Steiner Triple Systems Intersecting in Pairwise Disjoint Blocks

Yeow Meng Chee

Netorics Pte Ltd
130 Joo Seng Road
#05-02 Olivine Building
Singapore 368357
ymchee@alumni.uwaterloo.ca

Submitted: Feb 18, 2003; Accepted: Mar 12, 2004; Published: Apr 2, 2004

Abstract

Two Steiner triple systems (X, \mathcal{A}) and (X, \mathcal{B}) are said to intersect in m pairwise disjoint blocks if $|\mathcal{A} \cap \mathcal{B}| = m$ and all blocks in $\mathcal{A} \cap \mathcal{B}$ are pairwise disjoint. For each v, we completely determine the possible values of m such that there exist two Steiner triple systems of order v intersecting in m pairwise disjoint blocks.

1 Introduction

A set system is a pair (X, \mathcal{A}) , where X is a finite set of points, and \mathcal{A} is a set of subsets of X, called blocks. Let \mathcal{K} be a set of positive integers. The set \mathcal{K} is a set of block sizes for (X, \mathcal{A}) if $|A| \in \mathcal{K}$ for every $A \in \mathcal{A}$.

Let (X, \mathcal{A}) be a set system, and let $\mathcal{G} = \{G_1, \ldots, G_s\}$ be a partition of X into subsets, called groups. The triple $(X, \mathcal{G}, \mathcal{A})$ is a group divisible design (GDD) when every 2-subset of X not contained in a group appears in exactly one block and $|A \cap G| \leq 1$ for all $A \in \mathcal{A}$ and $G \in \mathcal{G}$. We denote a GDD $(X, \mathcal{G}, \mathcal{A})$ by \mathcal{K} -GDD if \mathcal{K} is a set of block sizes for (X, \mathcal{A}) . The group type, or simply type of a GDD $(X, \mathcal{G}, \mathcal{A})$ is the multiset $[|G| \mid G \in \mathcal{G}]$. When more convenient, we use the exponential notation to describe the type of a GDD: A GDD of type $g_1^{t_1} \cdots g_s^{t_s}$ is a GDD where there are exactly t_i groups of size g_i . If \mathcal{G} is not specified in a GDD $(X, \mathcal{G}, \mathcal{A})$, it is taken that all groups are of size one: $\mathcal{G} = \{\{x\} \mid x \in X\}$. A $\{3\}$ -GDD of type 1^v is a Steiner triple system of order v, and is denoted by STS(v).

Two GDDs $\mathcal{D}_1 = (X, \mathcal{G}_1, \mathcal{A}_1)$ and $\mathcal{D}_1 = (X, \mathcal{G}_2, \mathcal{A}_2)$ of the same type are said to intersect in m blocks if $|\mathcal{A}_1 \cap \mathcal{A}_2| = m$. If in addition, the blocks in $\mathcal{A}_1 \cap \mathcal{A}_2$ are pairwise disjoint (that is, for any $A, A' \in A_1 \cap A_2$, $A \neq A'$, we have $A \cap A' = \emptyset$), then \mathcal{D}_1 and \mathcal{D}_2

are said to intersect in m pairwise disjoint blocks. Define

Int(
$$T$$
) = { $m \mid \exists \text{ two } \{3\}\text{-GDDs of type } T \text{ intersecting in } m \text{ blocks}\}$; and Int_d(T) = { $m \mid \exists \text{ two } \{3\}\text{-GDDs of type } T \text{ intersecting in } m \text{ pairwise disjoint blocks}\}.$

The intersection problem and disjoint intersection problem for $\{3\}$ -GDDs of type T is to determine Int(T) and $Int_d(T)$, respectively. A pair of GDDs is said to be disjoint if they intersect in no blocks.

The intersection problem for Steiner triple systems was completely solved by Lindner and Rosa [6]. The intersection problem for $\{3\}$ -GDDs of type 2^t has also been solved by Hoffman and Lindner [5]. The case of $\{3\}$ -GDDs of type g^3 , which are equivalent to Latin squares of side g, has been settled by Fu [4]. Butler and Hoffman [2] finally put the intersection problem for $\{3\}$ -GDDs of type g^t to rest with the following result.

Let
$$b(g^t) = g^2 t(t-1)/6$$
 (the number of blocks in a {3}-GDD of type g^t), and denote by $\mathcal{I}(g^t) = \{0, 1, \dots, b(g^t)\} \setminus \{b(g^t) - 5, b(g^t) - 3, b(g^t) - 2, b(g^t) - 1\}.$

Theorem 1.1 (Butler and Hoffman) Let g and t be positive integers such that $t \ge 3$, $g^2\binom{t}{2} \equiv 0 \pmod{3}$, and $g(t-1) \equiv 0 \pmod{2}$. Then $\operatorname{Int}(g^t) = \mathcal{I}(g^t)$, except that

- (i) $Int(1^9) = \mathcal{I}(1^9) \setminus \{5, 8\};$
- (ii) $Int(2^4) = \mathcal{I}(2^4) \setminus \{1, 4\};$
- (iii) $Int(3^3) = \mathcal{I}(3^3) \setminus \{1, 2, 5\}$; and
- (iv) $Int(4^3) = \mathcal{I}(4^3) \setminus \{5, 7, 10\}.$

While the intersection problem has received considerable attention, the disjoint intersection problem seems not to be well-studied. The purpose of this paper is to determine completely $\operatorname{Int}_{\operatorname{d}}(1^v)$. This is the disjoint intersection problem for $\operatorname{STS}(v)$. Hence, we assume throughout this paper that $v \equiv 1, 3 \pmod 6$. Note that since $0, 1 \in \operatorname{Int}(1^v)$, we also have $0, 1 \in \operatorname{Int}_{\operatorname{d}}(1^v)$.

Define

$$\mathcal{I}_{\rm d}(1^v) = \begin{cases} \{0,1,\ldots,(v-1)/3\} & \text{if } v \equiv 1 \pmod{6}, \\ \{0,1,\ldots,v/3\} & \text{if } v \equiv 3 \pmod{6}. \end{cases}$$

Since there can be at most $\lceil v/3 \rceil$ pairwise disjoint blocks in an STS(v), we have $Int_d(1^v) \subseteq \mathcal{I}_d(1^v)$. So in the remaining of this paper, we shall focus on showing membership of elements of $\mathcal{I}_d(1^v)$ in $Int_d(1^v)$, rather than the other way round.

