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Abstract

A minuscule heap is a partially ordered set, together with a labeling of its ele-
ments by the nodes of a Dynkin diagram, satisfying certain conditions derived by
J. Stembridge. This paper classifies the minuscule heaps over the Dynkin diagram
of type A.

1 Introduction

The aim of this paper is to classify the minuscule heaps over a Dynkin diagram of type A.

Let A be a symmetrizable generalized Cartan matrix, and let g be a corresponding
Kac-Moody Lie algebra. Let I' be a Dynkin diagram which is an encoding of A. Minuscule
heaps arose in connection with A-minuscule elements of the Weyl group W of g. According
to Proctor [9] and Stembridge [12] the notion of A-minuscule elements of W was defined
by Peterson in his unpublished work in the 1980’s. For an integral weight A\, an element
w of W is said to be a A-minuscule element if it has a reduced decomposition s;,s;, .. . s;,
such that

8i;8i,00 -+ i, A= Si .S A — g (1 <V <),

T T

and it is called minuscule if w is A-minuscule for some integral weight A. Here a; is the
simple root corresponding to s;. It is known that a minuscule element is fully commuta-
tive, namely any reduced decomposition can be converted into any other by exchanging
adjacent commuting generators several times (see [9, §15], [10, Theorem A] and [11, The-
orem 2.2], or [12, Proposition 2.1]). To a fully commutative element w, one can associate
a ['-labeled poset called its heap.

A T'-labeled poset is a triple (P, <,¢) in which (P, <) is a poset and ¢ : P — N(I)
is any map (called the labeling map). A linear extension of a I'-labeled poset naturally

*The author’s name is “HAGIWARA Manabu” by Japanese ordering.
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determines a word in the generators of W. The heap of the fully commutative element w
is a [-labeled poset whose linear extensions determine all reduced decompositions of w.
A minuscule heap is the heap of a minuscule element of W.

Stembridge obtained certain structural conditions for a finite I'-labeled poset to be a
minuscule heap ([11, Proposition 3.1]). In this paper a minuscule heap is defined by a
finite I'-labeled poset which satisfies the conditions (H1-1), (H1-2) and (H2a) (see §2). In
the following, we state a relation between minuscule elements and minuscule heaps.

Let (P,<,¢) be a minuscule heap. Put r := #P. Let u : P — [1,r] be a linear
extension of P, namely p is a bijection and if p < ¢ then u(p) < u(q). For pu, we associate
a minuscule heap (P, <, ¢) to w € W by the following expression

W= Sgou=1(1) Sgou=1(2) - - Spou=(r)-

We note that an element obtained from a minuscule heap, by the relation above, is
a minuscule element. Conversely for any minuscule element w there exists a unique
minuscule heap which determines w.

In [11], there is an important condition which states that “the labels that occur in P
index an acyclic subset of the Dynkin diagram”. A nice consequence of this condition
is that if it holds then P is a ranked poset. However Dynkin diagrams I' of type A are
cyclic, and most of minuscule heaps over I' are not ranked. In this paper, we introduce
an analogy of slant lattices [6] (here called L) (§8) and use it to prove that a subset P of
an extended slant lattice L, is a convex subset if and only if P is a minuscule heap over
I' up to isomorphic. Slant lattices L were also used to classify the minuscule heaps over
simply-laced, star-shaped Dynkin diagrams in [6].

It is known that the affine permutation group §n+1 is isomorphic to an affine Weyl
group W (A,). In [5], Green showed that the 321-avoiding permutations of affine permu-
tations coincide with the fully commutative elements of W (A, ). He showed also that the

fully commutative elements of W (A4,) form a union of Kazhdan-Lusztig cells. Here we
show that the fully commutative elements of W (A,) coincide with its minuscule elements
[Theorem 5.1].

The paper is organized as follows. In §2 we recall and provide some basic terminology.
In §83, 4 we collect some general facts on poset and on I'-labeled poset with a general

Dynkin diagram. In §5, we show that the fully commutative elements of W (A) coincide
with the minuscule elements of W(A). From §4, we characterize the minuscule heaps over
a Dynkin diagram of type A. In §6, we characterize the totally ordered minuscule heaps
over a Dynkin diagram of type A. In §7, we determine the structure of a subposet which
we call v-interval. In §8, we characterize the minuscule heaps over a Dynkin diagram of
type A up to isomorphism and introduce the notion of extended slant lattices Ly. In §9,
we show that any minuscule heap over a Dynkin diagram of type A is isomorphic to a

convex subset of an extended slant lattice L.
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2 Definitions

We start with the definition of general terms associated to a partially ordered set. We
denote the number of elements of a set P by #P.

