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Abstract
We consider the Goldberg-Coxeter construction GCk,l(G0) (a generalization of

a simplicial subdivision of the dodecahedron considered in [Gold37] and [Cox71]),
which produces a plane graph from any 3- or 4-valent plane graph for integer param-
eters k, l. A zigzag in a plane graph is a circuit of edges, such that any two, but no
three, consecutive edges belong to the same face; a central circuit in a 4-valent plane
graph G is a circuit of edges, such that no two consecutive edges belong to the same
face. We study the zigzag (or central circuit) structure of the resulting graph using
the algebraic formalism of the moving group, the (k, l)-product and a finite index
subgroup of SL2(Z), whose elements preserve the above structure. We also study
the intersection pattern of zigzags (or central circuits) of GCk,l(G0) and consider its
projections, obtained by removing all but one zigzags (or central circuits).

Key words. Plane graphs, polyhedra, zigzags, central circuits.

1 Introduction

As initial graph G0 for the Goldberg-Coxeter construction, we consider mainly:
(i) 3- and 4-valent 1-skeleton of Platonic and semiregular polyhedra, prisms and

antiprisms (see Table 1),
(ii) 3-valent graphs related to fullerenes and other chemically-relevant polyhedra,
(iii) 4-valent plane graphs, which are minimal projections for some interesting alter-

nating links; those links are denoted according to Rolfsen’s notation [Rol76] (see also, for
example, [Kaw96]).

∗Research financed by EC’s IHRP Programme, within the Research Training Network “Algebraic
Combinatorics in Europe,” grant HPRN-CT-2001-00272.

the electronic journal of combinatorics 11 (2004), #R20 1



name |Mov(G0)| reference
Tetrahedron 4 Theorem 6.5
Cube 12 Theorem 6.5, Theorem 6.7,

Proposition 7.4 and Conjecture 7.7
Dodecahedron 60 Theorem 6.5, Proposition 7.4

and Conjecture 7.7
Octahedron 24 Theorem 6.5, Theorem 6.7

and Proposition 7.4
Cuboctahedron 576 = GC1,1(Octahedron)
Icosidodecahedron 7200 Conjecture 6.9
trunc. Tetrahedron 12 = GC1,1(Tetrahedron)
trunc. Octahedron 576 = GC1,1(Cube)
trunc. Cube 20736 Theorem 6.7
trunc. Icosahedron 648000 = GC1,1(Dodecahedron)
trunc. Dodecahedron 648000 Theorem 6.7
Rhombicuboctahedron 165888 = GC2,0(Octahedron)
Rhombicosidodecahedron 51840000 = GC1,1(Icosidodecahedron)
trunc. Cuboctahedron 1327104 Theorem 6.7
trunc. Icosidodecahedron 139968000000 Conjecture 6.9
Prismm 12( m

gcd(m,4))
3 Conjecture 6.11

APrismm
24

gcd(m,2) (
m

gcd(m,3))
3 Conjecture 6.12

Table 1: The Goldberg-Coxeter construction from 3 or 4-valent regular and semiregular
polyhedra

The group of all rotations, preserving a plane graph G, will be denoted by Rot(G);
it is a subgroup of index 1 or 2 of the full automorphism group Aut(G). For 3-connected
plane graphs without 2-gonal faces, the following theorem of Mani ([Mani71], a refinement
of Steinitz’s theorem [Ste16], see also [Grün67]) is useful: the symmetry group (i.e. auto-
morphism group) of a graph can be realized as the point group of a convex polyhedron,
having this graph as the skeleton, and so, it can be identified with this point group. In
the presence of 2-gonal faces (i.e. multiple edges), one cannot speak of convex polyhedra;
however, for the graphs with 2-gonal faces, considered in this paper, one can still identify
the symmetry group of the graph with a point group.

We consider here plane graphs with restrictions on their valency (namely, having
valency 3 or 4) and face sizes. It turns out, that some classes of such graphs with maximal
symmetry can be described in terms of what we call the Goldberg-Coxeter construction
GCk,l(G0) with G0 being the initial graph (see Section 5). Since the Goldberg-Coxeter
construction will concern only 3- and 4-valent plane graphs, there are two cases, whose
main features are depicted in Table 2.

A zigzag in a 3-valent plane graph is a circuit (possibly, with self-intersections) of
edges, such that any two, but no three, consecutive edges belong to the same face. A
central circuit in a 4-valent plane graph is a circuit of edges, such that no two consecutive
edges belong to the same face. Many results for 3- and 4-valent graphs will be similar;
in such case we will use general notion of “either zigzag, or central circuit” and call it
ZC-circuit.
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3-valent graph G0 4-valent graph G0

lattice root lattice A2 square lattice Z
2

ring Eisenstein integers Z[ω] Gaussian integers Z[i]
t(k, l) k2 + kl + l2 k2 + l2

Euler formula
∑

i(6− i)pi = 12
∑

i(4− i)pi = 8
zero-curvature hexagons squares

ZC-circuits zigzags central circuits
case k = l = 1 leapfrog graph medial graph

Table 2: Main features of GC-construction

Figure 1: A zigzag in Klein map {37} and Dyck map {38}

A road in a 3- or 4-valent plane graph is a non-extendible sequence (possibly, with
self-intersections) of either hexagonal faces or of square faces, such that any non-end face
is adjacent to its neighbors on opposite edges. If the sequence stops on a non-hexagon
or, respectively, a non-square face, then it is called a pseudo-road; otherwise, it is called a
railroad and it is a circuit by finiteness of the graph. A graph without railroads is called
tight; in other words, every ZC-circuit of a tight graph is incident on each, the left and
right side, to at least one non-hexagonal or, respectively, non-square face (in [DeSt03] and
[DDS03] the term “irreducible” was used instead of “tight”).

Those notions can be also defined for maps on orientable surfaces; see, for example,
on Figure 1 a zigzag for the Klein map {37} and the Dyck map {38}, which are dual
triangulations for such 3-valent maps. The notion of zigzag (respectively, central circuit)
is used here in 3-valent (respectively, 4-valent) case, but they can be defined on any
plane graph (respectively, Eulerian plane graph). Moreover, the notion of zigzag extends
naturally to infinite plane graphs and to higher dimension (see [DeDu04]).

For any plane graph G the dual graph G∗ is the graph with vertex-set being the set
of faces of G and two faces being adjacent if they share an edge of G.

Definition 1.1 A ZC circuit with an orientation will be denoted by
−→
ZC.

(i) Let Z and Z ′ be two (possibly, identical) zigzags of a plane graph and let an
orientation be selected on them. An edge e of intersection is called of type I or type II, if
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Z and Z ′ traverse it in opposite or same direction, respectively (see picture below).

Type  I Type  II

ee

Z ′Z
Z Z ′

The intersection I(
−→
Z ,
−→
Z ′) of two zigzags Z and Z ′ with an orientation fixed on them,

is the pair (α1, α2), where α1, α2 are, respectively, the numbers of edges of intersection of

type I, type II, respectively, between
−→
Z and

−→
Z ′. If Z = Z ′, then the type of intersection

is independent of the chosen orientation; hence, the intersection of Z with itself, which
we will call its signature is well-defined.

(ii) Let G be a 4-valent plane graph and denote by C1, C2 a bipartition of the face-set
of G (it exists, since G∗ is bipartite). Let C and C ′ be two (possibly, identical) central
circuits of G and let an orientation be selected on them. A vertex v of the intersection
between C and C ′ is contained in two faces, say, F and F ′, of C1. The vertex v is incident
to two edges of F , say, e1 and e2, and to two edges of F ′, say, e′1 and e′2. If e1 and e2

have both arrows pointing to the vertex or both arrows pointing out of the vertex, then e′1
and e′2 are in the same case. The type of the vertex v, relatively to the pair (C1, C2), is
said to be I in this case and II, otherwise.

Type  I

C C ′

F

Type II

F ′

e1
e′1

e2 e′2

v

e2 e′2

e′1
e1

F F ′
v

C C ′

If one interchanges C1 and C2, while keeping the same orientation, then the types

of intersection of vertices are interchanged. The intersection IC1,C2(
−→
C ,
−→
C ′) of two central

circuits C and C ′, with an orientation fixed on them, is the pair (α1, α2), where α1, α2

are, respectively, the numbers of vertices of the intersection between C and C ′ of type I,
II, respectively, relatively to C1, C2.

If C = C ′, then the type of intersection is independent of the chosen orientation;
hence, the intersection of C with itself, which we will call its signature, relatively to C1,
C2 is well-defined.

Since interchanging C1 and C2 interchanges α1 and α2, there is an ambiguity in the
definition of α1 and α2, which can be resolved either by specifying C1 or if not precised by
requiring α1 ≥ α2.

For any 3-valent plane graph G, the leapfrog of G is defined to be the truncation of
G∗ (see [FoMa95]).
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10-2 (C2v) 10-3 (C3v) 12-6 (C2v) 14-21 (C2) 14-23 (Cs) 14-24 (C2v)

Figure 2: Some z-uniform 3-valent graphs with their symmetry group

The medial graph of a plane graph G, denoted by Med(G), is defined by taking,
as vertex-set, the set of edges of G with two edges being adjacent if they share a vertex
and belong to the same face of G. Med(G) is 4-valent and its central circuits C1, . . . , Cp

correspond to zigzags Z1, . . . , Zp of G. Moreover, an orientation of a zigzag Zi induces an
orientation of a central circuit Ci. The set of faces of Med(G) corresponds to the set of
vertices and faces of G. If one takes C1 (respectively, C2) to be the set of faces of Med(G)
corresponding to faces (respectively, vertices) of G, then (if we keep the same orientation)
the intersection numbers of Ci and Cj are the same as the intersection numbers of Zi and
Zj.

The z-vector (or CC-vector) of a graph G is the vector enumerating lengths, i.e. the
numbers of edges, of all its zigzags (or, respectively, central circuits) with their signature
as subscript. The simple ZC-circuits are put in the beginning, in non-decreasing order of
length, without their signature (0, 0), and separated by a semicolon from others. The self-
intersecting ones are also ordered by non-decreasing lengths. If there are m > 1 ZC-circuits
of the same length l and the same signature (α1, α2), then we write lm if α1 = α2 = 0
and lmα1,α2

, otherwise. For a ZC-circuit ZC, its intersection vector (α1, α2); . . . , c
mk
k , . . . is

such that . . . , ck, . . . is an increasing sequence of sizes of its intersection with all other
ZC-circuits, while mk denote respective multiplicity. Given a 3-valent plane graph G0, its
z-vector is equal to the CC-vector of Med(G0).

A 3- or 4-valent graph is called ZC-uniform if all its ZC-circuits have the same length
and the same signature. In ZC-uniform case, the length of each of the r central circuits
(respectively, zigzags) is 2n

r
(respectively, 3n

r
). For example, for G = GC4,1(Prism12), it

holds z = 846; 8412
2,0; so, it is not z-uniform. A graph is called ZC-transitive if its symmetry

group acts transitively on ZC-circuits; clearly, ZC-transitivity implies ZC-uniformity. A
graph is called ZC-knotted if it has only one ZC-circuit; a graph is called ZC-balanced if all
its ZC-circuits of the same length and same signature, have identical intersection vectors.
We do not know example of a ZC-uniform, but not ZC-balanced, graph. For example,
amongst the graphs GCk,l(G0 = 10-2), the first z-unbalanced one occurs for (k, l) = (7, 1).
The only graphs G0, which are 3-valent, z-uniform, have at most 14 vertices and such
that their leapfrog GC1,1(G0) are not z-balanced, are Nr.12-6, 14-21, 14-23 and 14-24 on
Figure 2.

Above and below we denote by x-y the 3-valent plane graph with x vertices, which
appear in y-position, when one uses the generation program Plantri (see [BrMK]); see,
for example, Figure 2.

Table 3 present the graphs GCk,l(G0), which are considered in this paper. In this
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Table, r denotes the number of ZC-circuits in GCk,l(G0). The case (k, l) = (1, 0) corre-
sponds to the initial graph G0. The columns 1–4 give, respectively, the class of graphs,
valency d, p-vector (i.e. one enumerating the numbers pi of i-gonal faces) and all real-
izable symmetry groups for the graphs GCk,l(G0). The case k = l = 1 corresponds to
the medial graph for 4- and to the leapfrog graph for 3-valent case. The column “r if I”
represents the number (conjectured or proved) r of ZC-circuits in the case k ≡ l (mod 3)
(for valency 3) or (for valency 4) k ≡ l (mod 2), while the column “r if II” represents the
remaining case.

Given a graph G, denote by Mov(G) the permutation group on the set of directed
edges, which is generated by two basic permutations, called left L and right R; Mov(G)
is called the moving group of G. Directed edges are edges of G∗

0 with prescribed direc-
tion. We will associate to every pair (k, l) of integers an element of this moving group,
which we call (k, l)-product of basic permutations, and which encodes the lengths of the
ZC-circuits of GCk,l(G0). For k = l = 1, this (k, l)-product is, actually, ordinary product
in the group Mov(G0). Take a ZC-circuit of GCk,l(G0) and fix an orientation on it. It
will cross some edges of G∗

0. For any directed edge −→e of oriented ZC-circuit, there are
exactly two possible successors L(−→e ) and R(−→e ); it is clear for zigzags in 3-valent graph
G0, but for central circuits in 4-valent, it will be obtained from algebraic considerations.
The k + l successive left and right choices will define the (k, l)-product. In some cases,
the knowledge of normal subgroups of Mov(G0) will allow an exact computation of the
z-vector of GCk,l(G0) in terms of congruences valid for numbers (k, l). On the other hand,
Theorem 4.7 gives a characterization of the graphs G for which Mov(G) is an Abelian
group.

Two-faced (i.e. having only p- and q-gonal faces, 2 ≤ q < p) 3- and 4-valent
plane graphs are studied, for example, in [DeGr01], [DeGr99], [DDF02], [De02], [DeDu02],
[DeSt03], [DDS03], [DHL02], for which this work is a follow-up.

Denote by qn the class of 3-valent plane graphs having only 6-gonal and q-gonal
faces. Euler formula

∑
i≥1(6 − i)pi = 12 for the p-vector of any 3-valent plane graph

implies, that the classes 2n, 3n, 4n and 5n have, respectively, three, four, six and twelve
q-gonal faces. 5n are, actually, the fullerenes, well known in Organic Chemistry (see, for
example, [FoMa95]).

Call an i-hedrite any plane 4-valent graph, such that the number pj of its j-gonal
faces is zero for any j, different from 2, 3 and 4, and such that p2 = 8− i. So, an n-vertex
i-hedrite has (p2, p3, p4) = (8− i, 2i− 8, n + 2− i). Clearly, (i; p2, p3) = (8; 0, 8), (7; 1, 6),
(6; 2, 4), (5; 3, 2) and (4; 4, 0) are all possibilities.

The Bundle is defined as plane 3-valent graph consisting of two vertices with three
edges connecting them. A Foilm is defined as plane 4-valent graph consisting of a m-gon
with each edge replaced by a 2-gon; its CC-vector is 2m, if m is odd, and m2, if m is
even. The medial graph of Foilm is Prismm, in which m edges, connecting two m-gons,
are replaced by 2-gons; its CC-vector is 4m. Clearly, for m = 2, 3 and 4, Foilm are
(projections of links) 22

1, Trefoil 31 and 42
1 (see Figure 3).
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Class d p-vector Groups (k, l) = (1, 0) (k, l) = (1, 1) r if I r if II

2n 3 p2 = 3, p6 all D3, D3h Bundle tr.Triangle 3 1
3n 3 p3 = 4, p6 all T , Td Tetrah. tr.Tetrahed. 3 3
4n 3 p4 = 6, p6 all O, Oh Cube tr.Octahed. 6 4
5n 3 p5 = 12, p6 all I, Ih Dodecah. tr.Icosahed. 6, 10, 15

GPm 3
p4 = m, pm = 2,

p6 (m 6= 2, 4)
all Dm, Dmh Prismm tr.Prism∗

m Conj.6.11

4
p3 = 2m, pm = 2,

p4 (m 6= 3)
some Dm, Dmd APrismm Med(APrismm) Conj.6.12

8-hed. 4 p3 = 8, p4 all O, Oh Octahed. Cuboctahed. 4 3, 6
4-hed. 4 p2 = 4, p4 all D4, D4h Foil2 Foil4 2 2

6-hed. 4
p2 = 2, p3 = 4,

p4
some D2d, D2 41 Med(41) = 82

14 2, 4 1, 3

7-hed. 4
p2 = 1, p3 = 6,

p4
some C2, C2v 72

6 Med(72
6) 3, 5, 7 1, 2, 3, 5

5-hed. 4
p2 = 3, p3 = 2,

p4
all D3, D3h Trefoil 31 Med(31) = 63

1 3 1

Table 3: Main series of considered graphs GCk,l(G0)

22
1(D4h) 31(D3h) 41(D2d) 42

1(D4h) 63
1(D3h) 72

6(C2v) 82
14(C2v)

Figure 3: Minimal plane projections of some alternating links with their symmetry groups
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2 The complex rings Z[ω] and Z[i]

The root lattice A2 is defined by A2 = {x ∈ Z
3 : x0 + x1 + x2 = 0}. The square lattice is

denoted by Z
2.

