈ M is of
type

[|Nk1(a)|, |Nk2(a)|, . . . , |Nkr(a)|] .
Given that

|Nk1(a)| + |Nk2(a)| + . . . + |Nkr(a)| = |S| − 1 ,

under some assumptions only a few distance patterns will be available.
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We are now ready to prove our first deeper result, which should be compared to
Greenwood and Gleason’s R3 = 17:

Theorem 11. D3 = D[1, 2, 3] = 12. In the case of other distance sets S with three
elements, we have

D[1, 2, 4] = D[1, 3, 4] = 11 .

More generally, let 1 ≤ k ≤ l ≤ m:

D[k, l, m] =




11 , l ≤ 2k < m and k + l < m
11 , 2k < l
12 , l ≤ 2k < m and m ≤ k + l
17 , m ≤ 2k

Proof. To see that D3 = 12, let M be a maximal eq-free {1, 2, 3}-space, and fix a ∈ M .
Since M is eq-free, we must have |N1(a)| ≤ 2, |N2(a)| ≤ 4 and |N3(a)| ≤ 5: this because
N1(a) must be a {2}-space, N2(a) must be a {1, 3}-space, and N3(a) must be a {1, 2}-space
(we will use this argument several times below, and it is simply based on the necessity to
avoid equilateral triangles within an Nk set) and because of the bounds set by Theorem
2.

Overall, then, |M | ≤ 1 + 2 + 4 + 5 = 12. Suppose |M | = 12 (and thus that all Nk

sets have their largest possible size), and let b ∈ M be such that d(a, b) = 3. Since
|N3(a)| = 5, |N3(b)| = 5, and since clearly N3(a) ∩ N3(b) = ∅, there are only 2 points
left in M \ (N3(a) ∪ N3(b)), and they both are at distance less than 3 from both a and
b. By Theorem 2, both N3(a) and N3(b) are maximal {1, 2}-spaces, and thus must be
isomorphic to M2 (see Example 3 above), i.e., the points in each set must be arranged
according to the same unique pattern: a pentagon where the sides have length 1 and any
other distance is 2.

Now, pick one of the two remaining points. Since it must be at distance 1 from two
other points (|N1| = 2 for all points in M)), one of the two must belong to either N3(a) or
N3(b), but this is impossible because it would imply that some point in M is at distance
1 from 3 other points, a contradiction (these three points would then necessarily form an
equilateral triangle).

So, D3 ≤ 12. To see that there exists an eq-free {1, 2, 3}-space with 11 points, just
consider the space M3 defined in Example 3, and so our proof that D3 = 12 is complete.

Time to prove that D[1, 2, 4] = 11. Let us first show that D[1, 2, 4] ≤ 11. By contra-
diction (and since D[1, 2, 4] ≤ 12 because of D3 = 12: an eq-free {1, 2, 4}-space becomes
an eq-free {1, 2, 3}-space just by redefining distance 4 to be 3), assume that we have an
eq-free, 11-point fms M with distances in {1, 2, 4}.

It is not possible that every point in M be at distance 1 from two other points: if
this were the case, we could split the points of M into disjoint cycles with side 1. By the
triangle inequality, the distances within each cycle could only be 1 and 2 (since distance 3
is unavailable), and so the cycles could have at most length 5 (since D2 = D[1, 2] = 6 by
Theorem 2). Since they would also need to contain at least four points (a 3-cycle would
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be an equilateral triangle!), we would derive a contradiction as 11 cannot be written as a
sum of 4s and 5s.

It thus follows that |N1| = 1 for some point in M (we must always have N1 6= ∅ by the
maximality of M and Lemma 8): let a ∈ M of type [1, 4, 5] (the inequalities |N2| ≤ 4 and
|N4| ≤ 5 hold everywhere for the same reason explained at the beginning of this proof).
Call b one of the 5 points in N4(a), and notice that these 5 points must be arranged
as vertices of a pentagon of side 1, all the other internal distances being 2 (N4(a) must
be isomorphic to M2 by Theorem 4). Now, we must have that N4(b) consists of four
points: if not, it should contain five, but then M would include two disjoint “pentagons”
(as above), and the 11th point would have no points at distance 1, a contradiction with
Lemma 8: this means that b is of type [2, 4, 4]. So, we find exactly two points {x, y}
in M \ (N4(a) ∪ N4(b)). Since the only distances allowed are 1, 2, 4, the two points in
N1(b) are already in N4(a), and neither x nor y is at distance 4 from b, we must have
d(x, b) = d(y, b) = 2. Calling N1(b) = {b′, b′′} ⊂ N4(a), by the triangle inequality x (and
y) must be at distance 2 from both b′ and b′′, a contradiction, since d(b′, b′′) = 2, and we
would have an equilateral triangle in M . So, D[1, 2, 4] ≤ 11 as we wanted. Finally, to see
that D[1, 2, 4] = 11, we only need an example of a 10-point, eq-free fms with distances in
{1, 2, 4}, but this was given in Example 6 (and called M1⊗2M2 according to the guidelines
of Example 7).

Let us now check that D[1, 3, 4] = 11. First note that D[1, 3, 4] ≥ 11 follows from
Example 6 (the space we called M1 ⊗ (M2 + 2) is an eq-free, 10-point {1, 3, 4}-space).
Pick a ∈ M . The points at distance 3 from a must all have distances ∈ {1, 4} between
each other, and so |N3(a)| ≤ 4 (by Theorem 2). Similarly, the points at distance 4 from
a must have all distances ∈ {1, 3} between each other, and so |N4(a)| ≤ 4. Since there
cannot be more than one point at distance 1 from a (distance 2 is not available here), this
shows that M can at most contain 1 + 1 + 4 + 4 = 10 points, and thus D[1, 3, 4] = 11.

