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Abstract

In the 1960’s, Tutte presented a decomposition of a 2-connected finite graph into
3-connected graphs, cycles and bonds. This decomposition has been used to reduce
problems on 2-connected graphs to problems on 3-connected graphs. Motivated by
a problem concerning accumulation points of infinite planar graphs, we generalize
Tutte’s decomposition to include all infinite 2-connected graphs.

1 Introduction

In [5], Tutte presents a decomposition of a finite 2-connected graph into 3-connected
graphs, cycles and bonds. This is useful in turning problems about 2-connected graphs into
problems about 3-connected graphs (see [4] for an example in which the full decomposition
is used).

The following problem concerning accumulation points of infinite graphs embedded in
the plane provides motivation for generalizing Tutte’s decomposition to infinite graphs.

Question 1 Which (locally finite) planar graphs have embeddings in the plane with only
finitely many accumulation points?

An answer to this question can be given in terms of forbidden subgraphs. One step in
proving that these are all the forbidden subgraphs is the following technical lemma.
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Lemma 2 Let G be a locally finite connected graph having two embeddings in the plane,
one embedding having only finitely many accumulation points and the other having a
specified finite set of vertices on the boundary of the same face, in a specific cyclic order.
Then G has an embedding in the plane having only finitely many accumulation points and
having the specified finite set of vertices on the boundary of the same face, in the specific
cyclic order.

One way of approaching this technical lemma is to first prove it for 3-connected graphs
(the proof is easier in this case because both embeddings extend the same embeddings
of the finite 3-connected subgraphs of G). It should then be possible to prove it for
2-connected graphs using the results of this work, and finally connected graphs should
follow just from the block decomposition. Because induction is not readily available as a
tool, it seems that one needs the entire Tutte decomposition to do the 2-connected case
(and similarly the entire block decomposition to do the connected case).

We note that Droms, Servatius and Servatius [2] have actually proved our main re-
sult when restricted to locally finite graphs (which is in principle all that is needed for
the technical lemma above). They were also interested in characterizing when a decom-
position was of a locally finite graph. However, it seems that little extra work beyond
Tutte’s original arguments is required to provide the decomposition in general, and we
do this here, in a completely self-contained way. But, as another example, one can prove
Halin’s forbidden subgraph characterization of countable connected graphs that have an
embedding in the plane with no accumulation points [3] using the full force of Tutte’s
decomposition to reduce the problem to 3-connected graphs. (This is not necessarily
recommended; Halin’s proof is more elegant than this.)

It is also true that any set of non-crossing cuts provides a tree-decomposition of a graph
(see [1] for the definition of a tree-decomposition; it is not required here). The hinges that
are central to Tutte’s theory are non-crossing 2-cuts and so there is a corresponding tree-
decomposition. However, the precise nature of the parts in the tree-decomposition is not
clear just from these general considerations.

2 Separations, Blocks and Hinges

In this section, we introduce the notions of separations and hinges. This section is in
very large measure extracted from [5] (with somewhat different notation and terminology
adjusted to suit the context). In this work, a graph may be either finite or infinite, with no
restrictions on size and it may have loops and multiple edges. A bond is a graph consisting
of just two vertices and at least one edge, such that every edge has both vertices as its
ends. A bond is a k-bond if it has precisely k edges. Of necessity we allow infinite bonds
in this work.

A separation in a graph G is a pair (H, K) of edge-disjoint non-null subgraphs H and
K of G such that G = H ∪ K. For a non-negative integer k, a separation (H, K) is a
k-separation if |E(H)| ≥ k, |E(K)| ≥ k, and |V (H∩K)| = k. The graph G is k-connected
if there is no m-separation, for all m ∈ {0, 1, . . . , k − 1}.
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Note that if G has fewer than 2k edges, then G has no k-separation. In particular, K3

and the 3-bond are k-connected for every positive integer k.
The definition given above says that G is 1-connected if and only if there is no 0-

separation. By considering, for a particular vertex x, the set of vertices reachable from x
by paths, we see that G is connected if and only if G is 1-connected.

