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Abstract

Two Steiner triple systems (X, .A) and (X, B) are said to intersect in m pairwise
disjoint blocks if |[A N B| = m and all blocks in A N B are pairwise disjoint. For
each v, we completely determine the possible values of m such that there exist two
Steiner triple systems of order v intersecting in m pairwise disjoint blocks.

1 Introduction

A set system is a pair (X, .A), where X is a finite set of points, and A is a set of subsets
of X, called blocks. Let K be a set of positive integers. The set K is a set of block sizes
for (X, A) if |A| € K for every A € A.

Let (X, .A) be a set system, and let G = {G1, ..., G} be a partition of X into subsets,
called groups. The triple (X, G, A) is a group divisible design (GDD) when every 2-subset
of X not contained in a group appears in exactly one block and |[ANG| < 1forall A€ A
and G € G. We denote a GDD (X, G, A) by K-GDD if K is a set of block sizes for (X, .A).
The group type, or simply type of a GDD (X, G, A) is the multiset [|G] | G € G]. When
more convenient, we use the exponential notation to describe the type of a GDD: A GDD
of type gi' - - - g% is a GDD where there are exactly t; groups of size g;. If G is not specified
in a GDD (X, G, A), it is taken that all groups are of size one: G = {{z} |z € X}. A
{3}-GDD of type 1Y is a Steiner triple system of order v, and is denoted by STS(v).

Two GDDs D; = (X,G1, A1) and D; = (X, Gs, Az) of the same type are said to
intersect in m blocks if | A; N As| = m. If in addition, the blocks in .4; N Ay are pairwise
disjoint (that is, for any A, A’ € Ay N Ay, A # A’ we have AN A’ = (), then D; and D;
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are said to intersect in m pairwise disjoint blocks. Define

Int(T") = {m | 3 two {3}-GDDs of type T intersecting in m blocks}; and
Intq(7) = {m | 3 two {3}-GDDs of type T intersecting in m pairwise disjoint blocks}.

The intersection problem and disjoint intersection problem for {3}-GDDs of type T is to
determine Int(7") and Intq(T"), respectively. A pair of GDDs is said to be disjoint if they
intersect in no blocks.

The intersection problem for Steiner triple systems was completely solved by Lindner
and Rosa [6]. The intersection problem for {3}-GDDs of type 2" has also been solved
by Hoffman and Lindner [5]. The case of {3}-GDDs of type ¢g*, which are equivalent to
Latin squares of side g, has been settled by Fu [4]. Butler and Hoffman [2] finally put the
intersection problem for {3}-GDDs of type g* to rest with the following result.

Let b(g") = g*t(t — 1)/6 (the number of blocks in a {3}-GDD of type ¢'), and denote

by Z(g") ={0,1...,b(g")} \ {b(g") — 5,b(g") — 3,b(g") — 2,b(g") — 1}.

Theorem 1.1 (Butler and Hoffman) Let g and t be positive integers such that t > 3,
¢*(}) =0 (mod 3), and g(t —1) =0 (mod 2). Then Int(g') =Z(g"), except that

(i) Int(1%) =Z(1%)\ {5.8};

(i) Int(2') = T(2%) \ {1,4};
(iii) Int(3%) = Z(3%)\ {1,2,5}; and
(iv) Int(4%) = T(4%)\ {5,7,10}.

While the intersection problem has received considerable attention, the disjoint inter-
section problem seems not to be well-studied. The purpose of this paper is to determine
completely Intq(1"). This is the disjoint intersection problem for STS(v). Hence, we as-
sume throughout this paper that v = 1,3 (mod 6). Note that since 0,1 € Int(1¥), we also
have 0,1 € Intq(1").

Define .
Id(lv):{{0,1,...,(1}—1)/3} ?fvzl (mod 6),
{0,1,...,v/3} ifv=3 (mod 6).

Since there can be at most [v/3] pairwise disjoint blocks in an ST'S(v), we have Intq(1?) C
Z4(1%). So in the remaining of this paper, we shall focus on showing membership of
elements of Z4(1¥) in Int4(1"), rather than the other way round.