Finally, the statement made for general distance sets S = {k, l, m} looks harder but
is now easy to verify, since the conditions imposed on k, l, m are there to check which
types of triangles are not allowed by the triangle inequality, and so the general S-space
case falls back to either the previously considered cases, or else (when 2k ≥ m, i.e., when
every triangle is legal) we find ourselves in the classical Ramsey situation (where distances
are equivalent to colors), and the stated result follows from the well-known R3 = 17 (see
[5]).

The next Lemma and Theorem will be used in the special cases n = 2 and n = 3, but
since an inductive argument applies, we present them in full generality. See further below
(Theorem 21) for an improvement on the technique.

Lemma 12. For all n ≥ 1 we have

Dn+1 ≥ 2Dn − 1 ≥ Dn + |Mn| = Dn + 3 · 2n−1 − 1 .
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Proof. Let M be a maximal eq-free {1, . . . , n}-space (with |M | = Dn − 1). Build a
{1, . . . , n + 1}-space M̂ by letting M̂ = M ⊗ (n + 1)M1 (i.e., we take the disjoint union
of two copies of M , and define the distance between any point in one copy and any point
of the other to be = n + 1). Clearly, M̂ is eq-free and so

|M̂ | = |M | + |M | = 2(Dn − 1) ≤ Dn+1 − 1

and the Lemma is proved.

Theorem 13. Suppose an eq-free {1, . . . , n+1}-space M (n ≥ 2) contains an isomorphic
copy of Mn (just call the copy Mn, to keep things simple). Then, for every c ∈ M\Mn there
exist at least 2n−1 points in Mn at distance n+1 from c (that is, |Nn+1(c)∩Mn| ≥ 2n−1).
Consequently, under our hypothesis we must have |M | < Dn+|Mn| and, if n = 2 or n = 3,
M cannot be maximal.

Proof. We first prove that if c ∈ M \Mn then there must be some a ∈ Mn with d(c, a) = n.
If not, by the triangle inequality either all points of Mn must be at distance n + 1 from
c (in which case the first part of the Theorem is proved), or else all points of Mn are
at distance ≤ n − 1 from c. Let m be the largest distance ∈ {2, 3, . . . , n − 1} from c
to any point in Mn, and let this point be called a. Starting a count from a and around
Mn (as usual we can visualize the points of Mn as the vertices of a regular polygon with
3 ·2n−1−1 sides and side length 1), the first point we meet that is at distance m from a is
the 2m−1-th (by the definition of Mn’s metric), and it is also the first of 2m−1 points that
are all at distance m from a. Clearly, none of these points can be at distance m from c.
Let K be an interval of maximal length in Mn, all of whose points are at distance ≤ m−1
from c. By what we just said, |K| ≥ 2m−1, but we can say more. By construction, the two
points just outside K must be both at distance m from c. Call one of them e. Counting
from e in the direction of K we find a first point at distance m from e after 2m−1 steps
(which land still inside K), and then there must follow 2m−1 − 1 more points at distance
m from e. We deduce then |K| ≥ (2m−1 − 1) + 2m−1 = 2m − 1. We can now repeat
this argument inductively by focusing on K, whose endpoints, by construction, must be
both at distance m − 1 from c. We would define K ′ to be an interval ⊂ K of maximal
length such that all of its points be at distance < m−1 from c, and so on. Eventually, by
complete induction we will be able to exhibit an interval containing at least 23 − 1 points
and such that all of its elements are at distance 2 from c, but this is impossible.

So, let a ∈ Mn be such that d(c, a) = n. By the definition of Mn there is an “interval”
I of 2n−1 points in Mn “opposite” a such that d(a, b) = n for all b ∈ I. This means that
d(c, b) 6= n for all b ∈ I. Let J ⊃ I be such that J is a maximal set of consecutive points
of Mn with the property that none of them is at distance n from c. The neighbor e of
one of the endpoints of J must be at distance n from c. Counting from e in the direction
of J , we find that the first point at distance n from e occurs after 2n−1 steps: that is,
the 2n−1-th element of J (from e’s end) is the first of 2n−1 points that are at distance n
from e, and therefore cannot be at distance n from c. This means that J must actually
contain at least (2n−1 − 1) + 2n−1 = 2n − 1 points, and none of them can be at distance
n from c. So, by the triangle inequality there are now two options: either all the points
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in J are at distance n + 1 from c (and in this case we are done), or else they are all at
distance in {2, 3, . . . , n − 1}. The second option is however impossible (it could be seen
as the starting point of the argument that got us a contradiction in the first part of this
proof).

To verify the second part of the Theorem, let b, c ∈ M \ Mn. By the first part, there
exist at least 2n − 1 points in Mn at distance n + 1 from b, and the same (with possibly
different points) applies to c. Now, these two sets of points must overlap, or else Mn

would need to have at least 2(2n − 1) = 2n+1 − 2 points, but this is impossible since
|Mn| = 2n + 2n−1. If we now pick a point a ∈ Mn from the intersection, it must be
at distance n + 1 from both b and c, that is, d(b, c) ≤ n. Hence, M \ Mn is an eq-free
{1, . . . , n}-space, and so |M \ Mn| < Dn. So, we have the inequality

|M | = |M \ Mn| + |Mn| < Dn + |Mn| ≤ Dn+1 ,

where the last inequality follows from Lemma 12. If in addition we have n = 2 or n = 3,
then because of Dn = |Mn| + 1 (an identity verified in Theorems 2 and 11) we could
deduce that |M | ≤ 2|Mn|, and since 2|Mn| < |Mn+1| (by just one!) and |Mn+1| < Dn+1,
M cannot be maximal.