2 Latin Squares Intersecting in a Transversal

A Latin square of side n is an $n \times n$ array with the property that every row and every column contains every element from $\{1, \ldots, n\}$ exactly once. A Latin square A of side n is idempotent if $A(i, i) = s_i$ for $1 \le i \le n$. A transversal in a Latin square of side n is a

set of n cells, no two from the same row or from the same column, or contain the same entry. The *intersection* of two Latin squares A and B is the set of cells (i, j) such that A(i, j) = B(i, j). In this section, we show that for $n \neq 2, 3, 6$, there exists a pair of Latin squares of side n intersecting in a transversal.

Two Latin squares A and B of side n are said to be *orthogonal* if the n^2 ordered pairs (A(i,j),B(i,j)) for $1 \leq i,j \leq n$ are all distinct. The following result is well-known (see, for example, [1]).

Theorem 2.1 There exists a pair of orthogonal idempotent Latin squares of side n for all $n \neq 2, 3, 6$.

Theorem 2.2 Let $n \neq 2, 3, 6$. Then there exists a pair of Latin squares of side n intersecting in a transversal.

Proof. Let A and B be a pair of orthogonal idempotent Latin squares of side n. We claim that A and B intersect in a transversal. Obviously, the transversal formed by the main diagonal of either A or B is in the intersection. It remains to show that for $1 \le i, j \le n$, $i \ne j$, we have $A(i,j) \ne B(i,j)$. Suppose on the contrary that A(i,j) = B(i,j). Then we have (A(i,j),B(i,j)) = (k,k) = (A(k,k),B(k,k)) for some k. This contradicts the fact that A and B are orthogonal. \square

A {3}-GDD of type g^3 can be obtained from a Latin square A of side g as follows. Let $R = \{r_1, \ldots, r_g\}$ and $C = \{c_1, \ldots, c_g\}$ be the set of row and column indices of A, respectively. Let $S = \{1, \ldots, n\}$ be the set of entries of A. Define

$$X = R \cup C \cup S;$$

$$\mathcal{G} = \{R, C, S\};$$

$$\mathcal{A} = \{\{r_i, c_j, A(i, j)\} \mid 1 \le i, j \le g\}.$$

Then $(X, \mathcal{G}, \mathcal{A})$ is a {3}-GDD of type g^3 . From this construction, it is easy to see that Theorem 2.2 implies the following.

Corollary 2.1 For $g \neq 2, 3, 6$, we have $g \in Int_d(g^3)$.

3 Wilson-Type Constructions

Wilson [7] established the following fundamental construction for GDDs which has significant impact on design theory.

Input: $\frac{\text{Wilson's Fundamental Construction}}{\text{(master) GDD }\mathcal{D} = (X,\mathcal{G},\mathcal{A});}$ weight function $\omega: X \to \mathbf{Z}_{\geq 0};$ (ingredient) $\mathcal{K}\text{-GDD }\mathcal{D}_A = (X_A,\mathcal{G}_A,\mathcal{B}_A)$ of type $[\omega(a) \mid a \in A],$ for each block $A \in \mathcal{A}$, where $X_A = \cup_{a \in A} \{\{a\} \times \{1, \dots, \omega(a)\}\} \text{ and } \mathcal{G}_A = \{\{a\} \times \{1, \dots, \omega(a)\} \mid a \in A\}.$ Output: $\mathcal{K}\text{-GDD }\mathcal{D}^* = (X^*,\mathcal{G}^*,\mathcal{A}^*) \text{ of type } [\sum_{x \in G} \omega(x) \mid G \in \mathcal{G}], \text{ where } X^* = \cup_{x \in X} (\{x\} \times \{1, \dots, \omega(x)\}),$ $G^* = \{\cup_{x \in G} (\{x\} \times \{1, \dots, \omega(x)\}) \mid G \in \mathcal{G}\}, \text{ and } \mathcal{A}^* = \cup_{A \in \mathcal{A}} \mathcal{B}_A.$ Notation: $\mathcal{D}^* = \text{WFC}(\mathcal{D}, \omega, \{D_A \mid A \in \mathcal{A}\}).$

We use Wilson's fundamental construction to produce pairs of disjoint GDDs.

Theorem 3.1 Let $\mathcal{D} = (X, \mathcal{G}, \mathcal{A})$ be a GDD. Let $\omega : X \to \mathbf{Z}_{\geq 0}$ be a weight function. Suppose that for each block $A \in \mathcal{A}$, there exist a pair of disjoint $\{k\}$ -GDDs of type $[\omega(a) \mid a \in A]$. Then there exists a pair of disjoint $\{k\}$ -GDDs of type $[\sum_{x \in G} \omega(x) \mid G \in \mathcal{G}]$.

Proof. For each block $A \in \mathcal{A}$, let $\mathcal{D}_A^1 = (X_A, \mathcal{G}_A, \mathcal{B}_A^1)$ and $\mathcal{D}_A^2 = (X_A, \mathcal{G}_A, \mathcal{B}_A^2)$ be a pair of disjoint $\{k\}$ -GDDs of type $[\omega(a) \mid a \in A]$. Let $\mathcal{D}_i^* = \text{WFC}(\mathcal{D}, \omega, \{\mathcal{D}_A^i \mid A \in \mathcal{A}\}), i = 1, 2$. Then \mathcal{D}_1 and \mathcal{D}_2 are $\{k\}$ -GDDs of type $[\sum_{x \in G} \omega(x) \mid G \in \mathcal{G}]$.