Define the relation ∼ on the edges of G by e ∼ f if either e = f or e and f are in a
cycle of G. It is a standard exercise to show that ∼ is an equivalence relation. A block
of G is either an isolated vertex or the subgraph of G induced by an equivalence class
of ∼. For finite graphs, this is the same as the maximal connected subgraphs of G that
have no cut-vertex (as long as a vertex incident with a loop and at least one other edge
is a cut-vertex). It is easy to see that two blocks have at most one vertex in common.
Furthermore, let T1(G) denote the graph whose vertices are the blocks of G and the cut-
vertices of G. A block B is adjacent in T1(G) to a cut-vertex v if v ∈ V (B); these are the
only adjacencies in T1(G). It is well-known (and easy to prove, even for infinite graphs)
that if G is connected, then T1(G) is a tree.

Our goal is to provide an analog of T1(G) when G is 2-connected and the “blocks”
are 3-connected. If x, y are distinct vertices of a graph G, then G + xy denotes the graph
obtained from G by adding an edge joining x and y, even if there already is such an edge,
while [x, y] denotes the edgeless subgraph of G consisting just of the vertices x and y.
The following result is a straightforward application of the definitions.

Lemma 3 Let G be a 2-connected graph, let (H, K) be a 2-separation of G, and let
[x, y] = H ∩ K. Then both H + xy and K + xy are 2-connected.

Let G be a graph and let H be a subgraph of G. A subgraph K of G is an H-bridge
in G if either K is a 1-bond, both of whose vertices are in H but whose edge is not in H ,
in which case K is trivial , or K is obtained from a component L of G− V (H) by adding
to L all the edges of G that have at least one end in L (together with all ends of these
edges).

A hinge-separation of G is a 2-separation (H, K) of G such that at least one of H and
K is an (H ∩ K)-bridge in G and at least one of H and K is 2-connected. If (H, K) is
a hinge-separation, then H ∩ K is a hinge. Note that if H , say, is an (H ∩ K)-bridge,
then |E(H)| ≥ 2 because (H, K) is a 2-separation and, therefore, H is not a 1-bond. In
particular, H has a vertex not in H ∩ K. We have the following easy observation.

Lemma 4 Let (H, K) be a 2-separation of a 2-connected graph G and let [x, y] = H ∩K.
Then [x, y] is a hinge of G if and only if either there are at least three [x, y]-bridges in G,
at least one of which is not a 1-bond, or there are exactly two [x, y]-bridges, at least one
of which is 2-connected.

The main point of this section are the following two results. The first proves that
hinges do not cross, while the second characterizes 2-connected graphs with no hinge.

Lemma 5 Let [x, y] be a hinge of a 2-connected graph G and let (H, K) be a 2-separation
of G. Then there is an [x, y]-bridge B of G such that H ∩ K ⊆ B.
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Proof: Let [u, v] = H ∩ K and suppose by way of contradiction there are distinct
[x, y]-bridges Bu and Bv such that u ∈ V (Bu) \ V (Bv) and v ∈ V (Bv) \ V (Bu). As
x, y ∈ V (Bu) ∩ V (Bv), we see that {x, y} ∩ {u, v} = ∅.

Since Bu contains the edges of G incident with u, |E(Bu)| ≥ 2. Likewise, |E(Bv)| ≥ 2
so that, letting Bu denote the union of all the [x, y]-bridges except Bu, (Bu, Bu) is a
2-separation of G. It follows from Lemma 4 that (Bu, Bu) is a hinge-separation of G.

For any vertex w ∈ V (G)\{x, y}, there is a path P in G from x to y through w. There
is a single [x, y]-bridge containing P , so at most one of u and v is in P and, therefore,
there is a path in G joining w to one of x and y that is disjoint from u and v, except
possibly for the w-end, if it is one of u and v.

