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Abstract

A minuscule heap is a partially ordered set, together with a labeling of its ele-
ments by the nodes of a Dynkin diagram, satisfying certain conditions derived by
J. Stembridge. This paper classifies the minuscule heaps over the Dynkin diagram
of type Ã.

1 Introduction

The aim of this paper is to classify the minuscule heaps over a Dynkin diagram of type Ã.
Let A be a symmetrizable generalized Cartan matrix, and let g be a corresponding

Kac-Moody Lie algebra. Let Γ be a Dynkin diagram which is an encoding of A. Minuscule
heaps arose in connection with λ-minuscule elements of the Weyl groupW of g. According
to Proctor [9] and Stembridge [12] the notion of λ-minuscule elements of W was defined
by Peterson in his unpublished work in the 1980’s. For an integral weight λ, an element
w of W is said to be a λ-minuscule element if it has a reduced decomposition si1si2 . . . sir

such that
sijsij+1

. . . sirλ = sij+1
. . . sirλ− αij (1 ≤ ∀j ≤ r),

and it is called minuscule if w is λ-minuscule for some integral weight λ. Here αi is the
simple root corresponding to si. It is known that a minuscule element is fully commuta-
tive, namely any reduced decomposition can be converted into any other by exchanging
adjacent commuting generators several times (see [9, §15], [10, Theorem A] and [11, The-
orem 2.2], or [12, Proposition 2.1]). To a fully commutative element w, one can associate
a Γ-labeled poset called its heap.

A Γ-labeled poset is a triple (P,≤, φ) in which (P,≤) is a poset and φ : P → N(Γ)
is any map (called the labeling map). A linear extension of a Γ-labeled poset naturally
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determines a word in the generators of W . The heap of the fully commutative element w
is a Γ-labeled poset whose linear extensions determine all reduced decompositions of w.
A minuscule heap is the heap of a minuscule element of W .

Stembridge obtained certain structural conditions for a finite Γ-labeled poset to be a
minuscule heap ([11, Proposition 3.1]). In this paper a minuscule heap is defined by a
finite Γ-labeled poset which satisfies the conditions (H1-1), (H1-2) and (H2a) (see §2). In
the following, we state a relation between minuscule elements and minuscule heaps.

Let (P,≤, φ) be a minuscule heap. Put r := #P . Let µ : P → [1, r] be a linear
extension of P , namely µ is a bijection and if p ≤ q then µ(p) ≤ µ(q). For µ, we associate
a minuscule heap (P,≤, φ) to w ∈W by the following expression

w := sφ◦µ−1(1)sφ◦µ−1(2) . . . sφ◦µ−1(r).

We note that an element obtained from a minuscule heap, by the relation above, is
a minuscule element. Conversely for any minuscule element w there exists a unique
minuscule heap which determines w.

In [11], there is an important condition which states that “the labels that occur in P
index an acyclic subset of the Dynkin diagram”. A nice consequence of this condition
is that if it holds then P is a ranked poset. However Dynkin diagrams Γ of type Ã are
cyclic, and most of minuscule heaps over Γ are not ranked. In this paper, we introduce
an analogy of slant lattices [6] (here called Lk) (§8) and use it to prove that a subset P of
an extended slant lattice Lk is a convex subset if and only if P is a minuscule heap over
Γ up to isomorphic. Slant lattices L were also used to classify the minuscule heaps over
simply-laced, star-shaped Dynkin diagrams in [6].

It is known that the affine permutation group S̃n+1 is isomorphic to an affine Weyl
group W (Ãn). In [5], Green showed that the 321-avoiding permutations of affine permu-
tations coincide with the fully commutative elements of W (Ãn). He showed also that the
fully commutative elements of W (Ãn) form a union of Kazhdan-Lusztig cells. Here we
show that the fully commutative elements of W (Ãn) coincide with its minuscule elements
[Theorem 5.1].

The paper is organized as follows. In §2 we recall and provide some basic terminology.
In §§3, 4 we collect some general facts on poset and on Γ-labeled poset with a general
Dynkin diagram. In §5, we show that the fully commutative elements of W (Ã) coincide
with the minuscule elements of W (Ã). From §4, we characterize the minuscule heaps over
a Dynkin diagram of type Ã. In §6, we characterize the totally ordered minuscule heaps
over a Dynkin diagram of type Ã. In §7, we determine the structure of a subposet which
we call v-interval. In §8, we characterize the minuscule heaps over a Dynkin diagram of
type Ã up to isomorphism and introduce the notion of extended slant lattices Lk. In §9,
we show that any minuscule heap over a Dynkin diagram of type Ã is isomorphic to a
convex subset of an extended slant lattice Lk.
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2 Definitions

We start with the definition of general terms associated to a partially ordered set. We
denote the number of elements of a set P by #P .

Let (P,≤) be a poset (partially ordered set). For p, q ∈ P , we say that q covers p
(or p is covered by q) if p < q and (p, q) = ∅, and denote by p → q. We say that p, q
are a covering pair if p → q or q → p. In this paper, we assume that P is completely
determined by the covering relations, namely

(*) If p, q ∈ P and p ≤ q then there exists a finite sequence of elements of P , say
p0, p1, . . . , pr such that p0 = p, pr = q and pi covers pi−1 for 1 ≤ i ≤ r.

We call such a sequence p0, p1, . . . , pr a saturated chain from p to q.
We denote ordering relations on posets as follows. Let P be a poset and let Q be its

subset. For x, y ∈ Q, we write [x, y]P = {z ∈ P |x ≤P z ≤P y} and write [x, y]Q = {z ∈
Q|x ≤Q z ≤Q y}. In general, a maximal connected subposet of P is called a connected
component of P . A subset Q of P is said to be convex in P if whenever p, q ∈ Q and
p ≤ q we have [p, q]P ⊂ Q.

Let Γ be a Dynkin diagram and let N(Γ) be the node set of Γ. By an abuse of
language, we sometimes identify N(Γ) with Γ. We say that a triple (P,≤, φ) (or simply
P ) is a Γ-labeled poset if (P,≤) is a partially ordered set, and φ is any map from P to
N(Γ). We call φ the labeling map and call φ(p) the label of p. We denote Im φ by supp P ,
and call it the support of P . For each v ∈ N(Γ), we put

Pv := {p ∈ P |φ(p) = v}.

For v ∈ N(Γ) and p, q ∈ P satisfying p < q, we say that [p, q] is a v-interval if p, q ∈ Pv

and (p, q) ∩ Pv = ∅.
Let (P,≤, φ), (Q,�, ψ) be Γ-labeled posets. We say that P and Q are isomorphic

as Γ-labeled poset if there exists a poset isomorphism Φ : P → Q such that φ(p) =
ψ(Φ(p))(∀p ∈ P ).

