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Abstract

Let G be a permutation group on the set Ω and let S be a collection of
subsets of Ω, all of size ≥ m for some integer m . For s ≤ m let ns(G, S)
be the number of G-orbits on the subsets of Ω which have a representative
y ⊆ x with |y| = s and y ⊆ x for some x ∈ S . We prove that if s < t
with s + t ≤ m then ns(G, S) ≤ nt(G, S) . A special case of this theorem is
the Livingstone-Wagner Theorem when S = {Ω } . We show how the result
can be applied to estimate orbit numbers for simplicial complexes, sequences,
graphs and amalgamation classes. It is also shown how this theorem can be
extended to orbit theorems on more general partially ordered sets.

1 Orbit Theorems

Let (G, Ω) be a permutation group on an arbitrary set Ω and let k ≤ |Ω| be
an integer. Then G acts on the collection Ω{k} of all k-element subsets of Ω .
If y ∈ Ω{k} then we denote the orbit of y by yG . If S is a family of subsets
of Ω then we put nk(G, S) := |{ yG : y ∈ Ω{k} and y ⊆ x for some x ∈ S }| .
Further, x is maximal in S if x ⊆ x′ ∈ S implies that x = x′ and we put
m(S) := min { |x| : x is maximal in S } .
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Main Theorem Let (G, Ω) be a permutation group and let S be a family of
subsets of Ω . If s < t are integers with s + t ≤ m(S) then ns(G, S) ≤ nt(G, S) .

The purpose of this note is to bring together various results in combinatorics which
are all linked to each other via this theorem. In the first instance we should mention
the theorem of Livingstone and Wagner [13] on the orbits of permutation groups
when acting on subsets: this is the particular case when S = {Ω} . There are
however many other applications of the theorem in combinatorial topology, graph
theory and other parts of combinatorics which are new or simplify existing proofs.
These applications will be stated first. In Section 2 we prove a more general orbit
theorem on automorphism groups of partially ordered sets which contains the Main
Theorem as a special case. There we also provide the proofs of the corollaries.
The most interesting open question is: What else can be said about the sequence
ns(G, S) , ns+1(G, S) , . . . , in particular when s belongs to the upper part of
the interval 1 ≤ s ≤ m(S) ? The importance of this question can be seen from the
following comments on simplicial geometry.

1. Simplicial Complexes: If K is a collection of finite subsets of a vertex
set Ω then K is a simplicial complex on Ω if x ∈ K and y ⊆ x implies that
y ∈ K . Each x ∈ K is called a face of K and a maximal face (with regard to
inclusion) is a facet of K . The dimension d(x) of x ∈ K is |x| − 1 and K is
pure of dimension d if all facets have dimension d . For arbitrary complexes we put
δ(K) := min { d(x) : x is a facet of K} . Thus if we take for S the set of all facets
of K then the Main Theorem takes the form

Theorem 1.1 Let K be a simplicial complex and G ⊆ AutK . If s < t are
integers with s + t ≤ δ(K) − 1 then the number of G-orbits on s-dimensional faces
is at most the number of G-obits on t-dimensional faces.

We may therefore review some of the standard results from simplicial topology. If
K is finite then its face vector is (f0, f1, . . . ) where fk := |{ x ∈ K : d(x) = k }| .
If G = 1 in Theorem 1.1 we see that fs ≤ ft for all s < t with s + t ≤ δ(K) − 1 .
This extends Hibi’s theorem [12] to complexes which may not be pure. For the
substantial research on face vectors see [4, 19, 17, 5, 2] and Chapter 18 in [10]. In the
late 1950’s Motzkin and independently Welsh conjectured that the face vector of a
convex polytope is unimodal, in the sense that f0 ≤ f1 ≤ · · · ≤ fk ≥ fk+1 ≥ · · · ≥ fd

for some k with 0 ≤ k ≤ d , see [18, 3]. This was disproved by Björner [3] who
found a 20-dimensional simplicial polytope on about 4.2 × 1012 vertices for which
f11 > f12 < f13 . The condition in the Main Theorem on s + t can therefore not be
relaxed in general. However, there are results on the face numbers fs for the upper
range of the interval 0 ≤ s ≤ δ(K) if additional assumptions on K are made. For
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instance, if K is a pure complex in which the Dehn-Sommerville equations hold (for
example if K is a triangulation of a sphere or a Gorenstein complex, see [5]), then
Björner [3, 4] showed that

f0 < f1 < · · · < fdd+1/2e−1 ≤ fdd+1/2e and fd3d/4e > · · · > fd−1 > fd

where d = δ(K) . It would therefore be interesting to investigate to which extent
such inequalities for the face vector can be extended to orbits, and furthermore,
if topological conditions such as the Dehn-Sommerville equations can be extended
meaningfully to permutation groups in general.