2 Latin Squares Intersecting in a Transversal

A Latin square of side n is an n x n array with the property that every row and every
column contains every element from {1,...,n} exactly once. A Latin square A of side n
is idempotent if A(i,i) = s; for 1 < i < n. A transversal in a Latin square of side n is a
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set of n cells, no two from the same row or from the same column, or contain the same
entry. The intersection of two Latin squares A and B is the set of cells (4, 7) such that
A(i,7) = B(i,). In this section, we show that for n # 2,3, 6, there exists a pair of Latin
squares of side n intersecting in a transversal.

Two Latin squares A and B of side n are said to be orthogonal if the n? ordered pairs
(A(4,7), B(i,7)) for 1 <i,7 < n are all distinct. The following result is well-known (see,
for example, [1]).

Theorem 2.1 There exists a pair of orthogonal idempotent Latin squares of side n for
alln # 2,3,6.

Theorem 2.2 Let n # 2,3,6. Then there exists a pair of Latin squares of side n inter-
secting in a transversal.

Proof. Let A and B be a pair of orthogonal idempotent Latin squares of side n. We claim
that A and B intersect in a transversal. Obviously, the transversal formed by the main
diagonal of either A or B is in the intersection. It remains to show that for 1 <4,7 <n,
i # j, we have A(i, j) # B(i, 7). Suppose on the contrary that A(i,j) = B(4,j). Then we
have (A(i,7), B(i,7)) = (k, k) = (A(k, k), B(k, k)) for some k. This contradicts the fact
that A and B are orthogonal. [

A {3}-GDD of type ¢* can be obtained from a Latin square A of side g as follows.
Let R = {r1,...,ry} and C = {c1,...,¢,} be the set of row and column indices of A,
respectively. Let S = {1,...,n} be the set of entries of A. Define

X=RUCUS,
G ={R,C,S};
A={{ri,c;, A(i, )} |1 <i,5 <g}.

Then (X,G, A) is a {3}-GDD of type g°. From this construction, it is easy to see that
Theorem 2.2 implies the following.

Corollary 2.1 For g # 2,3,6, we have g € Intq(g?).
3 Wilson-Type Constructions

Wilson [7] established the following fundamental construction for GDDs which has signif-
icant impact on design theory.
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Wilson’s Fundamental Construction
Input: (master) GDD D = (X, G, A);
weight function w : X — Z>;
(ingredient) KC-GDD Dy = (X4, Ga, Ba) of type [w(a) | a € A],
for each block A € A, where
X4 =Ugea{{a} x{1,...,w(a)}} and
Ga={{a} x{1...,w(a)}|aec A}
Output: K-GDD D* = (X*,G*, A*) of type [, .qw(x) | G € G], where
X*=Ugex({z} x{1,...,w(2)}),
G* = {Uzec({z} x{1,...,w(2)}) | G € G}, and
A* = UpcaBa.
Notation: D* = WFC(D,w,{D4 | A€ A}).

We use Wilson’s fundamental construction to produce pairs of disjoint GDDs.

Theorem 3.1 Let D = (X,G, A) be a GDD. Let w : X — Z>o be a weight function.
Suppose that for each block A € A, there exist a pair of disjoint {k}-GDDs of type
[w(a) | a € A]. Then there exists a pair of disjoint {k}-GDDs of type [ ., w(z) | G € G].
Proof. For each block A € A, let D}, = (X4,Ga, BY) and D4 = (X4, G4, B%) be a pair of
disjoint {k}-GDDs of type [w(a) | a € A]. Let Df = WFC(D,w,{D}, | A€ A}),i=1,2.
Then D; and D, are {k}-GDDs of type [}, .ow(z) |G € G].

We claim that D} = (X*,G* A}), i = 1,2, is a pair of disjoint GDDs. To prove this,
we have to establish the following:

ByNBy =0, forall A€ A; and (1)
BiNB4 =0, forall A,Bc A, A+ B. (2)

(1) follows trivially from the fact that (Xa,Ga, BY) and (Xa,Ga, B%) are disjoint, for all
A € A. To see that (2) holds, note that for A = {ay,...,a;} and B = {by,..., b}, blocks
in BY have the form {yi,...,y}, where y; = (a;,w) for some w € {1,...,w(a;)}, and
blocks in B% have the form {2, ..., 2}, where z; = (b;,w) for some w € {1,...,w(z)}.
Hence y; = z; is possible only if a; = b;. It follows that {y1,...,yx} = {#1,..., 2} only if
A = B, establishing (2). O

Theorem 3.2 (Colbourn, Hoffman, and Rees) Let g, t, and u be positive integers.
There exists a {3}-GDD of type g'u' if and only if the following conditions are all satisfied:

(i) t>3,ort=2andu=g;
(i) u<g(t—1);
(iii) g(t —1)+u =0 (mod 2);
)

(iv) gt =0 (mod 2);
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(v) ¢° (;) + gtu =0 (mod 3).

