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Abstract

Special weight labelings on Aztec diamond graphs lead to sum-product identities
through a recursive formula of Kuo. The weight assigned to each perfect matching
of the graph is a Laurent monomial, and the identities in these monomials combine
to give Weyl’s character formula for the representation with highest weight ρ (the
half sum of the positive roots) for the classical Lie algebras.

Choose a positive integer n and label the 2n × 2n checkerboard matrix style. The
Aztec diamond of order n is the subset of this checkerboard consisting of the squares
whose coordinates (i, j) satisfy |j − i| ≤ n and (n + 1) ≤ i + j ≤ (3n + 1). Thus, in an
Aztec diamond of order n there will be 2n rows having 2, 4, . . . , 2n, 2n, . . . , 4, 2 squares
from top to bottom, as in Figure 1. A domino covers two adjacent squares, and the number
of domino tilings of the Aztec diamond of order n is 2n(n+1)/2 by [EKLP1, EKLP2]. Those
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papers establish connections between domino tilings of Aztec diamonds and alternating
sign matrices, which in turn are related to a host of topics — such as states in the
“square ice” model, complete monotone triangles, and descending plane partitions (see
for example, [Br]).

A monotone triangle is a triangular array T of positive integers which strictly increase
from left to right along its rows and weakly increase left to right along all of its diagonals.
When the bottom row consists of 1, 2, . . . , as in the example below, then T is said to be
a complete monotone triangle.

2
2 4

1 3 4
1 2 3 4

As shown in [EKLP1, Sec. 4], the number AD(n) of domino tilings of the Aztec
diamond of order n is given by AD(n) =

∑
T∈Tn+1

2ϑ(T ), where the sum is over the set
Tn+1 of complete monotone triangles T with n+1 rows, and ϑ(T ) is the number of entries
in T that do not occur in the row directly beneath it. In the above example ϑ(T ) = 1.
Section 5 of [EKLP2] connects these ideas with the representation theory of the complex
general linear group GLn+1 (or equivalently of its Lie algebra gln+1). Let V = Cn+1 and
let X = Λ2(V ), the second exterior power of V . Assume ai are positive integers satisfying
a1 < a2 < · · · < an+1. Consider the character

g(x1, . . . , xn+1) := Ch
(
Ψa ⊗ Λ(X)

)

of the tensor product module Ψa ⊗Λ(X), where Ψa is the irreducible GLn+1-module with

highest weight a = (a1 − 1, a2 − 2, . . . , an+1 − (n + 1)) and Λ(X) =
⊕n(n+1)/2

j=0 Λj(X), the
exterior algebra generated by X (regarded as a GLn+1-module). In [EKLP2, Sec. 5], it
is argued that g(1, 1, . . . , 1) =

∑
T 2ϑ(T ), where T ranges over all monotone triangles with

bottom row a1 < a2 < · · · < an+1. The case ai = i for all i = 1, . . . , n + 1 corresponds
to the complete monotone triangles. However, g(1, 1, . . . , 1) is also the dimension of the
corresponding module, which in this particular case is the one-dimensional GLn+1-module
Ψ0 with highest weight 0 = (0, . . . , 0) tensored with Λ(X). Thus,

AD(n) =
∑

T∈Tn+1

2ϑ(T ) = g(1, 1, . . . , 1) = dim
(
Ψ0 ⊗ Λ(X)

)
= 1 × 2n(n+1)/2.

The purpose of this article is to establish a new connection between domino tilings of
the Aztec diamond and the representation theory of all the classical Lie algebras. For this
we specialize Stanley’s weight labeling of the Aztec diamond graph and show that the
specialized weight of a perfect matching of the graph corresponds to a Laurent monomial
in Weyl’s character formula for Ψρ, the irreducible representation of sln+1 with highest
weight ρ, where ρ is half the sum of the positive roots. The number of times a given
monomial occurs, which is the dimension of the weight space in the Lie sense, is precisely
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the number of matchings of a given weight. Thus, the perfect matchings of the Aztec
diamond graph can be used to index a basis for Ψρ. In a similar fashion, we show that
perfect matchings on pairs of Aztec diamond graphs can be used to index a basis for
Ψρ for the classical Lie algebras of types Bn, Cn, and Dn. These Lie algebras were not
considered in [EKLP1, EKLP2].

The Aztec diamond graph of order n is the dual graph to the Aztec diamond of order
n in which the vertices are the squares and an edge joins two vertices if and only if the
corresponding squares are adjacent in the Aztec diamond. A perfect matching on the
Aztec diamond graph is a subgraph containing all the vertices such that each vertex has
order exactly 1. Identifying each edge in a perfect matching with a domino shows that the
perfect matchings on the Aztec diamond graph are in bijective correspondence with the
tilings of the Aztec diamond. See Figure 2 for a matching on the order 2 Aztec diamond
graph.