The ring Z[ω], where ω = e
2π
6

i = 1
2
(1 + i

√
3) of Eisenstein integers consists of the

complex numbers z = k + lω with k, l ∈ Z (see also [HaWr96], where ω is replaced by ρ).
The norm of such z is denoted by N(z) = zz = k2 + kl + l2 and we will use the notation
t(k, l) = k2 + kl + l2. If one identifies x = (x1, x2, x3) ∈ A2 with the Eisenstein integer
z = x1 + x2ω, then it holds 2N(z) = ‖x‖2.

One has Z
2 = Z[i], where Z[i] consists of the complex numbers z = k + li with

k, l ∈ Z. The norm of such z is denoted by N(z) = zz = k2 + l2 and we will use the
notation t(k, l) = k2 + l2.

Two Eisenstein or two Gaussian integers z and z′ are called associated if the quotient
z
z′ is an Eisenstein unit (i.e. ωk with 0 ≤ k ≤ 5; namely, 1, ω, ω2, −1, −ω, −ω2) or a

Gaussian unit (i.e. ik with 0 ≤ k ≤ 3; namely, 1, i, −1, −i). They are called C-associated
if one of the quotients z

z′ ,
z
z′ is an Eisenstein or Gaussian unit. Every Eisenstein or

Gaussian integer is associated (respectively, C-associated) to k + lω or k + li, respectively,
with k, l ≥ 0 (respectively, 0 ≤ l ≤ k).

The lattices A2 and Z
2 correspond to regular partitions of the plane into regular

triangles and squares, respectively. The skeletons of those partitions are infinite graphs;
their shortest path metrics are called (in Robot Vision) the hexagonal distance and 4-
distance. (The 4-distance is, in fact, a l1-metric on Z

2.) If k, l ≥ 0, then the shortest path
distance between 0 and k + lω (or, respectively, k + li) is k + l.

Thurston ([Thur98]) developed a global theory of parameter space for sphere trian-
gulations with valency of vertices at most 6. Clearly, our 3-valent two-faced plane graphs
qn are covered by Thurston consideration. Let s denote the number of vertices of valency
less than 6; such vertices reflect positive curvature of the triangulation of the sphere S2.
Thurston has built a parameter space with s− 2 degrees of freedom (complex numbers).
If we restrict ourselves to some particular symmetries of plane graphs, then it restricts the
number of parameters needed for a characterization. General fullerenes have 10 degrees
of freedom, while those with symmetry I or Ih have just one degree of freedom.

For example, in [FoCrSt87] the fullerenes 5n with symmetry D5, D6, T were de-
scribed by two complex parameters (or, in other words, by four integer parameters).

We believe, that the hypothesis on valency of vertices (in dual terms, that the graph
has no q-gonal faces with q > 6) in [Thur98] is unnecessary to his theory of parameter
space. Also, we think, that his theory can be extended to the case of quadrangulations
instead of triangulations.

In this paper, we focus mainly on the classes of plane graphs, which can be para-
metrized by one complex parameter, namely, by k + lω or k + li. For those classes, the
GC-construction, defined below, fully describes them.

Remark 2.1 (i) A natural number n =
∏

i p
αi
i admits a representation n = k2 + l2 or

n = k2 + kl + l2 if and only if any αi is even, whenever pi ≡ 3(mod 4) (Fermat Theorem)
or, respectively, pi ≡ 2 (mod 3) (see, for example, [CoGu96] and [Con03]).
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3−valent case 4−valent case

k = 5

l = 2
l = 2

1 2
6

7

1 2 3 4 5
6
7

3 4 5

ZC∗

ZC∗

k = 5

Figure 4: The master polygon and an oriented ZC-circuit for parameters k = 5, l = 2

(ii) One can have t(k, l) = t(k′, l′) with corresponding complex numbers z, z′ not
being C-associated. First cases with gcd(k, l) = gcd(k′, l′) = 1 are 91 = 62 + 6× 5 + 52 =
92 + 9 + 12 and 65 = 82 + 12 = 72 + 42.

3 The Goldberg-Coxeter construction

First consider the 3-valent case. By duality, every 3-valent plane graph G0 can be trans-
formed into a triangulation, i.e. into a plane graph whose faces are triangles only. The
Goldberg-Coxeter construction with parameters k and l consists of subdividing every
triangle of this triangulation into another set of faces according to Figure 4, which is
defined by two integer parameters k, l. One can see that the obtained faces, if they are
not triangles, can be glued with other non-triangle faces (coming from the subdivision of
neighboring triangles) in order to form triangles; so, we end up with a new triangulation.

The triangle of Figure 4 has area A(k2 + kl + l2) if A is the area of a small triangle.
By transforming every triangle of the initial triangulation in such way and gluing them,
one obtains another triangulation, which we identify with a (dual) 3-valent plane graph
and denote by GCk,l(G0). The number of vertices of GCk,l(G0) (if the initial graph G0

has n vertices) is nt(k, l) with t(k, l) = k2 + kl + l2.
For a 4-valent plane graph G0, the duality operation transforms it into a quadrangu-

lation and this initial quadrangulation is subdivided according to Figure 4, which is also
defined by two integer parameters k, l. After merging the obtained non-square faces, one
gets another quadrangulation and the duality operation yields graph GCk,l(G0) having
nt(k, l) vertices with t(k, l) = k2 + l2.

In both 3- or 4-valent case, the faces of G0 correspond to some faces of GCk,l(G0)
(see Figure 6 and 11). If t(k, l) > 1, then those faces are not adjacent.

The family GCk,l(Dodecahedron) consists of all 5n having symmetry Ih or I (see
[Gold37], [Cox71] and Theorem 5.2). There is large body of literature, where such icosa-
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(k, l) symmetry capsid of virion
(1, 0) Ih gemini virus
(1, 1) Ih turnip yellow mosaic virus
(2, 0) Ih hepathite B
(2, 1) I, laevo HK97, rabbit papilloma virus
(1, 2) I, dextro human wart virus
(3, 1) I, laevo rotavirus
(4, 0) Ih herpes virus, varicella
(5, 0) Ih adenovirus
(6, 0) Ih HTLV-1
(6, 3)? I, laevo HIV-1
(7, 7)? Ih iridovirus

Table 4: Some capsides of viruses having form of icosahedral dual 5n, n = 20t(k, l)

hedral fullerenes appear as Fuller-inspired geodesic domes (in Architecture) and virus
capsides (protein coats of virions, see [CaKl62]); see, for a survey, [Cox71] and [DDG98].
The Goldberg-Coxeter construction is also used in numerical analysis, i.e. for obtaining
good triangulations of the sphere (see, for example [Slo99], [ScSw95]). In Table 4 are listed
some examples illustrating present knowledge in this area; in Virology, the number t(k, l)
(used for icosahedral fullerenes) is called triangulation number. In terms of Buckminster
Fuller, the number k + l is called frequency, the case l = 0 is called Alternate, and the
case l = k is called Triacon. He also called the GC-construction Breakdown of the initial
plane graph G0.

We will say, that a face has gonality q if it has q sides. A q-gonal face of a 3- (or
4-valent) graph G0 is called of positive, zero, negative curvature if q < 6 (or 4), q = 6
(or 4), q > 6 (or 4), respectively, according to the following Euler formula (a discrete
analogue of the Gauss-Bonnet formula for surfaces) for 3- or 4-valent plane graphs:∑

i≥1

(6− i)pi = 12 or
∑
i≥1

(4− i)pi = 8, respectively.

Proposition 3.1 Let G0 be a 3- or 4-valent plane graph and denote the graph GCk,l(G0)
also by GCz(G0), where z = k + lω or z = k + li in 3- or 4-valent case, respectively. The
following hold:

(i) GCz(GCz′(G0)) = GCzz′(G0).
(ii) If z and z′ are two associated Eisenstein or Gaussian integers, then GCz(G0) =

GCz′(G0).
(iii) GCz(G0) = GCz(G0), where G0 denotes the plane graph, which differ from

G0 only by a plane symmetry; if G0 = G0 (i.e. Rot(G0) 6= Aut(G0)) and z, z′ are two
C-associated Eisenstein or Gaussian integers, then GCz(G0) = GCz′(G0).

(iv) If G0 has no faces of zero curvature and if GCk,l(G0) = GCk′,l′(G0) with 0 ≤
l ≤ k and 0 ≤ l′ ≤ k′, then (k, l) = (k′, l′).
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Figure 5: Chamfering seen locally

Figure 6: Chamfering GC2,0(G0) for G0 being Tetrahedron, Cube and Dodecahedron

Proof. (i) follows from the basic construction depicted in Figure 4, which is extended
globally. (ii) also follows from this basic picture. Let G0 be a 3-valent plane graph, such
that GCk,l(G0) = GCk′,l′(G0). Because of the equality for the numbers of vertices, one
obtains t(k, l) = t(k′, l′). The minimum distance between two faces of non-zero curvature
in GCk,l(G0) is k + l; therefore, k + l = k′ + l′. If one writes v = k′ − k, then k′ = k + v
and l′ = l−v. The equality t(k, l) = t(k′, l′) yields v(k− l)+v2 = 0 and so, (k′, l′) is (k, l)
or (l, k). Only first case is possible. The 4-valent case can be treated in a similar way. 2

In particular, the condition k ≡ l (mod 3) means, that the Eisenstein integer k+lω is
factorizable by 1+ω, i.e. by the complex number corresponding to the leapfrog operation,
GC1,1. The condition k ≡ l (mod 2) means, that the Gaussian integer k+li is factorizable
by 1 + i, i.e. by the complex number corresponding to the medial operation, GC1,1. Note
that k ≡ l (mod 2) is equivalent to t(k, l) = (k − l)2 + 2kl being even and k ≡ l (mod 3)
is equivalent to t(k, l) = (k − l)2 + 3kl being divisible by three.

The above Proposition implies, that we can consider only the case 0 ≤ l ≤ k in
computations, since all considered graphs have a symmetry plane.

If l = 0, then GCk,l(G0) is called k-inflation of G0. For k = 2, l = 0, it is called
chamfering of G0 (because Goldberg called the result of his construction for (k, l) = (2, 0)
on the Dodecahedron, chamfered dodecahedron, see Figure 5). Another case, interesting
for Chemistry, is Capra i.e., GC2,1 (see [Diu03]). All symmetries are preserved if l = 0
or l = k, while only rotational symmetries are preserved if 0 < l < k. The Goldberg-
Coxeter construction can be also defined, similarly, for maps on orientable surfaces. While
the notions of medial, leapfrog and k-inflation go over for non-orientable surfaces, the
Goldberg-Coxeter construction is not defined on a non-orientable surface.

The Goldberg-Coxeter construction for 3- or 4-valent plane graphs can be seen, in
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algebraic terms, as the scalar multiplication by Eisenstein or Gaussian integers in the
parameter space (see [Sah94]). More precisely, GCk,l corresponds to multiplication by
complex number k + lω or k + li in the 3- or 4-valent case, respectively.

In Proposition 3.2 and 3.3, we consider the ZC-structure of GCk,0(G0), i.e. of k-
inflation of G0, in terms of the ZC-structure of G0 (See example G0 = Trefoil in Figure
11).

Proposition 3.2 Let G0 be a 3-valent plane graph with zigzags Z1, . . . , Zp. Choose an
orientation on every zigzag.

Let G′ be the k-inflation of G0. The graph G′ has kp zigzags Zi,j with 1 ≤ i ≤ p
and 1 ≤ j ≤ k; the length of every Zi,j is k times the length of Zi. The orientation on Zi

induces an orientation on k zigzags (Zi,j)1≤j≤k.
The intersection between Zi,j and Zi′,j′ is equal to the intersection between Zi and

Zi′, to twice the self-intersection of Zi, or to the self-intersection of Zi, respectively, if
i 6= i′, i = i and j 6= j′, or i = i′ and j = j′, respectively.

In particular, if the z-vector of G0 is . . . , cnv
v , . . . ; . . . , dv

mv
αv1,αv2

, . . . , then the z-vector

of G′ is . . . , kcknv
v , . . . ; . . . , kdv

kmv
αv1,αv2

, . . . .

If the intersection vector of Zi is (ai, bi); i
p1
1 , . . . , i

pq
q , then the intersection vector of

Zi,j is (ai, bi); i
kp1

1 , . . . , i
kpq
q , (2ai + 2bi)

k−1.

Proof. Let us consider the 3-valent case. The z-structure of G∗
0 differs from the one of

G0 only by reversal of type I and type II. The local structure of zigzags changes according
to the rule, which is exemplified by the picture below for the case k = 2.

This local picture can be extended to whole graph and we get kp zigzags. The
statement about intersections follows easily. 2

The 4-valent case is much more complicate. Take a bipartition C1, C2 of the face-set
of a 4-valent plane graph G0. This face-set corresponds to a subset of the face-set of
GCk,0. The graph (GCk,0(G0))

∗ is bipartite also; if k is even, then faces corresponding to
C1 and C2 in GCk,0(G0), are in the same part, while if k is odd, then they are in different
parts (see Figure 7 for an example). By convention, we take a bipartition C′1, C′2 of the
face-set of GCk,0(G0), such that C′1 contains C1 (and also C2, if k is even).

For a 4-valent plane graph G0, the graph GCk,0(G0) coincides with the k-inflation
defined in [DeSt03] and [DDS03].

Proposition 3.3 Let G0 be a 4-valent plane graph with central circuits C1, . . . , Cp.
Choose an orientation on every central circuit

Let G′ be the k-inflation of G0. Choose the bipartition C′1, C′2 of the faces of G′

according to the above rule. The graph G′ has kp central circuits Ci,j with 1 ≤ i ≤ p and
1 ≤ j ≤ k; the length of every circuit Ci,j is k times the length of Ci.

We define now the orientation on the circuits Ci,j in the following way:
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• If 1 ≤ j ≤ k − 1, then Ci,j is oriented in the opposite way of Ci,j+1.

• If k is odd, then the central circuits Ci,1 and Ci,k are oriented in the same direction
as the central circuit Ci.

• If k is even, then there exist an orientation of all Ci,j, such that all intersections
are of type II.

With this orientation one obtains that, if the intersection between Ci and Ci′ is
(α1, α2) and i 6= i′, then the intersection between Ci,j and Ci′,j′ is equal to (α1, α2) if k
is odd and to (0, α1 + α2) if k is even. If the self-intersection of Ci is equal to (α1, α2),
then the self-intersection of Ci,j is (α1, α2), (0, α1 + α2) if k is odd, even, respectively,
while the intersection between Ci,j and Ci,j′ is (2α1, 2α2), (0, 2α1 + 2α2) if k is odd, even,
respectively.

In particular, if the CC-vector of G0 is . . . , cnv
v , . . . ; . . . , dv

mv
αv1,αv2

, . . . , then the CC-

vector of G′ is . . . , kcknv
v , . . . ; . . . , kdv

kmv
αv1,αv2

, . . . .

If the intersection vector of Ci is (ai, bi); i
p1
1 , . . . , i

pq
q , then the intersection vector of

Ci,j is Ii; i
kp1

1 , . . . , i
kpq
q , (2ai + 2bi)

k−1 with Ii = (0, ai + bi) if k is even and Ii,i = (ai, bi),
otherwise.

