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Abstract

For any integer r ≥ 2, define a sequence of numbers {c(r)
k }k=0,1,..., independent

of the parameter n, by

n∑
k=0

(
n

k

)r(n + k

k

)r

=
n∑

k=0

(
n

k

)(
n + k

k

)
c
(r)
k , n = 0, 1, 2, . . . .

We prove that all the numbers c
(r)
k are integers.

1 Stating the problem

The following curious problem was stated by A. L. Schmidt in [5] in 1992.

Problem 1. For any integer r ≥ 2, define a sequence of numbers {c(r)
k }k=0,1,..., indepen-

dent of the parameter n, by

n∑
k=0

(
n

k

)r(
n + k

k

)r

=
n∑

k=0

(
n

k

)(
n + k

k

)
c
(r)
k , n = 0, 1, 2, . . . . (1)

Is it then true that all the numbers c
(r)
k are integers?
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An affirmative answer for r = 2 was given in 1992 (but published a little bit later),
independently, by Schmidt himself [6] and by V. Strehl [7]. They both proved the following
explicit expression:

c(2)
n =

n∑
j=0

(
n

j

)3

=
∑

j

(
n

j

)2(
2j

n

)
, n = 0, 1, 2, . . . , (2)

which was observed experimentally by W. Deuber, W. Thumser and B. Voigt. In fact,
Strehl used in [7] the corresponding identity as a model for demonstrating various proof
techniques for binomial identities. He also proved an explicit expression for the sequence
c
(3)
n , thus answering Problem 1 affirmatively in the case r = 3. But for this case Strehl

had only one proof based on Zeilberger’s algorithm of creative telescoping. Problem 1
was restated in [3], Exercise (!) 114 on p. 256, with an indication (on p. 549) that H. Wilf

had shown the desired integrality of c
(r)
n for any r but only for any n ≤ 9.

We recall that the first non-trivial case r = 2 is deeply related to the famous Apéry

numbers
∑

k

(
n
k

)2(n+k
k

)2
, the denominators of rational approximations to ζ(3). These

numbers satisfy a 2nd-order polynomial recursion discovered by R. Apéry in 1978, while
an analogous recursion (also 2nd-order and polynomial) for the numbers (2) was indicated
by J. Franel already in 1894.

The aim of this paper is to give an answer in the affirmative to Problem 1 (Theorem 1)

by deriving explicit expressions for the numbers c
(r)
n , and also to prove a stronger result

(Theorem 2) conjectured in [7], Section 4.2.

Theorem 1. The answer to Problem 1 is affirmative. In particular, we have the explicit
expressions

c(4)
n =

∑
j

(
2j

j

)3(
n

j

) ∑
k

(
k + j

k − j

)(
j

n − k

)(
k

j

)(
2j

k − j

)
, (3)

c(5)
n =

∑
j

(
2j

j

)4(
n

j

)2 ∑
k

(
k + j

k − j

)2(
2j

n − k

)(
2j

k − j

)
, (4)

and in general for s = 1, 2, . . .

c(2s)
n =

∑
j

(
2j

j

)2s−1(
n

j

) ∑
k1

(
j

n − k1

)(
k1

j

)(
k1 + j

k1 − j

) ∑
k2

(
2j

k1 − k2

)(
k2 + j

k2 − j

)2

· · ·

×
∑
ks−1

(
2j

ks−2 − ks−1

)(
ks−1 + j

ks−1 − j

)2(
2j

ks−1 − j

)
,

c(2s+1)
n =

∑
j

(
2j

j

)2s(
n

j

)2 ∑
k1

(
2j

n − k1

)(
k1 + j

k1 − j

)2 ∑
k2

(
2j

k1 − k2

)(
k2 + j

k2 − j

)2

· · ·

×
∑
ks−1

(
2j

ks−2 − ks−1

)(
ks−1 + j

ks−1 − j

)2(
2j

ks−1 − j

)
,

where n = 0, 1, 2, . . . .
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2 Very-well-poised preliminaries

The right-hand side of (1) defines the so-called Legendre transform of the sequence

{c(r)
k }k=0,1,.... In general, if

an =
n∑

k=0

(
n

k

)(
n + k

k

)
ck =

n∑
k=0

(
2k

k

)(
n + k

n − k

)
ck,

then by the well-known relation for inverse Legendre pairs one has

(
2n

n

)
cn =

∑
k

(−1)n−kdn,kak,

where

dn,k =

(
2n

n − k

)
−

(
2n

n − k − 1

)
=

2k + 1

n + k + 1

(
2n

n − k

)
.