It follows that there are at most two non-trivial [u, v]-bridges in G. If there are two,
then x and y are in different ones. As u and v are in different [x, y]-bridges in G, there
is no edge of G joining u and v, so there are no trivial [u, v]-bridges. Since (H, K) is a
2-separation of G and [u, v] = H ∩K, there are exactly two [u, v]-bridges, one containing
x and the other containing y.

Note that this implies that there are exactly two [x, y]-bridges in G, since otherwise
there is a path in G joining x and y that is disjoint from u and v. These bridges are just
Bu and Bv. We show that neither Bu nor Bv is 2-connected, contradicting the fact that
[x, y] is a hinge. Since the argument is the same in both cases, we deal only with Bu.

Let X denote the vertices w of Bu for which there is a path P from w to x such that
u is not an internal vertex of P . Similarly let Y denote the vertices of Bu for which P
goes from w to y without having u as an internal vertex. Then the earlier remarks imply
that X ∪ Y = V (Bu) and X ∩ Y = {u}. For z ∈ {x, y}, let Lz be the subgraph of Bu

induced by Z. Clearly, (Lx, Ly) is a 1-separation of Bu, as required.

Theorem 6 Let G be a 2-connected graph with no hinge. Then G is either 3-connected,
a cycle, or a bond.

Proof: Suppose G is neither 3-connected nor a bond. We show G is a polygon. Since
G is not 3-connected, there is a 2-separation (H, K) of G. Let [x, y] = H ∩ K. Since G
is not a bond, there is a non-trivial [x, y]-bridge. Since [x, y] is not a hinge, Lemma 4
implies there are exactly two [x, y]-bridges and both are non-trivial. Thus, H and K are
the two [x, y]-bridges and neither is 2-connected. We prove that H and K are both paths
having x and y as their ends. Since the argument is the same for both, we deal only with
H .

Lemma 3 implies H + xy is 2-connected, so if (L, M) is any 1-separation of H , we
may choose the labelling so that x ∈ V (L) \ V (M) and y ∈ V (M) \ V (L). Let P be any
path in H from x to y and let B1, B2, . . . , Br be the blocks of H containing the edges of
P . There are no other blocks of H .

If any Bi has two or more edges, then let u, v be the attachments of Bi in G. There
is a [u, v]-bridge B in G containing K. We see that (B, B̄) is a hinge-separation in G, a
contradiction. Hence each Bi has exactly one edge, so H = P , as claimed.
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3 Cleavage Units

In this section we define the cleavage units of a graph. The main point is to show that
cleavage units are either 3-connected, a cycle, or a bond. Let G be a 2-connected graph
and let [x, y] be a hinge of G. Let B[x,y] denote the set of [x, y]-bridges in G and let
B2

[x,y] denote the set of non-trivial [x, y]-bridges in G. For each B ∈ B2
[x,y], we introduce a

new edge e1
B having x and y as its ends. If |B[x,y]| ≥ 3, then we also introduce, for each

B ∈ B2
[x,y], a second new edge e2

B, also having x and y as its ends. These new edges are
virtual and the set of them is vir(G). Thus, every hinge of G introduces at least two
virtual edges. Let Ĝ denote the graph (V (G), E(G)∪ vir(G)). For a non-trivial bridge B
of a hinge [x, y] of G, set B̂ to be the graph obtained from B by adding any virtual edge
that either has an end in B different from both x and y or is e1

B.
Define the relation ≈ on E(Ĝ) by e ≈ f if, for every hinge [x, y] of G and every

non-trivial [x, y]-bridge B in G, either both e and f are in B̂ or both are not in B̂. It
is a complete triviality that ≈ is an equivalence relation. A cleavage unit of G is any
subgraph of Ĝ induced by an equivalence class of ≈. If e and f are edges of Ĝ in different
cleavage units, then there is a hinge [x, y] and an [x, y]-bridge B such that one of e and
f is in E(B̂) and the other is not. Such a hinge separates e and f . The following easy
lemma describes one type of cleavage unit and is useful later.