Let (P,<) be a poset (partially ordered set). For p,q € P, we say that ¢ covers p
(or p is covered by q) if p < q and (p,q) = 0, and denote by p — ¢q. We say that p,q
are a covering pair if p — ¢ or ¢ — p. In this paper, we assume that P is completely
determined by the covering relations, namely

(*) If p,¢ € P and p < ¢ then there exists a finite sequence of elements of P, say
Do, P1, - - -, pr Such that pg = p, p, = q and p; covers p;_1 for 1 < <r.

We call such a sequence pg, p1,...,p, a saturated chain from p to q.

We denote ordering relations on posets as follows. Let P be a poset and let @) be its
subset. For z,y € Q, we write [z,y]lp = {z € Plz <p z <p y} and write [z,y]g = {2z €
Qlr <g z <g y}. In general, a maximal connected subposet of P is called a connected
component of P. A subset () of P is said to be convex in P if whenever p,q € (Q and
p < ¢ we have [p,q]p C Q.

Let T" be a Dynkin diagram and let N(I') be the node set of I'. By an abuse of
language, we sometimes identify N(I') with I". We say that a triple (P, <, ¢) (or simply
P) is a I'-labeled poset if (P, <) is a partially ordered set, and ¢ is any map from P to
N(T). We call ¢ the labeling map and call ¢(p) the label of p. We denote Im ¢ by supp P,
and call it the support of P. For each v € N(I'), we put

P, := {p € Plo(p) = v}.

For v € N(I') and p,q € P satisfying p < ¢, we say that [p, q] is a v-interval if p,q € P,
and (p,q) N P, = 0.

Let (P, <,¢),(Q, <,1) be I'-labeled posets. We say that P and @ are isomorphic
as I'-labeled poset if there exists a poset isomorphism ® : P — @ such that ¢(p) =
(®(p)(p € P).

Let I' and T" be Dynkin diagrams, and let (a;;)ijer, (@; ;)i jer be the corresponding
generalized Cartan matrices. Let P be a ['-labeled poset and let @) be a [-labeled poset.
We say that P and @ are abstractly isomorphic (or isomorphic if no confusion arises)
if there is a poset isomorphism « : P — () and an isomorphism of subdiagrams [ :
supp P — supp @ (namely a bijection supp P — supp () such that a;; = a’ﬁ(im(j) for all
i,7 € supp P) such that § maps the label of p to the label of a(p) for every p € P.

Let D(3) := {w,x,y,z} be a set and let — be a binary relation on D(3) with w —
T, r — z,w — y,y — z. Let < be an ordering on D(3) which is the reflective, transitive
closure of —. Let I" be the Dynkin diagram of type Az and let N(I') = {1,2,3} be the
node set of I'. (Put 1,2,3 on N(I') from an edge node to another one.) Define a map
¢ : D(3) — N(I') by putting ¢(w) = ¢(z) := 2,¢(z) := 1 and ¢(y) := 3. We regard D(3)
as a [-labeled poset with ¢. Let I be a Dynkin diagram. We say that I"-labeled poset
Q is a diamond if Q and (D(3), <, ¢) are abstractly isomorphic.
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Let A = (ai ;)i jen) be a Cartan matrix corresponding to I'. We say that a I'-labeled
poset (P, <, ¢) is a minuscule heap if P is finite and satisfies the conditions (H1-1),(H1-2)
and (H2a).

(H1-1) For p,q € P, if p — q, then ¢(p) and ¢(q) are either equal or adjacent in T.

(H1-2) For p,q € P, if ¢(p) and ¢(q) are either equal or adjacent in I" then p and ¢ are
comparable.

(H2a) For p,q € P, if ¢(p) = #(q) and p < g then - o 1 as)o() = 2-
In particular we regard an empty set as a minuscule heap.

Remark 2.1. In [11], Stembridge obtained two structural conditions, which he called
(H1) and (H2), for a finite I'-labeled poset to be a minuscule heap. In this paper we
separate (H1) to two conditions (H1-1),(H1-2). And we use the condition (H2a) instead
of (H2) which are equivalent. (Proposition 4.4.)

3 Basic Properties on Poset

In this section we provide some general facts on posets. We omit the proofs below since
they are straightforward.

Proposition 3.1. Let S be a set and let ~ be a binary relation on S. Let = be the
reflexive, transitive closure of ~».

Then (S, %) is a poset if and only if s = sg~> 51~ -+ ~> 5. = s implies sgp = 1 =
- =8, =5 for somer >0, where s, Sg, $1,...,5. € S.