Theorem 3.1 together with the existence of some {3}-GDDs provided by the above
result of Colbourn, Hoffman and Rees [3] yields the following.

Corollary 3.1 For each type listed in the table below, there exist a pair of disjoint {3}-
GDDs.

Type Type of Master | Weight
{3}-GDD Function
3491 ]_431 w() =3
315! 1051 o()=3
0157, 3'5! w(-) =3
t=0 (mod 2),t >4
97217, 3t7t w(-)=3
t=0 (mod 2),t>4
027" 39" w(-) =3
t=0 (mod 2),t>4
(6s)t(6r), (2s)t(2r)! w()=3
t>3,r<s(t—1), s*() 4+ str =0 (mod 3)

Proof. For each desired pair of disjoint {3}-GDDs, apply Theorem 3.1 with the listed
master GDD, weight function, and use as ingredient GDDs a pair of disjoint {3}-GDDs
of type 3%, which exists by Theorem 1.1. The master GDDs all exist by Theorem 3.2. [J

Theorem 3.3 (Filling in Groups) Suppose there exists a pair of disjoint K-GDDs of
type (g1, - . ., gs]. Furthermore, for each g;, 1 <i < s, there exists a pair of L-GDDs of type
19 intersecting in m; pairwise disjoint blocks. Then there exists a pair of (K U L)-GDDs
of type 12i=19 jintersecting in > oo my pairwise disjoint blocks.

Proof. Let (X,G,A) and (X,G,B) be a pair of disjoint X-GDDs of type [g1,. .., 9],
where G = {G4,...,G,} and |G| = ¢;, 1 <1i <s. For each g;, 1 <i < s, let (G;, A;) and
(G, B;) be a pair of £L-GDDs intersecting in m; pairwise disjoint blocks. Define

D, = (X, AU (U_A)); and
Dy = (X, BU (U;_B))).

D, and D, are clearly (K U £)-GDDs of type 12i=19 . We claim that D; and D, intersect
in Zle m; pairwise disjoint blocks. To see this, note that

(i) ANB =10, since (X,G,.A) and (X, G, B) are disjoint GDDs;

ii) for 1 <i < s, we have ; =0 an ; = 0, since any block in A contains a
i) for 1 <i < have ANB; = 0 and BN A; = 0), si block in A contains at
most one element from each group; and

(iii) for 1 <i,j <'s, i # j, we have A; N B; = (), since groups are pairwise disjoint.
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Hence, the blocks that D; and D, have in common are precisely the blocks in U5_, (A;N5;).
It follows that Dy and D, are the desired pair of GDDs intersecting in » ;_, m; pairwise
disjoint blocks. []

For A, B C Z, we use the notation A+ B to denote the set {a+b|a € A and b € B}.
For A; CZ, 1 < i <n, we use the notation >, | A; to denote the set {a; + -+ + a, |
a; € A;, for 1 <i<n}.

Corollary 3.2 If there exists a pair of disjoint {3}-GDDs of type gi' - - - g's, then

s t;
Intq(12i=19%) D Z Z Intq(19).

i=1 j=1

Proof. Apply Theorem 3.3 with GDDs intersecting in the appropriate number of pairwise
disjoint blocks. []

The above results are sufficient to settle the case v =3 (mod 6).

4 Product Constructions

We use the following Singular Direct Product construction.

Singular Direct Product Construction

Input: positive integers u, w, t;
for i =1,...,¢, (master) K-GDDs D; = (X; UU, G;, A;) of type
u'1¥i, where U is the group of size u in each GDD;
(ingredient) C-GDD & = (Uf_, X;, {X; | 1 <i <}, B)
of type [w; [ 1 < v <4];
(fill-in) £-GDD F = (G, C) of type 1"

Output: K-GDD D* = (X*, A*) of type 11w where
X*=UU (U_,X;), and
A = (U, A)UBUC.