Lemma 7 Let G be a 2-connected graph and let [x, y] be a hinge of G. If |B[x,y]| ≥ 3,

then the set of edges of G having x and y as ends, together with the edges of Ĝ of the
form e2

B, for B ∈ B2
[x,y], induces a cleavage unit of G. Furthermore, this cleavage unit is

a |B[x,y]|-bond.

We denote by K[x,y] the cleavage unit described in Lemma 7.
We are interested in proving that the cleavage units give a tree-like decomposition of

G. To this end, the decomposition graph of a 2-connected graph G is the graph T (G)
whose vertices are the cleavage units of G and two cleavage units K1, K2 are adjacent in
T (G) if there is a hinge [x, y] of G and either there is an [x, y]-bridge B such that e1

B is
in one of K1 and K2, while e2

B is in the other, or there are just two [x, y]-bridges B and
B′, and e1

B in one of K1 and K2 while e1
B′ is in the other. Note that if G has no hinge,

then G itself is the only cleavage unit.

Lemma 8 Let G be a 2-connected graph and let [x, y] be a hinge of G. Let u and v be
distinct vertices of G such that {u, v} 6= {x, y}. Then [u, v] is a hinge of G if and only if
there is an [x, y]-bridge B in G such that [u, v] is a hinge of B + e1

B.

Proof: Suppose first that [u, v] is a hinge of G. Lemma 5 implies there is an [x, y]-bridge
B in G such that [u, v] ⊆ B. Set H = B + e1

B.
Let JG be the [u, v]-bridge in G containing [x, y] and let JB = (J ∩ B) + e1

B. As at
least one of x and y is not in {u, v}, |E(JB)| ≥ 2. Since [u, v] is a hinge of G, the union
K of the [u, v]-bridges in G other than JG has at least two edges. Thus (JB, K) is a

the electronic journal of combinatorics 11 (2004), #R25 5



2-separation of H . Moreover, either JG or K is 2-connected, which implies that either JB

or K is 2-connected, i.e., [u, v] is a hinge of H .
Conversely, suppose [u, v] is a hinge of H = B + e1

B. Let JB denote the [u, v]-bridge
in H containing e1

B and let JG denote the union of JB − e1
B with all the [x, y]-bridges in

G other than B. Letting K denote the union of the [u, v]-bridges in B other than JB, we
see (as above) that (JG, K) is a hinge-separation of G.

The following straightforward corollary is the key to proving that T (G) is a tree.

Corollary 9 Let G be a 2-connected graph, let [x, y] be a hinge of G, and let K be a
cleavage unit of G. Then either K = K[x,y] or there is a non-trivial [x, y]-bridge B such
that K is a cleavage unit of B + e1

B.

We conclude this section by showing that no cleavage unit has a hinge. In the finite
case, this follows by an easy induction based on Corollary 9.

Theorem 10 Let G be a 2-connected graph and let K be a cleavage unit of G. Then K
is either 3-connected, a cycle, or a bond.

Proof: By Theorem 6, it suffices to show that K has no hinge-separation. Suppose to
the contrary that (H, J) is a hinge-separation of K. Let [x, y] = H ∩ J and choose the
labelling so that H is an [x, y]-bridge in K. We construct a subgraph H ′ of G as follows.
Delete any e ∈ E(H) having x and y as its ends (there is at most one such). For every
hinge [u, v] of G such that [u, v] ⊆ H and {u, v} 6= {x, y}, there is a unique [u, v]-bridge
B in G that contains J ∩ G. Replace e = e1

B in H with the union of all the [u, v]-bridges
in G other than B. Clearly the only attachments of H ′ in G are x and y and H ′ is an
[x, y]-bridge. Let J ′ denote the union of the remaining [x, y]-bridges in G. Since (H, J) is
a hinge-separation of K, one of H and J is 2-connected. It is straightforward to show the
corresponding one of H ′ and J ′ is also 2-connected, so that (H ′, J ′) is a hinge-separation
of G. But then every edge of H is separated by [x, y] in G from every edge in J , a
contradiction.