Let Γ and Γ′ be Dynkin diagrams, and let (ai,j)i,j∈I , (a
′
i,j)i,j∈I′ be the corresponding

generalized Cartan matrices. Let P be a Γ-labeled poset and let Q be a Γ′-labeled poset.
We say that P and Q are abstractly isomorphic (or isomorphic if no confusion arises)
if there is a poset isomorphism α : P → Q and an isomorphism of subdiagrams β :
supp P → supp Q (namely a bijection supp P → supp Q such that ai,j = a′β(i),β(j) for all

i, j ∈ supp P ) such that β maps the label of p to the label of α(p) for every p ∈ P .
Let D(3) := {w, x, y, z} be a set and let → be a binary relation on D(3) with w →

x, x→ z, w → y, y → z. Let ≤ be an ordering on D(3) which is the reflective, transitive
closure of →. Let Γ be the Dynkin diagram of type A3 and let N(Γ) = {1, 2, 3} be the
node set of Γ. (Put 1, 2, 3 on N(Γ) from an edge node to another one.) Define a map
φ : D(3)→ N(Γ) by putting φ(w) = φ(z) := 2, φ(x) := 1 and φ(y) := 3. We regard D(3)
as a Γ-labeled poset with φ. Let Γ′ be a Dynkin diagram. We say that Γ′-labeled poset
Q is a diamond if Q and (D(3),≤, φ) are abstractly isomorphic.
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Let A = (ai,j)i,j∈N(Γ) be a Cartan matrix corresponding to Γ. We say that a Γ-labeled
poset (P,≤, φ) is a minuscule heap if P is finite and satisfies the conditions (H1-1),(H1-2)
and (H2a).

(H1-1) For p, q ∈ P , if p→ q, then φ(p) and φ(q) are either equal or adjacent in Γ.

(H1-2) For p, q ∈ P , if φ(p) and φ(q) are either equal or adjacent in Γ then p and q are
comparable.

(H2a) For p, q ∈ P , if φ(p) = φ(q) and p ≤ q then
∑

x∈[p,q] aφ(x),φ(p) = 2.

In particular we regard an empty set as a minuscule heap.

Remark 2.1. In [11], Stembridge obtained two structural conditions, which he called
(H1) and (H2), for a finite Γ-labeled poset to be a minuscule heap. In this paper we
separate (H1) to two conditions (H1-1),(H1-2). And we use the condition (H2a) instead
of (H2) which are equivalent. (Proposition 4.4.)

3 Basic Properties on Poset

In this section we provide some general facts on posets. We omit the proofs below since
they are straightforward.

Proposition 3.1. Let S be a set and let ; be a binary relation on S. Let � be the
reflexive, transitive closure of ;.

Then (S,�) is a poset if and only if s = s0 ; s1 ; · · · ; sr = s implies s0 = s1 =
· · · = sr = s for some r ≥ 0, where s, s0, s1, . . . , sr ∈ S.

Proposition 3.2. Let S,;,� be the same as Proposition 3.1. Assume that (S,�) be a
poset.

Then ; is the covering relation on (S,�) if and only if p ; q and p = p0 ; p1 ;

· · ·; pr = q implies r = 1.

Proposition 3.3. Let (P,≤) be a poset and let G be a group which acts on P as a poset
automorphism, namely p ≤ q if and only if g(p) ≤ g(q) for g ∈ G and p, q ∈ P .

Assume that G satisfies the following condition,

• for p ∈ P and g ∈ G, if p and g(p) are comparable then p = g(p).

Put P/G := {p|p ∈ P}, where p = {g(p)|g ∈ G}, and put a relation � on P/G as
following,

p � q if and only if p ≤ g(q) for some g ∈ G (p, q ∈ G/P ).

Then it follows,

• � is well-defined,

• (P/G,�) is a poset.
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Proposition 3.4. Let P be a poset and let p, q ∈ P satisfying p ≤ q. Then [p, q] is a
convex subset of P .

Proposition 3.5. Let P be a poset and Q be a convex subset. If z is a minimal or
maximal element of Q then Q \ {z} is a convex subset of P .

4 Basic Properties on Γ-labeled Posets

In this section we provide some general facts on Γ-labeled posets over a general Dynkin
diagram. (See [7] or [8] for the definition of Dynkin diagrams.)

Proposition 4.1. Let (P,≤, φ) be a Γ-labeled poset. If (P,≤, φ) satisfies (H1-2) then Pv

is a totally ordered set for each v ∈ N(Γ).

Proof. By (H1-2), p and q are comparable, where p, q ∈ Pv.

Proposition 4.2. Let (P,≤, φ) be a Γ-labeled poset which satisfies (H1-1) and (H1-2).
Then P is connected if and only if supp P is connected.

Proof. Assume that P is connected. For u, v ∈ supp P , there exists p ∈ Pv and q ∈ Pu.
Now we can take a sequence p = p0, p1, . . . , pr = q such that pi−1, pi are a covering pair.
Then φ(p0), φ(p1), . . . , φ(pr) consists of a connected subdiagram of Γ by (H1-1). Hence
supp P is connected.

Conversely assume that supp P is connected. Let p, q ∈ P and put v := φ(p), u :=
φ(q). Since Γ is connected, we can take a sequence v = v0, v1, . . . , vr = u ∈ supp P
such that vi−1 and vi are adjacent in Γ. Take some pi ∈ Pvi

(1 ≤ i ≤ r − 1) and put
p0 = p, pr = q. Then pi−1, pi are comparable by (H1-2). So P is connected.

Proposition 4.3. Let (P,≤, φ) be a Γ-labeled poset satisfying (H1-1) and (H1-2). Let
P1, P2, . . . , Pr be the connected components of P . Then supp P = tr

i=1supp Pi. In
particular v and u are distinct and non-adjacent, where v ∈ supp Pi, u ∈ supp Pj and
i 6= j.

Proof. If there exists v ∈ supp Pi ∩ supp Pj then we can take p ∈ Pi ∩ Pv and q ∈
supp Pj ∩ Pv. By (H1-2), p and q are comparable. This implies i = j because Pi, Pj are
connected components.

If there exists v ∈ supp Pi and u ∈ supp Pj such that v and u are adjacent in Γ then
we obtain a contradiction by a similar argument.

Proposition 4.4. Let (P,≤, φ) be a finite Γ-labeled poset. If (P,≤, φ) satisfies (H1-1)
and (H1-2) then each of the following each conditions are equivalent to (H2a).

(H2) For any v-interval [p, q], we have
∑

x∈[p,q] aφ(x),φ(p) = 2.

(H2b) For any v-interval [p, q], we have
∑

x∈(p,q) aφ(x),φ(p) = −2.
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Proof. By av,v = 2, it is obvious that (H2) and (H2b) are equivalent for any v ∈ N(Γ). It
is also obvious that (H2a) implies (H2).