We claim that $\mathcal{D}_i^* = (X^*, \mathcal{G}^*, \mathcal{A}_i^*)$, i = 1, 2, is a pair of disjoint GDDs. To prove this, we have to establish the following:

$$\mathcal{B}_A^1 \cap \mathcal{B}_A^2 = \emptyset$$
, for all $A \in \mathcal{A}$; and (1)

$$\mathcal{B}_A^1 \cap \mathcal{B}_B^2 = \emptyset$$
, for all $A, B \in \mathcal{A}, A \neq B$. (2)

(1) follows trivially from the fact that $(X_A, \mathcal{G}_A, \mathcal{B}_A^1)$ and $(X_A, \mathcal{G}_A, \mathcal{B}_A^2)$ are disjoint, for all $A \in \mathcal{A}$. To see that (2) holds, note that for $A = \{a_1, \ldots, a_k\}$ and $B = \{b_1, \ldots, b_k\}$, blocks in \mathcal{B}_A^1 have the form $\{y_1, \ldots, y_k\}$, where $y_i = (a_i, w)$ for some $w \in \{1, \ldots, \omega(a_i)\}$, and blocks in \mathcal{B}_B^2 have the form $\{z_1, \ldots, z_k\}$, where $z_i = (b_i, w)$ for some $w \in \{1, \ldots, \omega(z_i)\}$. Hence $y_i = z_j$ is possible only if $a_i = b_j$. It follows that $\{y_1, \ldots, y_k\} = \{z_1, \ldots, z_k\}$ only if A = B, establishing (2). \square

Theorem 3.2 (Colbourn, Hoffman, and Rees) Let g, t, and u be positive integers. There exists a $\{3\}$ -GDD of type g^tu^1 if and only if the following conditions are all satisfied:

- (i) $t \ge 3$, or t = 2 and u = g;
- (ii) $u \le g(t-1);$
- (iii) $g(t-1) + u \equiv 0 \pmod{2}$;
- (iv) $gt \equiv 0 \pmod{2}$;

(v)
$$g^2 {t \choose 2} + gtu \equiv 0 \pmod{3}$$
.

Theorem 3.1 together with the existence of some {3}-GDDs provided by the above result of Colbourn, Hoffman and Rees [3] yields the following.

Corollary 3.1 For each type listed in the table below, there exist a pair of disjoint {3}-GDDs.

Type	Type of Master	Weight
	${3}-GDD$	Function
3^49^1	1^43^1	$\omega(\cdot) = 3$
3^615^1	$1^{6}5^{1}$	$\omega(\cdot) = 3$
9^t15^1 ,	$3^t 5^1$	$\omega(\cdot) = 3$
$t \equiv 0 \pmod{2}, \ t \ge 4$		
9^t21^1 ,	$3^t 7^1$	$\omega(\cdot) = 3$
$t \equiv 0 \pmod{2}, \ t \ge 4$		
$9^t 27^1$,	$3^t 9^1$	$\omega(\cdot) = 3$
$t \equiv 0 \pmod{2}, \ t \ge 4$		
$(6s)^t(6r)^1,$	$(2s)^t(2r)^1$	$\omega(\cdot) = 3$
$t \ge 3, \ r \le s(t-1), \ s^2\binom{t}{2} + str \equiv 0 \pmod{3}$		

Proof. For each desired pair of disjoint $\{3\}$ -GDDs, apply Theorem 3.1 with the listed master GDD, weight function, and use as ingredient GDDs a pair of disjoint $\{3\}$ -GDDs of type 3^3 , which exists by Theorem 1.1. The master GDDs all exist by Theorem 3.2. \square

Theorem 3.3 (Filling in Groups) Suppose there exists a pair of disjoint K-GDDs of type $[g_1, \ldots, g_s]$. Furthermore, for each g_i , $1 \le i \le s$, there exists a pair of \mathcal{L} -GDDs of type 1^{g_i} intersecting in m_i pairwise disjoint blocks. Then there exists a pair of $(K \cup \mathcal{L})$ -GDDs of type $1^{\sum_{i=1}^{s} g_i}$ intersecting in $\sum_{i=1}^{s} m_i$ pairwise disjoint blocks.

Proof. Let $(X, \mathcal{G}, \mathcal{A})$ and $(X, \mathcal{G}, \mathcal{B})$ be a pair of disjoint \mathcal{K} -GDDs of type $[g_1, \ldots, g_s]$, where $\mathcal{G} = \{G_1, \ldots, G_s\}$ and $|G_i| = g_i$, $1 \le i \le s$. For each g_i , $1 \le i \le s$, let (G_i, \mathcal{A}_i) and (G_i, \mathcal{B}_i) be a pair of \mathcal{L} -GDDs intersecting in m_i pairwise disjoint blocks. Define

$$\mathcal{D}_1 = (X, \mathcal{A} \cup (\cup_{i=1}^s \mathcal{A}_i)); \text{ and}$$

$$\mathcal{D}_2 = (X, \mathcal{B} \cup (\cup_{i=1}^s \mathcal{B}_i)).$$

 \mathcal{D}_1 and \mathcal{D}_2 are clearly $(\mathcal{K} \cup \mathcal{L})$ -GDDs of type $1^{\sum_{i=1}^s g_i}$. We claim that \mathcal{D}_1 and \mathcal{D}_2 intersect in $\sum_{i=1}^s m_i$ pairwise disjoint blocks. To see this, note that

- (i) $A \cap B = \emptyset$, since (X, \mathcal{G}, A) and (X, \mathcal{G}, B) are disjoint GDDs;
- (ii) for $1 \le i \le s$, we have $\mathcal{A} \cap \mathcal{B}_i = \emptyset$ and $\mathcal{B} \cap \mathcal{A}_i = \emptyset$, since any block in \mathcal{A} contains at most one element from each group; and
- (iii) for $1 \le i, j \le s, i \ne j$, we have $A_i \cap B_j = \emptyset$, since groups are pairwise disjoint.

Hence, the blocks that \mathcal{D}_1 and \mathcal{D}_2 have in common are precisely the blocks in $\bigcup_{i=1}^s (\mathcal{A}_i \cap \mathcal{B}_i)$. It follows that \mathcal{D}_1 and \mathcal{D}_2 are the desired pair of GDDs intersecting in $\sum_{i=1}^s m_i$ pairwise disjoint blocks. \square

For $A, B \subseteq \mathbf{Z}$, we use the notation A + B to denote the set $\{a + b \mid a \in A \text{ and } b \in B\}$. For $A_i \subseteq \mathbf{Z}$, $1 \le i \le n$, we use the notation $\sum_{i=1}^n A_i$ to denote the set $\{a_1 + \cdots + a_n \mid a_i \in A_i, \text{ for } 1 \le i \le n\}$.