Proof. By definition of the k-inflation in [DDS03], every central circuit Ci of G0 corre-
sponds to k central circuits of GCk,0(G0).

If k is odd, then the central circuits Ci,1 and Ci,k have the orientation of Ci; hence,
their pairwise intersection is the same. It is easy to see that the convention of orienting
Ci,j+1 in reverse to Ci,j, together with the “chess-like” structure of the bipartition C′1, C′2,
ensures that the intersection between Ci,j and Ci′,j′ is independent of j and j′.

The case of k even is more difficult. Every central circuit Ci corresponds to a set
Ci,1, . . . , Ci,k of central circuits. By choosing the orientation of Ci,1, one can assume
that it is incident to faces of C1, C2 on the left only. The vertices of the intersection
between two (possibly, identical) central circuits Ci,1 and Ci′,1 belong to faces of C1 or C2.
By the orientation convention, the intersection between Ci,1 and Ci′,1 are of type II. By
the opposition of orientation between Ci,j and Ci,j+1, the type of vertices of intersection
between Ci,j and Ci′,j′ is independent of j and j′. In particular, Ci,k will also be incident
on the left only to faces of C1 and C2.

The result on intersection vector follow easily. 2

The chosen orientation is necessary for obtaining the above result on intersection
vectors; see Figure 7 for an illustration of this point.

4 The moving group and the (k, l)-product

Given a group Γ acting on a set X, the stabilizer (also called isotropy group) of an element
x ∈ X is the set of elements g ∈ Γ, such that gx = x. The action is called transitive if for
every x, y ∈ X there exist an element g ∈ Γ, such that gx = y. The order of an element
u ∈ Γ is the smallest integer s > 0, such that us = Id. The action is called free if the
stabilizer of each element of X is trivial.
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Figure 7: Two central circuits C1, C2 in Octahedron and C1,1, (C2,i)1≤i≤k in
GCk,0(Octahedron) for k = 2, 3
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Figure 8: The position mapping PM(G0)

Lemma 4.1 If k, l ≥ 0, then the mapping


φk,l : {1, . . . , k + l} → {1, . . . , k + l}
u 7→

{
u + l if u ∈ {1, . . . , k}
u− k if u ∈ {k + 1, . . . , k + l}

is bijective and periodic with period k + l; moreover, the successive images of any x ∈
{1, . . . , k + l} cover entirely the set {1, . . . , k + l} of integers.

Proof. If one takes addition modulo k + l, then one can write φk,l(u) = u + l; the lemma
follows. 2

Let G0 be a 3- or 4-valent graph. We call master polygon a triangle or a square face
of G∗

0 (see Figure 4). A directed edge is an edge of a master polygon with a fixed direction;
the set of directed edges is denoted by DE . Given a directed edge −→e , its reverse (i.e. the
one with the same vertices, but opposite direction) is denoted by ←−e .

Any ZC-circuit ZC of GCk,l(G0), with an orientation, corresponds to a zigzag or a
railroad of the dual G∗

0, which we denote ZC∗. If some edges of ZC∗ belong to a master
polygon, then the orientation of ZC∗ determines an entering edge and this entering edge
is canonically oriented by ZC∗ (see Figure 4).

If −→e is a directed edge and ZC∗ go across −→e , then the position p of ZC∗, relatively
to −→e , is defined as the number of the edge, contained in ZC∗, as numbered in Figure 4;
the position of the circuit ZC∗, drawn in Figure 4, is 3. The directed edge, together with
its position, determines the circuit ZC∗ and its orientation.

Take a circuit ZC∗ and a pair (−→e , p) with −→e being a directed edge and p being
the position of ZC∗. The directed edge −→e determines a master polygon P , and the next
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master polygon P ′ (to which ZC∗ belongs) determines a pair (−→e ′, p′). The following
equation is a key to all construction that follows:

p′ = φk,l(p) .

This equation can be checked on Figure 8 by examining all cases.
The mapping (−→e , p) 7→ (−→e ′, p′) is called the position mapping and denoted by

PM(G0).
Since the function φk,l is (k + l)-periodic by Lemma 4.1, one obtains, for any (−→e , p),

the relation PM(G0)
k+l(−→e , p) = (−→e ′′, p) with −→e ′′ ∈ DE ; let us call iterated p-position

mapping and denote by IPMp(G0, k, l) the function{
IPMp(G0, k, l) : DE → DE−→e 7→ −→e ′ .

Given a circuit ZC∗, let (−→e , 1) be a possible pair of it. Call the order of ZC∗ and
denote by Ord(ZC) the smallest integer s, such that IPM1(G0, k, l)s−→e = −→e .

Theorem 4.2 If G0 is a 3- or 4-valent plane graph without faces of zero curvature and
gcd(k, l) = 1, then GCk,l(G0) is tight.

Proof. Take a ZC-circuit ZC of GCk,l(G0). The successive pairs of ZC are denoted by
(−→e1, p1), . . . , (−→eM , pM) with M = (k + l)Ord(ZC). By the computations done above,
pi+1 = φk,l(pi).

By Lemma 4.1, there exist i0 and i1, such that pi0 = 1 and pi1 = k + l. First case
corresponds to an incidence on the left to a face of non-zero curvature, while the second
case corresponds to an incidence on the right. 2

Remark 4.3 If amongst faces of G0 there is one of zero curvature, then, in general,
GCk,l(G0) is not tight if gcd(k, l) = 1. For the case of G0 = Prism6, we expect, that
GCk,l(G0) is tight if and only if gcd(k, l) = 1.

Definition 4.4 Let G0 be a 3- or 4-valent plane graph.
(i) In 3-valent case, define two mappings L and R, which associate to a given directed

edge −→e ∈ DE the directed edges L(−→e ) and R(−→e ), according to Figure 9.
(ii) In 4-valent case, define the mappings g1, g2 and g3, which associate to a given

directed edge −→e ∈ DE the directed edges g1(
−→e ), g2(

−→e ) and g3(
−→e ), according to Figure 9.

Also define L = g1 and R = g3 ◦ g2 ◦ g−1
1 , where ◦ denotes composition operation.

Fix a directed edge −→e ∈ DE and a position p ∈ {1, . . . , k + l}. The following hold:
(i) In 3-valent case, PM(G0)(

−→e , p) = (−→e ′, φk,l(p)) with −→e ′ = L(−→e ) or R(−→e ),
according to p ∈ {1, . . . , k} or {k + 1, . . . , k + l}.

(ii) In 4-valent case, PM(G0)(
−→e , p) = (−→e ′, φk,l(p)) with −→e ′ = g1(

−→e ), g2(
−→e ) or

g3(
−→e ), according to p ∈ {1, . . . , k − l}, {k − l + 1, . . . , k} or {k + 1, . . . , k + l}.

Define directed edge moving group (in short, moving group) Mov(G0) to be the
permutation group of the set DE , which is generated by L and R.
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Figure 9: The first and the second mapping

Theorem 4.5 For any ZC-circuit ZC of GCk,l(G0) with gcd(k, l) = 1, the following hold:
length(ZC) = 2t(k, l)Ord(ZC) if G0 is 3-valent and
length(ZC) = t(k, l)Ord(ZC) if G0 is 4-valent.

Proof. Let us consider the 4-valent case. Given a central circuit C, one can consider
the sequence of successive pairs (−→e1, p1),. . . ,(

−→eM , pM) with M = (k + l)Ord(C). To every
directed edge −→ei, one can associate a master square, say, SQi. Moreover, C can be
interpreted as a sequence of squares in the dual graph (GCk,l(G0))

∗. So, to every pair
(−→ei, pi) one can associate the area Ai of the set of squares in SQi between pair (−→ei, pi)
and pair (−→ei+1, pi+1). The sets, corresponding to area A1,. . . ,Ak+l, can be moved to form
a full square of area t(k, l) = k2 + l2, according to Figure 10. This can be done Ord(C)
times. So, the length of C is equal to t(k, l)Ord(C).

In the 3-valent case, the situation is a bit more complicated: for every directed edge−→ei, we define a master triangle, say, Ti. There is only one triangle T1,i, adjacent to Ti and
having the directed edge L(−→ei), and only one triangle T2,i, adjacent to Ti and having the
directed edge R(−→ei). The directed edges L(−→ei) and R(−→ei) are parallel to the directed edge−→ei. The area Ai is equal to the area of the set of triangles, which belong to the zigzag going
between directed edge −→ei and L(−→ei), R(−→ei). Those areas can be moved to form a parallel-
ogram (the union of two triangles) of area 2t(k, l). So, the length of Z is 2t(k, l)Ord(Z). 2

We call partition vectors and denote by [z], [CC] or, in general, [ZC] the vector
obtained from z-vectors and CC-vectors by dividing each length by 2t(k, l) and t(k, l),
respectively (we remove the subscripts specifying self-intersections of different type). In
fact, the sum of the components of [ZC]-vector of any GCk,l(G0) is the number of edges
of G0.

Theorem 4.6 Let G0 be a plane graph; define s = 6 or 4 if G0 is 3- or 4-valent, respec-
tively. The action of Mov(G0) splits DE into w orbits of equal size, where w denotes the
greatest common divisor of gonalities of all faces of G0 and of s. The orbit decomposition
is as follow:

(i) If w = 2, then for every face F of G∗
0, denote by DE(F ) the set of its directed

edges having F on the left. G∗
0 is bipartite; denote by F1 and F2 their corresponding sets

of faces. The sets DE i of directed edges of faces of Fi form the orbits of the action of
Mov(G0) on DE.

the electronic journal of combinatorics 11 (2004), #R20 17



for

1 2 3 4 5

1 3 4 52

T1

T1,1

T2,1T1

T1,1

A1

L(−→e1)

L(−→e1)

p1 = 1

−→e1

−→e1

R(−→e1)

6

7

6

7

R(−→e1)

3-valent case
1 2 3 4 5

6

7

1 2 3 4 5

6

7

A2

A1

A2

A1

4-valent case

Figure 10: The area covered by ZC-circuits

the electronic journal of combinatorics 11 (2004), #R20 18



(ii) If w = 3 and G0 is 3-valent, then there is a tripartition of DE into 3 orbits O1,
O2, O3, such that if −→e ∈ Oi, then its reverse ←−e is also in Oi.

(iii) In other cases, there is only one orbit.

Proof. We will work in G∗
0. If G∗

0 is 4-valent, then fix a square, say, sq of G∗
0. Any

directed edge of G∗
0 can be moved to a directed edge of sq or its reverse. Moreover, if −→e

has sq on its right, then L−1(−→e ) has sq on its left. So, any directed edge is equivalent
to a directed edge of DE(sq). Hence, there are at most 4 orbits of directed edges. Any
directed edge can be moved using L and R, to a directed edge incident to a fixed vertex
v. So, in the case of 4 orbits, the minimal valency is at least 4, which is impossible by
Euler formula. Therefore, there is 1 or 2 orbits of directed edges.

If G0 is 3-valent, then fix a triangle, say, ∆ of G∗
0. Any directed edge of G∗

0 can be
moved to a directed edge of DE(∆) or to its reverse. So, there are at most 6 orbits of
directed edges. Any directed edge can be moved using L and R to a directed edge incident
to a fixed vertex v. So, in the case of 6 orbits, the minimal valency is at least 6, which is
impossible by Euler formula. So, there are 1, 2 or 3 orbits of faces.

If all faces have even gonality, then G∗
0 is bipartite and the corresponding bipartition

of faces F1 = {F1, . . . }, F2 = {F ′
1, . . . } induces a bipartition of DE by {DE(F1), . . . } and

{DE(F ′
1), . . . }. So, there are two orbits and, given a directed edge −→e , its reverse belongs

to the other orbit. If some faces have odd gonality and G0 is 4-valent, then there is no
such bipartition and so, there is only one orbit. In 3-valent case, if −→e is in orbit, say, O,
then its reverse is also in O and one can identify pairs of opposite directed edges with
edges.

Take an edge, say, e = {v, v′} in G∗
0, and denote by O the orbit, to which it belongs.

We will prove, that O contains one third of all edges. By hypothesis, v and v′ have valency
divisible by 3. By successive iteration of L ◦ R−1, one gets that at least one third of all
edges, incident to v, belong to O. This yields that O contains at least one third of all
edges. Now, let us prove that for each vertex, exactly one third of all edges belong to O.
Let us take a vertex v incident to two edges e, e′ ∈ O, which are adjacent; so, at least two
third of all edges, which are incident to v, are in O. By hypothesis, there exists a path
of edges e = e1, . . . , eN = e′, such that ei+1, is obtained by application of L or R, the
rotation L ◦ R−1, R−1 ◦ L, or their inverses. One can assume the path to be of minimal
length; this imply that the sequence has no self-intersection. The contradiction arises by
application of the Euler formula. So, there are three orbits. 2

Theorem 4.7 If G0 is a 3- or 4-valent plane graph, then Mov(G0) is commutative if and
only if the graph G0 is either a 2n, a 3n, or a 4-hedrite.

Proof. In 3-valent case, one can see from Figure 9, that L◦R(−→e ) = R◦L(−→e ) if and only
if v has valency 2, 3 or 6. In dual terms, it corresponds to G0 having 2-, 3- or 6-gonal faces
only. Euler formula 12 = 4p2 +3p3 for 3-valent plane graphs have solutions (p2, p3)=(3, 0)
or (0, 4) only.

In 4-valent case, the equality L ◦ R(−→e ) = R ◦ L(−→e ) holds if and only if the vertex
v in Figure 9 is 2- or 4-valent. A 4-valent plane graph with all faces being 2- or 4-gons, is
exactly a 4-hedrite. 2
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Remark 4.8 The problem of generating every graph in the three classes of the above
Theorem has been solved:
• All 2n come by the Goldberg-Coxeter construction from the Bundle (see [GrZa74]).
• All 3n are described in [GrünMo63] (see also [DeDu02], where it is recalled).
• All 4-hedrites are described in [DeSt03] (see also [DDS03], where it is recalled).

Moreover, no other general classes of graphs qn or i-hedrites is known to admit such simple
descriptions.

Given a pair (k, l) ∈ Z
2, define the residual group Resk,l to be the quotient of A2 or

Z
2 (seen as a group) by the sub-group generated by complex numbers k + lω, ω(k + lω)

or, respectively, k + li, i(k + li).

Conjecture 4.9 (i) The group Mov(G0) is isomorphic to a subgroup of Mov(GCk,l(G0)).
(ii) If Mov(G0) is commutative, then Mov(GCk,l(G0)) is also commutative and

Mov(GCk,l(G0))/Mov(G0) is isomorphic to Resk,l.
(iii) If G0 is a graph 3n (respectively, a 4-hedrite), such that G0 6= GCk,l(G1) for

G1 being any other graph 3n (respectively, any other 4-hedrite), then Mov(G0) has n2

4
(respectively, n2) elements.

(iv) A corollary of (iii): all orders of moving groups are the numbers n2

4t(k,l)
(respec-

tively, n2

t(k,l)
) with t(k, l) dividing n

4
(respectively, n

2
) for 3n (respectively, for 4-hedrites).

Remark 4.10 The order of the group Mov(GCk,l(G0)) seems to depend on (k, l) in a
complicate way and Mov(G0) is not, in general, a normal subgroup of Mov(GCk,l(G0)).

The following definition of (k, l)-product can be considered for any group Γ, but in
this paper we used it only for the case, when Γ is a moving group of some 3- or 4-valent
plane graph G0. It seems to us, that the majority of notions of this Section are new in
both, combinatorial and algebraic, contexts. However, an analogous expression of this
product itself was proposed in [No87], on the Fisher-Griess Monster group.

Definition 4.11 (the (k, l)-product) Let Γ be a group and g1, g2 be two of its elements.
Given a pair (k, l) ∈ N

2 with gcd(k, l) = 1, define an element of Γ be their (k, l)-product
(and denote it by g1 �k,l g2) in the following way:

Define inductively the sequence (p0, . . . , pk+l) by p0 = 1, pi = φk,l(pi−1).
Set Si = g1 if pi − pi−1 = l and Si = g2 if pi − pi−1 = −k; then set

g1 �k,l g2 = Sk+l . . . S2S1 .

By convention, set g1 �1,0 g2 = g1 and g1 �0,1 g2 = g2.

In the following Theorem, the above formalism is used to translate the Goldberg-
Coxeter construction in terms of representation of permutations as product of cycles.