Notation: D*=SDP({D; |1 <i<t},E,F).

Lemma 4.1 Let v =3 (mod 6) and k = 0,1 (mod 3), kK > 3. Then

k—1

Intq(1¥7DH) D Intg(17) + > (Intq(1°) \ {v/3}).

i=1

Proof. For 1 <i <k, let D; = (X;U{o0}, G;, A;) and D, = (X;U{o0}, G;, A}) be a pair of
{3}-GDDs of type 1Y intersecting in m; pairwise disjoint blocks, where m; € Intq(1Y) and
m; € Intq(1) \ {v/3} for 2 < i < k. We may assume that the point co is not contained
in any blocks in the intersection of D; and D, 2 <i < k.

79

THE ELECTRONIC JOURNAL OF COMBINATORICS 11 (2004), #R27 6



Let £ = (U X, {X; | 1 < <k},B)and & = (U X, {X; | 1 <i <k}LB)
be a pair of disjoint {3}-GDDs of type (v — 1)*, which exists by Theorem 1.1. Let
F = ({o0},0). Now apply the Singular Direct Product construction to obtain Dj =
SDP({D;,...,D},E,F) and Dy = SDP({D},...,D,},&, F). It is easy to see that the
intersection of D} and Dj is UL, (4,1 A}), which contains 3¢, m; pairwise disjoint blocks.
0

Lemma 4.2 Let s and t be positive integers, t > 3. Then

t
Intd(168t+1) 2 Z Intd(16s+1).

=1

Proof. For 1 <i <t let D; = (X;U{o0},G;, A;) and D, = (X;U{o0}, G;, A’) be a pair of
{3}-GDDs of type 15" intersecting in m; pairwise disjoint blocks, where m; € Intq(1%1).
We may assume that the point oo is not contained in any of the intersections.

Let £ = (U_ X;, {X; |1 <i<t},B)and & = (U_, X;,{X; | 1 <i <t},B) be a pair
of disjoint {3}-GDD of type (6s)?, which exists by Theorem 1.1. Let F = ({o0},?). Now
apply the Singular Direct Product construction to obtain two {3}-GDDs of type 15s¢+1
Dy =SDP({D; | 1 <i <t},E,F)and D5 = SDP{D} | 1 <i < t},&F). It is easy to
see that the intersection of Df and Dj is Ul_; (A; N A}), which contains Y _, m, pairwise
disjoint blocks. [

Lemma 4.3 Letr,s,t be positive integers such thatt > 3, r < s(t—1), and s* (;)—l—str =0
(mod 3). Then

t
Intd(165t+6r+1) ) Intd(lfir-i-l) + Z Intd(165+1).
i=1
Proof. For 1 <i <t let D; = (X;U{o0},G;, A;) and D, = (X;U{o0}, G;, A;) be a pair of
{3}-GDDs of type 17! intersecting in m; pairwise disjoint blocks, where m; € Intq(1%51).
We may assume that the point oo is not contained in any of the intersections. Let
Diy1 = (Xep1 U{o0}, Gi, Aipq) and Dy = (Xpq1 U {00}, G;, Al ) be a pair of {3}-GDDs
of type 19 *1 intersecting in m;,; pairwise disjoint blocks, where m; ; € Intq(1571).

Let £ = (UL X, {X; |1 <i<t+1},B)and & = (UL X, {X, |1 <i<t+1},B)
be a pair of disjoint {3}-GDDs of type (6s)!(6r)!, which exists by Corollary 3.1. Let
F = ({0}, 0). Now apply the Singular Direct Product construction to obtain two {3}-
GDDs of type 19+6+1 Dz = SDP({D; | 1 < < t + 1}, &, F) and D} = SDP({D | 1 <
i <t+1},EF). It is easy to see that the intersection of Df and D} is UT1(A; N AY),
which contains Zfii m; pairwise disjoint blocks. [
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5 Direct Constructions
In this section, we determine Intq (1Y) for some small values of v.