4 The decomposition tree

In this section we prove that the graph T (G) is a tree. This is done in two parts, the first
showing that T (G) is connected and the second showing that every edge is an isthmus.
In fact, the second is a simple consequence of the first and Corollary 9.

Theorem 11 Let G be a 2-connected graph. Then T (G) is connected.

Proof: We show that if e and f are any two edges of Ĝ, then there is a path in T (G)
joining the two cleavage units Ke and Kf containing e and f , respectively. It is clearly
sufficient to prove the result in the case e and f have an end x in common.
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Let y and z be the other ends of e and f , respectively. Let Q be a path in Ĝ − x
joining y and z. We proceed by induction on the length n of Q, the base being the case
n = 0, which follows from Lemma 7. Thus, we assume y 6= z.

If there is no hinge separating e from f , then they are in the same cleavage unit and
the result is trivial. Thus, we may assume there is a hinge separating e from f . Evidently,
such a hinge is of the form [x, w] and w is a vertex of Q. If w /∈ {y, z}, then the result
is an easy application of the inductive assumption. So we can suppose the only possible
hinges separating e from f are [x, y] and [x, z]. Choose the labelling so that [x, y] is such
a hinge.

Let B be the [x, y]-bridge in G containing z. Let K be the cleavage unit of G containing
e1

B. Evidently K is connected in T (G) by a path of length at most two to Ke. If [x, z]
is not a hinge, then f and e1

B are in the same cleavage unit and we are done. Otherwise,
let B′ be the [x, z]-bridge in G containing y. Then K is also the cleavage unit of G
containing e1

B′ and K is joined to Kf by a path of length at most two. Thus, Ke and Kf

are connected by a path in T (G), as claimed.

Theorem 12 Let G be a 2-connected graph. Then either G has no hinge or T (G) is a
tree.

Proof: It suffices to prove that every edge of T (G) is an isthmus. Corollary 9 shows
that if [x, y] is any hinge of G, then the cleavage units of G are precisely the cleavage units
of the graphs B + e1

B, for B ∈ B2
[x,y], plus, if |B[x,y]| ≥ 3, the bond cleavage unit K[x,y].

The edge e1
B (after identification) separates in T (G) all the cleavage units of B + e1

B from
all the cleavage units of G contained in other bridges.

5 Uniquess of the decomposition

In this section we prove there is only one decomposition of a 2-connected graph into 3-
connected graphs, cycles, and bonds. As stated, it is not true, since, for example, a long
cycle may be interpreted as having many different decompositions. Taking our cue from
[2], we provide a little more detail about the nature of the decomposition. Let T be a
tree and let G be an assignment of a 2-connected hinge-free graph G(t) to each vertex t
of T .

Suppose that, for every vertex t of T , there is an injection ft from the edges of T
incident with t to the edges of G(t). Let F denote the collection of injections ft. The triple
(T ,G,F) is an amalgamtion tree. The graph G(T ,G,F) is obtained by identifying, for
every edge tt′ of T , the ends of the edges ft(tt

′) and ft′(tt
′) and deleting ft(tt

′) and ft′(tt
′).

We assume that ft(tt
′) and ft′(tt

′) determine which of the two possible identifications is
to be used.

Following [2], a 3-block decomposition of a graph G is an amalgamation tree (T ,G,F)
such that:
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1. G = G(T ,G,F);

2. if tt′ ∈ E(T ), then G(t) and G(t′) are not both bonds and are not both polygons;
and

3. for each edge tt′ of T , if T ′ denotes the component of T − tt′ containing t, there is
a path in G(T ′,G′,F ′) − ft(tt

′) joining the ends of ft(tt
′), where G′ and F ′ are the

restrictions of G and F , respectively, to T ′.