2. Sequences: Let A := {α0, α1, . . .} be some non-empty alphabet and let
x = (x1, x2, . . . , xn) with xi ∈ A be a word in A , of length ‖x‖ = n . For any
index set J ⊆ {1, . . . , n} we may form the subword xJ obtained by deleting from
x all letters xj with j ∈ J . In particular, the length of xJ is ‖xJ‖ = ‖x‖ − |J | .
If j ≤ ‖x‖ let nj(x) :=

∣
∣{ xJ : J ⊆ {1, . . . , n} and ‖xJ‖ = j }∣∣ be the number of

distinct subwords of x of length j .

Theorem 1.2 Let x be a word of finite length in some non-empty alphabet. If
s < t are integers with s + t ≤ ‖x‖ then ns(x) ≤ nt(x) .

The connection to the Main Theorem comes from a group action on an infinite amal-
gamation class, this will be explained in Section 2. Here again, it would obviously
be nice to be able to say something about ns(x), ns+1(x), . . . when 2s > ‖x‖ . By
computer search we have examined all binary words of length ≤ 10 : in all cases
the subword distribution n0(x), n1(x), . . . is unimodal and somewhat similar to the
distribution above derived from the Dehn-Sommerville equations. However, we have
not been able to prove that these properties hold in general.

3. Graphs: Let Γ = (V, E) be a graph with vertex set V and edge set E ⊆
V {2} . We are interested in the subgraphs of Γ that are obtained by deleting vertices
or edges from Γ . More precisely, we say that Γ′ = (V ′, E ′) is a vertex deleted
subgraph of Γ if V ′ ⊂ V and E ′ = E ∩ V ′{2} .

Theorem 1.3 Let Γ = (V, E) be a graph on v ≤ ∞ vertices. For s ≤ v
let ns(Γ, V ) denote the number of isomorphism classes of vertex deleted subgraphs
(V ′, E ′) of Γ with |V ′| = s . If s < t are integers with s + t ≤ v then ns(Γ, V ) ≤
nt(Γ, V ) .

Similarly, we say that Γ′ = (V ′, E ′) is an edge deleted subgraph of Γ if V ′ = V
and E′ ⊆ E .
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Theorem 1.4 Let Γ = (V, E) be a graph with e ≤ ∞ edges. For s ≤ e let
ns(Γ, E) denote the number of isomorphism classes of edge deleted subgraphs (V, E ′)
of Γ with |E ′| = s . If s < t are integers with s+ t ≤ e then ns(Γ, E) ≤ nt(Γ, E) .

Apart from this nothing appears to be known about the ns(Γ, E) when 2s > e+1 .
In fact, we conjecture that this sequence is unimodal for any finite graph, but we
have not been able to prove this assertion.

Another application concerns the chromatic polynomial of a graph. Let Γ be a
finite graph and χ(Γ, x) = cnxn−cn−1x

n−1 + · · ·+(−1)nc0 its chromatic polynomial.
It is well known [6] that the coefficients ci are the coordinates of the face vector
of the broken circuit complex. So Theorem 1.1 implies that the c0, c1, . . . , cn are
initially non-decreasing. For graphs this result was proved by different methods in
1972 by Heron [11], see also [1, Proposition 14.6]. In 1968 Read [15] conjectured that
c0, c1, . . . , cn is unimodal. This conjecture has remained open.

2 Orbits in Partially Ordered Sets

2.1 Two General Orbit Theorems: We set out to investigate orbits in
partially ordered sets more generally. Let (P,≤) be a ranked partially ordered
set. We denote the set of all elements y of rank r(y) = k by Pk . If S ⊆ P
we set P S := { y ∈ P : y ≤ x for some x ∈ S } and we write P S

k instead of
P S∩Pk = (P S)k . Furthermore, P is locally finite if P S is finite for all finite subsets
S of P .