Corollary 3.2 If there exists a pair of disjoint $\{3\}$ -GDDs of type $g_1^{t_1} \cdots g_s^{t_s}$, then

$$\operatorname{Int_d}(1^{\sum_{i=1}^s g_i t_i}) \supseteq \sum_{i=1}^s \sum_{j=1}^{t_i} \operatorname{Int_d}(1^{g_i}).$$

Proof. Apply Theorem 3.3 with GDDs intersecting in the appropriate number of pairwise disjoint blocks. \Box

The above results are sufficient to settle the case $v \equiv 3 \pmod{6}$.

4 Product Constructions

We use the following Singular Direct Product construction.

	Singular Direct Product Construction
Input:	positive integers u, w, t ;
	for $i = 1,, t$, (master) K-GDDs $\mathcal{D}_i = (X_i \cup U, \mathcal{G}_i, \mathcal{A}_i)$ of type
	$u^1 1^{w_i}$, where U is the group of size u in each GDD;
	(ingredient) K-GDD $\mathcal{E} = (\bigcup_{i=1}^t X_i, \{X_i \mid 1 \leq i \leq t\}, \mathcal{B})$
	of type $[w_i \mid 1 \le i \le t];$
	(fill-in) \mathcal{K} -GDD $\mathcal{F} = (G, \mathcal{C})$ of type 1^u .
Output:	\mathcal{K} -GDD $\mathcal{D}^* = (X^*, \mathcal{A}^*)$ of type $1^{u + \sum_{i=1}^t w_i}$, where
	$X^* = U \cup (\bigcup_{i=1}^t X_i)$, and
	$A^* = (\cup_{i=1}^t \mathcal{A}_i) \cup \mathcal{B} \cup \mathcal{C}.$
Notation:	$\mathcal{D}^* = \text{SDP}(\{D_i \mid 1 \le i \le t\}, \mathcal{E}, \mathcal{F}).$

Lemma 4.1 Let $v \equiv 3 \pmod{6}$ and $k \equiv 0, 1 \pmod{3}$, $k \geq 3$. Then

$$\operatorname{Int_d}(1^{k(v-1)+1}) \supseteq \operatorname{Int_d}(1^v) + \sum_{i=1}^{k-1} (\operatorname{Int_d}(1^v) \setminus \{v/3\}).$$

Proof. For $1 \leq i \leq k$, let $\mathcal{D}_i = (X_i \cup \{\infty\}, \mathcal{G}_i, \mathcal{A}_i)$ and $\mathcal{D}'_i = (X_i \cup \{\infty\}, \mathcal{G}_i, \mathcal{A}'_i)$ be a pair of $\{3\}$ -GDDs of type 1^v intersecting in m_i pairwise disjoint blocks, where $m_1 \in \operatorname{Int_d}(1^v)$ and $m_i \in \operatorname{Int_d}(1^v) \setminus \{v/3\}$ for $2 \leq i \leq k$. We may assume that the point ∞ is not contained in any blocks in the intersection of \mathcal{D}_i and \mathcal{D}'_i , $2 \leq i \leq k$.

Let $\mathcal{E} = (\bigcup_{i=1}^k X_i, \{X_i \mid 1 \leq i \leq k\}, \mathcal{B})$ and $\mathcal{E}' = (\bigcup_{i=1}^k X_i, \{X_i \mid 1 \leq i \leq k\}, \mathcal{B}')$ be a pair of disjoint $\{3\}$ -GDDs of type $(v-1)^k$, which exists by Theorem 1.1. Let $\mathcal{F} = (\{\infty\}, \emptyset)$. Now apply the Singular Direct Product construction to obtain $\mathcal{D}_1^* = \text{SDP}(\{\mathcal{D}_1, \ldots, \mathcal{D}_k\}, \mathcal{E}, \mathcal{F})$ and $\mathcal{D}_2^* = \text{SDP}(\{\mathcal{D}_1', \ldots, \mathcal{D}_k'\}, \mathcal{E}', \mathcal{F})$. It is easy to see that the intersection of \mathcal{D}_1^* and \mathcal{D}_2^* is $\bigcup_{i=1}^k (A_i \cap A_i')$, which contains $\sum_{i=1}^k m_i$ pairwise disjoint blocks. \square

Lemma 4.2 Let s and t be positive integers, $t \geq 3$. Then

$$\operatorname{Int_d}(1^{6st+1}) \supseteq \sum_{i=1}^t \operatorname{Int_d}(1^{6s+1}).$$

Proof. For $1 \leq i \leq t$, let $\mathcal{D}_i = (X_i \cup \{\infty\}, \mathcal{G}_i, \mathcal{A}_i)$ and $\mathcal{D}'_i = (X_i \cup \{\infty\}, \mathcal{G}_i, \mathcal{A}'_i)$ be a pair of $\{3\}$ -GDDs of type 1^{6s+1} intersecting in m_i pairwise disjoint blocks, where $m_i \in \text{Int}_d(1^{6s+1})$. We may assume that the point ∞ is not contained in any of the intersections.

Let $\mathcal{E} = (\bigcup_{i=1}^t X_i, \{X_i \mid 1 \leq i \leq t\}, \mathcal{B})$ and $\mathcal{E}' = (\bigcup_{i=1}^t X_i, \{X_i \mid 1 \leq i \leq t\}, \mathcal{B}')$ be a pair of disjoint $\{3\}$ -GDD of type $(6s)^t$, which exists by Theorem 1.1. Let $\mathcal{F} = (\{\infty\}, \emptyset)$. Now apply the Singular Direct Product construction to obtain two $\{3\}$ -GDDs of type 1^{6st+1} $\mathcal{D}_1^* = \text{SDP}(\{\mathcal{D}_i \mid 1 \leq i \leq t\}, \mathcal{E}, \mathcal{F})$ and $\mathcal{D}_2^* = \text{SDP}(\{\mathcal{D}_i' \mid 1 \leq i \leq t\}, \mathcal{E}', \mathcal{F})$. It is easy to see that the intersection of \mathcal{D}_1^* and \mathcal{D}_2^* is $\bigcup_{i=1}^t (\mathcal{A}_i \cap \mathcal{A}_i')$, which contains $\sum_{i=1}^t m_i$ pairwise disjoint blocks. \square