For an element u ∈ Mov(G0), denote by ZC(u) the vector . . . , cmk
k , . . . with mul-

tiplicities mk being the half of the number of cycles of length ck in the permutation u
acting on the set DE . For S a subset of Mov(G0), denote by ZC(S) the set of all ZC(u)
with u ∈ S.
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Theorem 4.12 Let G0 be a 3- or 4-valent plane graph. The following hold:
(i) IPM1(G0, k, l) = L�k,l R and
(ii) the partition vector [ZC] of GCk,l(G0) is ZC(u) with u = IPM1(G0, k, l).

Proof. In 3-valent case the result follows from the very definition of IPM1(G0, k, l).
In 4-valent case, the situation is a bit more complicated. Given a sequence of positions
(p0, p1, . . . , pk+l), Si = g1, g2, g3, according to pi−1 ∈ {1, . . . , k − l}, {k − l + 1, . . . , k},
{k + 1, . . . , k + l}, and it holds IPM1(G0, k, l) = Sk+l ◦ · · · ◦ S2 ◦ S1.

Any multiplication by g2 is followed by a multiplication by g3; hence, the relation
IPM1(G0, k, l) = g1 �k,l g3 ◦ g2 ◦ g−1

1 = L�k,l R.
Take any ZC-circuit ZC and define its sequence of pairs as (−→e1, p1), . . . , (−→eM , pM).
It holds M = (k + l)Ord(ZC) and the values pi = 1, k + l appear Ord(ZC)

times. If one reverses the orientation on ZC, then the corresponding sequence of pairs is
(←−eM , k + l + 1− pM), . . . , (←−e1, k + l + 1− p1) with ←−ei being the reverse directed edge of−→ei. It implies, that to every ZC-circuit of length Ord(ZC) correspond two cycles:

(IPM1(G0, k, l)i−→e1)0≤i≤Ord(ZC)−1 and (IPM1(G0, k, l)i←−eM)0≤i≤Ord(ZC)−1,

both of length Ord(ZC). 2

Remark 4.13 The following hold:
(i) g1 �1,1 g2 = g2g1, g1 �k,1 g2 = g2g

k
1 and g1 �k,k−1 g2 = (g2g1)

k−1g1.
(ii) g1 �2q+1,2 g2 = g1(g

q
1g2)

2 for any integer q.

The Proposition below gives Euclid algorithm formulas, which can be used to com-
pute g1 �k,l g2 in an efficient way.

Proposition 4.14 If (k, l) ∈ N
2 with gcd(k, l) = 1, then the following hold:

(i) If q is an integer, then it holds:{
g1 �k,l g2 = g1 �k−ql,l g2g

q
1 if k − ql ≥ 0,

g1 �k,l g2 = gq
2g1 �k,l−qk g2 if l − qk ≥ 0.

(ii) {g1 �k,l g2}−1 = g−1
2 �l,k g−1

1 .
(iii) g1 �k,l g2 = gk

1g
l
2 if g1 and g2 commute.

(iv) g1 �k,l g2 6= Id if g1 and g2 do not commute.

Proof. (i) and (ii) can be obtained by writing down the expressions on both sides and
identification. The properties (i) and (ii) allow to compute g1 �k,l g2 by applying the
Euclid algorithm to the pair (k, l); at each step of Euclid algorithm, the pair (g1, g2) is
modified into another pair (g′

1, g
′
2). It follows from (i) and (ii), that g1 and g2 do not

commute; so, at any step of the computation, the pair of elements will not commute.
Therefore, it is not possible that g1 �k,l g2 = Id, since Id commutes with every element
and it yields the commutativity of g1 and g2. 2

Corollary 4.15 If partition vector [ZC] of GCk,l(G0) is 1p for one pair (k, l), then
Mov(G0) is commutative.
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Proof. The partition vector 1p corresponds to IPM1(G0, k, l) = Id; Theorem 4.14 (iv)
yields that Mov(G0) is commutative. 2

Remark 4.16 The only known example of graph G0, such that partition vector [ZC] of
GCk,l(G0) can be 1p, is the Bundle.

Proposition 4.17 Let Γ = 〈g1, g2〉 be a group, generated by two elements g1 and g2, and
let K be a proper normal subgroup of Γ. Let (k, l) ∈ N

2 with gcd(k, l) = 1. The following
hold:

(i) If Γ/K is non-commutative, then g1 �k,l g2 /∈ K.
(ii) If Γ/K is commutative and g2 = g1

−1 (with x = xK), then g1�k,l g2 ∈ K if and
only if k − l ≡ 0 modulo the index of K in Γ.

(iii) Denote by n1 and n2 the orders of g1 and g2, respectively, considered as group
elements. Assume that the following properties hold:

• Γ/K is commutative,

• gcd(n1, n2) > 1,

• the mapping
Ψ : Zn1 × Zn2 → Γ/K

(k, l) 7→ L
k
R

l
.

is an isomorphism.

Then g1 �k,l g2 /∈ K for every k, l with gcd(k, l) = 1.

Proof. The (k, l)-product goes over to the quotient, i.e. g1 �k,l g2 = g1 �k,l g2; so, (i)
follows from 4.14 (iii).

If the quotient is commutative, then g1 �k,l g2 = g1
kg2

l = g1
k−l. The quotient is

generated by g1; so, (ii) follows.
In case (iii), g1 �k,l g2 ∈ K if and only if g1

kg2
l = 1, i.e. k and l are, respectively,

divisible by n1 and n2. By the condition gcd(k, l) = 1, this implies k = l = 0. 2

4.1 The stabilizer group

Denote by P(G0) the set of all pairs (g1, g2) with gi ∈ Mov(G0). Denote by Ug1,g2 the
smallest subset of P(G0), containing the pair (g1, g2) ∈ P(G0), which is stable by the
operations (x, y) 7→ (x, yx) and (x, y) 7→ (yx, y).

Theorem 4.18 If G0 is a 3- or 4-valent plane graph, then it holds:
(i) The sequence of subsets Ui,L,R, defined by U0,L,R = {(L, R)} and

Un+1,L,R = {(v, w), (v, wv), (wv, w) with (v, w) ∈ Un,L,R},
satisfy to Un,L,R = UL,R for n large enough.

(ii) The set of all possible [ZC]-vectors of GCk,l(G0) is the set formed by all partition
vectors ZC(v) and ZC(w) with (v, w) ∈ UL,R.
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Proof. Since G0 is finite, Mov(G0) is finite and so, UL,R too. The sequence (Un,L,R)n∈N

is increasing and so, by finiteness, there exists an n0, such that Un0,L,R = Un0+1,L,R. By
construction, the set Un0,L,R is stable by the operations (x, y) 7→ (x, yx), (yx, y), which
yields (i).

Fix a pair (k, l) ∈ N
2 with gcd(k, l) = 1. By successive applications of Proposition

4.14 (i), one obtains L�k,lR = g1�1,0g2 or g1�0,1g2 with (g1, g2) ∈ UL,R. So, L�k,l R = g1

or g2. Hence, the possible [ZC]-vectors of GCk,l(G0) are obtained from g1 or g2. On the
other hand, if (g1, g2) ∈ UL,R, then, by reversing the process described in (i), that led to
(g1, g2), one obtains two pairs (ki, li) ∈ N

2, gcd(ki, li) = 1 (with i = 1 or 2), such that
L�ki,li R = gi. 2

The modular group SL2(Z) is the group of all 2×2 integral matrices of determinant

1. This group is generated by the matrices T =

(
0 1
−1 0

)
and U =

(
0 1
−1 −1

)
. The

group PSL2(Z) is the quotient of SL2(Z) by its center {I2,−I2} with I2 being the identity
matrix. The matrices T and U satisfy to T 2 = −I2 and U3 = I2.

Lemma 4.19 (i) The group PSL2(Z) is isomorphic to the group generated by two ele-
ments x, y subject to the relations:

x2 = Id and y3 = Id .

(ii) The group SL2(Z) is isomorphic to the group generated by two elements x, y
subject to the relations:

x4 = Id, x2y = yx2 and y3 = Id .

Proof. (i) is proved in [Ne72]. In order to prove (ii), we will use (i) and the surjective
mapping

φ : SL2(Z) → PSL2(Z)
M 7→ {M,−M} .

Let W = I2 be a word in letters T and U . Write W = Sn1
1 . . . SnN

N with Si = T , U if i
is odd, even, respectively. Using the relation T 4 = I2 and U3 = I2, one can assume that
ni ∈ {1, 2, 3}, ni ∈ {1, 2} if i is odd, even, respectively. Using the relation T 2U = UT 2,
one can reduce ourselves to the case of ni = 1 if i odd and greater than 1. Using the
morphism φ and the property (i), one obtains mi = 0 if i is even. So, the expression can
be rewritten as T h = I2. 2

Definition 4.20 Let Γ be a group.
(i) Let P(Γ) be the set of all pairs (g1, g2) of elements of Γ.
(ii) The derived group D(Γ) is defined as the group generated by all uvu−1v−1 with

u, v ∈ Γ; it is a normal subgroup of Γ and it is trivial if and only if Γ is commutative.
(iii) The group D(Γ) acts on Γ and P(Γ) in the following way:{

Int : D(Γ)× Γ → Γ
(a, g) 7→ Inta(g) = aga−1,{

Int : D(Γ)×P(Γ) → P(Γ)
(a, (g1, g2)) 7→ Inta(g1, g2) = (Inta(g1), Inta(g2)) .

The set of equivalence classes of P(Γ) under this action is denoted by CP(Γ).
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The mappings Inta are automorphisms, which are usually called interior.

Theorem 4.21 There exists a group action

φ : SL2(Z)× CP(Γ) → CP(Γ)
(M, c) 7→ φ(M)c ,

such that if φ(M)(g1, g2) = (h1, h2), then g1 �(k,l)M g2 is conjugated to h1 �k,l h2, where

(k, l)M = (ak + cl, bk + dl) for M =

(
a b
c d

)
.

Proof. Let us define:

φ(T )(g1, g2) = (g2, g2g
−1
1 g−1

2 ) = Intg2(g2, g
−1
1 ) and

φ(U)(g1, g2) = (g2, g2g
−1
1 g−2

2 ) = Intg2(g2, g
−1
1 g−1

2 ) .

This defines mappings from P(Γ) to P(Γ) and so, mappings from CP(Γ) to CP(Γ).
If M ∈ SL2(Z) then one can find an expression M = S1 . . . SN with Si = T or U

and define:
φ(M) : CP(Γ) → CP(Γ)

c 7→ φ(M)c = φ(S1) . . . φ(SN)c .

In order to prove, that φ is well defined, one needs to prove the independence of φ(M),
over the different expressions of M , in terms of T and U . By standard, but tedious,
computations one gets, using the definition of φ(T ) and φ(U):{

φ(T )4(g1, g2) = φ(U)3(g1, g2) = Intg2g−1
1 g−1

2 g1
(g1, g2),

φ(U)φ(T )2(g1, g2) = φ(T )2φ(U)(g1, g2) .

The above computations prove the independence of φ(M) over the different possible ex-
pressions of M , since, by Lemma 4.19, all relations, satisfied by T and U , are generated
by T 4 = U3 = I2 and T 2U = UT 2. One obtains the relation φ(MM ′) = φ(M)φ(M ′) by
concatenating two expressions of M and M ′ in terms of T and U .

One gets φ

(
1 1
0 1

)
= (g2g1, g2) and φ

(
1 0
1 1

)
= (g1, g2g1), which yields the

asked relation for the matrices

(
1 1
0 1

)
and

(
1 0
1 1

)
. Since those matrices generate

SL2(Z), the relation is always true. 2

Note that the (k, l)-product g1�k,l g2 is defined for every pair (k, l) with k ≥ 0, l ≥ 0
and gcd(k, l) = 1. Using the matrices T or U , one can extend it for every pair (k, l) with
gcd(k, l) = 1, keeping in mind the important fact, that it is defined only up to conjugacy.
The obtained extension still denoted g1 �k,l g2 satisfy formula (i) of Proposition 4.14 up
to conjugacy without restriction on signs.

For a given 3- or 4-valent plane graph, denote CP(G0) the set of equivalence classes
of P(G0) under the action of D(Mov(G0)). Also, denote by Stab(G0) the stabilizer of the
pair (L, R) ∈ CP(G0) under the action of SL2(Z) on CP(G0).

the electronic journal of combinatorics 11 (2004), #R20 24



Proposition 4.22 If G0 be a 3- or 4-valent plane graph, then the following hold:
(i) Stab(G0) is a finite index subgroup of SL2(Z), whose index I is equal to the size

of the orbit of (L, R) ∈ CP(G0) under the action of SL2(Z).
(ii) If (k1, l1) = (k0, l0)M with M ∈ Stab(G0), then GCk0,l0(G0) and GCk1,l1(G0)

have the same [ZC]-vector.
(iii) There exist a finite set {(k1, l1), . . . , (kI , lI)} with gcd(ki, li) = 1, such that,

denoting by Pi the [ZC]-vector of GCki,li(G0), the following hold: for every (k, l) with
gcd(k, l) = 1, there is an i0 ∈ {1, . . . , I} and an M ∈ Stab(G0), such that (k, l)M =
(ki0, li0) and GCk,l(G0) has [ZC]-vector Pi.

Proof. (i) The group Mov(G0) is finite; so, P(G0) and CP(G0) are finite and the orbit
of (L, R) is finite also. This implies the finite index property by elementary group theory.

(ii) If (k1, l1) = (k0, l0)M , then L�k0,l0 R and L�k1,l1 R are equal, up to a conjugacy.
Since conjugacy does not change the cyclic structure, it does not change the corresponding
[ZC]-vector. So, GCk0,l0(G0) has the same [ZC]-vector as GCk1,l1(G0).

(iii) Since a partition vector partitions a finite set, there exist a finite number of
possibilities for it. Denote by M1,. . . ,MI the set of coset representatives of Stab(G0) in
SL2(Z). The group SL2(Z) is transitive on the set of pairs (k, l) ∈ Z

2 with gcd(k, l) = 1.
So, for any (k, l) ∈ Z

2 with gcd(k, l) = 1, there exists P ∈ SL2(Z), such that (k, l)P =
(1, 0). Write P = MMi with M ∈ Stab(G0) and one obtains (k, l)M = (ki, li) with
(ki, li) = (1, 0)M−1

i . 2

Remark 4.23 (i) The hexagonal (or square) lattice have a point group of isometry of
order 6 (or 4) of rotation of angle π

3
(or π

2
). So, GCk,l(G0) is isomorphic to GC−l,k+l(G0)

(or to GC−l,k(G0)). One would expect, that Stab(G0) contains a subgroup, which is iso-
morphic to this point group. In fact, this is the case of Dodecahedron and Octahedron,
but not of Tetrahedron, for which −I2 /∈ Stab(Tetrahedron). It may be possible, that our
definition of membership in Stab(G0) is too strict and that with another definition, one
will get this point group as subgroup.

(ii) It seems, that there are no constraints on the values of the coefficients of elements
of Stab(G0).

Conjecture 4.24 (i) Stab(Dodecahedron) is generated by(
1 −1
1 0

)
,

( −4 −3
3 2

)
and

( −4 −1
1 0

)
;

(ii) Stab(Cube) is generated by( −1 1
−1 0

)
and

(
0 −1
1 2

)
;

(iii) Stab(Octahedron) is generated by(
0 −1
1 0

)
,

( −4 −3
3 2

)
and

( −4 −1
1 0

)
.

Conjecture 4.25 For any matrix A =

(
a b
c d

)
, one defines A′ by:
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(i) if either a 6= d, or a = d = 0, then A′ =

(
a −c
−b d

)
;

(ii) otherwise, A′ =

(
a c
b d

)
.

Let G0 be a 3-valent graph. If A ∈ Stab(G0), then A′ ∈ Stab(G0).

5 Classes of graphs

Theorem 5.1 Every graph 2n comes as GCk,l(Bundle); its symmetry group is D3h if
l = 0, k and D3, otherwise.

Proof. It is given implicitly in [GrZa74]. 2

The complete list of all possible symmetry groups of graphs qn and i-hedrites were
found: for 5n in [FoMa95], for 3n in [FoCr97], for 4n in [DeDu02] and for i-hedrites in
[DDS03].