We assume that (H2) holds. By (H1-2), Pv is a totally ordered set. Let p, q be elements
of Pv which satisfy p ≤ q. If we have p = q then (H2a) trivially holds, since av,v = 2 for
v ∈ N(Γ). So we assume p < q. Let p = p0, p1, . . . , pr = q be the elements of Pv ∩ [p, q]
by an increasing ordering. For x ∈ [p, q] \ (∪1≤i≤r[pi−1, pi]), x and pj are incomparable for
some 0 ≤ j ≤ r. By (H1-2), φ(x) is different from v and not adjacent to v. Thus we have
aφ(x),v = 0. This implies

∑
x∈[p,q]

aφ(x),v =
∑

1≤i≤r

∑
x∈[pi−1,pi)

aφ(x),v + aφ(pr),v = 0 + 2 = 2.

Remark 4.5. Let Γ be a simply-laced Dynkin diagram and let v ∈ N(Γ). Let [p, q]
be a v-interval. (H2b) requires that there exists just two elements of (p, q) whose labels
are adjacent to v in Γ. This fact is very important since the Dynkin diagram of type
Ãn (n ≥ 2) is simply-laced. However we investigate a minuscule heap over the Dynkin
diagram of type Ã1. In this case, (H2b) requires that there exists only one element of
(p, q) whose labels are adjacent to v in Γ. These facts are used to prove Propositions 4.6,
6.1 and 6.2.

Proposition 4.6. Let Γ be a simply-laced Dynkin diagram and let (P,≤, φ) be a minuscule
heap over Γ. Let p, q ∈ P such that φ(p) = φ(q). If there exists an element x ∈ P such
that p→ x→ q then [p, q] is a φ(p)-interval. In particular [p, q] is a diamond.

Proof. We note that φ(x) and φ(p) are adjacent in Γ. If there exists y ∈ (p, q) such that
φ(y) = φ(p) then x and y are comparable by (H1-2). This implies that we have either
p < x < y or y < x < q. It contradicts p → x → q. So we have (p, q) ∩ Pφ(p) = ∅.
However there exists y ∈ (p, q) such that φ(y) is adjacent to φ(p) by Remark 4.5. Let
p = p0, p1, . . . , pr = q be a saturated chain from p to q which contains y. We note that
this saturated chain does not contain x. In fact a sequence p, x, q is a unique saturated
chain which contains x.

For p = p0, p1, . . . , pr = q, y is the only element which can cover p, and y is the only
element which can be covered by q. Thus this saturated chain consists of p, y, q. Hence
we have [p, q] = {p, x, y, q}. By (H1-1) and (H2), [p, q] is a diamond.

Proposition 4.7. Let Γ be a Dynkin diagram and let Φ be a graph automorphism on Γ.
If a Γ-labeled poset (P,≤, φ) is a minuscule heap then (P,≤,Φ ◦ φ) is a minuscule heap.
Furthermore these minuscule heaps are abstractly isomorphic.

Proof. Since Φ is a graph automorphism, it is obvious that (H1-1) and (H1-2) hold. As
av,u = aΦ(v),Φ(u), (H2a) holds.
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5 Relation Between Fully Commutative Elements and

Minuscule Elements

First we show that the fully commutative elements of W (Ã) coincide with its minuscule
elements.

Theorem 5.1. Let Γ be a simply-laced Dynkin diagram with a finite node set. The fully
commutative elements of W (Γ) coincide with its minuscule elements if and only if Γ is of
type A or Ã.

Proof. It is well known that a minuscule element is fully commutative.
Assume Γ branches off. Then there exists a node v ∈ N(Γ) such that the number

of the adjacent nodes to v is larger than two. Let x, y, z be adjacent nodes to v. We
can verify that svsxsyszsv is fully commutative, where su is a generator associated to
u ∈ N(Γ). But it violates (H2) and so it would not be minuscule. Hence Γ cannot have
a junction. Thus Γ must be of type A or Ã.

If Γ is of type A, then it is well-known that a fully commutative element is minuscule.
The remaining case is when Γ is of type Ã. Let w be a fully commutative element of W (Ã)
and let s1s2 . . . sr be a reduced expression of w. By the commutativity of w, if si, sj are
consecutive occurrences of the generator s (meaning that si = sj = s for some generator
s (i <j) and si 6= s for i < h < j), then there are at least two generators sh1, sh2 such
that si and sh1 (or sh2) are non-commutative i < h1, h2 < j. If there is no consecutive
occurrences of any generators, then w is minuscule.

Remember that any heap of a fully commutative element satisfies (H1). For proving
that w is minuscule, it is sufficient that there exists just two non-commutative generators
sh1, sh2. If not, we can take three non-commutative generators from si+1, . . . , sj−1. Now,
as Γ is of type Ã, each node has only two adjacent nodes. Thus we can take consecutive
occurrences si′, sj′ of s′. By the commutativity of w, we can take two generators sh′

1
, sh′

2

from si′+1, . . . , sj′−1 which are non-commutative to s′. The nodes associated to si′+1, sj′+1

are adjacent to the node associated to s′ and they are different from si because si 6= sh

for i < h < j. This implies si′+1 = sj′+1, in other words they are consecutive occurrences.
By using a similar argument, the length of w must be infinite. It cannot happen.

6 Totally Ordered Minuscule Heaps over Dynkin Di-

agrams of Type Ã

In this section we determine the structure of totally ordered minuscule heaps over Dynkin
diagrams of type Ã. From this section on we assume that Γ is a Dynkin diagram of type
Ãn with the node set N(Γ) := {0, 1, . . . , n}. (see Figure 1 for the definition of Dynkin
diagram of type Ãn.) We associate i ∈ Z to j ∈ N(Γ) = {0, 1, . . . , n+ 1} by the following
rule j = i mod (n + 1). We note that the Dynkin diagram of type Ã1 and its Cartan
matrix A := A(Γ) are different from others of type Ãn(n ≥ 2). First we classify the
minuscule heaps over Ã1. In fact a minuscule heap over Γ(Ã1) is a totally ordered set.
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1 nn− 132

0

Dynkin diagram of type Ãn (n ≥ 2)

Dynkin diagram of type Ã1

0 1

2 : 2

Figure 1: The Dynkin diagram of type Ãn

The Cartan matrix A = A(Γ(Ã1)) = (ai,j) is

A :=

(
a0,0 a0,1

a1,0 a1,1

)
=

(
2 −2
−2 2

)
.

Proposition 6.1. Let Γ be the Dynkin diagram of type Ã1. A minuscule heap over Γ is a
totally ordered set and is characterized by r := #P and the label v of its smallest element
if r 6= 0. Namely, define a Γ-labeled poset (P,≤, φ) by putting

• P = {p1, p2, . . . , pr},
• pi−1 → pi (1 < i ≤ r),

• ≤ is the transitive and reflective closure of →,

• φ(pi) ≡ v + i− 1 (mod 2).