Lemma 4.3 Let r, s, t be positive integers such that $t \ge 3$, $r \le s(t-1)$, and $s^2\binom{t}{2} + str \equiv 0 \pmod{3}$. Then

$$\operatorname{Int_d}(1^{6st+6r+1}) \supseteq \operatorname{Int_d}(1^{6r+1}) + \sum_{i=1}^t \operatorname{Int_d}(1^{6s+1}).$$

Proof. For $1 \leq i \leq t$, let $\mathcal{D}_i = (X_i \cup \{\infty\}, \mathcal{G}_i, \mathcal{A}_i)$ and $\mathcal{D}'_i = (X_i \cup \{\infty\}, \mathcal{G}_i, \mathcal{A}'_i)$ be a pair of $\{3\}$ -GDDs of type 1^{6s+1} intersecting in m_i pairwise disjoint blocks, where $m_i \in \operatorname{Int_d}(1^{6s+1})$. We may assume that the point ∞ is not contained in any of the intersections. Let $\mathcal{D}_{t+1} = (X_{t+1} \cup \{\infty\}, \mathcal{G}_i, \mathcal{A}_{t+1})$ and $\mathcal{D}'_{t+1} = (X_{t+1} \cup \{\infty\}, \mathcal{G}_i, \mathcal{A}'_{t+1})$ be a pair of $\{3\}$ -GDDs of type 1^{6r+1} intersecting in m_{t+1} pairwise disjoint blocks, where $m_{t+1} \in \operatorname{Int_d}(1^{6r+1})$.

Let $\mathcal{E} = (\bigcup_{i=1}^{t+1} X_i, \{X_i \mid 1 \leq i \leq t+1\}, \mathcal{B})$ and $\mathcal{E}' = (\bigcup_{i=1}^{t+1} X_i, \{X_i \mid 1 \leq i \leq t+1\}, \mathcal{B}')$ be a pair of disjoint $\{3\}$ -GDDs of type $(6s)^t(6r)^1$, which exists by Corollary 3.1. Let $\mathcal{F} = (\{\infty\}, \emptyset)$. Now apply the Singular Direct Product construction to obtain two $\{3\}$ -GDDs of type $1^{6st+6r+1}$ $\mathcal{D}_1^* = \text{SDP}(\{\mathcal{D}_i \mid 1 \leq i \leq t+1\}, \mathcal{E}, \mathcal{F})$ and $\mathcal{D}_2^* = \text{SDP}(\{\mathcal{D}_i' \mid 1 \leq i \leq t+1\}, \mathcal{E}', \mathcal{F})$. It is easy to see that the intersection of \mathcal{D}_1^* and \mathcal{D}_2^* is $\bigcup_{i=1}^{t+1} (\mathcal{A}_i \cap \mathcal{A}_i')$, which contains $\sum_{i=1}^{t+1} m_i$ pairwise disjoint blocks. \square

5 Direct Constructions

In this section, we determine $Int_d(1^v)$ for some small values of v.

Lemma 5.1 The following equalities hold:

- (i) $Int_d(1^1) = \{0\};$
- (ii) $Int_d(1^3) = \{1\};$
- (iii) $Int_d(1^7) = \{0, 1\};$
- (iv) $Int_d(1^9) = \{0, 1, 3\}$; and
- (v) for $v \equiv 1, 3 \pmod{6}$, $13 \le v \le 31$, $Int_d(1^v) = \mathcal{I}_d(1^v)$.

5.1 Proof of Lemma 5.1

(i) and (ii) hold trivially and recall that $0, 1 \in \text{Int}_{d}(1^{v})$ for $v \equiv 1, 3 \pmod{6}$, $v \geq 7$. For $7 \leq v \leq 31$, we have the following table.

v	Elements	Authority
	$in \operatorname{Int_d}(1^v)$	
7	0, 1	Trivial
9	0, 1, 3	Corollary 3.2: $\operatorname{Int}_{d}(1^{9}) \supseteq \sum_{i=1}^{3} \operatorname{Int}_{d}(1^{3})$
13	0, 1	Trivial
15	0, 1, 5	Corollary 3.2: $\operatorname{Int}_{d}(1^{15}) \supseteq \sum_{i=1}^{5} \operatorname{Int}_{d}(1^{3})$
19	0, 1, 2, 3	Lemma 4.2: $Int_d(1^{19}) \supseteq \sum_{i=1}^3 Int_d(1^7)$
21	0, 1, 2, 3, 4, 5, 7	Corollary 3.2: $Int_d(1^{21}) \supseteq \sum_{i=1}^3 Int_d(1^7);$
		Corollary 3.2: $Int_d(1^{21}) \supseteq Int_d(1^9) + \sum_{i=1}^4 Int_d(1^3)$
25	0, 1, 2, 3, 4, 5	Lemma 4.1: $\operatorname{Int_d}(1^{25}) \supseteq \operatorname{Int_d}(1^9) + \sum_{i=1}^2 (\operatorname{Int_d}(1^9) \setminus \{3\})$
27	0, 1, 2, 3, 4, 5, 6, 7, 9	Corollary 3.2: $\operatorname{Int}_{d}(1^{27}) \supseteq \sum_{i=1}^{3} \operatorname{Int}_{d}(1^{9})$
31	0, 1, 2, 3, 4, 5, 6, 7	Lemma 4.3: $\operatorname{Int}_{d}(1^{31}) \supseteq \operatorname{Int}_{d}(1^{13}) + \sum_{i=1}^{3} \operatorname{Int}_{d}(1^{7})$

Let S_v , $v \in \{13, 15, 19, 21, 25, 27, 31\}$ be the STS(v)'s given in Appendix A. For an STS(v) $S_v = (X, \mathcal{B})$ and a permutation $\pi : X \to X$, π acts on S_v by canonical extension as follows: $\pi(S_v) = \{\{\pi(a), \pi(b), \pi(c)\} \mid \{a, b, c\} \in \mathcal{B}\}$. The permutations π listed below is such that S_v and $\pi(S_v)$ intersect in m pairwise disjoint blocks, where m is a number whose membership in $Int_d(1^v)$ has not been established in the table above.