Let F be a field of characteristic 0 and let M = FP be the vector space over F
with basis P . For any integer k ≥ 0 let Mk = FPk be the subspace with basis Pk .
We set Mk = 0 for k < 0 . If S ⊆ P let MS and MS

k denote the subspaces of M
with basis P S and P S

k respectively.

The group of all automorphisms of (P,≤) is denoted by Aut (P ) . For G ⊆ Aut (P )
and x ∈ P the orbit {xg : g ∈ G} is denoted by xG . For S ⊆ P and k ∈ IN the
number of G-orbits xG with x ∈ P S is denoted by nk (G, S) := | { xG : x ∈ P S

k } | .
Consider the subspace AG

k ⊆ Mk given by

AG
k = 〈 x − xg : x ∈ Pk, g ∈ G 〉 .

In this expression it is sufficient to select just one arbitrary representative in Pk for
each G-orbit: For if x′ = xh then x′ − x′g = −(x − xh) + (x − xhg) . The following
general lemma is of independent interest:
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Lemma 2.1 (i) If G ⊆ Aut (P ) and k ≥ 0 then |{ xG : x ∈ Pk }| = dim Mk/A
G
k .

(ii) Let S ⊆ P . Then the dimension of 〈 x+AG
k : x ∈ P S

k 〉 ⊆ Mk/A
G
k is nk (G, S) .

Proof: From the definition it follows easily that x + AG
k = x′ + AG

k with x, x′ ∈
Pk if and only if x and x′ are in the same orbit. Thus { xG : x ∈ Pk } is
in bijection with { x + AG

k : x ∈ Pk } . To show that the latter set is linearly
independent suppose that x1 + AG

k , x2 + AG
k , . . . are pairwise distinct and let

λ1(x1 + AG
k ) +λ2(x2 + AG

k ) + · · · = AG
k . Thus λ1x1 + λ2x2 + · · · ∈ AG

k . Then, by the
comment above, we write

∑
λixi =

∑
αij(xi − xij) where for each i the xij 6= xi

are certain distinct elements in the same orbit as xi . But then αij = 0 = λi for all
i, j . Part (ii) is immediate from (i) and the definition. 2

From now on we suppose that P is locally finite. Then we may define a linear map

∂ : M → M

as follows: if x ∈ P we put ∂(x) :=
∑

y where the sum runs over all y < x with
r(y) = r(x) − 1 . Automorphisms of P act linearly on M and first we note that ∂
is an Aut (P )-map. Secondly, the map restricts to ∂ : Mk → Mk−1 for all k > 0
and also to ∂ : MS → MS for any S ⊆ P . In particular, if x ∈ P we may look
at the restriction ∂ : M

{x}
k → M

{x}
k−1 . We define the surjectivity index of x as the

largest integer s(x) such that ∂ : M
{x}
k → M

{x}
k−1 is surjective for all k ≤ s(x) .

Theorem 2.2 Let (P,≤) be a ranked locally finite poset, let S ⊆ P and let G ⊆
Aut (P ) . Then nk−1 (G, S) ≤ nk (G, S) for all integers k with k ≤ min { s(x) :
x is a maximal element of S } .

Proof: As ∂(AG
k ) ⊆ AG

k−1 we see that ∂ induces a map ∂̄ : Mk/A
G
k → Mk−1/A

G
k−1 .

Let Bk := 〈 x + AG
k : x ∈ P S

k 〉 ⊆ Mk/A
G
k and define Bk−1 in the same way.

From the definition of P S we see that then ∂̄ restricts to Bk → Bk−1 . Let k ≤
min { s(x) : x is a maximal element of S } and let z + AG

k−1 ∈ Bk−1 with z ∈
P S

k−1 . By definition there then exists h ∈ FP S
k with ∂(h) = z . Thus ∂̄(h + AG

k ) =
z+AG

k−1 and so ∂̄ : Bk → Bk−1 is surjective. The remainder follows from Lemma 2.2.
2

A related result appeared before in [14]. In many cases the surjectivity index is
known or easily derived from known facts. If P is the Boolean poset of all finite
subsets of a set then the rank of x ∈ P is r(x) = ||x|| and the surjectivity index is
the least integer above r(x)/2 , that is s(x) = dr(x)/2e . This situation is very well
understood, see for instance de Caen’s elegant note [7].