Proposition 3.2. Let S,~, < be the same as Proposition 3.1. Assume that (S, <) be a
poset.

Then ~ is the covering relation on (S, X) if and only if p ~ q and p = py ~ p1 ~
ceeno p. = q implies r = 1.

Proposition 3.3. Let (P, <) be a poset and let G be a group which acts on P as a poset
automorphism, namely p < q if and only if g(p) < g(q) for g € G and p,q € P.
Assume that G satisfies the following condition,

e forpe P and g € G, if p and g(p) are comparable then p = g(p).

Put P/G := {p|lp € P}, where p = {g9(p)lg € G}, and put a relation < on P/G as
following,
P =2 q if and only if p < g(q) for some g € G (p,q € G/P).

Then it follows,
o = is well-defined,

e (P/G, =) is a poset.
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Proposition 3.4. Let P be a poset and let p,q € P satisfying p < q. Then [p,q] is a
convex subset of P.

Proposition 3.5. Let P be a poset and () be a convex subset. If z is a minimal or
mazximal element of Q then Q \ {z} is a convex subset of P.

4 Basic Properties on ['-labeled Posets

In this section we provide some general facts on I'-labeled posets over a general Dynkin
diagram. (See [7] or [8] for the definition of Dynkin diagrams.)

Proposition 4.1. Let (P, <, ¢) be a I'-labeled poset. If (P, <, ) satisfies (H1-2) then P,
is a totally ordered set for each v € N(I).

Proof. By (H1-2), p and g are comparable, where p,q € P,. O

Proposition 4.2. Let (P,<,¢) be a I'-labeled poset which satisfies (H1-1) and (H1-2).
Then P is connected if and only if supp P is connected.

Proof. Assume that P is connected. For u,v € supp P, there exists p € P, and ¢ € P,,.
Now we can take a sequence p = pg, p1,-..,p, = q such that p;,_1, p; are a covering pair.
Then ¢(po), ¢(p1),--.,¢(p.) consists of a connected subdiagram of I' by (H1-1). Hence
supp P is connected.

Conversely assume that supp P is connected. Let p,q € P and put v := ¢(p),u =

¢(q). Since I' is connected, we can take a sequence v = vy, v1,...,v, = u € supp P
such that v;_; and v; are adjacent in I'. Take some p; € P,, (1 < i < r —1) and put
po = p,pr = q. Then p;_1, p; are comparable by (H1-2). So P is connected. O

Proposition 4.3. Let (P, <,¢) be a I'-labeled poset satisfying (H1-1) and (H1-2). Let
Py, P, ..., P. be the connected components of P. Then supp P = Ul_jsupp F;. In
particular v and u are distinct and non-adjacent, where v € supp Pj,u € supp P; and

1#£ 7.

Proof. If there exists v € supp P; Nsupp F; then we can take p € P, N P, and ¢ €
supp P; N P,. By (H1-2), p and ¢ are comparable. This implies ¢ = j because P;, P; are
connected components.

If there exists v € supp P; and u € supp P; such that v and v are adjacent in I" then
we obtain a contradiction by a similar argument. O

Proposition 4.4. Let (P, <,¢) be a finite I'-labeled poset. If (P,<,¢) satisfies (H1-1)
and (H1-2) then each of the following each conditions are equivalent to (H2a).

(H2) For any v-interval [p, q], we have 3_ o\, 1 Qg(@)0() = 2-

(H2b) For any v-interval [p,q], we have 3, » Qo). o) = —2-
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Proof. By a,, = 2, it is obvious that (H2) and (H2b) are equivalent for any v € N(I'). It
is also obvious that (H2a) implies (H2).

We assume that (H2) holds. By (H1-2), P, is a totally ordered set. Let p, g be elements
of P, which satisfy p < ¢. If we have p = ¢ then (H2a) trivially holds, since a,, = 2 for
v € N(T'). So we assume p < q. Let p = po,p1,-..,pr = q be the elements of P, N [p,q]
by an increasing ordering. For x € [p, q] \ (Ui<i<r[pi-1,pi]), = and p; are incomparable for
some 0 < j <r. By (H1-2), ¢(z) is different from v and not adjacent to v. Thus we have
Ag(z),0 = 0. This implies

Z A(a)w = Z Z Ag(z)w T Ao(p)w = 0+ 2 = 2.

z€[p,q] 1<i<r z€lp;_1,p:)
O

Remark 4.5. Let I be a simply-laced Dynkin diagram and let v € N(I'). Let [p,q]
be a v-interval. (H2b) requires that there exists just two elements of (p,q) whose labels
are adjacent to v in I". This fact is very important since the Dynkin diagram of type
A, (n > 2) is simply-laced. However we investigate a minuscule heap over the Dynkin
diagram of type A;. In this case, (H2b) requires that there exists only one element of
(p, q) whose labels are adjacent to v in I'. These facts are used to prove Propositions 4.6,
6.1 and 6.2.