v	Elements	π
	$in \operatorname{Int_d}(1^v)$	
13	2	(0 7 3)(1 5 b 4 9 a 2 c)(6)(8)
	3	(0 c 3 4 a 8 2 6)(1 7 b 5)(9)
	4	(0 5)(1 c)(2 a 6)(3 b)(4 8)(7)(9)
15	2	(0 8 b e 9 4 3 d c 2 a 7 6)(1 5)
	3	(0 e 6 c 1 4 3 a 7 5 2 9 b d 8)
	4	(0 2 7 6 e a 3 b 1)(4 c 5 9 d 8)
19	4	(0 a 5)(1 d 8 f c 4 6 9 2 e)(3 7)(b g)(h)(i)
	5	(0 2 6 7 a 1 c 5 f h 8 b 4 i e 3)(9)(d g)
25	6	(0 o 6 3)(1 4 9 j 5 g k 2 l d)(7 h n e)(8 m)(a c i f b)

Any two blocks of an STS(7) intersect in a point. So $2 \notin \operatorname{Int}_{d}(1^{7})$. In an STS(9) (X, \mathcal{B}) , if $A, B \in \mathcal{B}$ and $A \cap B = \emptyset$, then $X \setminus (A \cup B)$ is a block in \mathcal{B} . So $2 \notin \operatorname{Int}_{d}(1^{9})$. For each of the remaining possible disjoint intersection size $m \in \operatorname{Int}_{d}(1^{v})$, we exhibit an STS(v) \mathcal{D}_{v} , listed in Appendix B, whose intersection with \mathcal{S}_{v} contains m pairwise disjoint blocks.

v	Remaining values	\mathcal{T}_v
	$in \operatorname{Int_d}(1^v)$	
19	6	\mathcal{T}_1
21	6	\mathcal{T}_2
25	7	\mathcal{T}_3
	8	\mathcal{T}_4
27	8	\mathcal{T}_5
31	8	\mathcal{T}_6
	9	\mathcal{T}_7
	10	\mathcal{T}_8

6 Piecing Things Together

We first deal with the easier case of $v \equiv 3 \pmod{6}$.

6.1 The Case $v \equiv 3 \mod 6$

$6.1.1 \quad v \equiv 3 \pmod{18}$

By Theorem 1.1, there exists a pair of disjoint $\{3\}$ -GDDs of type 13^3 . Corollary 3.2 then gives $\operatorname{Int}_{d}(1^{39}) \supseteq \sum_{i=1}^{3} \operatorname{Int}_{d}(1^{13}) = \sum_{i=1}^{3} \{0, \dots, 4\} = \{0, \dots, 12\}$. By Theorem 1.1, there also exists a pair of disjoint $\{3\}$ -GDDs of type 3^{13} . Corollary 3.2 now gives $\operatorname{Int}_{d}(1^{39}) \supset \sum_{i=1}^{13} \operatorname{Int}_{d}(1^{3}) = \sum_{i=1}^{13} \{1\} = \{13\}$. Hence $\operatorname{Int}_{d}(1^{39}) = \mathcal{I}_{d}(1^{39})$.

For $v \geq 57$, consider a pair of disjoint {3}-GDDs of type 9^t21^1 , where t = (v - 21)/9, existence of which is provided by Corollary 3.1. Now apply Corollary 3.2 to obtain

$$Int_{d}(1^{v}) \supseteq Int_{d}(1^{21}) + \sum_{i=1}^{t} Int_{d}(1^{9})$$

$$= \{0, \dots, 7\} + \sum_{i=1}^{t} \{0, 1, 3\}$$

$$= \{0, \dots, 3t + 7\}$$

$$= \mathcal{I}_{d}(1^{v}).$$

This establishes the following.

Lemma 6.1 $\operatorname{Int}_{d}(1^{v}) = \mathcal{I}_{d}(1^{v}) \text{ for } v \equiv 3 \pmod{18}, v \geq 39.$

6.1.2 $v \equiv 9 \pmod{18}$

By Theorem 1.1, there exists a pair of disjoint $\{3\}$ -GDDs of type 15^3 . Corollary 3.2 then gives $\operatorname{Int_d}(1^{45}) \supseteq \sum_{i=1}^3 \operatorname{Int_d}(1^{15}) = \sum_{i=1}^3 \{0, \dots, 5\} = \{0, \dots, 15\} = \mathcal{I}_d(1^{45}).$ For $v \ge 63$, consider a pair of disjoint $\{3\}$ -GDDs of type $9^t 27^1$, where t = (v - 27)/9,

existence of which is provided by Corollary 3.1. Now apply Corollary 3.2 to obtain

$$Int_{d}(1^{v}) \supseteq Int_{d}(1^{27}) + \sum_{i=1}^{t} Int_{d}(1^{9})$$

$$= \{0, \dots, 9\} + \sum_{i=1}^{t} \{0, 1, 3\}$$

$$= \{0, \dots, 3t + 9\}$$

$$= \mathcal{I}_{d}(1^{v}).$$

This establishes the following.

Lemma 6.2 $\operatorname{Int}_{d}(1^{v}) = \mathcal{I}_{d}(1^{v}) \text{ for } v \equiv 9 \pmod{18}, v \geq 45.$

6.1.3 $v \equiv 15 \pmod{18}$

By Corollary 3.1, there exists a pair of disjoint $\{3\}$ -GDDs of type 3^615^1 . Corollary 3.2 then gives $\operatorname{Int_d}(1^{33}) \supseteq \operatorname{Int_d}(1^{15}) + \sum_{i=1}^6 \operatorname{Int_d}(1^3) = \{0, \dots, 5\} + \{6\} = \{6, \dots, 11\}$. Also, by Lemma 4.1, we have $\operatorname{Int_d}(1^{33}) \supseteq \operatorname{Int_d}(1^9) + \sum_{i=1}^3 (\operatorname{Int_d}(1^9) \setminus \{3\}) = \{0, 1, 3\} + \sum_{i=1}^3 \{0, 1\} = \{0, 1, 2, 3, 4, 5, 6\}$. Hence we have $\operatorname{Int_d}(1^{33}) = \mathcal{I}_d(1^{33})$. For $v \ge 51$, consider a pair of disjoint {3}-GDDs of type 9^t15^1 , where t = (v - 15)/9, whose existence is provided by Corollary 3.1. Now apply Corollary 3.2 to obtain

$$Int_{d}(1^{v}) \supseteq Int_{d}(1^{15}) + \sum_{i=1}^{t} Int_{d}(1^{9})$$

$$= \{0, \dots, 5\} + \sum_{i=1}^{t} \{0, 1, 3\}$$

$$= \{0, \dots, 3t + 5\}$$

$$= \mathcal{I}_{d}(1^{v}).$$

This establishes the following.