Condition 3 ensures that the graph G(T ,G,F) is 2-connected. Condition 2 is the
one that drives the uniqueness. Without it, bonds and cycles would not have unique
decompositions.

We remark that in [2] there are two additional considerations required to ensure local
finiteness of G: G(t) is locally finite; and a finiteness condition analogous to (2) to ensure
that a vertex of G(T ,G,F) has finite degree. We are not restricting our attention to
locally finite graphs and therefore have no need of this condition.

Let G be a 2-connected graph. If K(G) denotes the set of cleavage units of G, the
identity map gives a hinge-free assignment of the cleavage units to the vertices of T (G).
We shall refer to this map also as K(G). Likewise, every edge tt′ of T (G) is obtained by
the identification of an edge of the cleavage unit t of G with the cleavage unit t′ of G. Let
ft(tt

′) be the identified edge of t and let F(G) be the collection of these functions ft.

Theorem 13 Let G be a 2-connected graph. Then (T (G),K(G),F(G)) is a 3-block de-
composition of G.

In order to prove this result, we will use the following fact.

Lemma 14 Let G be a 2-connected graph and let K be a cleavage unit of G that is a
polygon. If [x, y] is any hinge of G such that [x, y] ⊆ K, then x and y are adjacent in K.
Furthermore, if B is the [x, y]-bridge in G such that K is a cleavage unit of B + e1

B, then
every vertex of K − {x, y} is a cut-vertex of B.

Proof: If x and y are not adjacent in K, then the two [x, y]-bridges in K are separated
by [x, y] in G, contradicting the fact that K is a cleavage unit of G.

By the preceding paragraph, if [u, v] is any hinge of G such that [u, v] ⊆ K, then u
and v are adjacent in K. Each edge uv of K different from xy is either an edge of G or
of the form e1

B[u,v]
, where B[u,v] is the unique [u, v]-bridge in G containing both x and y.

For u /∈ {x, y}, let P be the path in K from x to u and let Q be the path in K from y to
u. For any edge ab of P , let H denote the union of all the [a, b]-bridges in G other than
B[a,b]. Obtain J in the same way from all the edges of Q. Then (H, J) is a 1-separation
of B and [u] = H ∩ J .

Proof of Theorem 13: For Condition (2), cleavage units of type K[x,y] are clearly not
adjacent. If K is a polygon cleavage unit adjacent to the cleavage unit J in T (G), then
let [x, y] be the hinge separating K and J . There must be exactly two [x, y]-bridges in G.
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Label them BK and BJ so that K is a cleavage unit of BK + e1
BK

and J is a cleavage unit
of BJ + e1

BK
. By Lemma 14, every vertex of K − {x, y} is a cut-vertex of BK , so BK is

not 2-connected. Therefore, BJ is 2-connected and by Lemma 14 J is not a polygon.
As for Condition (3), this is an immediate consequence of the fact that if xy = ft(tt

′),
then [x, y] is a hinge and some [x, y]-bridge in G is contained in G(T ′).

What remains to be proved is the uniqueness.

Theorem 15 Let G be a 2-connected graph and let (T ,G,F) be a 3-block decomposition
of G. Then (T ,G,F) = (T (G),K(G),F(G)).

Proof: Let tt′ ∈ E(T ) and let Tt and Tt′ be the components of T − tt′ containing t and
t′, respectively. Let H = G(Tt) − ft(tt

′) and let K = G(Tt′) − ft′(tt
′). Evidently, (H, K)

is a 2-separation of G. We claim that (H, K) is a hinge-separation.
If either of the graphs G(t)− ft(tt

′) and G(t′)− ft′(tt
′) is 2-connected, then the corre-

sponding one of H and K is 2-connected, by Condition (3). As G(t)−ft(tt
′) is 2-connected

unless G(t) is a polygon, Condition (2) implies at least one of H and K is 2-connected.
We must show that one of H and K is an (H ∩K)-bridge in G. Suppose H is not an

(H ∩ K)-bridge in G. We claim that G(t) is a bond. The same argument applies to K,
so Condition (2) implies at least one of H and K is an (H ∩ K)-bridge in G.