Proposition 4.6. Let I" be a simply-laced Dynkin diagram and let (P, <, ¢) be a minuscule
heap over I'. Let p,q € P such that ¢(p) = ¢(q). If there exists an element x € P such
that p — x — q then [p, q] is a ¢(p)-interval. In particular [p,q] is a diamond.

Proof. We note that ¢(x) and ¢(p) are adjacent in I". If there exists y € (p, q) such that
¢(y) = ¢(p) then x and y are comparable by (H1-2). This implies that we have either
p<z<yory <z <gq. Itcontradicts p — x — ¢. So we have (p,q) N Py = 0.
However there exists y € (p,q) such that ¢(y) is adjacent to ¢(p) by Remark 4.5. Let
P = Po,P1,-..,Pr = q be a saturated chain from p to ¢ which contains y. We note that
this saturated chain does not contain z. In fact a sequence p, z,q is a unique saturated
chain which contains x.

For p = po, p1,...,pr = ¢, y is the only element which can cover p, and y is the only
element which can be covered by ¢. Thus this saturated chain consists of p,y,q. Hence
we have [p,q] = {p,z,y,q}. By (H1-1) and (H2), [p, ¢ is a diamond. O

Proposition 4.7. Let I be a Dynkin diagram and let ® be a graph automorphism on T.
If a T-labeled poset (P, <, ) is a minuscule heap then (P,<,® o ¢) is a minuscule heap.
Furthermore these minuscule heaps are abstractly isomorphic.

Proof. Since ® is a graph automorphism, it is obvious that (H1-1) and (H1-2) hold. As
Ay = a¢(v)7¢,(u), (H2a) holds. O
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5 Relation Between Fully Commutative Elements and
Minuscule Elements

First we show that the fully commutative elements of W (A) coincide with its minuscule
elements.

Theorem 5.1. Let I' be a simply-laced Dynkin diagram with a finite node set. The fully
commutative elements of W(I') coincide with its minuscule elements if and only if I is of
type A or A.

Proof. 1t is well known that a minuscule element is fully commutative.

Assume I" branches off. Then there exists a node v € N(I') such that the number
of the adjacent nodes to v is larger than two. Let x,y, 2z be adjacent nodes to v. We
can verify that s,s;sys.s, is fully commutative, where s, is a generator associated to
u € N(I'). But it violates (H2) and so it would not be minuscule. Hence I" cannot have
a junction. Thus I must be of type A or A.

If T is of type A, then it is well-known that a fully commutative element is minuscule.
The remaining case is when I is of type A. Let w be a fully commutative element of W([l)
and let s;s9...5s, be a reduced expression of w. By the commutativity of w, if s;,s; are
consecutive occurrences of the generator s (meaning that s; = s; = s for some generator
s (1 <j) and s; # s for i < h < j), then there are at least two generators sy, Sy, such
that s; and sy, (or sp,) are non-commutative ¢ < hy, hy < j. If there is no consecutive
occurrences of any generators, then w is minuscule.

Remember that any heap of a fully commutative element satisfies (H1). For proving
that w is minuscule, it is sufficient that there exists just two non-commutative generators
Shys She- 1f nOt, we can take three non-commutative generators from s;;1,...,s;-1. Now,
as ' is of type A, each node has only two adjacent nodes. Thus we can take consecutive
occurrences Sy, sjr of s’. By the commutativity of w, we can take two generators Shl, S,
from s; 11, ..., sy_; which are non-commutative to s’. The nodes associated to s;41, Sj41
are adjacent to the node associated to s’ and they are different from s; because s; # s,
for © < h < j. This implies sy1 = sj41, in other words they are consecutive occurrences.
By using a similar argument, the length of w must be infinite. It cannot happen. U

6 Totally Ordered Minuscule Heaps over Dynkin Di-

agrams of Type A

In this section we determine the structure of totally ordered minuscule heaps over Dynkin
diagrams of type A. From this section on we assume that I' is a Dynkin diagram of type
A, with the node set N(I') := {0,1,...,n}. (see Figure 1 for the definition of Dynkin
diagram of type A,.) We associate i € Z to j € N(I') = {0,1,...,n+ 1} by the following
rule j = i mod (n + 1). We note that the Dynkin diagram of type A; and its Cartan
matrix A := A(I') are different from others of type Ap(n > 2). First we classify the

minuscule heaps over A;. In fact a minuscule heap over I'(A;) is a totally ordered set.
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0 R= 1