Lemma 6.3 $\operatorname{Int}_{d}(1^{v}) = \mathcal{I}_{d}(1^{v}) \text{ for } v \equiv 15 \pmod{18}, v \geq 33.$

6.2 The Case $v \equiv 1 \pmod{6}$

$6.2.1 \quad v \equiv 1 \pmod{18}$

Let s=2, t=3. Then Lemma 4.2 gives $\operatorname{Int}_{d}(1^{37}) \supseteq \sum_{i=1}^{3} \operatorname{Int}_{d}(1^{13}) = \sum_{i=1}^{3} \{0, \dots, 4\} = \{0, \dots, 12\} = \mathcal{I}_{d}(1^{37})$.

For $v \geq 55$, let s = 3, t = (v - 1)/18. Now apply Lemma 4.2 to obtain

$$Int_{d}(1^{v}) \supseteq \sum_{i=1}^{t} Int_{d}(1^{19})
= \sum_{i=1}^{t} \{0, \dots, 6\}
= \{0, \dots, 6t\}
= \mathcal{I}_{d}(1^{v}).$$

This establishes the following.

Lemma 6.4 $Int_d(1^v) = \mathcal{I}_d(1^v)$ for $v \equiv 1 \pmod{18}$, $v \geq 37$.

$6.2.2 \quad v \equiv 7 \pmod{18}$

Let $v \ge 43$. Let w = (v+2)/3. Then $w \equiv 3 \pmod 6$ and $w \ge 15$. Now apply Corollary 4.1 to obtain

$$Int_{d}(1^{v}) \supseteq Int_{d}(1^{w}) + (Int_{d}(1^{w}) \setminus \{w/3\}) + (Int_{d}(1^{w}) \setminus \}w/3\})$$

$$= \{0, \dots, w/3\} + \{0, \dots, w/3 - 1\} + \{0, \dots, w/3 - 1\}$$

$$= \{0, \dots, w - 2\}$$

$$= \{0, \dots, (v - 1)/3 - 1\}.$$

To show that $(v-1)/3 \in \text{Int}_d(1^v)$, mimic the proof of Lemma 4.1 but with $m_1 = m_2 = m_3 = 0$ and replace the ingredient $\{3\}$ -GDD of type $(w-1)^3$ with a pair of $\{3\}$ -GDDs of type $(w-1)^3$ intersecting in w-1 disjoint blocks, existence of which is provided by Corollary 2.1. This establishes the following.

Lemma 6.5 $Int_d(1^v) = \mathcal{I}_d(1^v)$ for $v \equiv 7 \pmod{18}$, $v \ge 43$.

$6.2.3 \quad v \equiv 13 \pmod{18}$

Let s = 2 and t = 4. Then Lemma 4.2 gives $\operatorname{Int}_{d}(1^{49}) \supseteq \sum_{i=1}^{4} \operatorname{Int}_{d}(1^{13}) = \sum_{i=1}^{4} \{0, \dots, 4\} = \{0, \dots, 16\} = \mathcal{I}_{d}(1^{49})$.

For $v \ge 67$, let t = (v - 13)/18. Then $t \ge 3$. Now apply Corollary 4.3 with r = 2 and s = 3 to obtain

$$\operatorname{Int}_{d}(1^{v}) = \operatorname{Int}_{d}(1^{18t+13})$$

$$\supseteq \operatorname{Int}_{d}(1^{13}) + \sum_{i=1}^{t} \operatorname{Int}_{d}(1^{19})$$

$$= \{0, \dots, 4\} + \sum_{i=1}^{t} \{0, \dots, 6\}$$

$$= \{0, \dots, 6t + 4\}$$

$$= \mathcal{I}_{d}(1^{v}).$$

This establishes the following.

Lemma 6.6 $\operatorname{Int}_{d}(1^{v}) = \mathcal{I}_{d}(1^{v}) \text{ for } v \equiv 13 \pmod{18}, v \geq 49.$

7 Conclusion

Lemmas 6.1 to 6.6 shows that $\operatorname{Int}_{d}(1^{v}) = \mathcal{I}_{d}(1^{v})$ for all $v \equiv 1, 3 \pmod{6}$, $v \geq 33$. Lemma 5.1 gives $\operatorname{Int}_{d}(1^{v})$ for all $v \equiv 1, 3 \pmod{6}$, $v \leq 31$. This combines to give the main result of this paper below.

Theorem 7.1 Let $v \equiv 1, 3 \pmod{6}$. Then $\operatorname{Int}_{d}(1^{v}) = \mathcal{I}_{d}(1^{v})$, except that

- (i) $Int_d(1^7) = \{0, 1\}$; and
- (ii) $Int_d(1^9) = \{0, 1, 3\}.$

If there exists a pair of STS(v) intersecting in t pairwise disjoint blocks, we can consider these t pairwise disjoint blocks as groups of a pair of disjoint $\{3\}$ -GDDs of type 3^t1^{v-t} , and vice versa. Hence, Theorem 7.1 is equivalent to the following.

Theorem 7.2 Let $3t + r \equiv 1, 3 \pmod{6}$, $3t + r \geq 13$. Then there exists a pair of disjoint $\{3\}$ -GDDs of type 3^t1^r .