Lemma 5.1 The following equalities hold:

(i) nta(1') = {0};
(i) Tnta(1%) = {1},
(iii) Intq(17) = {0,1};
(iv) Intq(1%) = {0,1,3}; and
)

5.1 Proof of Lemma 5.1

(i) and (ii) hold trivially and recall that 0,1 € Intq(1") for v = 1,3 (mod 6), v > 7. For
7 < v < 31, we have the following table.

v | Elements Authority
in Intq (1Y)

7101 Trivial

910,1,3 Corollary 3.2: Tnty(1%) D 327 Int4(1%)
13 10,1 Trivial
1510,1,5 Corollary 3.2: Tnty(1'%) D 327 Int4(1%)
1910,1,2,3 Lemma 4.2: Intq(1'%) D 327 Intg(17)
2110,1,2,3,4,5,7 Corollary 3.2: Intq(12!) D Zle Intq(17);

Corollary 3.2: Intq(1%) D Intq(1%) + 321, Inta(1%)

2510,1,2,3,4,5 Lemma 4.1: Tntq(1%) D Tntq(1%) + 3.7, (Intq(1%) \ {3})
2710,1,2,3,4,5,6,7,9 | Corollary 3.2: Intq(1%7) D Z?Zl Intq(1%)
3110,1,2,3,4,5,6,7 | Lemma 4.3: Intq(13") D Intq(1%%) + 7, Intq(17)

Let S,, v € {13,15,19,21,25,27,31} be the STS(v)’s given in Appendix A. For an
STS(v) S, = (X, B) and a permutation 7 : X — X, 7 acts on S, by canonical extension
as follows: 7(S,) = {{n(a),7(b),7(c)} | {a,b,c} € B}. The permutations = listed below
is such that S, and 7(S,) intersect in m pairwise disjoint blocks, where m is a number
whose membership in Intq(1¥) has not been established in the table above.
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v | Elements |«
inIntd(lv)
13 ]2 (073)(15b49a?2c)B)B8)
(0c34a826)(175b5)9

(0 5)(1 c)(2a6)(3b)(4 8
(08be943dc2a76)(lb)
(0e6c143a7529bd38)
(0276eal3d3bi1)(4cb594d8)
(0abd)(1d8fcdad692e)37)(g
(0267al1lcb5fh8bdie3d)9deg
(0063)(149 j5gk21d("Thne)@macifhb

15

19

| O [ W N W

25

Any two blocks of an STS(7) intersect in a point. So 2 ¢ Intq(17). In an STS(9)
(X,B),if A,B € Band AN B =0, then X \ (AU B) is a block in B. So 2 ¢ Intq(17).
For each of the remaining possible disjoint intersection size m € Intq(1V), we exhibit an
STS(v) D,, listed in Appendix B, whose intersection with S, contains m pairwise disjoint
blocks.

v | Remaining values | 7,
in Intq(17)

19 |6 T

2116 7

25| 7 T3
8 7,

27 | 8 75

31 |8 Ts
9 T;
10 s

6 Piecing Things Together

We first deal with the easier case of v =3 (mod 6).

6.1 The Case v =3 mod 6
6.1.1 v =3 (mod 18)

By Theorem 1.1, there exists a pair of disjoint {3}-GDDs of type 13%. Corollary 3.2
then gives Intq(1%°) D 327 Intq(1'%) = >3 ,{0,...,4} = {0,...,12}. By Theorem
1.1, there also exists a pair of disjoint {3}-GDDs of type 3!3. Corollary 3.2 now gives
Intq(1%9) D 3002, Intq(1%) = 3202 {1} = {13}. Hence Intq(1?%) = Z4(1%).
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For v > 57, consider a pair of disjoint {3}-GDDs of type 921!, where t = (v — 21)/9,
existence of which is provided by Corollary 3.1. Now apply Corollary 3.2 to obtain

t
Inty(1) 2 Intq(1*') + ) Intg(17)

=1

t
={0,...,7}+ > {0,1,3}

=1

= {0,...,3t + 7}

= Zq4(1").
This establishes the following.
Lemma 6.1 Inty(1") = Z4(1Y) for v =3 (mod 18), v > 39.