Dynkin diagram of type A,

1 2 3 n—1 n

Dynkin diagram of type A, (n > 2)

Figure 1: The Dynkin diagram of type A,

The Cartan matrix A = A(I'(A;)) = (ay;) is

[ @, Go1 \ _ 2 -2
A'_(@l,o @1,1)_(—2 2)'
Proposition 6.1. Let T be the Dynkin diagram of type A;. A minuscule heap over T is a

totally ordered set and is characterized by r := #P and the label v of its smallest element
if r # 0. Namely, define a I'-labeled poset (P, <, ) by putting

o P={pi,p2---,pr},

e pi1—pi (1<i<r)

o < is the transitive and reflective closure of —,
o ¢(pi)=v+i—1 (mod 2).

Then (P, <,¢) is a minuscule heap over T'. Conversely a minuscule heap over T is ab-
stractly isomorphic to a minuscule heap as defined above.

Proof. Define P as above. Then it is obvious that (H1-1) and (H1-2) hold on P. By the
definition of P, a v-interval has the form [p;, p;42] for v € N(T'). So we have

Y Ggme = D Gswe =2

zE€(pispit2) z€{pit1}

This implies that P is a minuscule heap.

Conversely assume that (P, <, ¢) is a minuscule heap. Then it is obvious that P is a
totally ordered set by the shape of I and (H1-2). Hence we can write P = {py,p2,...,pr}
with p,o1 — p; (1 < @ < r). By (H2b), we have ¢(p;—1) # ¢(p;). Since the labels
of p; are binary values ({0,1}), two nodes always alternatively appear. Thus we have
¢(pi) =v+i—1 (mod 2). O

By a similar argument above, we can determine the structure of a totally ordered

minuscule heap over T'(4,) (n > 2).
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Proposition 6.2. Let (P, <,¢) be a totally ordered minuscule heap over I'. Put P =
{po,p1,- .- pr} withp;i_y — p;i(1 <i <r). Then the labels of the elements of P are either

of type (T1) or (T2),
(T1) é(pi) = d(po) +i (mod n + 1)

(T2) ¢(pi) = ¢(po) —i (mod n+1)

Proof. By (H2b), we have ¢(pg) # ¢(p1). By (H1-1), we have either ¢(p1) = ¢(po) + 1 or
¢(p1) = ¢(po) — 1.
Assume ¢(p1) = ¢(po) +1. Then we have either ¢(p2) = ¢(p1)+1 or ¢(p2) = ¢(p1) — 1.

If we have ¢(p2) = ¢(p1) — 1 then ¢(ps) = ¢(po). By Proposition 4.6, [pg, p2] is a ¢(po)-
interval. However we have

Z Qg(x),¢(po) = Z A(z),b(po) = —1 # —2.

x€(po,p2) z€{p1}

It contradicts (H2b). Thus we have ¢(py) = ¢(p1) + 1. By repeating an argument above,
the labels of the elements are of type (T1).

By a similar argument, we obtain the case (T2) from the assumption ¢(p1) = ¢(po) —
1. U

We say that P is of type (T1) (resp. (T2)) if the labels of P are of type (T1) (resp.
(T2)).

7 The Structure of v-intervals

In this section we investigate the structure of v-intervals for a minuscule heap over I'(A,)
with n > 2. To determine v-intervals for v € N(I") is useful to determine the structure of
a minuscule heap.

By the symmetry of the shape of the Dynkin diagram of type A, to determine the
structure of all of 1-intervals is equivalent to determine that of all of v-intervals for any
v € N(I'). Hence we investigate the structure of the 1l-intervals.

Lemma 7.1. Let P be a minuscule heap over T'(A,,) and let [p1,q1] C P be a 1-interval.
Let po,qo be elements of (p1,q1) whose labels are adjacent to 1 in I'.  Then we have

¢(p2) # ¢(Q2)'

Proof. We note that ¢(p2), #(g2) must be 0 or 2. Our claim is that ¢(p2) = ¢(ge) is
impossible.