The following result settles a similar question to the uniqueness of M1 and M2 (see
Theorem 4) among all maximal eq-free {1}- (resp. {1, 2}-) spaces. It will all be worth the
effort of going through the following streak of uniqueness theorems, though (Theorems
14, 15 and 16), since they will be an essential tool to tackle the issue of finding out more
about D4 (see Theorem 19).

Theorem 14. Up to isomorphism, M3 is the only maximal eq-free {1, 2, 3}-space.
Proof. Let M be an 11-point eq-free fms. The only possible types of points in M are
easily seen to be [1, 4, 5], [2, 4, 4] and [2, 3, 5] (by Lemma 8, |N1| ∈ {1, 2} everywhere and
Theorem 2 implies that the inequalities |N2| ≤ 4 and |N3| ≤ 5 must hold at every point,
so the identity |N1| + |N2| + |N3| = 10 does the rest).

However, no point of M can be of type [∗, ∗, 5], or else M would contain M2, and by
Theorem 13 we would have the contradiction |M | ≤ 10. So, we immediately deduce that
all the points of M are of the same type [2, 4, 4]. Type [2, ∗, ∗] for all the points means
that if we regard M as a graph with edges exactly where the distance between two vertices
is 1, then M is a disjoint union of cycles, and these cycles must have length at least 4
(there was a similar argument in the proof of Theorem 11).

Claim: M must be a unique cycle (C11). Since the only ways to add up to 11 with
summands at least 4 are 4+7 and 5+6, we need to prove that a split of M into two cycles
contradicts our hypotheses. On one hand, note that a cycle C6 is never possible in an
eq-free space, since the triangle formed by every other point in such a cycle would be an
equilateral triangle of side 2. So, assume (by contradiction) that M is a union of a cycle
of length 4 and one of length 7. Let a ∈ M belong to the cycle of length 4. This means
that only one point (call it b) on this cycle is in N2(a), while the other three elements of
N2(a) must belong to the other cycle (|N2(a)| = 4 as we established that all points in M
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are of type [2, 4, 4]). Since |N2(a)| = 4 and N2(a) is an eq-free {1, 3}-space, by Theorem 2
it is a maximal eq-free {1, 3}-space, which requires that b must be at distance 1 from one
of the other points in N2(a): this, however, is impossible since no two points belonging to
different cycles may be at distance 1 (or else M could not be eq-free): the claim is thus
proved.

We can now safely assume that M is a C11, that is, d(a1, a2) = d(a2, a3) = . . . =
d(a11, a1) = 1. If we could show that (applying cyclic permutations on the indices)
N2(a1) = {a3, a4, a9, a10}, everywhere in M , we would have that M is isomorphic to
M3. Therefore, we will look for a contradiction assuming that a1 (say) does not have this
property. In any case, note that we must always have a3, a10 ∈ N2(a1). What follows is
the first of many arguments in the rest of this paper where the reader would probably
find it easier to follow by means of a sketch or two.

Case I: a4, a9 6∈ N2(a1): In this situation we have d(a1, a4) = d(a1, a9) = 3. We
must then have d(a1, a5) = 3 (or else a1a3a5 would be equilateral) and d(a1, a8) = 3 (or
else a1a8a10 would be equilateral). This leaves us with d(a1, a6) = d(a1, a7) = 2. Now,
we check that triangle a3a6a10 is equilateral: in fact, d(a3, a6) = 3 (since d(a1, a3) =
d(a1, a6) = 2), d(a6, a10) = 3 (since d(a1, a6) = d(a1, a10) = 2), and d(a10, a3) = 3 (since
d(a1, a3) = d(a1, a10) = 2). This contradiction shows that Case I cannot apply to M .

Case II: a4 ∈ N2(a1) and a9 6∈ N2(a1): In this case we have d(a1, a5) = 3 (or else a1a3a5

would be equilateral), d(a1, a6) = 3 (or else a1a4a6 would be equilateral), and d(a1, a8) = 3
(or else a8a10a1 would be equilateral). This leaves us with d(a1, a7) = 2, and we can now
show that triangle a4a7a10 is equilateral: in fact, d(a4, a7) = 3 (or else a1a4a7 would be
equilateral), d(a7, a10) = 3 (or else a1a7a10 would be equilateral), and d(a10, a4) = 3 (or
else a1a4a10 would be equilateral). This contradiction shows that Case II cannot apply to
M , either, and so the Theorem is proved.

Theorem 15. The only maximal eq-free {1, 2, 4}-spaces (up to isomorphism) are M2 ⊗
4M1 and M1 ⊗ 2M2 (see Example 7 for the definitions).

Proof. Let M be a maximal (= 10-point, by Theorem 11) eq-free {1, 2, 4}-space. By
Theorem 2 and Lemma 8, the only types available for the elements of M are

[1, 3, 5], [1, 4, 4], [2, 2, 5], [2, 3, 4], [2, 4, 3]

(as seen in the proof of Theorem 14, Lemma 8 implies that |N1| 6= ∅ everywhere and
Theorem 2 implies that the inequalities |N2| ≤ 4 and |N4| ≤ 5 must hold at every point,
so the identity |N1| + |N2| + |N4| = 9 does the rest).