Then (P,≤, φ) is a minuscule heap over Γ. Conversely a minuscule heap over Γ is ab-
stractly isomorphic to a minuscule heap as defined above.

Proof. Define P as above. Then it is obvious that (H1-1) and (H1-2) hold on P . By the
definition of P , a v-interval has the form [pi, pi+2] for v ∈ N(Γ). So we have

∑
x∈(pi,pi+2)

aφ(x),v =
∑

x∈{pi+1}
aφ(x),v = −2.

This implies that P is a minuscule heap.
Conversely assume that (P,≤, φ) is a minuscule heap. Then it is obvious that P is a

totally ordered set by the shape of Γ and (H1-2). Hence we can write P = {p1, p2, . . . , pr}
with pi−1 → pi (1 < i ≤ r). By (H2b), we have φ(pi−1) 6= φ(pi). Since the labels
of pi are binary values ({0, 1}), two nodes always alternatively appear. Thus we have
φ(pi) ≡ v + i− 1 (mod 2).

By a similar argument above, we can determine the structure of a totally ordered
minuscule heap over Γ(Ãn) (n ≥ 2).
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Proposition 6.2. Let (P,≤, φ) be a totally ordered minuscule heap over Γ. Put P =
{p0, p1, . . . , pr} with pi−1 → pi(1 ≤ i ≤ r). Then the labels of the elements of P are either
of type (T1) or (T2),

(T1) φ(pi) ≡ φ(p0) + i (mod n + 1)

(T2) φ(pi) ≡ φ(p0)− i (mod n+ 1)

Proof. By (H2b), we have φ(p0) 6= φ(p1). By (H1-1), we have either φ(p1) = φ(p0) + 1 or
φ(p1) = φ(p0)− 1.

Assume φ(p1) = φ(p0)+1. Then we have either φ(p2) = φ(p1)+1 or φ(p2) = φ(p1)−1.
If we have φ(p2) = φ(p1) − 1 then φ(p2) = φ(p0). By Proposition 4.6, [p0, p2] is a φ(p0)-
interval. However we have∑

x∈(p0,p2)

aφ(x),φ(p0) =
∑

x∈{p1}
aφ(x),φ(p0) = −1 6= −2.

It contradicts (H2b). Thus we have φ(p2) = φ(p1) + 1. By repeating an argument above,
the labels of the elements are of type (T1).

By a similar argument, we obtain the case (T2) from the assumption φ(p1) = φ(p0)−
1.

We say that P is of type (T1) (resp. (T2)) if the labels of P are of type (T1) (resp.
(T2)).

7 The Structure of v-intervals

In this section we investigate the structure of v-intervals for a minuscule heap over Γ(Ãn)
with n ≥ 2. To determine v-intervals for v ∈ N(Γ) is useful to determine the structure of
a minuscule heap.

By the symmetry of the shape of the Dynkin diagram of type Ã, to determine the
structure of all of 1-intervals is equivalent to determine that of all of v-intervals for any
v ∈ N(Γ). Hence we investigate the structure of the 1-intervals.

Lemma 7.1. Let P be a minuscule heap over Γ(Ãn) and let [p1, q1] ⊂ P be a 1-interval.
Let p2, q2 be elements of (p1, q1) whose labels are adjacent to 1 in Γ. Then we have
φ(p2) 6= φ(q2).

Proof. We note that φ(p2), φ(q2) must be 0 or 2. Our claim is that φ(p2) = φ(q2) is
impossible.

If we have φ(p2) = φ(q2) = 2 then p2 and q2 are comparable. Let us assume that
p2 < q2 then [p2, q2] is a 2-interval by (H2b). Hence there exist p3, q3 ∈ (p2, q2) such that
p2 → p3, q3 → q2 and φ(p3), φ(q3) are adjacent to 2. Now φ(p3), φ(q3) can be only equal
to 1 or 3. However they cannot be equal to 1 since [p1, q1] is a 1-interval. So we have
φ(p3) = φ(q3) = 3. By repeating the arguments above, we can take a 0-interval [pn+1, qn+1]
from (p1, q1) and we know that [pn+1, qn+1] must contain an element whose label is 1. It
contradicts that [p1, q1] is a 1-interval.
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For i = 1, 2, 3, we say that a 1-interval [p, q] is of type (Vi) if [p, q] satisfies the following:

(V1) [p, q] is a totally ordered set and consists of n + 2 elements. The labels of the
elements in the increasing order are 1, 2, 3, . . . , n− 1, n, 0, 1 respectively;

(V2) [p, q] is a totally ordered set and consists of n + 2 elements; The labels of the
elements in the increasing order are 1, 0, n, n− 1, . . . , 3, 2, 1 respectively.

(V3) [p, q] is a diamond.

Proposition 7.2. Any 1-interval [p, q] is either of type (V1), (V2) or (V3).

Proof. By Lemma 7.1, (p, q) contains a unique pair of elements x, y whose labels are 0, 2
respectively. By (H1-1), only x or y can cover p and only x or y can be covered by q.

Assume that both x and y cover p then we claim that [p, q] is of type (V3). By the
assumption that x and y are incomparable, there is a saturated chain x = p1, p2, . . . , pr = q
from x to q which does not contain y. We note that φ(pr−1) is either 0 or 2, namely pr−1

is either x or y. This implies pr−1 = x and r = 2. Thus we have x → q. By a similar
argument, we have y → q. So [p, q] = {p, x, y, q} is of type (V3).

Next assume that only x covers p. We claim that [p, q] is of type (V1). Let p = p0, x =
p1, p2, . . . , pr = q be a saturated chain from p to q. We note that φ(pi−1)−φ(pi) is either 1
or −1 because φ(pi−1), φ(pi) are adjacent. If these labels are all different then they are of
type (V1) or (V2). If there are repeated labels then we can take a pair pi, pi+2 such that
φ(pi) = φ(pi+2). Let us choose such a minimal i. By Prop. 4.6, [pi, pi+2] is a diamond.
Thus there exists p′i+1 ∈ [pi, pi+2] such that φ(p′i+1) is not equal to φ(pi) and φ(pi+1). If we
change pi+1 to p′i+1 then we take another saturated chain p0, p1, . . . , p

′
i+1, . . . , pr from p to

q such that φ(pi−1) = φ(p′i+1). By using the same argument, there exists a saturated chain
p = p0, x = p1, p2, . . . , pr = q with φ(p1) = φ(p3). It contradicts that [p, q] is a 1-interval.
So each labels are different. There exists only one saturated chain from p to q is only
p0, p1, . . . , pr. Assume that there exists another saturated chain p = q0, x = q1, . . . , qr = q.
So, there exists qi such that qi 6= pi and qj = pj (0 ≤ j < i). By the above argument,
we have φ(pi) = φ(qi). By (H1-2), pi and qi are comparable. If pi < qi then we have
qi−1 < pi < qi. If qi < pi then we have pi−1 < qi < pi. These are contradictions. So [p, q]
is of type (V1).