If we have ¢(p2) = ¢(q2) = 2 then py and ¢o are comparable. Let us assume that
P2 < @2 then [ps, go] is a 2-interval by (H2b). Hence there exist ps, g3 € (p2, g2) such that
P2 — D3,q3 — G2 and ¢(p3), ¢(g3) are adjacent to 2. Now ¢(p3), #(g3) can be only equal
to 1 or 3. However they cannot be equal to 1 since [p,¢q] is a l-interval. So we have
o(p3s) = ¢(q3) = 3. By repeating the arguments above, we can take a O-interval [p, 11, ¢ni1]
from (p1,¢1) and we know that [p,41, ¢,+1] must contain an element whose label is 1. It
contradicts that [p;, ¢1] is a 1-interval. O
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Fori = 1,2,3, we say that a l-interval [p, q| is of type (Vi) if [p, q] satisfies the following:

(V1) [p,q| is a totally ordered set and consists of n + 2 elements. The labels of the
elements in the increasing order are 1,2,3,...,n — 1,n,0, 1 respectively;

(V2) [p,q| is a totally ordered set and consists of n + 2 elements; The labels of the
elements in the increasing order are 1,0,n,n —1,...,3,2,1 respectively.

(V3) [p,q| is a diamond.
Proposition 7.2. Any 1-interval [p, q| is either of type (V1), (V2) or (V3).

Proof. By Lemma 7.1, (p, q) contains a unique pair of elements x,y whose labels are 0, 2
respectively. By (H1-1), only x or y can cover p and only x or y can be covered by g.

Assume that both z and y cover p then we claim that [p, ] is of type (V3). By the
assumption that x and y are incomparable, there is a saturated chain x = py, ps,...,p, = ¢q
from 2 to ¢ which does not contain y. We note that ¢(p,_1) is either 0 or 2, namely p,_;
is either  or y. This implies p,_; = x and r = 2. Thus we have + — ¢. By a similar
argument, we have y — ¢. So [p,q] = {p, z,y, q} is of type (V3).

Next assume that only x covers p. We claim that [p, ¢ is of type (V1). Let p = po, z =
P1, D2, - - -, Pr = q be a saturated chain from p to ¢. We note that ¢(p;_1) — ¢(p;) is either 1
or —1 because ¢(p;—1), ¢(p;) are adjacent. If these labels are all different then they are of
type (V1) or (V2). If there are repeated labels then we can take a pair p;, p; 12 such that
d(p;) = ¢(pir2). Let us choose such a minimal i. By Prop. 4.6, [p;, pit2] is a diamond.
Thus there exists pl,, € [p;, pi+2] such that ¢(p] ) is not equal to ¢(p;) and ¢(pi41). If we
change p;;; to pi,; then we take another saturated chain po, p1,...,p..,...,p, from p to
q such that ¢(p;—1) = ¢(pi,,). By using the same argument, there exists a saturated chain
P = Po, T = DP1,P2---,Pr = q with ¢(p1) = ¢(p3). It contradicts that [p, ¢| is a 1-interval.
So each labels are different. There exists only one saturated chain from p to ¢ is only
Do, P1s - - -, Pr. Assume that there exists another saturated chain p = ¢o,x = q1,...,¢ = q.
So, there exists ¢; such that ¢; # p; and ¢; = p; (0 < j < 7). By the above argument,
we have ¢(p;) = ¢(q;). By (H1-2), p; and ¢; are comparable. If p; < ¢; then we have
Gi—1 < pi < ¢;. If ¢; < p; then we have p;_; < ¢; < p;. These are contradictions. So [p, q|
is of type (V1).

By using a similar argument, if we assume that only y covers p then we obtain that
[p,q] is of type (V2). O

For not only 1-intervals but also for a v-interval [p, ¢, we say that [p, q| is of type (Vi)
if [p, q] satisfies the following:

(V1) [p,q] is a totally ordered set and consists of n + 2 elements. The labels of the
elements in the increasing order are v,v+1,v+2,...,v+n—1,v+n, v respectively;

(V2) [p,q| is a totally ordered set and consists of n + 2 elements. The labels of the
elements in the increasing order are v, v+n,v+n—1,...,v+2, v+ 1, v respectively;

(V3) [p,q] is a diamond.
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Define a graph automorphism ® : I' — I" by ®(i) := i+ 1 (mod n+1). If we apply ® and
Prop. 4.7 to Prop. 7.2 then we can characterize all the 2-intervals. Thus we characterize
all the v-intervals for all v € N(T').

Proposition 7.3. Any v-interval [p, q| is either of type (V1), (V2) or (V3).

Proposition 7.4. If P contains a v-interval of type (V1) (resp. (V2)) for somev € N(I')
then P is a totally ordered set and is of type (V1) (resp (V2)).