6.1.2 v =9 (mod 18)

By Theorem 1.1, there exists a pair of disjoint {3}-GDDs of type 153. Corollary 3.2 then
gives Tntq(1%°) D 377 Tnta(1%) = 327 {0,...,5} = {0,...,15} = Z,(1*).

For v > 63, consider a pair of disjoint {3}-GDDs of type 9'27!, where t = (v — 27)/9,
existence of which is provided by Corollary 3.1. Now apply Corollary 3.2 to obtain

t
Intg(1") 2 Inta(17) + ) " Intg(17)

i=1

t
={0,...,9} + > {0,1,3}

=1
={0,...,3t+9}

= Z4(1").
This establishes the following.
Lemma 6.2 Inty(1") = Z4(1Y) for v =9 (mod 18), v > 45.

6.1.3 v =15 (mod 18)

By Corollary 3.1, there exists a pair of disjoint {3}-GDDs of type 3°15'. Corollary 3.2
then gives Intq(1%%) D Intq(1'%) + 320, Intg(1®) = {0,...,5} +{6} = {6,...,11}. Also, by
Lemma 4.1, we have Intq(13) D Intq(1%)+ 327, (Intq(19)\ {3}) = {0, 1,3} + >3 {0,1} =
{0,1,2,3,4,5,6}. Hence we have Intq(13%) = Z,4(1%3).
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For v > 51, consider a pair of disjoint {3}-GDDs of type 9'15', where t = (v — 15)/9,

whose existence is provided by Corollary 3.1. Now apply Corollary 3.2 to obtain

t
Inta(1) 2 Inta(1'*) + ) Intq(17)

i=1

:{O,...,5}+Z{07173}

—{0,...,3t+5}
— 7,(1Y).

This establishes the following.

Lemma 6.3 Intq(1Y) = Z4(1") for v =15 (mod 18), v > 33.

6.2 The Case v =1 (mod 6)
6.2.1 v =1 (mod 18)

Let s = 2, t = 3. Then Lemma 4.2 gives Intq(1%7) D 327 Intq(1'%) = 32°_ {0, . ..

{0,...,12} = T,(1%7).
For v > 55, let s =3, t = (v — 1)/18. Now apply Lemma 4.2 to obtain

t
Intd(lv) 2 Z Irltd(llg)
1=1

:Z{O,...,6}

_{0.....61)
= Z4(1%).

This establishes the following.

Lemma 6.4 Intq(1") = Z4(1V) for v =1 (mod 18), v > 37.

6.2.2 v =7 (mod 18)

4} =

Let v > 43. Let w = (v +2)/3. Then w = 3 (mod 6) and w > 15. Now apply Corollary

4.1 to obtain

Intq(1%) 2 Intgq(1") + (Intq(1*) \ {w/3}) + (Intq(1*)\ }w/3})
={0,...,w/3} +{0,...,w/3—1}+{0,...,w/3 — 1}
={0,...,w—2}
={0,...,(v—1)/3—1}.
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To show that (v—1)/3 € Int4(1"), mimic the proof of Lemma 4.1 but with m; = my =
ms3 = 0 and replace the ingredient {3}-GDD of type (w — 1)® with a pair of {3}-GDDs
of type (w — 1)3 intersecting in w — 1 disjoint blocks, existence of which is provided by
Corollary 2.1. This establishes the following.

Lemma 6.5 Intq(1V) = Z4(1V) for v =17 (mod 18), v > 43.

6.2.3 v =13 (mod 18)

Let s = 2and t = 4. Then Lemma 4.2 gives Intq(1%) D 370 Intq(1'%) = 320, {0,...,4} =
{0,...,16} = Z4(1%).

For v > 67, let t = (v — 13)/18. Then ¢t > 3. Now apply Corollary 4.3 with » = 2 and
s = 3 to obtain

Intd(lv) = Intd(llgtJrlS)

t
D Intq(1'%) + ) " Intq(1")
=1

:{0,...,4}+i{0,m76}

={0,...,6t+4}
= Z4(1%).

This establishes the following.

Lemma 6.6 Intq(1Y) = Z4(1") for v =13 (mod 18), v > 49.