Therefore, putting

t
(r)
n,j =

n∑
k=j

(−1)n−kdn,k

(
k + j

k − j

)r

, (5)

we obtain (
2n

n

)
c(r)
n =

n∑
j=0

(
2j

j

)r

t
(r)
n,j. (6)

The case r = 1 of Problem 1 is trivial (that is why it is not included in the statement of
the problem), while the cases r = 2 and r = 3 are treated in [6], [7] using the fact that

t
(2)
n,j and t

(3)
n,j have a closed form. Namely, it is easy to show by Zeilberger’s algorithm of

creative telescoping [4] that the latter sequences, indexed by either n or j, satisfy simple
1st-order polynomial recursions. Unfortunately, this argument does not exist for r ≥ 4.

V. Strehl observed in [7], Section 4.2, that the desired integrality would be a con-

sequence of the divisibility of the product
(
2j
j

)r · t
(r)
n,j by

(
2n
n

)
for all j, 0 ≤ j ≤ n. He

conjectured a much stronger property, which we are now able to prove.

Theorem 2. The numbers
(
2n
n

)−1(2j
j

)
t
(r)
n,j are integers.

Our general strategy for proving Theorem 2 (and hence Theorem 1) is as follows:
rewrite (5) in a hypergeometric form and apply suitable summation and transformation
formulae (Propositions 1 and 2 below).

Changing l to n − k in (5) we obtain

t
(r)
n,j =

∑
l≥0

(−1)l 2n − 2l + 1

2n − l + 1

(
2n

l

)(
n − l + j

n − l − j

)r

,
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where the series on the right terminates. It is convenient to write all such terminating
sums simply as

∑
l, which is, in fact, a standard convention (see, e.g., [4]). The ratio of

two consecutive terms in the latter sum is equal to

−(2n + 1) + l

1 + l
· −

1
2
(2n − 1) + l

−1
2
(2n + 1) + l

·
(−(n − j) + l

−(n + j) + l

)r

,

hence

t
(r)
n,j =

(
n + j

n − j

)r

· r+2Fr+1

(−(2n + 1), −1
2
(2n − 1), −(n − j), . . . , −(n − j)

−1
2
(2n + 1), −(n + j), . . . , −(n + j)

∣∣∣∣ 1

)

is a very-well-poised hypergeometric series. (We refer the reader to the book [2] for
all necessary hypergeometric definitions. We will omit the argument z = 1 in further
discussions.)

The following two classical results—Dougall’s summation of a 5F4(1)-series (proved
in 1907) and Whipple’s transformation of a 7F6(1)-series (proved in 1926)—will be re-
quired to treat the cases r = 3, 4, 5 of Theorems 1 and 2.

Proposition 1 ([2], Section 4.3). We have

5F4

(
a, 1 + 1

2
a, c, d, −m

1
2
a, 1 + a − c, 1 + a − d, 1 + a + m

)
=

(1 + a)m (1 + a − c − d)m

(1 + a − c)m (1 + a − d)m

(7)

and

7F6

(
a, 1 + 1

2
a, b, c, d, e, −m

1
2
a, 1 + a − b, 1 + a − c, 1 + a − d, 1 + a − e, 1 + a + m

)

=
(1 + a)m (1 + a − d − e)m

(1 + a − d)m (1 + a − e)m
· 4F3

(
1 + a − b − c, d, e, −m

1 + a − b, 1 + a − c, d + e − a − m

)
, (8)

where m is a non-negative integer, and ( · ) denotes Pochhammer’s symbol.