By using a similar argument, if we assume that only y covers p then we obtain that
[p, q] is of type (V2).

For not only 1-intervals but also for a v-interval [p, q], we say that [p, q] is of type (Vi)
if [p, q] satisfies the following:

(V1) [p, q] is a totally ordered set and consists of n + 2 elements. The labels of the
elements in the increasing order are v, v+1, v+2, . . . , v+n−1, v+n, v respectively;

(V2) [p, q] is a totally ordered set and consists of n + 2 elements. The labels of the
elements in the increasing order are v, v+n, v+n−1, . . . , v+2, v+1, v respectively;

(V3) [p, q] is a diamond.

the electronic journal of combinatorics 11 (2004), #R3 10



Define a graph automorphism Φ : Γ→ Γ by Φ(i) := i+1 (mod n+1). If we apply Φ and
Prop. 4.7 to Prop. 7.2 then we can characterize all the 2-intervals. Thus we characterize
all the v-intervals for all v ∈ N(Γ).

Proposition 7.3. Any v-interval [p, q] is either of type (V1), (V2) or (V3).

Proposition 7.4. If P contains a v-interval of type (V1) (resp. (V2)) for some v ∈ N(Γ)
then P is a totally ordered set and is of type (V1) (resp (V2)).

Proof. Let (P,≤, φ) be a minuscule heap over Γ(Ãn) which contains a v-interval [p, q] of
type (V1). It is sufficient to show that every element of P covers and is covered by at
most one of its element. If we assume that there exists x ∈ P which covers or is covered
by two (or more) elements, then we get a contradiction as follows. By supp [p, q] = N(Γ),
x is comparable to an element p ∈ [p, q]. Thus we have p < x or x < q. Now we assume
p < x holds. (If we can consider the dual poset P ∗, we can verify the case x < q.)

Assume x ∈ P is covered by two (or more) elements x1, x2 of P . We can take a
saturated chain p = p0 → p1 → · · · → pi = x. By the shape of Γ, φ(x1) or φ(x2) is equal
to φ(pi−1). Without loss of generality, we can assume that φ(x1) = φ(pi−1). By Prop.
4.6, [pi−1, x1] is a diamond. Thus pi−1 must be covered by two (or more) elements. By
repeating this argument, p is covered by two (or more) elements. We denote these elements
by p1, p

′
1. Since φ(p′1) is next to φ(p), we have φ(p′1) = φ(q). So p′1, q are comparable.

Because p′1 covers p, we have p′1 < q. On the other hand, p′1 is not contained in [p, q], a
contradiction.

Assume x ∈ P covers two (or more) elements x1, x2 of P . We can take two saturated
chains p = p0 → · · · → pi−1 = x1 → pi = x and p = q0 → · · · → qi−1 = x2 → qi = x. Thus
there is an element pk = qk in the saturated chain such that p0 = q0, p1 = q1, . . . , pk = qk
and pk+1 6= qk+1. Hence pk is covered by two elements, a contradiction.

The case for v-interval of type (V2) is proved in a similar way.

The following corollary immediately follows from the above Proposition.

Corollary 7.5. Let P be a minuscule heap over Γ. If P contains a v-interval of type (Vi)
(1 ≤ i ≤ 3) for some v ∈ N(Γ) then any u-interval is of type (Vi) for any u ∈ N(Γ).

We should make a remark about minuscule heaps (P,≤, φ) with supp P 6= Γ. Let
v ∈ N(Γ) \ supp P . If we choose a graph automorphism Φ : Γ → Γ such that Φ(v) = 0
then we can regard (P,≤,Φ ◦ φ) as a minuscule heap over the Dynkin diagram Γ′ of type
An. And the minuscule heaps over Γ′ are already classified. To summarize, we now know
the following:,

• If P is a totally ordered set then P is either of type (T1) or (T2).

• If P is not a totally ordered set with supp P 6= Γ then P is a minuscule heap over
a Dynkin diagram of type A.

The remaining case is that when P is not totally ordered and supp P = Γ. We know
that any v-interval of P is a diamond for any v ∈ N(Γ). In §9 we study such minuscule
heaps.
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Figure 2: extended slant lattices L3 (left figure) and L4 (right figure) over Γ(Ã7)

8 An Extended Slant Lattice

In this section we introduce the notion of extended slant lattices Lk (1 ≤ k ≤ n) (see figure
2) which are Γ-labeled posets such that any minuscule heaps over Γ(Ãn) are isomorphic
to those convex subsets.

We put L0 := {(a, b) ∈ Z × Z|a ≡ b (mod 2)} and define a relation → on L0 by
(v,m)→ (v,m)+(1,−1) or (v,m)→ (v,m)+(−1,−1). Let ≤ be the reflective, transitive
closure of →. We note that (L0,≤) is a poset. Then the following lemma is obtained
immediately.

Lemma 8.1. Let Q be an order ideal generated by (0, 0) of L0. Then Q = {(a, b)|b ≥ |a|},
where || is the absolute value symbol.

For 1 ≤ k ≤ n, we define a map ψk : Z × Z → Z × Z by putting ψk(v,m) :=
(v + n + 1, m − 2k + n + 1). Then ψk is a poset automorphism of (Z × Z,≤). Let Gk

be the group generated by ψk. Then Gk satisfies the conditions of Prop. 3.3. Hence we
define a poset Lk by putting

Lk := (Z× Z/Gk,≤Lk
),

and call it an extended slant lattice. We note that the sum +, defined by putting (v,m)+
(u,m′) := (v + u,m+m′) for (v,m) and (u,m′), is well-defined on Lk. {(v,m) ∈ [0, n]×
Z|v ≡ m (mod 2)} is a complete representative system of Lk. Thus we can define a
map φ : Lk → [0, n] by putting φ((v,m)) := v, where 0 ≤ v ≤ n. Now we regard
Lk = (Z× Z/Gk,≤Lk

, φ) as a Γ-labeled poset by this map.
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Let us define a binary relation ; by (v,m) ; (v + 1, m− 1), (v,m) ; (v − 1, m− 1)
for (v,m), (v + 1, m− 1), (v − 1, m− 1) ∈ Lk and put � the reflective and transitive
closure of ;.

Lemma 8.2. � is equivalent to ≤.

Proof. Let p, q be elements of Lk which satisfy p � q. Then we can take a sequence p =
p0 ; p1 ; · · ·; pr = q. Now we have pi = pi−1 +(±1,−1). If we put pi−1 = (v,m) then
we can write pi = (v ± 1, m− 1). By the definition of ≤, we have (v,m) ≤L0 (v±1, m−1).
Thus we have (v,m) ≤Lk

(v ± 1, m− 1). This implies p ≤Lk
q.