Part (iv) of Theorem below is proved in [Gold37] and (i), (ii) are only indicated
there.

Theorem 5.2 (i) Any graph 3n with symmetry T or Td is GCk,l(Tetrahedron),
(ii) any graph 4n with symmetry O or Oh is GCk,l(Cube),
(iii) any graph 4n with symmetry D6 or D6h is GCk,l(Prism6),
(iv) any graph 5n with symmetry I or Ih is GCk,l(Dodecahedron),
(v) any 4-hedrite with symmetry D4 or D4h is GCk,l(Foil2),
(vi) any 5-hedrite of symmetry D3 or D3h is GCk,l(Trefoil),
(vii) any 8-hedrite of symmetry O or Oh is GCk,l(Octahedron).

Proof. Take a graph 3n of symmetry T or Td. Given a face F , the size of its orbit (under
the action of the group T ) is 4 if F lies on an axis of rotation of order 3, 6 if F lies on
an axis of rotation of order 2, or 12 if F is in general position. This implies that all four
triangles are on axis of order 3. Take a triangle, say, T1; after adding p rings of hexagons,
one finds a triangle and so, three triangles, say, T2, T3 and T4. The position of triangle T2

relatively to T1 defines the Eisenstein integer, corresponding to this graph. One can see
easily, that this graph is GCk,l(Tetrahedron).

Take a graph 4n of symmetry O or Oh. One 4-fold symmetry axis goes through a
square, say, sq1. After adding p rings of hexagons around sq1, one finds a square and so,
by symmetry, four squares, say, sq2, sq3, sq4, sq5. The position of the square sq2 relatively
to sq1 defines an Eisenstein integer z = k + lω. The graph can be completed in an unique
way and this proves, that it is GCk,l(Cube).

Take a graph 5n of symmetry I or Ih. Any 5-fold axis must go though two pentagons.
Since the group I contains six 5-fold axises, this means that every pentagon belongs to
one 5-fold axis. Take a pentagon, say, P1; after adding p rings of hexagons around P1,
one finds five pentagons, in cyclic order, say, P2, P3, P4, P5, P6. The position of pentagon
P2 relatively to P1 defines an Eisenstein integer k + lω, which is equal to the position of
P3 relatively to P2 and to the position of P1 relatively to P3. The figure formed by P1,
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P2, P3 is reproduced all over the graph, thanks to the six 5-fold axes. So, the Eisenstein
integer defines entirely the graph.

Take a 4-hedrite G with symmetry D4 or D4h. The 4-fold axis must go through two
vertices, say, v1, v2 or two 4-gonal faces, say, sq1, sq2. After adding p rings of squares
around v1 or sq1, one finds a 2-gon and so, by symmetry, four 2-gons, say, ∆i, 1 ≤ i ≤ 4.
The position of ∆2, relatively to ∆1, determines a Gaussian integer k + li, such that
G = GCk,l(Foil2).

Take an 8-hedrite of symmetry O or Oh. Any 3-fold axis must go through two
triangles. Since there are four 3-fold axis of symmetry, this implies that any triangle
contains a 3-fold axis of symmetry. The proof is then similar to the case of 5n with
symmetry I or Ih.

The proofs of (iii) and (vi) are special cases of, respectively, (i) and (ii) of Proposition
5.3. 2

For other classes of graphs, the description should be done in terms of several com-
plex parameters. For them, it is not possible to obtain a description in terms of Goldberg-
Coxeter construction of basic graphs, even a finite number of such graphs.

Proposition 5.3 (i) Let GPm (for m 6= 2, 4) denote the class of 3-valent plane graphs
with two m-gonal faces, m 4-gons and p6 6-gonal faces. Every such graph, having a m-fold
axis, comes as GCk,l(Prismm) and has symmetry group Dm or Dmh.

(ii) Let GFm (for m 6= 2, 3) denote the class of 4-valent plane graphs with two m-
gonal faces, m 2-gons and p4 4-gonal faces. Every such graph, having a m-fold axis, comes
as GCk,l(Foilm) and has symmetry group Dm or Dmh.

Proof. Take a graph GPm with an m-fold axis; the m-fold axis goes through two m-gonal
faces, say, F1 and F2. After adding p rings of hexagons around F1, one finds a square,
say, sq1 and so, by symmetry, m squares, say, sq1, . . . , sqm. The position of sq1 relatively
to F1 defines an Eisenstein integer k + lω, such that the graph is GCk,l(Prismm).

Take a graph GFm with an m-fold axis. The m-fold axis must go through the two
m-gonal faces, say, F1 and F2. After adding p rings of squares around F1, one finds a
2-gon and so, by symmetry, m 2-gons, say, D1,. . . ,Dm. The position of D1 relatively to
F1 defines a Gaussian integer k + li. Once the position of the digons Di is found, the
graph is uniquely determined and so, it is GCk,l(Foilm). 2

6 The ZC-structure of the Goldberg-Coxeter con-

struction of basic plane graphs

Consider the Goldberg-Coxeter construction GCk,l(G) for some two-faced plane graphs of
high symmetry. Observe that if gcd(k, l) = u, then one can decompose, using Proposition
3.1, the action as two consecutive ones: GC k

u
, l
u
(G) and u-inflation. So, using Proposition

3.2 and 3.3, it suffices to consider only the case gcd(k, l) = 1.
We will consider below the following problems:

• what are the possible [ZC]-vectors of GCk,l(G0)?

• how can those [ZC]-vectors be expressed in terms of (k, l)?
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Given a graph G0, the first problem can be solved by using Theorem 4.18.
For the second problem, one can prove in some cases (see Theorem 6.7) simple

congruence conditions which determine the [ZC]-vector, by using the normal subgroups
of the moving group and Proposition 4.17.

While the moving group allows us to prove most of the results below, in some
cases (see Theorem 6.5) the geometric considerations are sufficient. An important case,
considered in Theorem 6.1 and 6.2, is the one, when Rot(G0) is transitive on DE . Given
a group Γ, the enumeration of 3-valent maps M with Rot(G0) = Γ being transitive on
DE , is carried on in [Jo85].

Theorem 6.1 If G0 is a 3- or 4-valent plane graph, then the following hold:
(i) The actions of Rot(G0) and Mov(G0) on DE commute.
(ii) The action of Rot(G0) on DE is free.
(iii) If the action of Rot(G0) on DE is transitive, then:
(iii.1) the action of Mov(G0) on DE is free,
(iii.2) every directed edge −→e ∈ DE defines an injective group morphism{

φ−→e : Mov(G0) → Rot(G0)
u 7→ φ−→e (u)

with u−1(−→e ) = φ−→e (u)(−→e ),

(iii.3) if −→e ,−→e ′ ∈ DE , then there is a w ∈ Rot(G0), such that φ−→e ′(u) = w−1 ◦
φ−→e (u) ◦ w,

(iii.4) for any −→e ∈ DE, φ−→e (Mov(G0)) is the normal subgroup of Rot(G0), formed
by all elements preserving the orbit partition of DE under the action of Mov(G0).

Proof. (i) The action of Mov(G0) is defined, in geometric terms, on Figure 9; so, any
rotation of G0 preserves this picture and two actions commute.

(ii) The only rotation, preserving a directed edge, is, clearly, identity.
(iii.1) Let −→e be a directed edge and u be an element stabilizing −→e . It implies

the equality u(−→e ) = −→e . If −→e ′ is another directed edge, then, by transitivity, there
exists a w ∈ Rot(G0), such that −→e = w(−→e ′). One gets w−1 ◦ u ◦ w(−→e ′) = −→e ′ and, by
commutativity, u(−→e ′) = −→e ′. So, u is the identity.

(iii.2) If −→e is a directed edge of G0 and u ∈ G0, then, by transitivity and (ii), there is
an unique v ∈ Rot(G0), such that u−1(−→e ) = v(−→e ). If v denotes φ−→e (u), then the following
hold:

φ−→e (u) ◦ φ−→e (u′)−→e = φ−→e (u) ◦ u′−1(−→e )

= u′−1 ◦ φ−→e (u)(−→e ), by commutativity of Rot(G0) and Mov(G0),

= u′−1 ◦ u−1(−→e ) = (u ◦ u′)−1(−→e )
= φ−→e (u ◦ u′)(−→e ), by the definition of φ−→e .

Therefore, (iii.1) yields equality φ−→e (u ◦ u′) = φ−→e (u) ◦ φ−→e (u′) and injectivity of φ−→e .
(iii.3) If −→e ′ is another directed edge, then there is an unique w, such that −→e =

w(−→e ′). So, one gets again, by commutativity, u(−→e ′) = w−1 ◦ v ◦ w(−→e ′), i.e. φ−→e ′(u) =
w−1 ◦ φ−→e (u) ◦ w.
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(iii.4) It can be checked, using the construction of orbit done in Theorem 4.6, that
any element of Rot(G0), which leaves invariant one orbit, say, O1, will leave invariant
other orbits. By construction, any element u of the form φ−→e (u) will leave invariant the
orbit of −→e and so, any orbit. Moreover, using freeness of the action, one proves, that if
f ∈ Rot(G0) preserves the partition of DE into orbits under the action of Mov(G0), then
there exists an u ∈ Mov(G0), such that φ−→e (u) = f . So, φ−→e (Mov(G0)) is the group of
transformations preserving the partition of DE into orbits and it is normal by (iii.3). 2

Theorem 6.2 Let G0 be a 3- or 4-valent n-vertex plane graph, such that Rot(G0) is
transitive on DE. Let (k, l) with gcd(k, l) = 1 and let r denote the number of ZC-circuits
of GCk,l(G0). The following hold:

(i) GCku,lu(G0) is ZC-uniform and it holds:
(i.1) if u is even, then there are u

2
orbits of ZC-circuits of size 2r each,

(i.2) if u is odd, then there are u−1
2

orbits of ZC-circuits of size 2r and one orbit
of size r,

(i.3) GCku,lu(G0) is ZC-transitive if and only if u = 1 or 2.
(ii) If i0 denotes the number of faces of non-zero curvature, which are incident to a

fixed ZC-circuit ZC of GCk,l(G0) with gcd(k, l) = 1, then:

(ii.1) i0 is even, r = |S(G0)|
i0

and the stabilizer of ZC is the point subgroup Di0/2

(or C2) of Rot(G0), if i0 > 2 (or i0 = 2, respectively),
(ii.2) r is equal to:{

3n
2Ord(IPM1(G0,k,l))

in the 3-valent case,
2n

Ord(IPM1(G0,k,l))
in the 4-valent case.

Proof. We consider only the 3-valent case, since a proof for the 4-valent case is similar.
Not all faces are 6-gonal, since we consider finite plane graphs. The transitivity

of Rot(G0) on DE implies transitivity on the set of faces; so, all faces have the same
number q of edges, where q < 6. This yields GCk,l(G0) being tight if gcd(k, l) = 1. Since
G1 = GCk,l(G0) is tight, every zigzag Z is incident on the right to a non 6-gonal face F ;
this incidence corresponds to a directed edge −→e ∈ DE . The directed edge −→e belongs to
F and comes, in fact, from G0. The transitivity of Rot(G0) on DE yield the transitivity
on the set of zigzags of G1, since −→e defines the zigzag Z.

Now denote G2 = GCku,lu(G0) = GCu,0(G1). Every zigzag Z of G1 corresponds to
a set of zigzags Z1, . . . , Zu of G2. If Z has positions (−→e , 1) and (−→e ′, k + l), then there
exists a transformation g ∈ Rot(G0), such that g(−→e ) = ←−e ′ with ←−e ′ being the reverse
of −→e ′. This transformation reverses the orientation of Z and maps Z1 to Zu in G2 and,
more generally, Zs to Zu+1−s.

(ii.1) Suppose that ZC has the right incidences −→e1, . . . , −→es and the left incidences−→e ′
1 , . . . ,−→e ′

s′ with i0 = s+ s′. By transitivity on DE , there exists an element g0 ∈ Rot(G0),
such that g0(

−→e1) = −→e ′
1 . This yields s = s′ and i0 = 2s. Consider now the group Stab2

of transformations preserving the set {−→e1, . . . ,
−→ei0/2}. Stab2 is a normal subgroup of the

stabilizer Stab1. The stabilizer Stab2 can do only cyclic shifts on the right incidences −→e1,
. . . , −→ei0/2 and so, it is isomorphic to Ci0/2 and Stab1 is isomorphic to Di0/2.
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(ii.2) Take a zigzag Z of GCk,l(G0) and define the sequence −→e1, . . . ,−→eOrd(Z) by −→ei+1 =
IPM1(G0, k, l)−→ei. By z-transitivity, all zigzags have the same length; so, Ord(Z) =
Ord(IPM1(G0, k, l)). The length of Z is Ord(Z)2t(k, l). Since Rot(G) is z-transitive,
one obtains, by direct enumeration and using that every edge is covered two times,
rOrd(Z)2t(k, l) = 3nt(k, l) and so, r = 3n

2Ord(IPM1(G0,k,l))
. 2

Remark 6.3 (i) Every element of Rot(G0) yields a restriction on the possibilities for
Mov(G0) by Theorem 6.1 (i).

(ii) A 3-valent (respectively, 4-valent) plane graph G0 with n vertices has 3n (respec-
tively, 4n) directed edges. The generators L and R of Mov(G0) are even permutations
of those directed edges by Proposition 4.12. So, Mov(G0) is isomorphic to a subgroup of
Alt(3n) (respectively, of Alt(4n)).

(iii) In the extreme case of Rot(G0) being transitive, the group Mov(G0) is isomor-
phic to a subgroup of Rot(G0); so, it has at most 3n (or 4n) elements.

(iv) The smallest 3-valent plane graphs, for which Mov(G0)=Alt(3n), are given in
the picture below with their symmetry groups.

12-1 (C1) 12-2 (Cs) 12-4 (C1) 12-9 (Cs)

Does there exist an example of a 4-valent plane graphs with Mov(G0) = Alt(4n)?

A face F of a 3- (or 4-valent) plane graph is called 1-colored if all its vertices (or,
respectively, edges) belong to one ZC-circuit.

Lemma 6.4 If G is a 3- or 4-valent tight plane graphs, whose faces of non-zero curvature
are all 1-colored, then it is ZC-knotted.

Proof. Let G be a 4-valent tight plane graph with all faces of non-zero curvature being
1-colored. Let C1, . . . , Cr be the central circuits of G.

If two central circuits Ci and Cj have opposite edges of a square, then they define
a road, which is a pseudo-road, since G is tight and finish on a q-gonal face with q 6= 4.
The 1-coloring property yields Ci = Cj.

Assume that two central circuits Ci and Cj intersect in one vertex, say, v. If v
belongs to a non-square face, then one obtains Ci = Cj by 1-coloring property. If not,
then one can find a vertex v′, which is adjacent to v, such that {v, v′} belongs to a square.
Using the above reasoning, one finds that Ci and Cj intersect in v′. Since G is connected,
Ci and Cj intersect in a vertex of a q-gonal face with q 6= 4; so, Ci = Cj .

The proof in 3-valent case is similar. 2

Theorem 6.5 If 0 ≤ l ≤ k with gcd(k, l) = 1, then in 8 cases below only following
[ZC]-vectors of GCk,l(G0) occurs. The last column gives the index of Stab(G0) in SL2(Z):

the electronic journal of combinatorics 11 (2004), #R20 30



G0 possible [ZC] index
Tetrahedron 23 6

Dodecahedron 56 or 310, or 215 10
Bundle 13 or 3 8

Klein map {37} 328 or 421 7
Cube 34 or 26 8

Octahedron 43 or 34, or 26 9
link 22

1 22 6
Trefoil 31 23 or 6 6

Proof. The group Rot(G0) is transitive on DE for all cases, considered here, except
Trefoil 31. So, by Theorem 6.2, the partition vector has form lr. Now, Theorem 6.2 gives
that the number r of ZC-circuits is equal to 3n

2g
or 2n

g
, with g being the order of an element

of Mov(G0), which using embedding φ−→e of Theorem 6.1 is an element of Rot(G0).
If G0 is the Bundle, then the orders of elements of Rot(G0) are 1, 2 or 3, which

yields r = 1 or 3 as the only possibilities; those values of r are attained for (k, l)=(1, 0)
and (1, 1), respectively.