Proof. Let (P, <,¢) be a minuscule heap over I'(A,,) which contains a v-interval [p, q| of
type (V1). It is sufficient to show that every element of P covers and is covered by at
most one of its element. If we assume that there exists x € P which covers or is covered
by two (or more) elements, then we get a contradiction as follows. By supp [p, q] = N(T'),
x is comparable to an element p € [p,q]. Thus we have p < x or z < ¢. Now we assume
p < z holds. (If we can consider the dual poset P*, we can verify the case = < ¢.)

Assume z € P is covered by two (or more) elements zy,x9 of P. We can take a
saturated chain p = py — p; — --- — p; = x. By the shape of I, ¢(x1) or ¢(x2) is equal
to ¢(pi—1). Without loss of generality, we can assume that ¢(z1) = ¢(p;—1). By Prop.
4.6, [pi—1,21] is a diamond. Thus p;—; must be covered by two (or more) elements. By
repeating this argument, p is covered by two (or more) elements. We denote these elements
by pi1,p}. Since ¢(p)) is next to ¢(p), we have ¢(p)) = ¢(q). So p},q are comparable.
Because p) covers p, we have pj < ¢. On the other hand, p} is not contained in [p, ¢l, a
contradiction.

Assume x € P covers two (or more) elements z1, x2 of P. We can take two saturated
chainsp=py— - —pi1=21 —>pi=randp=qy — -+ — ¢;-1 = ¥ — ¢ = x. Thus

there is an element p, = ¢x in the saturated chain such that pg = qo,p1 = q1,-- ., Pr = G
and pry1 # qry1- Hence py is covered by two elements, a contradiction.
The case for v-interval of type (V2) is proved in a similar way. O

The following corollary immediately follows from the above Proposition.

Corollary 7.5. Let P be a minuscule heap over T'. If P contains a v-interval of type (Vi)
(1 <i<3) for some v € N(I') then any u-interval is of type (Vi) for any u € N(I').

We should make a remark about minuscule heaps (P, <,¢) with supp P # I'. Let
v € N(I') \ supp P. If we choose a graph automorphism ® : I' — I" such that ®(v) =0
then we can regard (P, <, ® o ¢) as a minuscule heap over the Dynkin diagram I'" of type
A,,. And the minuscule heaps over I are already classified. To summarize, we now know
the following;:,

e If P is a totally ordered set then P is either of type (T1) or (T2).

e If P is not a totally ordered set with supp P # I' then P is a minuscule heap over
a Dynkin diagram of type A.

The remaining case is that when P is not totally ordered and supp P = I'. We know
that any v-interval of P is a diamond for any v € N(I'). In §9 we study such minuscule
heaps.
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Figure 2: extended slant lattices Lz (left figure) and L, (right figure) over I'(A7)

8 An Extended Slant Lattice

In this section we introduce the notion of extended slant lattices Ly, (1 < k < n) (see figure
2) which are I'-labeled posets such that any minuscule heaps over I' (An) are isomorphic
to those convex subsets.

We put Ly := {(a,b) € Z x Z|la = b (mod 2)} and define a relation — on Ly by
(v,m) — (v,m)+(1,—1) or (v,m) — (v,m)+(—1,—1). Let < be the reflective, transitive
closure of —. We note that (Lo, <) is a poset. Then the following lemma is obtained
immediately.

Lemma 8.1. Let Q) be an order ideal generated by (0,0) of Lo. Then Q = {(a,b)|b > |a|},
where || is the absolute value symbol.

For 1 < k < n, we define a map ¢y : Z X Z — 7Z x Z by putting ¢y (v, m) :=
(v+n+1,m—2k+mn+1). Then 1 is a poset automorphism of (Z x Z,<). Let Gy
be the group generated by ¢,. Then G} satisfies the conditions of Prop. 3.3. Hence we
define a poset L by putting

Ly == (Z x Z/Gy, <r,),
and call it an extended slant lattice. We note that the sum +, defined by putting (v, m)+
(u,m') := (v+u,m+m') for (v,m) and (u,m’), is well-defined on L. {(v,m) € [0,n] x
Zlv = m (mod 2)} is a complete representative system of L. Thus we can define a
map ¢ : Ly — [0,n] by putting ¢((v,m)) := v, where 0 < v < n. Now we regard
Ly, = (Z xZ)Gy,<y,, ¢) as a I-labeled poset by this map.
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Let us define a binary relation ~» by (v,m) ~ (v+1,m —1),(v,m) ~ (v —1,m — 1)
for (v,m),(v+1,m—1),(v—1,m—1) € Ly and put =< the reflective and transitive
closure of ~».

Lemma 8.2. < is equivalent to <.