7 Conclusion

Lemmas 6.1 to 6.6 shows that Intq(1V) = Z4q(1") for all v = 1,3 (mod 6), v > 33. Lemma
5.1 gives Intq(1¥) for all v = 1,3 (mod 6), v < 31. This combines to give the main result
of this paper below.
Theorem 7.1 Let v=1,3 (mod 6). Then Intq(1") = Z4(1"), except that

(i) Intq(17) = {0,1}; and

(ii) Inta(1°) = {0,1,3}.

If there exists a pair of STS(v) intersecting in ¢ pairwise disjoint blocks, we can consider
these ¢ pairwise disjoint blocks as groups of a pair of disjoint {3}-GDDs of type 3'1"7%,
and vice versa. Hence, Theorem 7.1 is equivalent to the following.

Theorem 7.2 Let 3t+r =1,3 (mod 6), 3t+r > 13. Then there exists a pair of disjoint
{3}-GDDs of type 3'1".
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A Some Small Steiner Triple Systems

For space efficiency, we list a block {a, b, ¢} vertically as b.

A.1 An STS(13)

00000011111222223334445556
13579b3469a3467867868a7897
2468ac578bc95acbbacc9bbac9

A.2 An STS(15)

00000001111112222223333444455556666
135790pd3478bc34789¢c789a789a789%a78ab
2468ace569adeb5abedcdbeecdbbecddOce

A.3 An STS(19)

00000000011111111222222223333334444455555666777888999%abct
13456abce345678ac345678ad4689bg67acd678bd79fabe9beacdhedg
2789dgfihh9ibgdeffbeh9icgbacedieifghchagf8gidcffhgbhiiifh

A.4 An STS(21)

0000000000111111111222222222333333344444455555566667778888999aabbccdef
13456789a£345679bdh345678bcf4679abc678adh678bde79dgabelacgafieicedhgjg
2ejcbhidgk8egafcikjd9ajkehgibf jghkicgbkfii9kf jh8ehkcdihdf jbjkf jjgekikh

A.5 An STS(25)

000000000000111111111112222222222233333333344444444555555556666667 7777
1345689degin34567bcdefh345679abdf j4689abgik679ceghk679bcegj79abchabcef
27baf jchlkmoma8o9jniglkc8hkoeglminbelhfdjnodlfimojnldknfimo8migjnkigijn

788888889999aaaabbbccdddeffhil
h9abcefgadgicejmcekdkfglhgjijm
mndhmkoibjlohnloofmelknoohmlkn

A.6 An STS(27)

0000000000000111111111111222222222222333333333344444444455555555566666
13456789abdeh3456789abdfg3456789%acef j4678acdfkn6789abijp6789abcde79adl
2pgnkfqcmiljolhpecnjigmokhdgimbpkqonlbbe9ogijmgcnfkemloqgjlihqomkf8gfhq
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6677777788888899999aaabbbbbccccdeeefffggghhiik]l
mn9abdghacdehkadeincdhcdef jdfiljghkgimjlmjkjoom
opqjkpoigjomplbflmopnlhgnlpeknoqiqphqpnpgmnkpgn

A.7 An STS(31)

0000000000000001111111111111122222222222222333333333333444444444445555
13456789acfhijn34567abcdghjms3456789bdefiln4679abcdef jn678bcdfghmn6789
2plbergdotkmqus89elfkoqnirptuoahjkcuggptmsrbmtgiurhklsqrqjeotiskpuiosm

5555555666666666777777778888888889999999aaaaaabbbbbbccccddddeeceeceeffgg
acdfglp79abcfghq9abcdijp9abdehikmachijkncefhnpcdfhjkdfgmfgikfghiorgjjn
rnjukqt8odpknusteglhmsnufuqrlntpobsqlrtpjgqmltsisrtmnepluopulsmjntuhqto

ghhiijkkklllmor

giojolmogmptqgps
rpukrorsunrusqt
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B A Few More Small Steiner Triple Systems

B.1 An STS(19)
B.1.1 T,

000000000111111112222222233333344444555556666677788899bct
1345678ag34578abd3459abde479bcf78acd68abd79ace9ce9abachdg
2d9ebfhcibeShigcf867cfghibahegibfihggchfi8idfhdiggedbfieh