If G0 is Tetrahedron or link 22
1, then Mov(G0) = Z2 × Z2 and, using Theorem 4.17

(iii) with K = {Id}, one proves that L �k,l R 6= Id and so, L �k,l R is necessarily of
order 2, which proves the required results. Another possibility is to use Theorem 5.2 from
[DeDu02] (respectively, Theorem 5 of [DDS03]), which gives that a tight 3n (respectively,
4-hedrite) has exactly three zigzags (respectively, two central circuits).

In all other cases Mov(G0) is non-commutative and so, by Corollary 4.15, it holds
l > 1.

If G0 is Dodecahedron, then r = 6, 10 or 15, which are attained for (k, l) = (1, 0),
(1, 1) and (2, 1), respectively.

If G0 is Octahedron, then r = 3, 4 or 6, which are attained for (k, l)=(1, 0), (1, 1)
and (2, 1), respectively.

If G0 is Cube, then r = 6, 4 or 3. Assume that r = 3; then, by Theorem 6.2,
the stabilizer of any zigzag Z is D4, with the 4-fold axis going through two squares, say,
sq1 and sq6. Z cannot be incident to sq1 or sq6, since it would yield 1-coloring property
and so, G being z-knotted. So, Z is incident exactly once to each of the squares, say,
sq2,. . . ,sq5. One can construct a zigzag Z ′, which is parallel to Z and incident to both,
sq1 and sq2. Either {sq2, sq4}, or {sq3, sq5} form the 4-fold axis of Z; so, either sq2, or
sq3 are 1-colored. Therefore, r = 3 is not possible and the values r = 4, 6 are attained
for (k, l)=(1, 0) and (1, 1).

If G0 is Klein map, then the orders of non-zero element of Rot(G0) are 2, 3, 4 or 7.
In order to show the impossibility of 2 and 7, we use Theorem 4.18.

GCk,l(Trefoil) is tight; so, by Theorem 4 in [DDS03], there are at most three
central circuits. Assume that GCk,l(Trefoil) has two central circuits, say, C1 and C2.
Since GCk,l(Trefoil) has a 3-fold rotation axis, by going through triangles, say, T1 and
T2, one obtains, that those two triangles are 1-colored. Two parallel edges, say, e1 and
e2 of a square will define a pseudo-road, which finish either on a 2-gon, giving e1, e2 in
the same central circuit, or on a 3-gon, giving also e1, e2 in the same central circuit. The
proof goes in the same way, as in Lemma 6.4, and one obtains, that GCk,l(Trefoil) has
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one central circuit. CC-transitivity is trivial in the case r = 1; in the case r = 3, the
3-fold axis of symmetry around T1, T2 gives CC-transitivity and so, [CC] = 23. 2

Remark 6.6 The above proof of Theorem 6.5 uses Corollary 4.15 (iii). Another, more
combinatorial, method is possible: the maximum number of zigzags (or central circuits)
of a tight graph qn (or i-hedrite, respectively) is bounded (see [DeDu02] and [DDS03]).
For example, the maximal number of central circuits of a tight 8-hedrite is 6, while a tight
graph 4n has at most 9 zigzags (we expect 8 to be the maximal value).

For the link 72
6, the index is 1764, and all possibilities of [ZC]-vectors are, with their

first appearance (k, l):

14 (4, 1) 12, 12 (9, 7) 12, 22, 8 (5, 1) 14, 2, 42 (21, 19)
14, 32, 4 (7, 5) 2, 12 (10, 3) 2, 62 (5, 2) 22, 10 (2, 1)
22, 4, 6 (11, 2) 23, 42 (5, 3) 24, 6 (9, 2) 27 (29, 21)
32, 8 (1, 1) 4, 10 (1, 0) 4, 52 (3, 1) 42, 6 (9, 1)
6, 8 (3, 2)

We expect also, that if GCk,l(7
2
6) has two central circuits, then the closest integer to

|C1∩C2|
t(k,l)

is 3.

Theorem 6.7 The [ZC]-vectors of GCk,l(G0) are distributed in the following way (cf.
Table 3 above):

G0 [ZC] if I [ZC] if II index
Bundle 13 3 8

Cube 26 34 8
Dyck map {38} 412 316 8

trunc. Cube 212, 34 or 218 66 or 94 64
trunc. Dodecahedron 230, 310 or 230, 56 or 245 156 or 615 or 910 80

trunc. Cuboctahedron 212, 412 or 224, 38 or 612 or 98 256
236 or 38, 412

Trefoil 31 23 6 6
Octahedron 34 43 or 26 9

knot 41 12, 32 or 2, 6 22, 4 or 8 72

Proof. All those results follow from repeated application of Proposition 4.17. The groups
were computed using GAP [GAP] and PlanGraph [Dut02].

The group Mov(Bundle) = Z3 is commutative. Using 4.17 (ii) with K = {Id} (i.e.
the trivial normal subgroup), the result follows.

The group Mov(Cube) is isomorphic to the non-commutative group Alt(4) and has
the normal subgroup K = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉. So, L�k,l R 6= Id and L�k,l R ∈ K if
and only if k ≡ l (mod 3). The set of elements of order 3 of Alt(4) is exactly Alt(4)−K
and the set of elements of order 2 of Alt(4) is K − {Id}. This yields the required result.

The group Mov(Trefoil) has order 36 and has one normal subgroup K1 of order 9,
for which Mov(Trefoil)/K1 = Z2×Z2. So, applying 4.17 (ii), one obtains L�k,l R /∈ K1.
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{Id, LR} is a normal subgroup of Z2 × Z2, which corresponds to a normal subgroup K2

of Mov(G0) of order 18. Using 4.17 (ii), one obtains L �k,l R ∈ K2 if and only if k ≡ l
(mod 2). The elements of Mov(G0)−K2 correspond to GCk,l(Trefoil) having one central
circuit, while the elements of K2−K1 correspond to GCk,l(Trefoil) having three central
circuits. So, the result follows.

The group Mov(Octahedron) is isomorphic to Sym(4), which possess normal sub-
groups K1 = Alt(4) and K2 = 〈(1, 2)(3, 4), (1, 3)(2, 4)〉. Mov(Octahedron)/K2 is non-
commutative; so, L�k,l R /∈ K2. By 4.17 (ii), it holds L �k,l R ∈ K1 if and only if k ≡ l
(mod 2). The elements of K1 − K2 have order 3, while the elements of Mov(G0) − K1

have order 2 or 4. So, r = 4 if and only if k ≡ l (mod 2) and r ∈ {3, 6} if and only if
k − l ≡ 1 (mod 2).

The group Mov(Dyck map) has 48 elements and two normal subgroups, K1 and K2,
of order 4 and 16, respectively. The quotient Mov(Dyck map)/K1 is non-commutative;

so, L �k,l R /∈ K1. The quotient Mov(Dyck map)/K2 is commutative and L = R
−1

.
So, L �k,l R ∈ K2 if and only if k ≡ l (mod 3). However, elements of Mov(G0) − K1

correspond to [z] = 316, while elements of K1−K2 correspond to [z] = 412. So, the result
follows.

For the remaining cases of knot 41, truncated Cube, truncated Dodecahedron and
truncated Cuboctahedron, the technique was always the same:
• first compute the set S of possibilities for [ZC], using Theorem 4.18,

• find a normal subgroup K of index 2 or 3 in Mov(G0),

• the sets ZC(K)∩S and ZC(Mov(G0)−K)∩S are disjoint, which yield the required
result.

Those computer computations had to deal with the size of the moving groups; for example
Mov(trunc. Cuboctahedron) has 1327104 elements. 2

Remark 6.8 (i) One can prove easily, that for pairs (k, l) = (2l − 1, 1), (2l − 7, l),
(2l− 17, l) the graph GCk,l(Octahedron) has 3 central circuits for every l. Also the graph
GC2l−3,l(Octahedron) has 6 central circuits for every l. We expect that for other values
of i the number of central circuits of GC2l−i,l(Octahedron) depends on l.

(ii) GCk,3(Octahedron) with k ≡ 1, 2 (mod 3) has 6 central circuits for every k and
we expect, that for other values of l, the number of central circuits depends on k.

Examples of 3-valent z-uniform graphs are Tetrahedron, Prism3, Cube, 10-2, 10-3,
Prism5 (see Figure 2)). In Tables 5 and 6 we present the [z]- and [CC]-vectors of such
graphs for pairs (k, l) with t(k, l) ≤ 200. We add ∗ to k, l in the first column if k ≡ l
(mod 3) or k ≡ l (mod 2) in 3- or 4-valent case, respectively. For Cube, Dodecahedron,
Trefoil and Octahedron we also indicate the intersection vectors.

Conjecture 6.9 (i) For GCk,l(Icosidodecahedron), [CC]-vector is:

(230), (320) or (512) if k ≡ l (mod 2),

(106), (415) or (610), otherwise.

(ii) For GCk,l(truncated Icosidodecahedron), [z]-vector is:
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230, 340 or 230, 524 or 320, 524 or 260, 320 or 260, 512 or 340, 512 or 290 or 360 or 536 if
k ≡ l (mod 2),

920, 630 or 1512, otherwise.

Theorem 4.18 yield the list of all possible [ZC]-vectors. The Proposition 4.17 does not
yield the expected partition of [CC]-vectors for Icosidodecahedron, while truncated Icosi-
dodecahedron was too complex to be treated.

In the remainder of this Section, we indicate the properties, which we expect to
hold for ZC-structure and moving group of Foilm, Prismm and APrismm. We extracted
those conjectures from extensive computation and expect that the proofs will come from
better understanding of the moving group and the (k, l)-product.

Conjecture 6.10 For GCk,l(Foilm) with gcd(k, l) = 1 holds: [CC] is 2m if k − l is odd
and, otherwise, it is m or (m

2
)2 for m odd or even, respectively.

This conjecture was checked for m ≤ 20; in the computer proof were used normal sub-
groups of Mov(Foilm) and Proposition 4.17. However, doing a proof for general m pose
several problems: there are many normal subgroups in Mov(G0) and the computer proof
came from the use of all of them.

Conjecture 6.11 On z-structure of GCk,l(Prismm) with gcd(k, l) = 1, we conjecture:
(i) GCk,l(Prismm) is z-balanced and tight.
(ii) All possible [z]-vectors for GCk,l(Prismm) are:
(ii.1) if k ≡ l (mod 3): all 2m, (m

j
)j,

where j is any divisor of m, such that j ≡ 2 (mod 4), if m ≡ 0 (mod 2).
(ii.2) if k − l ≡ 1, 2 (mod 3): all (3m

j
)j,

where j is any divisor of m, such that j ≡ m (mod 4), if m ≡ 0 (mod 2).
(iii) Denoting m∗ = m

gcd(m,4)
, the following hold:

(iii.1) [z] = 3m in the case l = k − 1 if and only if k = 2, 2m∗ − 1 (mod 2m∗);
[z] = 3m in the case l = 1 if and only if k = 2, 3m∗ − 3 (mod 3m∗),

(iii.2) [z] = 2m, (m
2
)2 in the case m ≡ 0 (mod 4), k ≡ l (mod 3),

(iii.3) if m ≡ 1, 2, 3 (mod 4), then:

• [z] = 2m, 1m in the case l = k−3 if and only if k = 3m∗−5, 3m∗−1, 3m∗+4, 3m∗+8
(mod 6m∗);

• [z] = 2m, 1m in the case l = 1 if and only if k = m∗−1
2

(mod m)∗,

(iii.4) in the case (k, l) = (1, 1), [z] = 2m, (m
2
)2 or 2m, m, if m is even or odd,

respectively.
(iv) The order of Mov(Prismm) is 12(m∗)3 and its largest normal subgroup has

index 3. The orders of all other normal subgroups are exactly the numbers of the form
2iq3, where 0 ≤ i ≤ max(3t− 6, 0), t is the exponent of 2 in the factorization of m and q
is any odd divisor of m.
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(v)

(
2m + 1 −2m

2m 1− 2m

)
∈ Stab(Prismm).

(vi) the index of Stab(Prismm) is 64
9
(m∗)2 if m ≡ 0 (mod 3) and 8(m∗)2, otherwise.

Conjecture 6.12 On z-structure of GCk,l(APrismm) with gcd(k, l) = 1, we conjecture:
(i) GCk,l(APrismm) is z-balanced and tight.
(ii) All possible [CC]-vectors for GCk,l(APrismm) are:
(ii.1) if k − l ≡ 1 (mod 2), then [CC] = 2m, (2m

j
)j and (4m

j
)j,

where j is any odd divisor of m, such that j ≡ 0 (mod 3) if m ≡ 0 (mod 3).
(ii.2) if k ≡ l (mod 2), then [CC]=(m

i
)i, (3m

j
)j, where i, j are any divisors of m,

such that:

• j ≡ 0 (mod 3) if m ≡ 0 (mod 3) and

• either i, j are odd and gcd(i, j) = 1, or gcd(i, j) = 2 and i + j ≡ 2 (mod 4).

(iv) Denote m∗ = m
gcd(m,3)

. The order of Mov(APrismm) is 24 (m∗)4

gcd(m,2)
.

Let m∗ = ΠT
t=1pt with 2 ≤ p1 ≤ p2 ≤ · · · ≤ pT and all pt are prime.

(iv.1) If m∗ is odd, then the orders of normal subgroups are all numbers of form
ΠT

t=1p
jt
t with jt ∈ {0, 1, 3, 4} and 4ΠT

t=1p
jt
t or 12ΠT

t=1p
jt
t with jt ∈ {3, 4}.

(iv.2) If m∗ is even, then the same expressions hold, but j1 6= 4.
In terms of index: the indexes of the above groups are:
if m∗ is odd: 2g, 6g for any divisor g of m∗ and any 24ΠT

t=1p
jt
t for jt ∈ {0, 1, 3, 4};

if m∗ is even: 2g, 6g for any divisor g of m∗
2

and any 24ΠT
t=2p

jt
t , 96ΠT

t=2p
jt
t , 192ΠT

t=2p
jt
t

for jt ∈ {0, 1, 3, 4}.
(v) It holds

(
3m + 1 3m
−3m −3m + 1

)
∈ Stab(APrismm) and Stab(APrismm) is sta-

ble by transposition.
(vii) the index of Stab(APrismm) in SL2(Z) is gcd(m, 4)m2 if m ≡ 0 (mod 3) and

9gcd(m, 4)m2, otherwise.

7 Projections of ZC-transitive GCk,l(G0) for some

graphs G0

We consider in this Section the case, when GCk,l(G0) is ZC-transitive if gcd(k, l) = 1.
Such situation occurs if Rot(G0) is transitive on the set DE of directed edges and in some
other cases, for example, for G0 being Trefoil 31.

By transitivity of Aut(G0) on the set of ZC-circuits (apropos, transitivity of Rot(G0)
on DE implies ZC-transitivity by Theorem 6.2), all ZC-circuits have the same signature,
which we denote by (α1, α2).