It will be easier to work with the Aztec diamond graphs rotated 45 degrees counter-
clockwise to produce a figure such as Figure 3. Then one may locate an edge by the
row i and column j that it lies in, where i = 1, 2, . . . , 2n and j = 1, 2, . . . , 2n. Given
an Aztec diamond graph of order n called A, let ANE denote the Aztec diamond graph
of order n − 1 which contains the northeasternmost edge of A in row 1 and column 2n,
fitting snugly in the northeast corner of A. Similarly, define (n− 1)-order Aztec diamond
subgraphs ANW , ASW , and ASE . Let Amid be the (n− 2)-order Aztec diamond subgraph
of A lying directly in the middle, concentric with A.

For the rest of the paper, Aztec diamond graphs have edge weights. Figure 3 shows
an Aztec diamond graph whose edges are weighted with integers. Given a matching m of
the Aztec diamond graph A, define the weight of the matching $(m) to be the product
of the weights of all the edges in the matching. Then the weight of the Aztec graph A is
$(A) =

∑
m $(m), the sum over all matchings of A. Using the tilted version of the Aztec

diamond graph, Kuo [K] proved the following theorem:

Theorem 1 (Kuo) Let A be a weighted Aztec diamond graph of order n. Also, let
$NE, $NW , $SW , $SE be the weights of the northeasternmost, northwesternmost, south-
westernmost, and southeasternmost edges of A, respectively. Then

$(A) =
$SW · $NE · $(ANW ) · $(ASE) + $NW · $SE · $(ASW ) · $(ANE)

$(Amid)
.

Stanley proposed the weight labeling displayed in Figure 6. We first learned about
this labeling and the next theorem, which gives a product expression for the weight sum,
from a talk by J. Propp [P]. The method of proof outlined in the talk relied on “local
transformations.” (Compare also [C2] for related weight labelings.)

Theorem 2 Let A be a weighted Aztec diamond graph of order n with weight labeling as
in Figure 6. Then
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$(A) =
∏

1≤i≤`≤n

(y2i−1y2` + z2i−1z2`) .

Here we present an alternate proof based on Kuo’s result.

Proof. When n = 1, the Aztec diamond graph A consists of one box with labels
y1, z1, y2, z2 on its NW, NE, SE, SW edges respectively. There are two matchings, and
the sum of their weights is y1y2 + z1z2, so that the result holds in this case. When n = 2,
one may use Figure 5 to verify that the weighted sum is as follows:

8∑
i=1

$(mi) = y2
1y2y3y

2
4 + y1y3y

2
4z1z2 + y2

1y2y4z3z4 + y1y4z1z2z3z4

+z2
1z2z3z

2
4 + y3y4z

2
1z2z4 + y1y2z1z3z

2
4 + y1y2y3y4z1z4

= (y1y2 + z1z2)(y1y4 + z1z4)(y3y4 + z3z4).

Proceeding inductively, we obtain from Kuo’s recursive theorem that

$(A) = (y1y2n + z1z2n)

∏
1≤i≤`≤n−1

(y2i−1y2` + z2i−1z2`)
∏

2≤p≤r≤n

(y2p−1y2r + z2p−1z2r)

∏
2≤a≤b≤n−1

(y2a−1y2b + z2a−1z2b)

=
∏

1≤i≤`≤n

(y2i−1y2` + z2i−1z2`) .

By setting yj = 1 = zj for all j = 1, . . . , n in this expression, we see that the number
of matchings, and hence the number AD(n) of domino tilings of the Aztec diamond of
order n, is 2n(n+1)/2. In [EKLP1], four proofs of that result are presented. Ciucu [C1]
has shown that AD(n) = 2nAD(n − 1), from which AD(n) = 2n(n+1)/2 is an immediate
consequence. In fact, Ciucu proves a more general recurrence for perfect matchings of
cellular graphs.

Next we consider four different weight labelings of the Aztec diamond graph of order
n, which are pictured in Figures 7, 8, 9, and 10. All are specializations of the Stanley
labeling.

Corollary 1 Let P be an Aztec diamond graph of order n with
Weight Labeling A,

y2i−1 = x−1
i y2i = xi+1

z2i−1 = xi z2i = x−1
i+1,
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for 1 ≤ i ≤ n. Then

$(P ) =
∏

1≤i<j≤n+1

(xix
−1
j + x−1

j xi).