Conversely assume that (v,m) ≤Lk
(u, l). Then we have (v,m) ≤L0 (u, l) + j(n +

1, n + 1 − 2k) for some j ∈ Z. Let p0, p1, . . . , pr be a saturated chain from (v,m) to
(u + j(n + 1), l + j(n + 1 − 2k)). Then we have p0 ; p1 ; · · · ; pr. Hence (v,m) �
(u, l).

Although the following proposition maybe seems to be obvious, it does not hold on
L1, Ln.

Proposition 8.3. For 2 ≤ k ≤ n−1, (v,m) ∈ Lk covers (v ± 1, m+ 1). (v,m) is covered
by (v ± 1, m− 1).

Proof. It is sufficient to show that ; is a cover relation on Lk. To do so, we show that
(a, b) = s0 ; s1 ; · · ·; sr = (a± 1, b− 1) implies r = 1 by Lemma 3.2.

First we prove in the case sr = (a + 1, b− 1). Put α := #{1 ≤ i ≤ r|si = si−1 +
(1,−1)} and put β := #{1 ≤ i ≤ r|si = si−1 + (−1,−1)}. (We note that α + β = r and
α, β ≥ 0.) Then we have sr = (a + α− β, b− α− β) = (a+ 1, b− 1). This implies that

a + α− β = a+ 1 + γ(n+ 1),

b− α− β = b− 1 + γ(n+ 1− 2k),

for some γ ∈ Z. The solution of above equations is α = 1 + kγ, β = γ(k − n − 1). By
the assumption, we have 2 ≤ k ≤ n − 1 and α ≥ 0. Thus, γ ≥ 0. On the other hand,
k− n− 1 < 0 and β ≥ 0. So, γ ≤ 0. This implies γ = 0. Then we have α = 1 and β = 0.
So we conclude that r = α + β = 1 + 0 = 1 holds.

By using a similar argument, we have α = 0 and β = 1 from the case sr = (a− 1, b− 1).

Remark 8.4. In the proof above, there exists a solution α = 0, β = n for sr =
(a+ 1, b− 1), k = 1 and γ = −1. Hence ; is not a covering relation on L1.

Proposition 8.5. L1, Ln are totally ordered sets.

Proof. We give only proof for L1. (We can similarly prove it for Ln.)
We know that {(v,m)|0 ≤ v ≤ n,m ≡ v (mod 2)} is a complete representative system.

For (0, 2m), we have (0, 2m) = (m(n + 1), m(n+ 1)). So we can write (i, i+ 2m) =
(i+m(n + 1), i+m(n+ 1)) for 0 ≤ i ≤ n. Thus L1 is isomorphic to Z as poset. (We note
that −j is an element on Z corresponding to (j, j). For example, we have (0, 0) > (1, 1)
in the ordering ≤ on L1.)
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Corollary 8.6. For 1 ≤ k ≤ n, we have that (H1-1),(H1-2) and (H2a) hold on Lk, and
their finite convex subsets are minuscule. Moreover their v-intervals are diamonds when
2 ≤ k ≤ n− 1.

Proof. By Propositions 8.3, 8.5, (H1-1) holds on Lk. By the definition of � and by the
fact that (H1-2) holds on L0, (H1-2) holds on Lk.

Next we show that (H2a) holds. If k = 1 or k = n then P has the structure in Prop.
6.2. So (H2a) holds. By the definition of Lk, a v-interval is a diamond when 2 ≤ k ≤ n−1.
So (H2a) holds.

Thus their finite convex subsets are minuscule.

For a finite subset Q of Lk and v ∈ N(Γ), we can define a unique maximal (resp.
minimal) element tv (resp. bv) of Qv since (H1-2) holds on Lk

Lemma 8.7. Let y0 ∈ Z and put Q := {p ∈ Lk|p ≤ (k, y0)}. Then we have

Q = {(a, b)|0 ≤ a ≤ k, b ≥ y0 + k − a} ∪ {(a, b)|k < a ≤ n, b ≥ y0 + a− k}.
Let x0 ∈ Z and put Q′ := {p ∈ Lk|p ≥ (n+ 1− k, x0)}. Then we have

Q′ = {(a, b)|0 ≤ a ≤ n + 1− k, b ≤ x0 + k + a}
∪ {(a, b)|n+ 1− k < a ≤ n, b ≤ x0 + 2n+ 2− k − a}.

Proof. We can take a complete representative system {(v,m)|0 ≤ v ≤ n,m ≡ v (mod 2)}.
For 0 ≤ a ≤ n, we have

(a, b) ≤ (k, y0)

⇐⇒ (a, b) + j(n+ 1, n+ 1− 2k) ≤ (k, y0) ∃j ∈ Z

⇐⇒ (a− k + j(n + 1), b− y0 + j(n + 1− 2k)) ≤ (0, 0) ∃j ∈ Z

(By Lemma 8.1)

⇐⇒ b− y0 + j(n+ 1− 2k) ≥ |a− k + j(n+ 1)| ∃j ∈ Z.

Assume 0 ≤ a ≤ k. Then we have a − k + j(n + 1) ≤ 0 ⇐⇒ j ≤ 0 or equivalently we
have a− k + j(n+ 1) ≥ 0 ⇐⇒ j ≥ 1. For j ≤ 0, we have

b ≥ y0 − j(n+ 1− 2k)− a + k − j(n+ 1)

= y0 + k − a− 2j(n+ 1− k).
Hence the necessary and sufficient condition for (a−k+j(n+1), b−y0+k+j(n+1−2k)) ≤
(0, 0) (for some j ≤ 0) is

b ≥ y0 + k − a.
For j ≥ 1, we have

b ≥ y0 − j(n+ 1− 2k) + a− k + j(n+ 1)

= y0 + a− k + 2jk.
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Hence the necessary and sufficient condition for (a−k+ j(n+1), b−y0 + j(n+1−2k)) ≤
(0, 0) (for some j ≥ 1) is

b ≥ y0 + a.

Thus we have b ≥ y0 + k − a. Assume k < a ≤ n. We have a− k + j(n+ 1) ≥ 0 ⇐⇒
j ≥ 0 or equivalently a− k + j(n + 1) ≤ 0 ⇐⇒ j ≤ −1. For j ≥ 0 we have

b ≥ y0 + a− k.

For j ≤ −1 we have

b ≥ y0 − a+ 2n+ 2− k.

On the other hand, we have y0−a+2n+2−k ≥ y0 +a−k. Thus we have b ≥ y0 +a−k.
We can prove for the case for Q′ in a similar way.