B.2 An STS(21)
B.2.1 7,

0000000000111111111222222222333333344444455555566666777788899aabbccdef
1345689abd345678cfg345789abc4d789abd6789b1689cde7abcg9adh9efaeefhjdgihg
2ig7jkhcefeha9bdikjbkiejfdghbfhkgcjecadf jkbgjhf8hdfijigkcgibikjikekkjh

B.3 Two STS(25)’s
B.3.1 T;

000000000000111111111112222222222233333333344444444555555556666667 7777
13456789abcd345689adef j345689abefn4689abekl68abcdhl6789abeg7acdhm9abdf
2johemglkinfi7nbhgclkmo7icjdkmghlo5fcdhmgno9f jegknmijmfldok8olgknegcok

77888889999aabbbccccddeeffgggi
hl9abekachjdefhkdfhkhiijgiijmj
inoijnlbimnnfnloejomjmlmhonlok

B.3.2 7,

0000000000001111111111122222222222333333333444444445555555566666667777
13456789abfi34569cdegjk345789abcef467abdefh6789aehn89abcdeh7bdfghm9abd
2ndgckl jehmo8b7afhniomlgi6mhdlonjk59cimokl jkf jcglmonijfokml8ejnliolojh

778888889999aaabbbccccdefghijl
eg9abdefaegkdhkcdidfgiifgjkjlm
niockmgibhmnfnmlgnejkmlohnokon

B.4 An STS(27)

B.4.1 T;

0000000000000111111111111222222222222333333333344444444455555555566666
1345689abcdgk3456789abimn345679abdfgo46789abceh679bdeghm689abcdgk79bdg
2m17f jehnqoipkcf jhlgedqopn8hcekjlimqpblpqodgfijainkjfopgeoipjnmlq8hoqgn
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66777777788888889999aaaabbbccccddeeceefffghiijl
ik9abcdf j9abdghmadflcfilcfhdhijhkghjkpgkljojnnm
pmmkqognlcnefkipbpjqggmopimeklmnlmlonghoppgkoqn

B.5 Three STS(31)’s
B.5.1 Ty

0000000000000001111111111111122222222222222333333333333444444444445555
1345789abceghjp3456789acdegio345678bcdeghim478abdegjlqs6789abceli jp6789
26fiklsmdogtunrnrkbjsqfluhmpt9opqfaknstljurbcmhokfirptutmnhdgkulqgsjnec

5555555666666666677777777888888889999999aaaaaabbbbbbcccccddddeeceefffff
abdfhmt79acdefkmn9abdghlr9bcdhikpadefgkmcijknpcehinqdfgimfhijiklogknpr
glrsqou8lohpgiusriesqoputtfjgroqubonjrpusqlrutujmtpretprgmlntmsrphloqu

ggghhhijjklllno
jkqiknjmommosqr
snusotkputnqtss

B.5.2 T

0000000000000001111111111111122222222222222333333333333444444444445555
13456789abdehil345689abcdfgjn345679abdehmqs4678abfghlno69abceghikr6789
2gfunjmsctgokprs7qoklmeihuprtk8nclfgptjiorub9redcimjuptldt jpnumqostajo

55555556666666667777777778888888889999999aaaaaabbbbbccccccddddeeceeffff
bcdefhk7abdeghkm9bcdefhin9abcdfgiqacegijmefhikldhknodfhjmtijmnghkrgkno
gsrimpl8qipf jursumgkpqotshrlnupsotbkqtrnpujnspofrsquelqorulsqolsmthtrs

ikol jmlmgnmgprs
nqrtkuptuunsqut

B.5.3 7Tg

0000000000000001111111111111122222222222222333333333333444444444445555
1345678abcdei jk3456789bcefgmn34567acdfijlng4678abcdgioq679bcdef jpr6789
29hggmtsunofplrkahipdoqlut jsre8gb9mhkpturosbplfthjsmnrumnitglkoqsurslp

55555556666666667777777788888888899999999aaaaaabbbbbbccccddddeeceefffgg
abdefik79acdefhnabcfghjk9abceghjkacdefhjlcdghkpefgjlmdfpshinpghjmginkl
octnjum8slojtqkuedquritomgnripsoubkgqruntifujnrpkirsoemtumrquolsrhlssq

ghhhiiijkkllmor
nnoqjmomlgmotps
tptrkgspptnuuqt
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