Case I: M contains a point a of type [∗, ∗, 5]: |N4(a)| = 5 means that N4(a) is isomor-
phic to M2 (see Theorem 4), and so any point b ∈ N4(a) is necessarily of type [2, ∗, ∗].
If N2(b) contained three or more points, then one of these (call it c) would have to lie
outside N4(a). Now, d(c, b) = 2 implies that d(c, b′) = 2 for all five points in N4(a),
and this because d(c, b′) cannot be = 1, and by the triangle inequality can never be = 4.
However, this contradicts our choice of M , because there can never be more than 4 points
at distance 2 from c in M , or else there are equilateral triangles inside. It follows that
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|N2(b)| = 2, and so b must be of type [2, 2, 5]. Now, N4(b) ∼ M3 contains five points and
is disjoint from N4(a) ∼ M3, and so M must be isomorphic to M ∼ M2 ⊗ 4M1.

Case II: M only contains points of type [2, ∗, ∗]: this is easily seen to lead to the same
situation as in Case I. In fact, the points of M could be then split into cycles of side 1 and
of length at least 4 and at most 5 (since the internal distances within each cycle could
only be 1 or 2). Since |M | = 10, the only possibility is to have M as a disjoint union of
two cycles of length 5, with all the distances between points belonging to different cycles
being 4: and this means that M ∼ M2 ⊗ 4M1.

We thus have only one case left (but some more work to do):
Case III: M contains a point of type [1, 4, 4] (and the other points may only be of

types [2, 3, 4] or [2, 4, 3]): Label the elements of M as a1, . . . , a10, and let a1 be of type
[1, 4, 4]. Let a2 be the only point in N1(a1), and choose the other labels so that N2(a1) =
{a3, a4, a5, a6} and N4(a1) = {a7, a8, a9, a10}. Since N2(a1) is a maximal {1, 4}-space (see
Theorems 2 and 4), we may set the distances within it as follows:

d(a3, a4) = d(a5, a6) = 1 , d(a3, a5) = d(a3, a6) = d(a4, a5) = d(a4, a6) = 4 .

Let us now consider a3 (note that up to isomorphism this is an arbitrary point in N2(a1)
so far).

Claim 1: a3 cannot be of type [2, 3, 4]. Suppose not, and think of a3 as a type [2, 3, 4]
point. Given that d(a1, a3) = 2 and that the four points in N4(a1) must be at distance
≥ 2 from a3, the only other point in N1(a3) must be a2. Since |N2(a3)| = 3, two of the
points in N4(a1) must be at distance 2 from a3: say, a7 and a8. Now, since d(a2, a3) = 1
and d(a3, a7) = 2, the triangle inequality implies that d(a2, a7) = 2 (a2 has already been
assigned two points at distance 1). However,

4 = d(a1, a7) ≤ d(a1, a2) + d(a2, a7) = 3,

a contradiction proving Claim 1.
Claim 2: a3 cannot be of type [2, 4, 3]. This case proceeds in a similar way to the

previous one: a3 must be at distance 1 from a2, and now three of the points in N4(a1)
must be at distance 2 from a3: just pick a7 to be one of them and argue exactly as in the
previous case to get another contradiction.

It thus follows from Claims 1 and 2 that a3, and hence a4, a5, a6, must all be of
the only remaining type, that is, [1, 4, 4]. As a first consequence of this, we check that
D(a2, a3) = 2, and choose a7, a8 to be the two other points in N2(a3). Since N2(a3) is a
maximal {1, 4}-space, d(a7, a8) = 1. We also have that N4(a3) = {a5, a6, a9, a10}: now,
this one is a {1, 2}-space, and since a5, a6 are of type [1, 4, 4], we must have

d(a5, a9) = d(a5, a10) = d(a6, a9) = d(a6, a10) .

Then, we note that N4(a3) must now be {a5, a6, a9, a10}, which implies that d(a9, a10) = 1
again by maximality of N4(a3). Summarizing, it is now easy to get the following picture
of M : the pairs Sj = {a2j−1, a2j} (j = 1, . . . , 5) are such that the distance between the
two points within same the pair is 1. Further, we can visualize the pairs in the order
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S1, S2, S4, S5, S3 as sitting at the vertices of a pentagon: any two points from neighboring
pairs are at distance 2, while points from “distant” pairs are at distance 4: and this is
exactly the picture resulting from space M1⊗2M2 (see Examples 6 and 7), as claimed.

Theorem 16. The only maximal eq-free {1, 3, 4}-space (up to isomorphism) is M1 ⊗
(M2 + 2) (see Example 7 for the definition). Also, a 9-point eq-free {1, 3, 4}-space must
be isomorphic to a copy of M1 ⊗ (M2 + 2) from which a point has been deleted.

Proof. Let M be a maximal eq-free {1, 3, 4}-space. By Lemma 8 every point in M must
be at distance 1 from some other point, but since triangles with two sides of length 1
are not allowed here, the only available type for any point in M is [1, 4, 4] (in particular,
every point has exactly one neighbor). It is now easy to derive the conclusion if we start
thinking of M as being built up of five pairs of points, where the distance within each
pair is 1, all other distances in M being either 3 or 4. For once we leave the details to the
reader (the second part of the statement is also an easy exercise).