Let x0, y0 ∈ Z satisfying x0 ≥ y0. For v ∈ N(Γ)(= [0, n]), we define yv by putting
yv := y0 + k − v if 0 ≤ v ≤ k and yv := y0 + a− k if k < v ≤ n. We define xv by putting
xv := x0 + k + v if 0 ≤ v ≤ n+ 1− k and xv := x0 + 2n+ 2− k − v if n+ 1− k < v ≤ n.
Then we have the following,

Proposition 8.8.

[(n + 1− k, x0 + n+ 1− k), (k, y0 − k)] = {(v,m) ∈ Lk|yv ≤ m ≤ xv}
Proof. It is obvious if we take Q ∩Q′ in Lemma 8.7.

Proposition 8.9. Let 2 ≤ k ≤ n − 1 and let Q be a finite subposet of Lk satisfying
supp Q = Γ. For v ∈ N(Γ), put bv := (v, xv) and tv := (v, yv), where tv (resp bv) is a
maximal (resp. minimal) element of Pv.

Q is a convex subset if and only if Q satisfies the followings,

• Qv = {(v,m) ∈ Lk|yv ≤ m ≤ xv},
• tv−1, tv are a covering pair,

• bv−1, bv are a covering pair,

for each 1 ≤ v ≤ n+ 1.

Proof. Let Q be a convex subset. Since (H1-2) holds on Lk, we have Qv = {(v,m) ∈
Lk|yv ≤ m ≤ xv}.

Assume that (v − 1, m), (v, l) ∈ Q for some 1 ≤ v ≤ n. If we have m < l then
there exists a saturated chain (v, l) → (v − 1, l− 1) → (v, l− 2) → · · · → (v,m− 1) →
(v − 1, m) on Lk. Since Q is a convex subset, this saturated chain is contained in Q. This
implies that we have −1 ≤ yv−1−yv. Next we assume m > l. Then we have yv−1−yv ≤ 1
by a similar argument. So we have −1 ≤ yv−1− yv ≤ 1. This implies that tv−1 and tv are
a covering pair. By a similar argument, bv−1 and bv are a covering pair.
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(0, m) = (n+ 1, m− 2k + n+ 1) implies that we have |yn − y0 + 2k − n− 1| = |xn −
x0 + 2k − n− 1| = 1. This implies that t0 and tn (or b0 and bn) are a covering pair.

Conversely let Q be a subset satisfying the condition. We claim that Q is ob-
tained from [(n + 1− k, x0 + n+ 1− k), (k, y0 − k)] by deleting its maximal or minimal
elements. Thus it follows that P is a convex subset by Propositions 3.4, 3.5.

For 1 ≤ v ≤ n if we have tv−1 ← tv and tv → tv+1 then we construct another
poset Q′ = Qv ∪ {(v, yv − 2)}. We note that Q′ satisfies the condition. We regard Q as
Q′ \ {(c, yv − 2)}. We also note that Q0 = Q′

0. By repeating this operation, we obtain
a poset Q′ such that t0 → t1 → · · · → tk and tk ← tk+1 ← · · · ← tn ← tn+1 = t0.
For 1 ≤ v ≤ n if we have bv−1 → bv and bv ← bv+1 then we obtain another poset
Q′ ∪ {(v, xv + 2)}. By repeating this operation, we obtain a poset Q′ such that b0 ←
b1 ← · · · ← bn+1−k and bn+1−k → · · · → bn → bn+1 = b0. By Prop. 8.8, we have
Q′ = [(n + 1− k, x0 + n+ 1− k), (k, y0 − k)]. In particular Q′ is a convex subset. Thus
Q is a convex subset.

9 Classification of Minuscule Heaps over Γ(Ã)

In this section, we classify the minuscule heaps over Γ = Γ(Ãn) (Theorem 9.8). In previous
sections, we classified some minuscule heaps. The remaining case is that of minuscule heap
P over Γ such that n ≥ 2, supp P = Γ, and its v-intervals are of type (V3).

Let P be a minuscule heap over Γ which is not totally ordered. First we observe
the structure of Pi ∪ Pi+1, where Pi = {p ∈ P |φ(p) = i}. By (H1-2), Pi ∪ Pi+1 is a
totally ordered set. We denote the number of element of Pi (resp. Pi+1) by ri (resp.
ri+1). Therefore there are (ri − 1) i-intervals in Pi ∪ Pi+1. We note that each i-interval
contains one element of Pi+1. Thus we have ri+1 ≥ ri − 1. By a similar argument, we
have ri ≥ ri+1 − 1. Hence we have ri + 1 ≥ ri+1 ≥ ri − 1.

Let us assume ri+1 = ri − 1. Now there are ri − 1(= ri+1) i-intervals. Each i-interval
contains one element of Pi+1. Since an i-interval is a diamond, if we take an element of Pi

and an element of Pi+1 which is contained in the interval then they are a covering pair.
Let p1, p2, . . . , pri

be the elements of Pi in the increasing order and let q1, q2, . . . , qri+1
be

the elements of Pi+1 in the increasing order. By the argument above, we have

p1 → q1 → p2 → q2 → · · · → qri+1
→ pri

.

By a similar argument if we assume ri+1 = ri + 1 then we have

q1 → p1 → q2 → p2 → · · · → pri
→ qri+1

.

Next let us assume ri = ri+1. By a similar argument, we have either

q1 → p1 → q2 → p2 → · · · → qri+1
< pri

or
p1 < q1 → p2 → q2 → · · · → qri

→ pri
→ qri+1

.
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In the former case, [pri−1, pri
] is an i-interval. Thus we have qri+1

→ pri
. In the latter

case, we have p1 → q1. At this point, we have completed to determine the structure of
Pi ∪ Pi+1. We record these results in the following corollaries 9.1, 9.2,

Corollary 9.1. Let P be a minuscule heap with supp P = Γ such that P is not a totally
ordered set. Then ti, ti+1 (bi, bi+1) are a covering pair for each i ∈ N(Γ).

Corollary 9.2. For v ∈ N(Γ), put rv := #Pv. Then we have,

• “ri+1 = ri” is equivalent to either “ti → ti+1 and bi → bi+1” or “ti ← ti+1 and
bi ← bi+1”,

• ri+1 = “ri + 1” is equivalent to “ti → ti+1 and bi ← bi+1”,

• ri+1 = “ri − 1” is equivalent to “ti ← ti+1 and bi → bi+1”.

We call the number of covering pairs satisfying tv → tv+1 (1 ≤ v ≤ n+1) the gradient
of P .

Proposition 9.3. Let P be a minuscule heap over Γ which is not totally ordered and
supp = Γ. Let k be a gradient of k. Then we have 2 ≤ k ≤ n− 1.

Proof. If k = 1 then there is a unique covering pair ti−1, ti such that ti−1 → ti. On the
other hand, we have ti−1 → ti−2 → . . . ti+1 → ti. It contradicts that ti−1, ti are a covering
pair.