An application of (7) gives (without creative telescoping)

t
(3)
n,j =

(
n + j

n − j

)3

· (−2n)n−j(−2n + 2(n − j))n−j

(−2n + (n − j))2
n−j

=
(2n)!

(3j − n)! (n − j)!3
,

which is exactly the expression obtained in [7], Section 4.2. Therefore, from (6) we have
the explicit expression

c(3)
n =

(
2n

n

)−1 ∑
j

(
2j

j

)3
(2n)!

(3j − n)! (n − j)!3
=

∑
j

(
2j

j

)2(
2j

n − j

)(
n

j

)2

.
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For the case r = 5, we are able to apply the transformation (8):

t
(5)
n,j =

(
n + j

n − j

)5

· (−2n)n−j(−2n + 2(n − j))n−j

(−2n + (n − j))2
n−j

× 4F3

(−2j, −(n − j), −(n − j), −(n − j)

−(n + j), −(n + j), 3j − n + 1

)

=

(
n + j

n − j

)2
(2n)!

(3j − n)! (n − j)!3

∑
l

(−2j)l (−(n − j))3
l

l! (−(n + j))2
l (3j − n + 1)l

=
(2n)!

(2j)! (n − j)!2

∑
l

(
n − l + j

n − l − j

)2(
2j

l

)(
2j

n − l − j

)

=
(2n)!

(2j)! (n − j)!2

∑
k

(
k + j

k − j

)2(
2j

n − k

)(
2j

k − j

)
,

hence (
2n

n

)−1(
2j

j

)
t
(5)
n,j =

(
n

j

)2 ∑
k

(
k + j

k − j

)2(
2j

n − k

)(
2j

k − j

)

are integers and from (6) we derive formula (4).
To proceed in the case r = 4, we apply the version of formula (8) with b = (1 + a)/2

(so that the series on the left reduces to a 6F5(1)-very-well-poised series):

t
(4)
n,j =

(
n + j

n − j

)4

· (−2n)n−j(−2n + 2(n − j))n−j

(−2n + (n − j))2
n−j

× 4F3

(−j, −(n − j), −(n − j), −(n − j)

−n, −(n + j), 3j − n + 1

)

=

(
n + j

n − j

)
(2n)!

(3j − n)! (n − j)!3

∑
l

(−j)l (−(n − j))3
l

l! (−n)l (−(n + j))l(3j − n + 1)l

=
(2n)! j!

n! (n − j)! (2j)!

∑
l

(
n − l + j

n − l − j

)(
j

l

)(
n − l

j

)(
2j

n − l − j

)

=
(2n)! j!

n! (n − j)! (2j)!

∑
k

(
k + j

k − j

)(
j

n − k

)(
k

j

)(
2j

k − j

)
,

from which, again,
(
2n
n

)−1(2j
j

)
t
(4)
n,j ∈ Z and we arrive at formula (3).

3 Andrews’s multiple transformation

It seems that ‘classical’ hypergeometric identities can cover only the cases1 r = 2, 3, 4, 5
of Theorems 1 and 2. In order to prove the theorems in full generality, we will require

1This is not really true since Andrews’s ‘non-classical’ identity below is a consequence of very classical
Whipple’s transformation and the Pfaff–Saalschütz formula.
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a multiple generalization of Whipple’s transformation (8). The required generalization is
given by G.E. Andrews in [1], Theorem 4. After making the passage q → 1 in Andrews’s
theorem, we arrive at the following result.

Proposition 2. For s ≥ 1 and m a non-negative integer,

2s+3F2s+2

(
a, 1 + 1

2
a, b1, c1, b2, c2, . . .

1
2
a, 1 + a − b1, 1 + a − c1, 1 + a − b2, 1 + a − c2, . . .