The following Lemmas contain much of the technicalities needed in the proof of The-
orem 19 (we won’t need their full power but we can’t see the harm done by proving a
stronger version):

Lemma 17. Let n ≥ 5, and assume that a cycle Cn (resp. a path Pn) belongs to an
eq-free fms M . Label five consecutive points b1, . . . , b5 on Cn (resp. Pn) and assume that
we have a sixth point a ∈ M not adjacent to b1, with d(a, b2) = d(a, b3) = 2. Then we
must have d(a, b1) = d(a, b4) = 3 and d(a, b5) = 4.

Proof. d(a, b5) can only be 2, 3 or 4. It cannot be 2, or else ab3b5 would be equilateral.
On the other hand, d(b1, b3) = 2 and so d(b1, b4) = 2 (since b1 and b4 are both at distance
3 from a, and so they must be at a distance 6= 3 from each other). If we had d(b1, b5) = 2,
then b3, b4, b5 would be three consecutive points at distance 2 from b1, and so they would
form an equilateral triangle of side 1. Consequently, d(b1, b5) = 3, and if we had d(a, b5) =
3 the points ab1b5 would form an equilateral triangle of side 3. Thus, d(a, b5) = 4, and
the Lemma is proved.

Lemma 18. Suppose that M is an eq-free fms.

(a) If |N2(a)| ≥ 6 for all a ∈ M , then M contains no cycle C4.

(b) If |N2(a)| ≥ 8 and |N3(a)| ≥ 9 for all a ∈ M , then M contains no cycle Cm with
m ≥ 5 (|N2(a)| ≥ 7 is enough for the case m = 5).

(c) If |N2(a)| ≥ 7 and |N3(a)| ≥ 9 for all a ∈ M , then M does not contain isomorphic
copies of Pm for any m ≥ 4.

(d) If |N1(a)| = 2 for any fixed point in M , then |N2(a)| ≤ 9.
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Proof. (a): Suppose not, and let the four points around a C4 ⊂ M be labelled {a1, a2,
a3, a4}. Since

N2(a2) = {a4} ∪ (N2(a2) ∩ N2(a1)) ∪ (N2(a2) ∩ N3(a1))

= {a4} ∪ (N2(a2) ∩ N2(a3)) ∪ (N2(a2) ∩ N3(a3)) ,

N2(a4) = {a2} ∪ (N2(a4) ∩ N2(a1)) ∪ (N2(a4) ∩ N3(a1))

= {a2} ∪ (N2(a4) ∩ N2(a3)) ∪ (N2(a4) ∩ N3(a3)) ,

and since the last set in all right hand side expressions contains at most 4 points (they
are all {1, 4}-spaces and Theorem 2 applies), it follows that the (disjoint) sets A :=
N2(a1) ∩ N2(a4) and B := N2(a1) ∩ N2(a2) satisfy

A ∪ B ⊂ N2(a1) ∩ N3(a3) ,

so A ∪ B is an eq-free {1, 4}-space. Now, looking at

N2(a1) = {a3} ∪ (N2(a1) ∩ N2(a4)) ∪ (N2(a1) ∩ N3(a4))

= {a3} ∪ (N2(a1) ∩ N2(a2)) ∪ (N2(a1) ∩ N3(a2)) , (1)

and defining C := N2(a1) ∩ N3(a4) ∩ N3(a2), we can write

N2(a1) = {a3} ∪ A ∪ B ∪ C .

We already know that A ∪ B is a {1, 4}-space, and by (1) we also immediately see that
A ∪C and B ∪C must also be {1, 4}-spaces. However, this implies that A ∪B ∪C is an
eq-free {1, 4}-space, and so |A ∪ B ∪ C| ≤ 4, meaning that |N2(a1)| ≤ 5.

(b): Suppose not, and let Cm ⊂ M . Let m ≥ 5 and let a1, . . . , a6 be six consecutive
points on Cm (omit a6 in the case m = 5). Since

N2(a3) =

4⋃
k=0

N2(a3) ∩ Nk(a4)

= {a5} ∪ (N2(a3) ∩ N2(a4)) ∪ (N2(a3) ∩ N3(a4)) ,

since |N2(a3)∩N3(a4)| ≤ 4 (it’s a {1, 4}-space), and since by hypothesis |N2(a3)| ≥ 8, we
must have at least one point at distance 2 from both a3 and a4, and different from both
a1 and a6 (we only need |N2(a3)| ≥ 7 in the case m = 5, as we just want to pick a point
different from a1). Call such a point b: by Lemma 17 we must have d(b, a2) = d(b, a5) = 3,
and (if m > 5) d(b, a1) = d(b, a6) = 4, that is, N3(b) contains two singletons if m > 5 and
either two singletons or three points forming a P3-subspace of N3(a3) if m = 5: so, N3(b)
could not contain 9 points or more, by Theorem 15.

(c): Suppose not, and let Pm ⊂ M , with m ≥ 4 and the points along Pm being labelled
as {a1, . . . , am}. Since

N2(a2) =

4⋃
k=0

N2(a2) ∩ Nk(a3)

= {a4} ∪ (N2(a2) ∩ N2(a3)) ∪ (N2(a2) ∩ N3(a3)) ,
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and since |N2(a2)∩N3(a3)| ≤ 4 (it’s a {1, 4}-space, and so Theorem 2 applies), and since
the hypothesis implies that |N2(a2)| ≥ 7, we must have at least two points at distance
2 from both a2 and a3. Pick one of them that is 6= a5 and call it b. Since no three
consecutive points in Pm can be at distance 2 from b (or else they would need to form an
equilateral triangle of side 1), we must have d(b, a1) = d(b, a4) = 3 (since b 6= a5 we cannot
have d(b, a4) = 1). Now, if m = 4 we have that P4 = {a1, . . . , a4} contains two singletons
from N3(b), which is incompatible with the hypothesis that |N3(b)| ≥ 9. If instead m > 4,
we can look at d(b, a5) and conclude that it must be = 4 by Lemma 17, which again gives
us two singletons in N3(b).