References

- [1] ABEL, R. J. R., BROUWER, A. E., COLBOURN, C. J., AND DINITZ, J. H. Mutually orthogonal Latin squares (MOLS). In *The CRC Handbook of Combinatorial Designs*, C. J. Colbourn and J. H. Dinitz, Eds. CRC Press, Boca Raton, 1996, ch. II.2, pp. 111–142.
- [2] Butler, R. A. R., and Hoffman, D. G. Intersections of group divisible triple systems. *Ars Combin.* 34 (1992), 268–288.
- [3] COLBOURN, C. J., HOFFMAN, D. G., AND REES, R. A new class of group divisible designs with block size three. *J. Combin. Theory Ser. A* 59 (1992), 73–89.
- [4] Fu, H. L. On the construction of certain types of Latin squares having prescribed intersections. PhD thesis, Department of Discrete and Statistical Sciences, Auburn University, Auburn, Alabama, 1980.
- [5] HOFFMAN, D. G., AND LINDNER, C. C. The flower intersection problem for Steiner triple systems. *Ann. Discrete Math.* 34 (1987), 243–258.
- [6] LINDNER, C. C., AND ROSA, A. Steiner triple systems with a prescribed number of triples in common. *Canad. J. Math.* 27 (1975), 1166–1175.
- [7] WILSON, R. M. An existence theory for pairwise balanced designs I: Composition theorems and morphisms. *J. Combin. Theory Ser. A* 13 (1971), 220–245.

A Some Small Steiner Triple Systems

For space efficiency, we list a block $\{a, b, c\}$ vertically as $\stackrel{a}{b}$.

A.1 An STS(13)

00000011111222223334445556 13579b3469a3467867868a7897 2468ac578bc95acbbacc9bbac9

A.2 An STS(15)

000000011111112222223333444455556666 13579bd3478bc34789c789a789a789a78ab 2468ace569ade65abedcdbeecdbbecdd9ce

A.3 An STS(19)

000000001111111112222222233333334444455555666777888999abcf 13456abce345678ac345678ad4689bg67acd678bd79fabe9beacdhedg 2789dgfihh9ibgdeffbeh9icg5acedieifghchagf8gidcffhgbhiiifh

A.4 An STS(21)

0000000001111111111222222223333333344444455555566667778888999aabbccdef 13456789af345679bdh345678bcf4679abc678adh678bde79dgabe9acgafieicedhgjg 2ejcbhidgk8egafcikjd9ajkehgi5fjghkicgbkfii9kfjh8ehkcdihdfjbjkfjjgekikh

A.5 An STS(25)

78888889999aaaabbbccdddeffhil h9abcefgadgicejmcekdkfglhgjijm mndhmkoibjlohnloofmelknoohmlkn

A.6 An STS(27)

 6677777788888899999aaabbbbbccccdeeefffggghhiikl mn9abdghacdehkadeincdhcdefjdfiljghkgimjlmjkjoom opqjkpoigjomplbflmopnlhgnlpeknoqiqphqpnpqmnkpqn

A.7 An STS(31)

5555555666666666777777778888888889999999aaaaaabbbbbbccccddddeeeeeeffggacdfglp79abcfghq9abcdijp9abdehikmachijkncefhnpcdfhjkdfgmfgikfghiorgjjnrnjukqt8odpknusteglhmsnufuqrlntpobsqlrtpjqmltsisrtmnepluopulsmjntuhqto

ghhiijkkklllmor qiojolmoqmptqps rpukrorsunrusqt

B A Few More Small Steiner Triple Systems

B.1 An STS(19)

B.1.1 \mathcal{T}_1

0000000011111111122222222333333344444555556666677788899bcf 1345678ag34578abd3459abde479bcf78acd68abd79ace9ce9abaehdg 2d9ebfhci6e9higcf867cfghi5ahegibfihggchfi8idfhdiggedbfieh

B.2 An STS(21)

B.2.1 \mathcal{T}_2

0000000001111111111222222222333333344444455555566666777788899 a abbccdef 1345689 abd345678 cfg345789 abc4789 abd6789 bi689 cde7abcg9 adh9efaeefhjdgihg 2ig7jkhcefeha9bdikj6kiejfdgh5fhkgcjecadfjkbgjhf8hdfijigkcgibikjikekkjh

$B.3 \quad Two \ STS(25)$'s

B.3.1 \mathcal{T}_3

77888889999aabbbccccddeeffgggi hl9abekachjdefhkdfhkhiijgiijmj inoijnlbimnnfnloejomjmlmhonlok

B.3.2 \mathcal{T}_4

778888889999aaabbbccccdefghijl eg9abdefaegkdhkcdidfgiifgjkjlm niockmgibhmnfnmlgnejkmlohnokon

B.4 An STS(27)

B.4.1 \mathcal{T}_5

66777777888888889999aaaabbbccccddeeeeefffghiijl ik9abcdfj9abdghmadflcfilcfhdhijhkghjkpgkljojnnm pmmkqognlcnefkipbpjqgqmopimeklmnlmlonqhoppqkoqn

B.5 Three STS(31)'s

B.5.1 T_6

555555566666666677777777888888889999999aaaaaabbbbbbcccccddddeeeefffffabdfhmt79acdefkmn9abdghlr9bcdhikpadefgkmcijknpcehinqdfgimfhijiklogknprglrsqou8lohpgiusriesqoputtfjgroqubonjrpusqlrutujmtpretprqmlntmsrphloqu

ggghhhijjklllno jkqiknjmommosqr snusotkputnqtss

B.5.2 \mathcal{T}_7

555555666666666777777778888888889999999aaaaaabbbbbccccccddddeeeeffff bcdefhk7abdeghkm9bcdefhin9abcdfgiqacegijmefhikldhknodfhjmtijmnghkrgkno gsrimpl8qipfjursumgkpqotshrlnupsotbkqtrnpujnspofrsquelqorulsqolsmthtrs

ggghiijjjkllopp ikoljmlmqnmqprs nqrtkuptuunsqut

B.5.3 \mathcal{T}_8

5555556666666667777777788888888899999999aaaaaabbbbbbccccddddeeeefffgg abdefik79acdefhnabcfghjk9abceghjkacdefhjlcdghkpefgjlmdfpshinpghjmginkl octnjum8slojtqkuedquritomqnripsoubkgqruntifujnrpkirsoemtumrquolsrhlssq

ghhhiiijkkllmor nnoqjmomlqmotps tptrkqspptnuuqt