Definition 7.1 Let G0 be 3- or 4-valent plane graph, such that GCk,l(G0) is ZC-transitive.
Call projection of G and denote by Projk,l(G0) the plane graph, obtained by the deletion
of all but one central circuits of Med(GCk,l(G0)) (or GCk,l(G0)). It has α1 + α2 vertices.
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G0 = Cube Prism3 Prism6 10-2 10-3 Dodecahedron
k, l t(k, l) [z] Int [z] [z] [z] [z] [z] Int

1, 0 1 34 (0, 0); 23 9 92 15 15 56 (0, 0); 25

1, 1∗ 3 26 (0, 0); 24, 4 23; 3 26, 32 22; 3, 8 23; 9 310 (0, 0); 29

2, 1 7 34 (3, 0); 123 33 36 15 3, 43 215 (0, 0); 214

3, 1 13 34 (9, 0); 203 9 92 6, 9 23, 33 310 (0, 3); 89

3, 2 19 34 (9, 0); 323 9 92 6, 9 53 56 (0, 15); 325

4, 1∗ 21 26 (4, 0); 144, 20 13, 23 16; 26 22, 32, 5 15 56 (5, 10); 365

5, 1 31 34 (18, 0); 503 9 92 15 53 56 (15, 10); 525

4, 3 37 34 (19, 0); 623 9 92 6, 9 15 56 (0, 25); 645

5, 2∗ 39 26 (12, 0); 264, 28 23, 3 26, 32 12, 25, 3 15 56 (0, 25); 685

6, 1 43 34 (30, 0); 663 33 36 15 23, 9 310 (0, 9); 243, 286

5, 3 49 34 (36, 0); 743 9 92 15 23, 9 310 (0, 9); 283, 326

7, 1∗ 57 26 (12, 0); 384, 52 23, 3 26, 32 13, 25 13, 43 215 (0, 4); 144, 1810

5, 4 61 34 (30, 0); 1023 33 36 15 13, 43 215 (0, 4); 144, 1810

7, 2 67 34 (45, 0); 1043 9 92 15 3, 43 215 (0, 8); 1814

8, 1 73 34 (45, 0); 1163 9 92 15 23, 9 310 (0, 18); 423, 466

7, 3 79 34 (54, 0); 1223 9 92 15 23, 9 310 (0, 18); 463, 506

6, 5 91 34 (45, 0); 1523 9 92 15 15 56 (0, 70); 1545

9, 1 91 34 (63, 0); 1403 9 92 15 53 56 (30, 40); 1545

7, 4∗ 93 26 (24, 0); 624, 76 23, 3 26, 32 22, 32, 5 15 56 (0, 70); 1585

8, 3 97 34 (72, 0); 1463 9 92 15 15 56 (10, 70); 1625

9, 2 103 34 (63, 0); 1643 9 92 3, 62 23, 9 310 (12, 12); 583, 666

7, 5 109 34 (81, 0); 1643 9 92 3, 62 15 56 (40, 40); 1865

10, 1∗ 111 26 (24, 0); 744, 100 23, 3 26, 32 22, 32, 5 15 56 (50, 40); 1865

7, 6 127 34 (63, 0); 2123 9 92 15 53 56 (0, 90); 2185

8, 5∗ 129 26 (40, 0); 864, 92 13, 23 16, 26 2, 5, 8 15 56 (20, 80); 2185

9, 4 133 34 (99, 0); 2003 9 92 15 53 56 (0, 90); 2305

11, 1 133 34 (84, 0); 2103 33 36 6, 9 23, 33 310 (0, 30); 743, 866

10, 3 139 34 (102, 0); 2103 33 36 15 15 56 (10, 100); 2345

11, 2∗ 147 26 (48, 0); 984, 100 23, 3 26, 32 22, 32, 5 3, 43 215 (4, 12); 388, 426

9, 5 151 34 (99, 0); 2363 9 92 15 23, 33 310 (0, 30); 863, 986

12, 1 157 34 (108, 0); 2423 9 92 15 3, 43 215 (0, 12); 388, 506

11, 3 163 34 (108, 0); 2543 9 92 15 23, 9 310 (6, 42); 989

8, 7 169 34 (84, 0); 2823 33 36 15 3, 43 215 (0, 12); 384, 5010

11, 4 181 34 (135, 0); 2723 9 92 15 3, 43 215 (0, 20); 464, 5010

13, 1∗ 183 26 (40, 0); 1224, 164 13, 23 16, 26 22, 3, 8 23, 9 310 (0, 45); 1043, 1166

9, 7 193 34 (144, 0); 2903 9 92 15 23, 9 310 (0, 45); 1083, 1246

13, 2 199 34 (135, 0); 3083 9 92 15 15 56 (20, 125); 3405

Table 5: z-structure of GCk,l(G0), t(k, l) ≤ 200, for some 3-valent graphs G0.
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G0 = Trefoil 31 41 72
6 Octahedron APrism4

k, l t(k, l) [CC] Int [CC] [CC] [CC] Int [CC]

1, 0 1 6 (3, 0) 8 4; 10 43 (0, 0); 22 16
1, 1∗ 2 23 (0, 0); 22 2, 6 32; 8 34 (0, 0); 23 4; 12
2, 1 5 6 (15, 0) 22; 4 22; 10 26 (0, 0); 25 24; 8
3, 1∗ 10 23 (2, 0); 82 12; 32 4, 52 34 (3, 0); 83 22; 34

3, 2 13 6 (39, 0) 8 6, 8 43 (4, 4); 182 16
4, 1 17 6 (51, 0) 8 14 43 (4, 4); 262 16
4, 3 25 6 (75, 0) 8 14 43 (8, 8); 342 16
5, 1∗ 26 23 (8, 0); 182 12, 32 12; 22, 8 34 (9, 0); 203 14; 62

5, 2 29 6 (87, 0) 8 2, 62 43 (8, 8); 422 16
5, 3∗ 34 23 (8, 0); 262 12, 32 23, 42 34 (9, 0); 283 14; 62

6, 1 37 6 (111, 0) 22, 4 14 26 (2, 2); 10, 144 24, 8
5, 4 41 6 (123, 0) 22, 4 14 26 (2, 2); 144, 18 24, 8
7, 1∗ 50 23 (16, 0); 342 2, 6 22, 10 34 (18, 0); 383 4, 12
7, 2 53 6 (159, 0) 22, 4 14 26 (4, 4); 185 24, 8
7, 3∗ 58 23 (16, 0); 422 2, 6 4, 52 34 (18, 0); 463 4, 12
6, 5 61 6 (183, 0) 8 22, 10 43 (20, 20); 822 16
7, 4 65 6 (195, 0) 8 6, 8 43 (20, 20); 902 16
8, 1 65 6 (195, 0) 8 4, 10 43 (16, 16); 982 16
8, 3 73 6 (219, 0) 8 4, 10 43 (24, 24); 982 16
7, 5∗ 74 23 (18, 0); 562 2, 6 14, 32, 4 34 (24, 0); 583 4, 12
9, 1∗ 82 23 (26, 0); 562 2, 6 42, 6 34 (30, 0); 623 4, 12
7, 6 85 6 (255, 0) 8 4, 10 43 (28, 28); 1142 16
9, 2 85 6 (255, 0) 22, 4 24, 6 26 (6, 6); 26, 304 24, 8
8, 5 89 6 (267, 0) 8 22, 10 43 (28, 28); 1222 16
9, 4 97 6 (291, 0) 8 4, 10 43 (28, 28); 1382 16
10, 1 101 6 (303, 0) 22, 4 4, 10 26 (6, 6); 26, 384 24, 8
9, 5∗ 106 23 (34, 0); 722 2, 6 32, 8 34 (30, 0); 863 4, 12
10, 3 109 6 (327, 0) 8 2, 12 43 (36, 36); 1462 16
8, 7 113 6 (339, 0) 22, 6 14 26 (6, 6); 384, 50 24, 8
11, 1∗ 122 23 (40, 0); 822 12, 32 42, 6 34 (45, 0); 923 14, 62

11, 2 125 6 (375, 0) 8 22, 4, 6 43 (40, 40); 1702 16
9, 7∗ 130 23 (32, 0); 982 12, 32 12, 12 34 (45, 0); 1003 14, 62

11, 3∗ 130 23 (40, 0); 902 2, 6 24, 6 34 (48, 0); 983 4, 12
11, 4 137 6 (411, 0) 22, 4 22, 10 26 (10, 10); 464, 50 24, 8
9, 8 145 6 (435, 0) 8 14 43 (48, 48); 1942 16
12, 1 145 6 (435, 0) 8 4, 10 43 (36, 36); 2182 16
11, 5∗ 146 23 (48, 0); 982 12, 32 32, 8 34 (45, 0); 1163 14, 62

10, 7 149 6 (447, 0) 22, 4 42, 6 26 (12, 12); 505 24, 8
11, 6 157 6 (471, 0) 8 4, 10 43 (48, 48); 2182 16
12, 5 169 6 (507, 0) 8 4, 10 43 (52, 52); 2342 16
11, 7∗ 170 23 (50, 0); 1202 12, 32 32, 8 34 (63, 0); 1283 22, 34

13, 1∗ 170 23 (56, 0); 1142 12, 32 22, 10 34 (63, 0); 1283 22, 34

13, 2 173 6 (519, 0) 8 14 43 (52, 52); 2422 16
13, 3∗ 178 23 (56, 0); 1222 2, 6 12, 12 34 (66, 0); 1343 4, 12
10, 9 181 6 (543, 0) 8 6, 8 43 (60, 60); 2422 16
11, 8 185 6 (555, 0) 22, 4 14 26 (14, 14); 624, 66 24, 8
13, 4 185 6 (555, 0) 8 14 43 (60, 60); 2502 16
12, 7 193 6 (579, 0) 8 22, 10 43 (64, 64); 2582 16
13, 5∗ 194 23 (56, 0); 1382 12, 32 22, 10 34 (69, 0); 1483 14, 62

14, 1 197 6 (591, 0) 22, 4 14 26 (12, 12); 50, 744 24, 8

Table 6: CC-structure of GCk,l(G0), t(k, l) ≤ 200, for some 4-valent graphs G0
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(k, k − 1) (k, 1)
G0 [ZC] k α1 α2 (k, 1) α1 α2

215 2 (mod 3) 0 4
`bk

3 +1c
2

´
2 (mod 5) 0 4

`b k
5 +1c
2

´

Dodec. 310 none — — 1, 3 (mod 5) 0 3
`d(k−1)/2e

2

´

56 1, 3 (mod 3) 0 ? 0, 4 (mod 5) 5
`d 2

5 (k+1)e
2

´
10dk

5
e2

26 2 (mod 3)
(k−2)(k−1)

9
(k−2)(k−1)

9
2 (mod 4) 2

` k+2
4
2

´
2

` k+2
4
2

´

Octah. 34 none — — 1, 3 (mod 4) 3
` k+1

2
2

´
0

43 0, 1 (mod 3) ≡ 0 (mod 4) ≡ 0 (mod 4) 0 (mod 4) k2

4
k2

4

Cube 26 none — — 1 (mod 3) 4
`d(k+l)/3e

2

´
0

34 all 3
`k
2

´
0 0, 2 (mod 3) 3

`k−b(k−1)/3c
2

´
0

Table 7: Conjectured [ZC]-vector and signature for GCk,l(G0) with l = k − 1, 1 and G0

being a Platonic polyhedron

Tables 8 and 9 represent the projections of GCk,l(G0) with G0 being, respectively,
Cube, Dodecahedron and Trefoil, Octahedron. The first column contains (k, l) and mark
∗ if k ≡ l (mod 3) (respectively, k ≡ l (mod 2)). For each graph G0 and considered pair
(k, l) we indicate the [ZC]-vector, the number Nr of its projection, its symmetry group
and p-vector. The Figures 12, 13 and 14, 15 present pictures of projections given in Tables
8 and 9, respectively, by their numbers in Figures.

Remark, that projections Nr.1, 2, 9, 11, 12, 13, 14 of GCk,l(Cube) coincide with
projections Nr.1, 3, 6, 7, 8, 9, 10 of GCk,l(Dodecahedron). Remark also, that in Table
9, for Trefoil, we omit projections in the CC-knotted case, since it coincides with the
graph itself.

The plane graph Projk,l(G0) is 4-valent with one central circuit; hence, one can
use the notion of type of intersection defined in 1.1. However, this intersection does not
correspond to the self-intersection of the corresponding central circuit in GCk,l(G0). For
instance, central circuits of GC13,3(Octahedron) have self-intersection (66, 0), while their
projection have self-intersection (33, 33).

Proposition 7.2 If G0 is a 3-valent plane graph, then Med(G0) appears as a projection
of Med(GCk,0(G0)).

Proof. Take the zigzags (Zi)1≤i≤p of G0; they correspond to the set of central circuits
(Ci)1≤i≤p in Med(G0). Let the set of zigzags of GCk,0(G0) be (Zi,j)1≤i≤p 1≤j≤k. Those
zigzags Zi,j become central circuits Ci,j in Med(GCk,0(G0)). The central circuit Ci corre-
spond to the set of central circuits (Ci,j)1≤j≤k forming a parallel class. So, after removing
the central circuits Ci,j with 1 ≤ i ≤ p and 2 ≤ j ≤ k, one obtains Med(G0). 2

The Proposition 7.2 means, that one can consider projection only for GCk,l(G0) with
gcd(k, l) = 1. Every symmetry preserving a ZC-circuit in GCk,l(G0) yields a symmetry
of the projection graph. This symmetry group is denoted by Rotk,l(G0). Note, that the
group of all symmetries of Projk,l(G0) can be larger than Rotk,l(G0). We expect equality
Rotk,l(G0)=Aut(Projk,l(G0)) in all, but a finite number, of cases.

If G0 is Cube, Dodecahedron or Octahedron, then one can apply Theorem 6.2 and
get that Rotk,l(G0) = Dm. The group Rot(Trefoil) = D3 is not transitive on directed
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a

(k, l) = (2, 2)

(k, l) = (1, 0) (k, l) = (1, 1)

(k, l) = (2, 0)

(k, l) = (2, 1)

(k, l) = (3, 1)

(k, l) = (3, 2)(k, l) = (3, 3)(k, l) = (3, 0)

l = 0 l = k 0 < l < k

Figure 11: Graphs GCk,l(G0) with G0 = Trefoil for 0 ≤ l ≤ k ≤ 3; in non-knotted case
a projection is marked by double line

edges. If the graph GCk,l(Trefoil) has 3 central circuits, then the stabilizer of a central
circuit has order 2 and the group itself is C2.

See on Figure 11 a list of first 5-hedrites of symmetry D3h and D3 with their pro-
jections marked by double lines.

The following proposition is to compare with Theorem 4.6.

Proposition 7.3 If G0 is a 3- or 4-valent plane graph, whose faces have gonality divisible
by 3 or 2, respectively, then all ZC-circuits of GCk,l(G0) are simple.

Proof. If G0 satisfy this property, then GCk,l(G0) satisfy it too. The 3-valent case was
proved in [Mo64]. Let us consider the 4-valent case.

In fact, if a central circuit of G0 self-intersects, then, in terms of [DDS03], one gets
an 1-gonal regular patch P (i.e. a patch with an angle π

2
, see [DDS03] for details).
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By applying the local Euler formula (proved in [DeSt03]), one obtains:

3 = 4− t =
∑

i

(4− i)p′i

with p′i being the number of i-gonal faces in P , and obtains a contradiction, since the
right hand side is even. 2

Proposition 7.4 For GCk,l(Dodecahedron) with r = 6, for GCk,l(Cube) with r = 4
and for GCk,l(Octahedron) with r = 3 or 4, the symmetry group is transitive on pairs
of ZC-circuits and their pairwise intersection has the same size for every two different
ZC-circuits.

Proof. The stabilizers of ZC-circuits are point groups Dm by Theorem 6.2.
If GCk,l(Dodecahedron) has 6 zigzags Z1,. . . ,Z6, then Stab(Z1) = D5. The conju-

gacy class of D5 in Rot(Dodecahedron) = Alt(5) has 6 elements. The pairwise intersection
of those subgroups has size 2. So, the action of Stab(Z1) on Z2 yields five zigzags Z2, . . . ,
Z6, i.e. G is transitive on pairs of zigzags.

If GCk,l(Cube) has 4 zigzags Z1,. . . ,Z4, then Stab(Z1) = D3. The conjugacy class of
D3 in Rot(Cube) = Sym(4) has 4 elements. The pairwise intersection of those subgroups
has size 2 and the proof is as above.

If GCk,l(Octahedron) has 3 central circuits C1, C2, C3, then pairs of central circuits
correspond to central circuits and so, we get again transitivity. If it has 4 central circuits,
then the proof is the same as for GCk,l(Cube). 2

Conjecture 7.5 (i) Is it true that if G0, G1 are two 4-valent plane graphs, then the set
of pairs (k, l) with gcd(k, l) = 1, such that G0 = Projk,l(G1), is finite?

(ii) Is it true that if G0 is a 4-valent plane graph and G1 a 3-valent plane graph,
then the set of pairs (k, l) with gcd(k, l) = 1, such that G0 = Projk,l(G1), is finite?

A 4-valent plane graph can have central circuits of the same length, but with different
number of self-intersections. For example, GC5,3(G0 = 72

6) (see Table 6) has one central
circuit of length 68 with self-intersection 2, while any of two other central circuits of length
68 have self-intersection 4.

Conjecture 7.6 (i) Each central circuit of GCk,l(Trefoil) has self-intersection of the
form (x, 0).