(d): Let N1(a) = {b, c}, and assume by contradiction that |N2(a)| = 10. Writing

N2(a) = (N2(a) ∩ N1(b)) ∪ (N2(a) ∩ N2(b)) ∪ (N2(a) ∩ N3(b))

= (N2(a) ∩ N1(c)) ∪ (N2(a) ∩ N2(c)) ∪ (N2(a) ∩ N3(c)) ,

we note that the first set on both right hand sides contains at most one point, and the
third set contains at most four points. Since |N2(a)| = 10, the second set must contain
at least five points. However, since N2(a) ∩ N2(b) and N2(a) ∩ N2(c) are disjoint (due to
d(b, c) = 2, and thus N2(b) ∩ N2(c) = ∅), they must both contain exactly five points. We
can deduce quite a bit from this. First, |N2(a)∩N1(b)| = |N2(a)∩N1(c)| = 1, and so there
exist points e, f with N2(a) ∩ N1(b) = {e} and N2(a) ∩ N1(c) = {f}. Note that d and e
must be different, or else the five point set N2(a) ∩ N2(b) would need to be contained in
the four point set N2(a) ∩ N3(c). With this notation we have

A := (N2(a) ∩ N2(b)) \ {f} = N2(a) ∩ N3(c)

and
B := (N2(a) ∩ N2(c)) \ {e} = N2(a) ∩ N3(b) .

Both A and B contain four points and thus are maximal {1, 4}-spaces, for which the
isomorphic structure is uniquely defined (i.e., in both A and B we find two pairs of
neighbors, with points from different pairs being at distance 4). Since we have

N2(a) = A ∪ B ∪ {e, f} ,

applying Theorem 16 we see that we must have d(e, f) = 1 (which means that the points
a, b, c, e, f form an isomorphic copy of M2 inside M). On the other hand, since all the
points in A are at distance 2 from both a and b, they all must be at distance 3 from e.
Given the unique isomorphic structure of N2(a), this gives a contradiction, since two of
the points of A must be at distance 4 from e.

We are now in a position to identify the value of D4:

Theorem 19. D4 = D[1, 2, 3, 4] = 33. We also have D[1, 2, 3, 5] = D[1, 2, 4, 5] = 26.
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Proof. D4 = D[1, 2, 3, 4] = 33: In [5] (see also [6] and [8]), Greenwood and Gleason were
the first to prove that there exists a 3-coloring of the edges of a complete graph with 16
points such that no triangle has all the edges of the same color. Pick these 16 points and
this coloring, and instead of the three colors “paint” the edges with the distances 2, 3
and 4 (the triangle inequality doesn’t impose any restrictions here). Now, consider every
point among the 16 to really be a pair of points at distance 1 from each other, while
defining the distances between points belonging to different pairs according to the same
{2, 3, 4}-color scheme used at the start. The resulting configuration is easily seen to be a
32-point eq-free {1, 2, 3, 4}-space, thus establishing that D4 ≥ 33.

Let us now prove that D4 ≤ 33. By contradiction, assume that M is a 33-point eq-free
{1, 2, 3, 4}-space. Given the bounds in Theorems 2 and 11, and part (d) of Lemma 18
(i.e., the inequalities |N2| ≤ 10, |N3| ≤ 10 and |N4| ≤ 11 must hold everywhere), the only
types allowed for the points in M are

[1, 10, 10, 11], [2, 9, 10, 11] .

If a point a were of type [∗, ∗, ∗, 11], though, M would have to contain a copy of M3

(= N4(a)), and by Theorem 13 |M | ≤ 22, a contradiction.

D[1, 2, 3, 5] = 26: The {1, 2, 3, 5}-space M2 ⊗ (2M2 + 1) is eq-free and contains 25
points, and so D[1, 2, 3, 5] ≥ 26 (drawing a sketch of M2 ⊗ (2M2 + 1) will make things
easier here: it looks like five copies of M2 arranged at the vertices of a bigger pentagon
with “sides” of length 3 and “diagonals” of length 5: verification that this space is indeed
metric and eq-free is then trivial).

Let us assume by contradiction that M is a 26-point eq-free {1, 2, 3, 5}-space. Since for
any a ∈ M we have that N2(a) is a {1, 3}-space, it follows that |N2(a)| ≤ 4 by Theorem
2. Similarly, Theorem 11 implies that |N3(a)| ≤ 10 and |N5(a)| ≤ 11. If |N5(a)| = 11
for some a ∈ M , then by Theorem 14 N5(a) would be isomorphically determined as a
copy of M3 and, in particular, it would be a cycle C11. By the triangle inequality, any
b ∈ M \N5(a) would have to be either at distance 2 or 3 from all points of N5(a), or else
N5(b) = N5(a). Since the first possibility is plainly absurd, we deduce that if b 6∈ N5(a)
we have d(a, b) ≤ 3, and so M \N5(a) would be a {1, 2, 3}-space: but by Theorem 11 this
would imply |M | ≤ 22, a contradiction. So, |N5(a)| ≤ 10 for all a ∈ M .

