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Abstract

For any integer r > 2, define a sequence of numbers {c,(:)}k:o,17..., independent
of the parameter n, by

n n T n+k T n n n_i_k ;
2 () (L) -2 @) emoa
k=0 k=0
(r)

We prove that all the numbers ¢;; * are integers.

1 Stating the problem
The following curious problem was stated by A.L. Schmidt in [5] in 1992.

Problem 1. For any integer v > 2, define a sequence of numbers {c,(gr)}k:071,,,,, indepen-
dent of the parameter n, by

EOCHEOCNe e

k=0 k

Is it then true that all the numbers cgf) are integers?
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An affirmative answer for r = 2 was given in 1992 (but published a little bit later),
independently, by Schmidt himself [6] and by V. Strehl [7]. They both proved the following
explicit expression:

0512):%(?)3:2(?)2(25)’ n=01,2 .., (2)

j
which was observed experimentally by W. Deuber, W. Thumser and B. Voigt. In fact,
Strehl used in [7] the corresponding identity as a model for demonstrating various proof
techniques for binomial identities. He also proved an explicit expression for the sequence
CS’), thus answering Problem 1 affirmatively in the case r = 3. But for this case Strehl
had only one proof based on Zeilberger’s algorithm of creative telescoping. Problem 1
was restated in [3], Exercise (1) 114 on p 256, with an indication (on p. 549) that H. Wilf
had shown the desired integrality of ) for any r but only for any n <9.

We recall that the first non-trivial case r = 2 is deeply related to the famous Apéry
numbers >, (2)2(”#)2, the denominators of rational approximations to ((3). These
numbers satisfy a 2nd-order polynomial recursion discovered by R. Apéry in 1978, while
an analogous recursion (also 2nd-order and polynomial) for the numbers (2) was indicated
by J. Franel already in 1894.

The aim of this paper is to give an answer in the affirmative to Problem 1 (Theorem 1)
by deriving explicit expressions for the numbers cq(f), and also to prove a stronger result
(Theorem 2) conjectured in [7], Section 4.2.

Theorem 1. The answer to Problem 1 is affirmative. In particular, we have the explicit
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and in general for s =1,2,...
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wheren =0,1,2,... .
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2 Very-well-poised preliminaries

The right-hand side of (1) defines the so-called Legendre transform of the sequence
{cﬁf’}k:o,l,__. In general, if

=3 () (1) =2 () (R

then by the well-known relation for inverse Legendre pairs one has

2n
( n )Cn = Z(_l)nikdn,kaka

3
P 2n B 2n B 2k+1 2n
kT \n -k n—k—1) n+k+1\n—£k)

Therefore, putting
T & n— k +j "
1= Yot ) )
k=j

2n " 25\"
) = £, 6
G- () ©

j=0

where

we obtain

The case 7 = 1 of Problem 1 is trivial (that is why it is not included in the statement of
the problem), while the cases r = 2 and r = 3 are treated in [6], [7] using the fact that
tf; and tf’; have a closed form. Namely, it is easy to show by Zeilberger’s algorithm of
creative telescoping [4] that the latter sequences, indexed by either n or j, satisfy simple
Ist-order polynomial recursions. Unfortunately, this argument does not exist for r > 4.

V. Strehl observed in [7], Section 4.2, that the desired integrality would be a con-
sequence of the divisibility of the product (ij)r . tﬁj"} by (277) for all j, 0 < 5 < n. He
conjectured a much stronger property, which we are now able to prove.

Theorem 2. The numbers (2:)_1(2]7)152 are integers.

Our general strategy for proving Theorem 2 (and hence Theorem 1) is as follows:
rewrite (5) in a hypergeometric form and apply suitable summation and transformation
formulae (Propositions 1 and 2 below).

Changing [ to n — k in (5) we obtain

(r) 2n—20+1/2n\ (n—1+7\"
by = 1) —
" Z( )2n—l—|—1 Il J\n—-1—-3)"

>0
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where the series on the right terminates. It is convenient to write all such terminating
sums simply as ) _,, which is, in fact, a standard convention (see, e.g., [4]). The ratio of
two consecutive terms in the latter sum is equal to

—@2n+1)+1 —3(2n—1)+1 (—(n—j)+z)’"
1+1 —s(2n+1)+1 \—(n+j)+1)"’
hence
v (n+7\ —@2n+1),—2(2n—1), —=(n—j), ..., —(n — )
tnj_ . '7’+2F7‘+1 1 . . 1

is a very-well-poised hypergeometric series. (We refer the reader to the book [2] for
all necessary hypergeometric definitions. We will omit the argument z = 1 in further
discussions.)

The following two classical results—Dougall’s summation of a 5Fy(1)-series (proved
in 1907) and Whipple’s transformation of a 7Fg(1)-series (proved in 1926)—will be re-
quired to treat the cases r = 3,4,5 of Theorems 1 and 2.

Proposition 1 ([2], Section 4.3). We have

a,1+3a, ¢ d, —m C(Q+a)n(Q+a—c—d)y, )
o la, 1+a-c,1+a—d 1+a+m) (Q+a—c)n(l+a—d)n,
and
7 a, 1+%a, b, c, d, e, —-m
o %a, l+a—-b14a—c,1+a—d,1+a—e,14+a+m

(4 a)m(Ita—d—e)y l4+a—b—c d, e, —m ®)
T (l+a—-dp(lt+a—e), “P\1+a-blta—cdte—a—m)
where m is a non-negative integer, and (- ) denotes Pochhammer’s symbol.