We can prove, for the case k = n, by using a similar argument.

Let P be a not totally ordered minuscule heap with supp P = Γ and let k be the
gradient of P . Define a map ν : P → Lk by putting,

ν(t0) := (0, 0),

ν(ti) :=

{
ν(ti−1) + (1,−1) if ti−1 → ti,

ν(ti−1) + (1, 1) if ti−1 ← ti,

and if p is j-th largest element in Pv then

ν(p) := ν(tv) + (0, 2j − 2).

We note that ν is an injection.

Proposition 9.4. Let tn (resp. t0) be the unique maximal element of Pn (resp. P0). If
tn → t0 then we have ν(tn)→ ν(t0). If tn ← t0 then we have ν(tn)← ν(t0).

Proof. Assume tn → t0. Now we have #{1 ≤ i ≤ n|ti−1 → ti} = k − 1. Thus,

ν(tn) = ν(t0) + (k − 1)(1,−1) + (n− k + 1)(1, 1)

= ν(t0) + (n, n− 2k + 2)

= ν(t0) + (−1, 1)

→ ν(t0).
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Assume tn ← t0. Now we have #{1 ≤ i ≤ n|ti−1 → ti} = k. Thus we have

ν(tn) = ν(t0) + k(1,−1) + (n− k)(1, 1)

= ν(t0) + (n, n− 2k)

= ν(t0) + (−1,−1)

← ν(t0).

We note that ν preserves the cover-relations on t0, t1, . . . , tn.

Proposition 9.5. Let P be a minuscule heap over Γ which is not totally ordered and let
k be the gradient of P . Let ν be a map defined as above. Then Im ν is a convex subset in
Lk.

Proof. Put Q := Im ν. For 0 ≤ v ≤ n, Qv satisfies the condition in Prop. 8.9 by the
definition of ν. Let t′v be a maximal element of Qv.

Then t′v and t′v+1 are a covering pair since ν preserves the cover-relations on t0, t1, . . . , tn.
Finally we show that b′v and b′v+1 are a covering pair, where b′v is a minimal element of
Qv. Assume tv → tv+1. By Corollary 9.2, bv → bv+1 implies rv = rv+1. Thus we
have b′v+1 = ν(bv+1) = ν(tv+1) + (0, 2(rv+1 − 1)) = ν(tv) + (1,−1) + (0, 2(rv − 1)) =

ν(bv) + (1,−1) ← ν(bv) = b′v. bv ← bv+1 implies rv+1 = rv + 1. Now we have
b′v+1 = ν(bv+1) = ν(tv)+ (0, 2(rv+1 − 1)) = ν(tv+1)+ (0, 2rv) = ν(tv)+ (1,−1)+ (0, 2rv) =

ν(tv) + (1, 1) + (0, 2(rv − 1)) = ν(bv) + (1, 1)→ ν(bv) = b′v.
We can prove in the case tv ← tv+1 by a similar argument.

Proposition 9.6. Let P be a minuscule heap over Γ which is not totally ordered and let
k be the gradient of P . Then P is isomorphic to Im ν as a Γ-labeled poset.

Proof. Let p, q be elements of P which satisfy p → q. Then we show that ν(p) < ν(q).
Assume p ∈ Pv and q ∈ Pv+1. (We can similarly argue in the case p ∈ Pv+1, q ∈ Pv.)
And we assume tv → tv+1. If p is the r-th element in Pv by an increasing order then
q is the r-th element in Pv+1 by an argument in the preceding Corollary 9.1. Thus we
have ν(q) = ν(tv+1) + (0, 2(r − 1)) = ν(tv) + (1,−1) + (0, 2(r − 1)) = ν(p) + (1,−1) +
(0, 2(r − 1)) = ν(p) + (1,−1)← ν(p). Hence we have ν(q) ≥ ν(p). Assume tv ← tv+1. If
p is the r-th element in Pv then q is the (r− 1)-th element in Pv+1. Thus we have ν(q) =
ν(tv+1) + (0, 2(r − 2)) = ν(tv) + (1, 1) + (0, 2(r − 2)) = ν(tv) + (1,−1) + (0, 2(r − 1)) =
ν(p) + (1,−1)← ν(p). So we have ν(q) ≥ ν(p).

The arguments above show that p ≤ q implies ν(p) ≤ ν(q).
Conversely we assume ν(p) → ν(q). Since Im ν is a convex subset, we have either

ν(q) = ν(p) + (1,−1) or ν(q) = ν(p) + (−1,−1). Assume that p ∈ Pv, q ∈ Pv+1. (We
can prove in the case p ∈ Pv+1, q ∈ Pv by a similar argument.) If tv → tv+1 then we have
ν(q) = ν(p) + (1,−1) = ν(tv) + (0, 2(r − 1)) + (1,−1) = ν(tv) + (1,−1) + (0, 2(r − 1)) =
ν(tv+1) + (0, 2(r − 1)). Thus q is the r-th element in Pv+1. By an argument in the
preceding Corollary 9.1, we have p → q. If tv ← tv+1 then q is the (r − 1)-th element
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in Pv+1 by a similar argument. Thus we have p → q. Now Im ν is a convex subset.
Hence if ν(p) ≤ ν(q) then we can take a saturated chain from ν(p) to ν(q). Thus we have
p ≤ q.

By Propositions 9.5, 9.6, it follows that

Corollary 9.7. Let P be a minuscule heap with gradient k (2 ≤ k ≤ n− 1) which is not
totally ordered. Then P is isomorphic to a convex subset of Lk.

Our main theorem gives the converse claim (Theorem 9.8).
In fact, a totally ordered minuscule heap is also isomorphic to a convex subset of Lk

for k = 1, n. Let Q be a totally ordered minuscule heap of type (T1) (resp. (T2)). Define
a map ν : Q → Ln by the following. If the label of a maximal element of Q is i then
ν(q) = (i− j + 1, i− j + 1) (resp. (i+ j − 1, i− j + 1) where q is the j-th element in Q
by an increasing ordering. It is obvious that Q is isomorphic to Im ν as a Γ-labeled poset.
Now Im Q is a convex subset of Ln (resp. L1).

We note that a minuscule heap with supp P 6= Γ can be identified with a minuscule
heap over a Dynkin diagram of type A. Then it is isomorphic to a convex subset of Lk

for some 1 ≤ k ≤ n.

Theorem 9.8. Let n ≥ 2. Let Γ be a Dynkin diagram of type Ãn. A minuscule heap
P over Γ is isomorphic to a convex subset of Lk, where 1 ≤ k ≤ n is determined by P .
Conversely a finite convex subset of Lk is a minuscule heap.

Remark 9.9. If a minuscule heap P satisfies supp P 6= Γ then k in Theorem 9.8 is not
unique.
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