(ii) If gcd(k, l) = 1, then Projk,l(Trefoil) is a 5-hedrite, except of the cases (k, l)=(1, 1)
or (3, 1).

Remark, that for GCk,l(41) all central circuits satisfy to α2 = 0 if k ≡ l (mod 2)
and α1 = α2, otherwise.
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Conjecture 7.7 (i) The 2-fold axis of the point group Rotk,l(G0) do not go through ver-
tices of Projk,l(Cube) or Projk,l(Dodecahedron), if the rotation group is D2.

(ii) Projk,l(Cube) and Projk,l(Dodecahedron) do not have q-gonal faces with q > 6.
(iii) Denote by p2 the number of 2-gons, for a projection of GCk,l(Cube) it holds:
(iii.1) if r = 6, then p2 = 0 or 2,
(iii.2) if r = 4, then p2 = 0 or 6, except of Proj2,1(Cube), for which p2 = 3.

(iv) For a projection of GCk,l(Dodecahedron), one can have p2 > 0 only in case
[z] = 215, for which p2 = 2; in this case α1 and α2 are divisible by 4.

The projections, considered in this Section, are often one of the following forms:

(i) The Conway graph (k × m)∗ (see, for example, [Kaw96]) is, for k = 2, m-sided
antiprism; for k > 2, it comes from ((k − 1) ×m)∗ by inscribing an m-gon in the
first of its two m-gons. In particular, (2× 2)∗ = 41, (2× 4)∗ = 818, (3× 3)∗ = 940.

(ii) The Dm-spiral alternating knot is a 4-valent plane graph with symmetry Dm having
p-vector (pm = 2, p3 = 2m, p4, other pi = 0) and only one central circuit.

Conjecture 7.8 If (k, l) has the form (3b + 4, 1), then G = Projk,l(Cube) is a D2-spiral
alternating knot. Moreover, we expect the following:

(i) 4 triangles of G occur in two pairs of adjacent ones,
(ii) there are four pseudo-roads, linking each 2-gons to triangles, and having the

same length b,
(iii) G has 4

(
b+2
2

)
vertices.

See the cases b = 0, 1 and 2 on the picture below.

b = 2b = 1b = 0

Conjecture 7.9 If d is the length of each central circuit, r the number of central cir-
cuits and (α1, α2) the signature of each central circuit in GCk,l(Octahedron), then we
conjecture:

(i) α1 ≡ 0 (mod 3) and α2 = 0 if k ≡ l (mod 2); otherwise, α1 = α2.
(ii) α1 = α2 ≥ d−4

16
if r = 3 with equality if and only if (k, l)=(4p, 1);

α1 ≤ d−6
8

if r = 4 with equality if l = 1.
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GCk,l(Cube) GCk,l(Dodecahedron)
k, l [z] Projection Group p2, . . . , p6 [z] Projection Group p2, . . . , p6

1, 0 34 01 D∞h 0, 0, 0, 0, 0 56 01 D∞h 0, 0, 0, 0, 0
1, 1∗ 26 01 D∞h 0, 0, 0, 0, 0 310 01 D∞h 0, 0, 0, 0, 0
2, 1 34 9 = Trefoil D3h 3, 2, 0, 0, 0 215 01 D∞h 0, 0, 0, 0, 0
3, 1 34 10 D3h 6, 2, 0, 0, 3 310 6 = Trefoil D3h 3, 2, 0, 0, 0
3, 2 34 11 = (3 × 3)∗ D3h 0, 8, 3, 0, 0 56 13 = (3 × 5)∗ D5h 0, 10, 5, 2, 0
4, 1∗ 26 1 = (2 × 2)∗ D2d 2, 4, 0, 0, 0 56 13 = (3 × 5)∗ D5h 0, 10, 5, 2, 0
5, 1 34 12 D3 0, 8, 12, 0, 0 56 14 = (5 × 5)∗ D5h 0, 10, 15, 2, 0
4, 3 34 12 D3 0, 8, 12, 0, 0 56 14 = (5 × 5)∗ D5h 0, 10, 15, 2, 0
5, 2∗ 26 5 D2 2, 8, 0, 4, 0 56 14 = (5 × 5)∗ D5h 0, 10, 15, 2, 0
6, 1 34 25 D3 6, 12, 0, 12, 2 310 7 = (3 × 3)∗ D3h 0, 8, 3, 0, 0
5, 3 34 17 D3 6, 14, 6, 6, 6 310 7 = (3 × 3)∗ D3h 0, 8, 3, 0, 0
7, 1∗ 26 2 D2 2, 4, 8, 0, 0 215 1 = (2 × 2)∗ D2d 2, 4, 0, 0, 0
5, 4 34 13 D3 0, 8, 24, 0, 0 215 1 = (2 × 2)∗ D2d 2, 4, 0, 0, 0
7, 2 34 26 D3 0, 24, 12, 6, 5 215 2 = (2 × 4)∗ D4d 0, 8, 2, 0, 0
8, 1 34 18 D3 0, 14, 27, 6, 0 310 8 D3 0, 8, 12, 0, 0
7, 3 34 19 D3 0, 20, 24, 12, 0 310 8 D3 0, 8, 12, 0, 0
6, 5 34 14 D3 0, 8, 39, 0, 0 56 15 D5 0, 10, 60, 2, 0
9, 1 34 20 D3 6, 26, 9, 18, 6 56 18 D5 0, 40, 10, 12, 10
7, 4∗ 26 6 D2 2, 8, 12, 4, 0 56 15 D5 0, 10, 60, 2, 0
8, 3 34 28 D3 0, 36, 12, 24, 2 56 19 D5 0, 20, 50, 12, 0
9, 2 34 27 D3 0, 24, 27, 12, 2 310 11 D3 0, 14, 6, 6, 0
7, 5 34 29 D3 6, 50, 0, 0, 27 56 20 D5 0, 50, 0, 22, 10
10, 1∗ 26 3 D2 2, 4, 20, 0, 0 56 21 D5 0, 40, 30, 12, 10
7, 6 34 15 D3 0, 8, 57, 0, 0 56 16 D5 0, 10, 80, 2, 0
8, 5∗ 26 7 D2 2, 24, 0, 12, 4 56 22 D5 0, 30, 30, 50, 22
9, 4 34 32 D3 6, 48, 6, 30, 11 56 16 D5 0, 10, 80, 2, 0
11, 1 34 30 D3 0, 24, 48, 12, 2 310 9 D3 0, 8, 24, 0, 0
10, 3 34 33 D3 6, 54, 12, 6, 26 56 17 D5 0, 20, 80, 12, 0
11, 2∗ 26 8 D2 2, 28, 4, 8, 8 215 4 = (4 × 4)∗ D4d 0, 8, 10, 0, 0
9, 5 34 31 D3 0, 42, 30, 24, 5 310 9 D3 0, 8, 24, 0, 0
12, 1 34 22 D3 6, 44, 24, 24, 12 215 3 D2 2, 4, 8, 0, 0
11, 3 34 21 D3 0, 38, 48, 18, 6 310 12 D3 0, 14, 30, 6, 0
8, 7 34 16 D3 0, 8, 78, 0, 0 215 3 D2 2, 4, 8, 0, 0
11, 4 34 34 D3 6, 72, 18, 6, 35 215 5 D2 0, 8, 14, 0, 0
13, 1∗ 26 4 D2 2, 4, 36, 0, 0 310 10 D3 0, 8, 39, 0, 0
9, 7 34 24 D3 6, 80, 12, 12, 36 310 10 D3 0, 8, 39, 0, 0
13, 2 34 23 D3 0, 56, 51, 12, 18 56 23 D5 0, 50, 65, 22, 10

Table 8: Projections of GCk,l(G0), t(k, l) ≤ 200, with G0 being Cube or Dodecahedron

Final remarks This research leaves many open questions, for examples:

• to extend Thurston’s idea to classes of plane graphs, defined by more than one pa-
rameter,

• to consider the self-intersection number of ZC-circuits in GCk,l(G0),

• to prove the conjectures of expression of [ZC] for Foilm, using another idea than
the moving group formalism,

• to prove that one can have [ZC] = 1p only for Bundle,

• to extend the Goldberg-Coxeter construction to higher dimension and, more pre-
cisely, to simplicial and cubical complexes.
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Nr.1= (2 × 2)∗ D2d Nr.2 D2 Nr.3 D2 Nr.4 D2 Nr.5 D2

Nr.6 D2 Nr.7 D2 Nr.8 D2 Nr.9 D3h Nr.10 D3h

Nr.11= (3 × 3)∗
D3h

Nr.12 D3 Nr.13 D3 Nr.14 D3 Nr.15 D3

Nr.16 D3 Nr.17 D3 Nr.18 D3 Nr.19 D3 Nr.20 D3

Nr.21 D3 Nr.22 D3 Nr.23 D3 Nr.24 D3 Nr.25 D3

Nr.26 D3 Nr.27 D3 Nr.28 D3 Nr.29 D3 Nr.30 D3

Nr.31 D3 Nr.32 D3 Nr.33 D3 Nr.34 D3

Figure 12: Projections of GCk,l(Cube) from Table 8
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Nr.1= (2 × 2)∗ D2d Nr.2= (2 × 4)∗ D4d Nr.3 D2 Nr.4 D4d Nr.5 D2

Nr.6= 31 D3h Nr.7= (3 × 3)∗ D3h Nr.8 D3 Nr.9 D3 Nr.10 D3

Nr.11 D3 Nr.12 D3 Nr.13= (3 × 5)∗
D5h

Nr.14= (5 × 5)∗
D5h

Nr.15 D5

Nr.16 D5 Nr.17 D5 Nr.18 D5 Nr.19 D5 Nr.20 D5

Nr.21 D5 Nr.22 D5 Nr.23 D5

Figure 13: Projections of GCk,l(Dodecahedron) from Table 8

the electronic journal of combinatorics 11 (2004), #R20 44



GCk,l(Trefoil) GCk,l(Octahedron)
k, l [CC] Projection Group p1, p2, p3, p4 [CC] Projection Group p2, p3, p4

1, 0 6 D3h 0, 3, 2, 0 43 01 D∞h 0, 0, 0
1, 1∗ 23 01 D∞ 0, 0, 0, 0 34 01 D∞h 0, 0, 0
2, 1 6 D3 0, 3, 2, 12 26 01 D∞h 0, 0, 0
3, 1∗ 23 1 C2v 2, 1, 0, 1 34 8 D3h 3, 2, 0
3, 2 6 D3 0, 3, 2, 36 43 20 D4d 0, 8, 2
4, 1 6 D3 0, 3, 2, 48 43 20 D4d 0, 8, 2
4, 3 6 D3 0, 3, 2, 72 43 21 D4d 0, 8, 10
5, 1∗ 23 2 C2 0, 3, 2, 5 34 9 D3h 0, 8, 3
5, 2 6 D3 0, 3, 2, 84 43 21 D4d 0, 8, 10
5, 3∗ 23 2 C2 0, 3, 2, 5 34 9 D3h 0, 8, 3
6, 1 6 D3 0, 3, 2, 108 26 1 D2d 2, 4, 0
5, 4 6 D3 0, 3, 2, 120 26 1 D2d 2, 4, 0
7, 1∗ 23 3 C2 0, 3, 2, 13 34 10 D3 0, 8, 12
7, 2 6 D3 0, 3, 2, 156 26 20 D4d 0, 8, 2
7, 3∗ 23 3 C2 0, 3, 2, 13 34 10 D3 0, 8, 12
6, 5 6 D3 0, 3, 2, 180 43 22 D4 0, 8, 34
7, 4 6 D3 0, 3, 2, 192 43 22 D4 0, 8, 34
8, 1 6 D3 0, 3, 2, 192 43 24 D4 0, 8, 26
8, 3 6 D3 0, 3, 2, 216 43 25 D4 0, 8, 42
7, 5∗ 23 4 C2 0, 3, 2, 15 34 11 D3 0, 8, 18
9, 1∗ 23 5 C2 0, 3, 2, 23 34 12 D3 0, 8, 24
7, 6 6 D3 0, 3, 2, 252 43 23 D4 0, 8, 50
9, 2 6 D3 0, 3, 2, 252 26 4 D2 0, 8, 6
8, 5 6 D3 0, 3, 2, 264 43 26 D4 0, 8, 50
9, 4 6 D3 0, 3, 2, 288 43 23 D4 0, 8, 50
10, 1 6 D3 0, 3, 2, 300 26 2 D2 2, 4, 8
9, 5∗ 23 6 C2 0, 3, 2, 31 34 12 D3 0, 8, 24
10, 3 6 D3 0, 3, 2, 324 43 28 D4 0, 8, 66
8, 7 6 D3 0, 3, 2, 336 26 2 D2 2, 4, 8
11, 1∗ 23 8 C2 0, 3, 2, 37 34 14 D3 0, 8, 39
11, 2 6 D3 0, 3, 2, 372 43 29 D4 0, 8, 74
9, 7∗ 23 7 C2 0, 3, 2, 29 34 13 D3 0, 8, 39
11, 3∗ 23 9 C2 0, 3, 2, 37 34 15 D3 0, 8, 42
11, 4 6 D3 0, 3, 2, 408 26 5 D2 0, 8, 14
9, 8 6 D3 0, 3, 2, 432 43 27 D4 0, 8, 90
12, 1 6 D3 0, 3, 2, 432 43 30 D4 0, 8, 66
11, 5∗ 23 10 C2 0, 3, 2, 45 34 14 D3 0, 8, 39
10, 7 6 D3 0, 3, 2, 444 26 6 D2 0, 8, 18
11, 6 6 D3 0, 3, 2, 468 43 27 D4 0, 8, 90
12, 5 6 D3 0, 3, 2, 504 43 31 D4 0, 8, 98
11, 7∗ 23 11 C2 0, 3, 2, 47 34 16 D3 0, 8, 57
13, 1∗ 23 12 C2 0, 3, 2, 53 34 17 D3 0, 8, 57
13, 2 6 D3 0, 3, 2, 516 43 32 D4 0, 8, 98
13, 3∗ 23 13 C2 0, 3, 2, 53 34 19 D3 0, 8, 60
10, 9 6 D3 0, 3, 2, 540 43 33 D4 0, 8, 114
11, 8 6 D3 0, 3, 2, 552 26 7 D2 0, 8, 22
13, 4 6 D3 0, 3, 2, 552 43 34 D4 0, 8, 114
12, 7 6 D3 0, 3, 2, 576 43 35 D4 0, 8, 122
13, 5∗ 23 14 C2 0, 3, 2, 53 34 18 D3 0, 8, 63
14, 1 6 D3 0, 3, 2, 588 26 3 D2 2, 4, 20

Table 9: Projections of GCk,l(G0), t(k, l) ≤ 200, with G0 being Trefoil or Octahedron

the electronic journal of combinatorics 11 (2004), #R20 45



Nr.1= (2 × 2)∗ D2d Nr.2 D2 Nr.3 D2 Nr.4 D2 Nr.5 D2

Nr.6 D2 Nr.7 D2 Nr.8 D3h Nr.9= (3 × 3)∗ D3h Nr.10 D3

Nr.11 D3 Nr.12 D3 Nr.13 D3 Nr.14 D3 Nr.15 D3

Nr.16 D3 Nr.17 D3 Nr.18 D3 Nr.19 D3 Nr.20= (2× 4)∗ D4d

Nr.21 D4d Nr.22 D4 Nr.23 D4 Nr.24 D4 Nr.25 D4

Nr.26 D4 Nr.27 D4 Nr.28 D4 Nr.29 D4 Nr.30 D4

Nr.31 D4 Nr.32 D4 Nr.33 D4 Nr.34 D4 Nr.35 D4

Figure 14: Projections of GCk,l(Octahedron) from Table 9
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Nr.1 C2v Nr.2 C2 Nr.3 C2 Nr.4 C2 Nr.5 C2

Nr.6 C2 Nr.7 C2 Nr.8 C2 Nr.9 C2 Nr.10 C2

Nr.11 C2 Nr.12 C2 Nr.13 C2 Nr.14 C2

Figure 15: Projections of GCk,l(Trefoil) from Table 9
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Séminaire Lotharingien de Combinatoire (1985).

[Kaw96] A. Kawauchi, A survey of knot theory, Birkhäuser Verlag, Basel (1996).
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