. . . , bs, cs, −m

. . . , 1 + a − bs, 1 + a − cs, 1 + a + m

)

=
(1 + a)m(1 + a − bs − cs)m

(1 + a − bs)m(1 + a − cs)m

∑
l1≥0

(1 + a − b1 − c1)l1(b2)l1(c2)l1

l1! (1 + a − b1)l1(1 + a − c1)l1

×
∑
l2≥0

(1 + a − b2 − c2)l2(b3)l1+l2(c3)l1+l2

l2! (1 + a − b2)l1+l2(1 + a − c2)l1+l2

· · ·

×
∑

ls−1≥0

(1 + a − bs−1 − cs−1)ls−1(bs)l1+···+ls−1(cs)l1+···+ls−1

ls−1! (1 + a − bs−1)l1+···+ls−1(1 + a − cs−1)l1+···+ls−1

× (−m)l1+···+ls−1

(bs + cs − a − m)l1+···+ls−1

.

Proof of Theorem 2. As in Section 2, we will distinguish the cases corresponding to the
parity of r.

If r = 2s+1, then setting a = −(2n+1) and b1 = c1 = · · · = bs = cs = −m = −(n−j)
in Proposition 2 we obtain

t
(2s+1)
n,j =

(
n + j

n − j

)2s−2
(2n)!

(3j − n)! (n − j)!3

∑
l1

(
2j

l1

)(
(−(n − j))l1

(−(n + j))l1

)2

×
∑
l2

(
2j

l2

)(
(−(n − j))l1+l2

(−(n + j))l1+l2

)2

· · ·

×
∑
ls−1

(
2j

ls−1

)(
(−(n − j))l1+···+ls−1

(−(n + j))l1+···+ls−1

)2

× (−1)l1+···+ls−1(−(n − j))l1+···+ls−1

(3j − n + 1)l1+···+ls−1

=
(2n)!

(2j)! (n − j)!2

∑
l1

(
2j

l1

)(
n − l1 + j

n − l1 − j

)2 ∑
l2

(
2j

l2

)(
n − l1 − l2 + j

n − l1 − l2 − j

)2

· · ·

×
∑
ls−1

(
2j

ls−1

)(
n − l1 − · · · − ls−1 + j

n − l1 − · · · − ls−1 − j

)2

·
(

2j

n − l1 − · · · − ls−1 − j

)
.

If r = 2s, we apply Proposition 2 with the choice a = −(2n + 1), b1 = (a + 1)/2 = −n
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and c1 = b2 = · · · = bs = cs = −m = −(n − j):

t
(2s)
n,j =

(
n + j

n − j

)2s−3
(2n)!

(3j − n)! (n − j)!3

∑
l1

(
j

l1

)
(−(n − j))l1

(−n)l1

(−(n − j))l1

(−(n + j))l1

×
∑
l2

(
2j

l2

)(
(−(n − j))l1+l2

(−(n + j))l1+l2

)2

· · ·

×
∑
ls−1

(
2j

ls−1

)(
(−(n − j))l1+···+ls−1

(−(n + j))l1+···+ls−1

)2

× (−1)l1+···+ls−1(−(n − j))l1+···+ls−1

(3j − n + 1)l1+···+ls−1

=
(2n)! j!

n! (n − j)! (2j)!

∑
l1

(
j

l1

)(
n − l1

j

)(
n − l1 + j

n − l1 − j

)

×
∑
l2

(
2j

l2

)(
n − l1 − l2 + j

n − l1 − l2 − j

)2

· · ·

×
∑
ls−1

(
2j

ls−1

)(
n − l1 − · · · − ls−1 + j

n − l1 − · · · − ls−1 − j

)2

·
(

2j

n − l1 − · · · − ls−1 − j

)
.

In both cases, the desired integrality

(
2n

n

)−1(
2j

j

)
t
(r)
n,j ∈ Z, j = 0, 1, . . . , n,

clearly holds, and Theorem 2 follows.

Theorem 1 was actually proved during the proof of Theorem 2 with explicit expressions
being obtained for c

(4)
n , c

(5)
n and general c

(r)
n , r ≥ 2.

We would like to conclude the paper by the following q-question.

Problem 2. Find and solve an appropriate q-analogue of Problem 1.
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