Also in other product posets such as 3Ω , more generally kΩ and suitable finitary
versions of such posets for infinite Ω , we have s(x) = dr(x)/2e . Indeed, s(x) =
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dr(x)/2e occurs commonly for the surjectivity index. This applies to projective
spaces, formed by the finite dimensional subspaces of a vector space over a finite field,
were r(x) is the affine dimension dim x of the subspace and s(x) = ddim x/2e . The
same holds true in Desarguesian geometric lattices (i.e. direct products of projective
spaces) and in unitary Peck posets, see Stanley [16, 18].

In the Boolean algebra, and many of the other examples above, a more subtle
property can be used. We say that the element x ∈ P is of binomial type if
∂t−s : M

{x}
t → M

{x}
s is surjective for all s ≤ t with s + t ≤ r(x) . (Note, there is no

connection to the binomial posets considered elsewhere in the literature.) Now an
obvious slight modification of the proof of Theorem 2.2 gives

Theorem 2.3 Let (P,≤) be a ranked locally finite poset, let S ⊆ P and let
G ⊆ Aut (P ) . If all maximal elements in S are of binomial type then ns (G, S) ≤
nt (G, S) for any s ≤ t with s+t ≤ min { r(x) : x is a maximal element of S } .

We now come to the proofs of the results in Section 1. As elements of the Boolean
algebra are of binomial type Theorem 2.3 proves the Main Theorem in Section 1.

Proof of Theorem 1.4 : Let V be a vertex set and put Ω := V {2} . Then E ⊆ Ω
can be viewed as the graph with vertex set V and edge set E , and if E ⊇ E∗ then
the second graph may be thought of being obtained by deleting edges from E . In
this way we may think of (2Ω, ⊆) as the graphs on V ordered by edge deletion. Let
G = Sym(V ) . Then G acts naturally on Ω and 2Ω . Clearly, two graphs (V, E)
and (V, E∗) are isomorphic iff E and E∗ belong to the same G-orbit. The result
now follows from Theorem 2.3 or from the Main Theorem. 2

2.2 Amalgamation Classes: The two remaining corollaries, ostensibly about
finite objects, are in fact proved via suitable infinite group actions. For this we
consider classes of finite or countably infinite combinatorial structures which can be
described as domains with relations on them. (A typical example is the class of
graphs, considered as vertex sets with a single relation for adjacency.) Here we only
give the briefest of account, for a fuller exposition see Section 5.6 in [8].

We need the concept of a relational language consisting of a collection of relation
symbols each taking a finite number of arguments. A relational structure then is
a domain (or set) together with relations defined on it and corresponding to the
relational language. A class C of such structures is an amalgamation class if the
following holds:

• Each A in C is finite, C has at most countably many members up to isomor-
phism and C is closed under isomorphism and taking substructures, and
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• The amalgamation property holds: Whenever A, B1, B2 belong to C and there
are embeddings fi : A → Bi then there is some C in C and embeddings
gi : Bi → C such that g1f1 = g2f2 .

Fräıssé’s Theorem states that for each such amalgamation class there is a unique
countable relational structure R , called the Fräıssé limit , whose finite substructures
are the members of C . Furthermore, R is homogeneous in the sense that every
isomorphism between members of C is induced by an automorphism of R .

Proof of Theorem 1.3 : Finite graphs form an amalgamation class whose Fräıssé limit
is the random graph R on a countable set Ω . Now apply the Main Theorem to
G := Aut (R) in its action on Ω . 2

Proof of Theorem 1.2 : Finite words in the alphabet A also form an amalgamation
class. We may think of its Fräıssé limit as the usual order ≤ on the rational numbers
Q with a suitable random assignment α : Q 3 r 7→ αr ∈ A . Let G = Aut (Q, ≤, α) .
Then the distinct words x = (x1, . . . , xn) with xi ∈ A correspond in one-to-one
fashion to the (distinct!) G-orbits on the n-element subsets of Q . Now apply the
Main Theorem to G in its action on Q . 2

Other amalgamation classes of interest are bipartite graphs, Kn-free graphs or indeed
finite posets, etc., see also Cameron’s paper [9]. In each case one may apply the Main
Theorem to obtain an orbit theorem for this amalgamation class.
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