Let [x, y] = H ∩ K. If every [x, y]-bridge in H is a 1-bond, then trivially G(t) =
H + ft(tt

′). Thus, we may assume there is a non-trivial [x, y]-bridge in H .
If G(t) is not a bond, then it has a non-trivial [x, y]-bridge B in G(t). Let BH denote

the [x, y]-bridge in H containing the vertices of B − {x, y}. Then BH + ft(tt
′) = G(T ′)

for some subtree T ′ of T . Since the only edge in G(T ′) of the form fs(e) is ft(tt
′), it must

be that T ′ = T . But there was another [x, y]-bridge in H , a contradiction.
Hence G(t) is a bond, as claimed.
Thus, we have shown that every 2-separation corresponding to an edge of T is a hinge-

separation. Conversely, if (H, K) is a hinge-separation, then we claim there is an edge of
T giving this separation.

Let [x, y] be a hinge of G, and suppose [x, y] is not a hinge corresponding to any edge
of T . For any edge e of T , with components T ′ and T ′′ of T − e, either [x, y] ⊆ G(T ′)
or [x, y] ⊆ G(T ′′), but not both, since [x, y] does not cross the hinge associated with e.
Therefore, there is a unique vertex t of T such that [x, y] ⊆ G(t). We claim that [x, y] is
a hinge of G(t).

This is clear if there are at least three [x, y]-bridges in G, since then there are three
in G(t). If there are exactly two [x, y]-bridges in G, let B be one of them that is 2-
connected. We will be done when we prove that Bt is 2-connected. Suppose that (H, K)
is a separation of Bt with |V (H ∩ K)| ≤ 1.

An easy argument shows that if P is a path in G that starts and ends in G(t) then there
is a path Pt in G(t), obtained from P by replacing some subpaths by edges of the form
ft(e). Since B is 2-connected and an xy-bridge, there is a θ-subgraph J of B containing
x and y, neither as a degree three vertex. This implies that there is a θ-subgraph Jt of
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Bt containing x and y, neither as a degree three vertex. Hence, Jt is contained in either
H or K; choose the labelling so that Jt ⊆ H .

Because G(t) has no loops, K must contain a vertex w not in H . As B is 2-connected,
there are paths P and Q in B joining w to x and y, respectively, such that P and Q are
disjoint except for w. Thus, the paths Pt and Qt join w to x and y in Bt and are disjoint
except for w. But |V (H) ∩ V (K)| ≤ 1, a contradiction. Hence Bt is 2-connected. It
follows that [x, y] is a hinge of G(t), a contradiction.

Thus, every edge of T corresponds to a hinge and every hinge corresponds to at least
one edge of T . Let e be an edge of T incident with the vertex t and let T ′ be the
component of T containing t. Suppose G(t) is not a bond. We claim that if x and y are
the ends of ft(e), then G(T ′) − ft(e) is an [x, y]-bridge in G.

For any two vertices u and v of G(T ′) − {x, y}, there is a uv-path in G(T ′) that is
disjoint from x and y. (There are two cases: if the graphs G(su) and G(sv) containing
u and v respectively are such that su and sv are in the same component of T ′ − t, the
result is easy; if not, then the edges eu and ev where their respective components attach
to t satisfy the property that ft(eu) and ft(ev) each has an end other than x and y and
there is a path in G(t) − {x, y} joining these ends. Since there is no edge joining x and y
in G(T ′) other than ft(e), the claim follows.
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