An application of (7) gives (without creative telescoping)

n,J n—j o

=00 ) (200 (204 20—y (20)
(=2n+ (n—7));_; (35 —n)!(n—j)1¥

which is exactly the expression obtained in [7], Section 4.2. Therefore, from (6) we have
the explicit expression

o= () S6) a0 (2)0)

J
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For the case r = 5, we are able to apply the transformation (8):

44 _ (n+J)5 (=2n)n—j(=2n+2(n — j))n—;

" (=2n+(n —J))%;
% 4F3(_2j’ _(n_j>7 _(n_j)a _(n_]))

—(n+j), —(n+7),3—n+1
_(n+J (2n)! —2j)i (=(n =)}
_(n—j) (3j —n)t(n—j) ‘SZZ'( (n+7)iBj —n+1)
B (2n)! n—1+j 2 2] 2j
o o) (D6 52)

“anem s () (2 (2)
() G- (=6 (2062

are integers and from (6) we derive formula (4).
To proceed in the case r = 4, we apply the version of formula (8) with b = (14 a)/2
(so that the series on the left reduces to a ¢F5(1)-very-well-poised series):

0 _ (n + j)“ (=20)0 (=204 2(0 — )y
n—j (=2n+(n—1))2;

cap((h 0B o o=y

—n, =(n+j),3j —n+1
- (Zfﬁ) (3] - 7§>2'n<)7; — B Z I <—n>z(<:jk)7§(+_§?>l?3§))—§) n+ 1),
S (06 )

e ens ()G 0G)

from which, again, (2:)_1 (2]3 )tgl; € Z and we arrive at formula (3).

hence

3 Andrews’s multiple transformation

It seems that ‘classical’ hypergeometric identities can cover only the cases! r = 2,3,4,5
of Theorems 1 and 2. In order to prove the theorems in full generality, we will require

I This is not really true since Andrews’s ‘non-classical’ identity below is a consequence of very classical
Whipple’s transformation and the Pfaff-Saalschiitz formula.
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a multiple generalization of Whipple’s transformation (8). The required generalization is
given by G.E. Andrews in [1], Theorem 4. After making the passage ¢ — 1 in Andrews’s

theorem, we arrive at the following result.
Proposition 2. For s > 1 and m a non-negative integer,

a, 1+ 3a, by, 1, ba, €2,
25+3F2s+2( %a, l+a—-0b,14+a—c,14+a—by, 1 +a—cy,...
e bs, Css —-m
‘..’1+a_58,1+a—cs,1+a+m)
_ 0t a)n(d+a=by—c)m~ (L+a—b =)y (ba)n(c2)y
C(Ita=b)n(l+a—co)m 11>0 W1 +a—=b)y(1+a—c)y

% Z (]_ +a— b2 - CQ)ZQ (b3)11+12 (03)11+l2 .
lg! (1 +a— b2)l1+12(1 +a— C2)l1-|—l2

Z (14 a—=bso1 = csm1)1ey (Os)tatt o (€6t bty
7 ls—1! (1 +a— bS_l)ll‘i‘""i‘lsfl(l +a— 05_1)l1+"'+l571

(=1 o1,
(bs T —a— m)11+"'+1571

Proof of Theorem 2. As in Section 2, we will distinguish the cases corresponding to the

parity of r.
If r =2s+1, then settinga = —(2n+1)and by =¢; =+ =bs =cs = —m = —(n—j)

in Proposition 2 we obtain

f2sD) (n +j)28_2( ) — ) g Gf) (2:22—1%2)2

n.j n—j 3j —n)l(n
(D) (E ) -
DMOHI(E =

s—1
(_1)l1+"'+ls—l(_(n — j))l1+...+1571
(3 —n+ 1)yt ,

“aner 2 ()6 ) S0

@) (n— J)E & .

Xz(zj><n—zl—-~-—zsﬁj)?( 2j )
ls—1 n—1ly—--—ls1—J n—Ily—--—ls1—J

X

lsfl

If r = 2s, we apply Proposition 2 with the choice a = —(2n+1), by = (a+1)/2 = —n

THE ELECTRONIC JOURNAL OF COMBINATORICS 11 (2004), #R22



andclsz:"':bszcs:_m:_(n_j):

402 w2 () E
<))
() ()
(=)t ter(—(n = J))i sty

(3] -—n+ 1)11+...+13_1
B (2n)! 4! Z JN(n—0L\[(n—1+]
T AUV A A
X§:<y)(n—h—b+j)?”
5 ly n—1Il—ly—y
. AN 2 .
S (F (Y I
o lsa)\n—=li—-=ls1— n—ly—-—ls1—J
In both cases, the desired integrality

2 —1 2
(@ (7)ﬁez, i=01,....n,
n j g

clearly holds, and Theorem 2 follows. O

X

Theorem 1 was actually proved during the proof of Theorem 2 with explicit expressions

being obtained for 07(14), ) and general cg), r>2.

We would like to conclude the paper by the following ¢-question.
Problem 2. Find and solve an appropriate q-analogue of Problem 1.
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