Proof. From the theorem we obtain

$(P ) =
∏

1≤i≤`≤n

(
x−1

i x`+1 + xix
−1
`+1

)
=

∏
1≤i<j≤n+1

(
x−1

i xj + xix
−1
j

)

upon setting j = ` + 1.

Corollary 2 Let P be an Aztec diamond graph of order n with
Weight Labeling B,

x0 = 1
y2i−1 = x−1

i−1 y2i = xi

z2i−1 = xi−1 z2i = x−1
i ,

for 1 ≤ i ≤ n. Then

$(P ) =
∏

1≤i<j≤n

(xix
−1
j + x−1

i xj)
∏

1≤k≤n

(xk + x−1
k ).

Proof.

$(P ) =
∏

1≤i≤j≤n

(
x−1

i−1xj + xi−1x
−1
j

)

=
∏

1≤j≤n

(
xj + x−1

j

) ∏
1≤i<j≤n

(
x−1

i xj + xix
−1
j

)
.

Corollary 3 Let P be an Aztec diamond graph of order n with
Weight Labeling C,

y2i−1 = x−1
i y2i = x−1

i

z2i−1 = xi z2i = xi,

for 1 ≤ i ≤ n. Then

$(P ) =
∏

1≤i≤j≤n

(xixj + x−1
i x−1

j ) =
∏

1≤k≤n

(x2
k + x−2

k )
∏

1≤i<j≤n

(xixj + x−1
i x−1

j ).

the electronic journal of combinatorics 11 (2004), #R28 5



Corollary 4 Let P be an Aztec diamond graph of order n with
Weight Labeling D,

y2i−1 = x−1
i y2i = x−1

i+1

z2i−1 = xi z2i = xi+1,

for 1 ≤ i ≤ n. Then

$(P ) =
∏

1≤i<j≤n+1

(xixj + x−1
i x−1

j ).

Suppose g is a finite-dimensional simple complex Lie algebra corresponding to an
irreducible root system Φ. Let Φ+ denote the positive roots, W be the Weyl group, l(w)
be the length of an element w ∈ W , and let ρ = 1

2

∑
α∈Φ+ α. Let Ψρ denote the irreducible

representation of g with highest weight ρ. Applying the Weyl character and denominator
formulas (as in [FH] or [H] for example), one sees that

Ch(Ψρ) =

∑
w∈W

(−1)l(w)ew(2ρ)

∑
w∈W

(−1)l(w)ew(ρ)
=

∑
w∈W

(−1)l(w)(e2)w(ρ)

∑
w∈W

(−1)l(w)ew(ρ)

=

∏
α∈Φ+

(e2)α/2 − (e2)−α/2

∏
α∈Φ+

eα/2 − e−α/2
=

∏
α∈Φ+

eα − e−α

∏
α∈Φ+

eα/2 − e−α/2

=
∏

α∈Φ+

(eα/2 + e−α/2).

When the product is expanded, each factor contributes one of either eα/2 or e−α/2 to
each term, so that each term in the sum contributes one to the dimension. Hence, the
dimension of Ψρ is 2|Φ

+|. The number of roots as well as a description of the positive roots
for the classical Lie algebras are given in Figure 11. The vectors {ε1, ε2, . . . , εn} appearing
in this table form an orthonormal basis of unit vectors with respect to the usual inner
product in Rn. Additional information about root systems can be found in [B] or [H].

Theorem 3 Let P be an Aztec diamond graph of order n with Weight Labeling A. Let Ψρ

be the irreducible representation with highest weight ρ for type An. Substituting xi = eεi/2

for i = 1, 2, . . . , n + 1 in the weight labeling gives

$(P ) = Ch(Ψρ).

Proof. The theorem follows immediately from Corollary 1.

Similarly, we have the following theorems, whose results are summarized in Figure 12.
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Theorem 4 Let P be an Aztec diamond graph of order n with Weight Labeling B, and
let Q be an Aztec diamond graph of order n − 1 with Weight Labeling D. Assume Ψρ is
the irreducible representation with highest weight ρ for type Bn. Substituting xi = eεi/2

for i = 1, 2, . . . , n in the weight labelings for both Aztec diamond graphs gives

$(P )$(Q) = Ch(Ψρ).

Theorem 5 Let P be an Aztec diamond graph of order n with Weight Labeling C, and
let Q be an Aztec diamond graph of order n − 1 with Weight Labeling A. Assume Ψρ be
the irreducible representation with highest weight ρ for type Cn. Substituting xi = eεi/2

for i = 1, 2, . . . , n in the weight labelings for both Aztec diamond graphs gives

$(P )$(Q) = Ch(Ψρ).