From this, it follows that if |N1(a)| = 1, then a must be of type [1, 4, 10, 10]. |N3(a)| =
10 says that N3(a) is a maximal eq-free {1, 2, 5}-space, and it is easy to see that the only
isomorphic shape for N3(a) is thus M2 ⊗ 5M1: so, M must contain a copy of M2 (i.e.,
of a cycle C5: let’s just call this copy C5, for simplicity). Now, if b is a point in M \ C5

at distance 2 from some point of C5 (and there is such a point, since |N2(c)| ≥ 3 for all
c ∈ M as a consequence of |M | = 26), it is easy to derive a contradiction: either b is of
type [1, 4, 10, 10] (in which case b must be at distance 2 from two neighbors in C5, and
at distance 3 from the others three points of C5, contradicting the mandatory shape of
N3(b)), or else b is of one of the types [2, 3, 10, 10], [2, 4, 9, 10], [2, 4, 10, 9], and then in any
of these cases we derive a similar contradiction.

Consequently, we must have |N1(a)| = 2 for all a, and so M breaks down into a
disjoint union of cycles. Since the argument we just went through shows that no C5 can
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be a subspace of M , it must be that all the points in M are of type [2, 4, 9, 10]. For any
a ∈ M , N2(a) being then a maximal four-point {1, 3}-space, it must consist of two pairs
of neighbors, and this easily implies that the cycles in M must have at least 9 points each,
and so N5(a) is always a cycle C10 for every a ∈ M . Now, this clearly implies that M
needs to contain two copies of C10, but then the remaining six points cannot for a cycle
with nine points or more: a contradiction.

D[1, 2, 4, 5] = 26: The {1, 2, 4, 5}-space M2⊗(M2+3) is eq-free and contains 25 points,
and so D[1, 2, 4, 5] ≥ 26 (as in the previous part of this proof, the reader is advised to
make a sketch of M2 ⊗ (M2 +3): it looks like five copies of M2 arranged at the vertices of
a bigger pentagon with “sides” of length 4 and “diagonals” of length 5: verification that
this space is indeed metric and eq-free is then trivial).

Let us assume by contradiction that M is a 26-point eq-free {1, 2, 4, 5}-space. Since for
any a ∈ M we have that N2(a) is a {1, 4}-space, it follows that |N2(a)| ≤ 4 by Theorem 2.
Similarly, Theorem 11 implies that |N4(a)| ≤ 10 and |N5(a)| ≤ 10. So, the only available
types in M are [1, 4, 10, 10], [2, 3, 10, 10], [2, 4, 9, 10], or [2, 4, 10, 9].

Since the triangle inequality implies that the distances within any cycle or path in
M can only be 1 or 2, we immediately deduce that M is a disjoint union of copies of
P2, P3, P4, C4 or C5. C5 is impossible for the same reason seen in the previous case.
P3 is impossible because one endpoint of P3 would need to be of type [∗, 4, ∗, ∗], and
yet it would be at distance 2 from the other endpoint, a contradiction with the unique
isomorphic shape that is possible for N2(a) (two pairs of neighbors). P4 is impossible for
the following reason: let a1, a2, a3, a4 be the four consecutive points in P4. Then

N2(a2) = N2(a2) ∩ N2(a1)

= {a4} ∪ (N2(a2) ∩ N2(a3))

and, since N2(a1) and N2(a3) are disjoint, we deduce the contradiction |N2(a2)| = 1. A
totally similar argument also shows that C4 cannot be a subspace of M , which leaves us
with M being made up of 13 copies of P2, and thus every point in M is of type [1, 4, 10, 10].
However, since now (for any a ∈ M) N4(a) is a maximal eq-free {1, 2, 5}-space, M is forced
to contain copies of C5, which leads to a contradiction because we have already seen that
there is no place for C5 in M .

Theorem 20. There exist exactly two non-isomorphic (maximal) eq-free {1, 2, 3, 4}-spaces
with 32 points.

Proof. Assume that M is a 32-point eq-free {1, 2, 3, 4}-space. Given the bounds in The-
orems 2 and 11, the fact that (by Theorem 13) no point can be of type [∗, ∗, ∗, 11], and
type [2, 10, ∗, ∗] being outlawed by Lemma 18, the only types allowed for the points in M
are

[1, 10, 10, 10] and [2, 9, 10, 10] .

With this information in hand we can quickly zoom into the structure of M :
(A) M contains no cycles Cn (with n ≥ 3). This follows immediately from Lemma 18.
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(B) M contains no path Pm with m ≥ 3. The statement for m ≥ 4 is a corollary of
Lemma 18. If P3 = {a1, a2, a3} were a subset of M , we would see that a3 would be a
singleton inside N2(a1), but this would contradict the structure spelled out in Theorem
16 since a1 must be of type [1, 10, 10, 10], and thus N2(a1) must be a maximal eq-free
{1, 3, 4}-space.

It thus follows that M breaks down into 16 copies of P2, and it is immediate to see that
under these circumstances the two points belonging to the same P2 must share the same
distance from any other point in M . So, we could “collapse” each P2 into a single element
of a 16-point eq-free {2, 3, 4}-space: the resulting 16-point space can thus be considered a
complete graph whose edges have been colored with the colors 2, 3 and 4, and such that
no triangles have all sides of the same color. By the result of Kalbfleisch and Stanton [6]
(see also [8]) there are (up to isomorphism) exactly two ways to achieve this, each of these
two ways produces an isomorphically different maximal eq-free {1, 2, 3, 4}-space.

We conclude this paper with some inequalities that form a prelude for the study of the
asymptotics of the numbers Dn (which we hope will be the main topic of a future paper,
together with the analysis of the relationship with the so-called Schur numbers).