Theorem 6 Let P and Q be Aztec diamonds graph of order n−1 with Weight Labeling D
and Weight Labeling A respectively. Let Ψρ be the irreducible representation with highest
weight ρ for type Dn. Substituting xi = eεi/2 for i = 1, 2, . . . , n in the weight labelings for
both Aztec diamond graphs gives

$(P )$(Q) = Ch(Ψρ).

The character records the dimensions of the weight spaces in an irreducible represen-
tation Ψλ with highest weight λ. The weight space Ψµ

λ associated to the weight µ is a
common eigenspace for a Cartan subalgebra h of the simple Lie algebra, where h ∈ h acts
with eigenvalue µ(h). Thus, the character is given by

Ch(Ψλ) =
∑

µ

dim(Ψµ
λ)eµ.

The theorems above treat the special case where λ = ρ. Applying Theorem 3, we have

∑
µ

dim(Ψµ
ρ)e

µ = Ch(Ψρ)

= $(P )

=
∑

µ

|M(P )µ|eµ,

where M(P ) is the set of all perfect matchings of the Aztec diamond graph P of order n
with Weight Labeling A, and M(P )µ is the set of all those matchings having weight µ. By
equating the coefficients of each monomial in the sum, we see that the set of matchings
in M(P ) of weight µ is equinumerous with a set of basis vectors for the weight space
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Ψµ
ρ . Thus, these matchings can be used to index a basis for that weight space. There

are analogous interpretations of the other theorems using pairs of matchings of Aztec
diamond graphs.

In this paper, we have indexed a basis of the irreducible representation with highest
weight ρ for the classical Lie algebras by the perfect matchings of the Aztec diamond
graph. The matchings of other graphs (such as the ones associated to fortresses and
dungeons in [Y], [C2], and [P2]) may have similar interesting Lie theoretic interpretations.

Figures

Figure 1: Aztec diamonds of order 1 and order 2

r r r r

r r r r

r r

r r

r r

r

r

r

r r r

r r

r r

Figure 2: Aztec diamond graph of order 2 and a matching on it
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Figure 3: Aztec diamond graph rotated 45 degrees with integer edge weights
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Figure 5: All matchings of the Aztec diamond graph of order 2
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Figure 6: Aztec graph of order 4 with Stanley’s weight labeling
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Figure 7: Aztec graph of order 4 with Weight Labeling A
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Figure 8: Aztec graph of order 4 with Weight Labeling B

the electronic journal of combinatorics 11 (2004), #R28 12



�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

q q q q

q q q q

q q q q

q q q q

q q q q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

q

x−1
1

x−1
1

x−1
2

x−1
2

x−1
3

x−1
3

x−1
4

x−1
4

x1

x1

x2

x2

x3

x3

x4

x4

x−1
1

x−1
1

x−1
2

x−1
2

x−1
3

x−1
3

x−1
4

x−1
4

x1

x1

x2

x2

x3

x3

x4

x4

x−1
1

x−1
1

x−1
2

x−1
2

x−1
3

x−1
3

x−1
4

x−1
4

x1

x1

x2

x2

x3

x3

x4

x4

x−1
1

x−1
1

x−1
2

x−1
2

x−1
3

x−1
3

x−1
4

x−1
4

x1

x1

x2

x2

x3

x3

x4

x4

Figure 9: Aztec graph of order 4 with Weight Labeling C
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Figure 10: Aztec graph of order 4 with Weight Labeling D
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Type Number of Positive Roots Positive Roots

An

(
n+1

2

)
{εi − εj | 1 ≤ i < j ≤ n + 1}

Bn n2 {εi ± εj | 1 ≤ i < j ≤ n}
⋃
{εi | 1 ≤ i ≤ n}

Cn n2 {εi ± εj | 1 ≤ i < j ≤ n}
⋃
{2εi | 1 ≤ i ≤ n}

Dn n(n − 1) {εi ± εj | 1 ≤ i < j ≤ n}

Figure 11: Positive Roots

Type Formula Description of P Description of Q
An Ch(Ψρ) = $(P ) Order n

Weight Labeling A
Bn Ch(Ψρ) = $(P )$(Q) Order n Order n − 1

Weight Labeling B Weight Labeling D
Cn Ch(Ψρ) = $(P )$(Q) Order n Order n − 1

Weight Labeling C Weight Labeling A
Dn Ch(Ψρ) = $(P )$(Q) Order n − 1 Order n − 1

Weight Labeling D Weight Labeling A

Figure 12: Summary of the theorems
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