Lemma 12 is the special case m = 1 of the following Theorem:

Theorem 21. Suppose that M is a maximal eq-free {1, . . . , m}-space, and that N is a
maximal eq-free {1, . . . , n}-space. Then M ⊗ (N + m) is an eq-free {1, . . . , m + n}-space
(see Example 7 for a definition of ⊗). In particular, we have the inequality

Dm+n ≥ (Dm − 1)(Dn − 1) + 1 .

Proof. M and N being as in the statement, E := M ⊗ (N + m) clearly has distances in
the set {1, . . . , m + n}. We need to prove that it is an eq-free {1, . . . , m + n}-space. We
can think of E as N , where (1) every distance has been increased by m; (2) every point
has been replaced by an isometric copy of M ; and (3) the distance between two points
belonging to different copies of M is the same as the one between the two original points
from N + n. So, if we pick three points from E we distinguish between three cases:

(A) the three points belong to the same copy of M : then the triangle cannot be equilat-
eral, since M is assumed to be eq-free. Also, the triangle is metric because it lives
inside the original metric of M .

(B) two of the points (say, a and b) belong to the same copy of M , the third (say, c)
belongs to a different one: in this case d(a, b) ≤ m since M is a {1, . . . , m}-space,
while d(a, c) = d(b, c) ∈ {m + 1, . . . , m + n}, and so abc is not equilateral. As for
the triangle being metric, since d(a, c) = d(b, c) are the longer sides, we have no
problem here, either.

(C) the three points belong to three different copies of M : in this case the distances
are governed by the distance table of N + n, and so we cannot have an equilateral
triangle since N was assumed to be eq-free. The triangle is metric in this case,
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too, since the three sides have the lengths of an original triangle inside N , each
augmented by m, which only makes the triangle inequality even easier to satisfy.

E is thus shown to be an eq-free {1, . . . , m + n}-space, and so we must have Dm+n ≥
|E| + 1: the inequality follows easily.

Theorem 22. For all n ≥ 4 we have the inequality

Dn ≥ 1 + (Ddn
2
e−1 − 1)(Rbn

2
c+1 − 1) . (2)

We have D5 ≤ 95 and, for all n ≥ 6,

Dn ≤ 15 + dn/2eDn−1 +
(bn/2c∑

k=3

D2k−1

) − n . (3)

Proof. Inequality (2) is checked as follows: first consider an eq-free {dn
2
e, . . . , n}-space E

with Rbn
2
c+1−1 points (we used n−dn

2
e = bn

2
c): this is achieved by simply considering the

distances as colors, and noting that the triangle inequality doesn’t impose any restrictions
for this particular range of distances. On the other hand, let F be an eq-free {1, . . . , dn

2
e−

1}-space with Ddn
2
e−1−1 points: the space F ⊗E is easily seen to be an eq-free {1, . . . , n}-

space with (Ddn
2
e−1 − 1)(Rbn

2
c+1 − 1) points, proving (2).

To prove inequality (3) for n ≥ 5, we consider a maximal eq-free {1, . . . , n}-space M ,
and for a fixed a ∈ M we use the obvious |M | = 1 +

∑n
k=1 |Nk(a)| and estimate each

|Nk(a)| as follows: Lemma 18 implies that we must always have |N1(a)| + |N2(a)| ≤ 11.
Next, for 3 ≤ k ≤ bn/2c, we have

|Nk(a)| ≤ D[1, . . . , k − 1, k + 1, . . . , 2k] ≤ D2k−1

(because two points at distance k from a cannot be at distance more than 2k from each
other).

If k > bn/2c we use the estimate

|Nk(a)| ≤ D[1, . . . , k − 1, k + 1, . . . , n] ≤ Dn−1 .

This easily yields the inequality (3). If n = 5, we can improve on the above argument
because if a ∈ M is fixed, we have that N3(a) is a {1, 2, 4, 5}-space, and N4(a) is a
{1, 2, 3, 5}-space: Theorem 19 thus implies that |N3(a)| and |N4(a)| can never be greater
that 25. So, |M | can in this case be estimated by the sum 1+2+9+25+25+32 = 94.

Corollary 23. We have

81 ≤ D5 ≤ 95, 251 ≤ D6 ≤ 389, 551 ≤ D7 ≤ 1659 .

Proof. The lower estimates are a corollary of Theorem 22, while using the known results
R3 = 17 and R4 ≥ 51. The upper estimates follow readily from Theorem 22.
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Defining the sequence d3 := 12, d4 := 33, d5 := 95 and (for n ≥ 6)

dn := (bn/2c + 2) dn−1 − bn/2cdn−2 − 1 ,

we obtain a faster way to calculate the same estimates for Dn:

Dn ≤ dn .

It’s a standard calculus exercise to show that this implies the rough estimate Dn ≤
c(n + 4)!/2n (we leave the verification as an exercise, though we have serious doubts
about the usefulness of such sub-optimal estimates).

Finally, let us recall that the limit limn→∞ R
1/n
n exists (but not much more is known

except for this limit lying in the interval (3.19,∞]: see [2] for an early exposition, and
the recent paper [4] for what’s needed to prove the lower bound). It is easy to deduce

from Theorems 21 and 22 (and the trivial inequality Dn ≤ Rn) that the sequence (D
1/n
n )

converges, and
lim

n→∞
D1/n

n = lim
n→∞

R1/n
n .

So, any progress made on the asymptotics of the Dn numbers should be shedding light
on the classical Rn numbers as well. As already stated, the author is planning a further
study focusing on these issues.
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