Proof. Let p,q be elements of L, which satisfy p < ¢. Then we can take a sequence p =
Po ~> p1 ~> -+~ p. = q. Now we have p; = p;_1 + (£1,—1). If we put p;_; = (v, m) then
we can write p; = (v £ 1, m — 1). By the definition of <, we have (v, m) <, (v£1,m—1).
Thus we have (v,m) <p, (v+1,m —1). This implies p <j, q.

Conversely assume that (v,m) <r, (u,l). Then we have (v,m) <, (u,l) + j(n +
I,n+ 1 — 2k) for some j € Z. Let py,pi,...,pr be a saturated chain from (v, m) to
(u+j(n+1),l4+j(n+1—2k)). Then we have pg ~ p; ~ -+~ p,. Hence (v, m)

(u,l).

Although the following proposition maybe seems to be obvious, it does not hold on
Ly, L,.

RPN

Proposition 8.3. For2 <k <n-—1, (v,m) € Ly covers (v+1,m+1). (v,m) is covered
by (v+1,m—1).

Proof. 1t is sufficient to show that ~» is a cover relation on L;. To do so, we show that
(a,b) = sg~> sy~ -+-~> 8. = (a+1,b—1) implies r = 1 by Lemma 3.2.
First we prove in the case s, = (a+1,b—1). Put a := #{1 < i < r|s; = ;-1 +

(1,—=1)} and put §:= #{1 <i <r|s; =s,1+ (—1,—1)}. (We note that a + § = r and
a,3 > 0.) Then we have s, = (a+a— 5,0 —a — ) = (a+ 1,0 —1). This implies that

at+a—pF = a+1+7(n+1),
b—a—03 = b—1+~y(n+1-2k),

for some v € Z. The solution of above equations is & = 1 + kv, f = y(k —n —1). By

the assumption, we have 2 < k < n —1 and a > 0. Thus, v > 0. On the other hand,

k—n—1<0and 3 >0. So, vy <0. This implies v = 0. Then we have a =1 and § = 0.
So we conclude that r = a + =140 =1 holds.

By using a similar argument, we have & = 0 and # = 1 from the case s, = (a — 1,b — 1).

O

Remark 8.4. In the proof above, there exists a solution a« = 0,8 = n for s, =
(a+1,b—1), k=1and v = —1. Hence ~ is not a covering relation on L;.

Proposition 8.5. L, L, are totally ordered sets.

Proof. We give only proof for L;. (We can similarly prove it for L,,.)

We know that {(v,m)|0 < v <n,m =wv (mod 2)} is a complete representative system.
For (0,2m), we have (0,2m) = (m(n+1),m(n+1)). So we can write (i,7+2m) =
(t+m(n+1),i+m(n+ 1)) for 0 <i <n. Thus L; is isomorphic to Z as poset. (We note
that —j is an element on Z corresponding to (j, 7). For example, we have (0,0) > (1,1)
in the ordering < on L;.)

O
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Corollary 8.6. For 1 < k < n, we have that (H1-1),(H1-2) and (H2a) hold on Ly, and
their finite convexr subsets are minuscule. Moreover their v-intervals are diamonds when
2<k<n-—1.

Proof. By Propositions 8.3, 8.5, (H1-1) holds on L;. By the definition of < and by the
fact that (H1-2) holds on Lo, (H1-2) holds on L.

Next we show that (H2a) holds. If £ =1 or £ = n then P has the structure in Prop.
6.2. So (H2a) holds. By the definition of L, a v-interval is a diamond when 2 < k < n—1.
So (H2a) holds.

Thus their finite convex subsets are minuscule. O

For a finite subset @) of Ly and v € N(I'), we can define a unique maximal (resp.
minimal) element ¢, (resp. b,) of @, since (H1-2) holds on Ly

Lemma 8.7. Let yo € Z and put Q = {p € Li|p < (k,y0)}. Then we have

Q={(a,b)]0<a<kb>y+k—a}U{(a,b)|k <a<n,b>yy+a—k}

Let xg € Z and put Q' :={p € Lglp > (n+ 1 — k,x9)}. Then we have

Q ={(a,b]0<a<n+1-kb<zo+k+a}
U{(a,b)in+1—-k<a<nb<zy+2n+2-—k—a}.

Proof. We can take a complete representative system {(v,m)|0 < v <n,m =wv (mod 2)}.
For 0 < a < n, we have

(av b) < (kvyO)

— (a,b)+jn+1,n+1-2k) < (k,yo) Ij€Z

— (a—k+jn+1),b—yo+jn+1-2k))<(0,0)3j €Z
(By Lemma 8.1)

— b—y+jn+1-2k)>|la—k+jn+1) 3je€Z.

Assume 0 < a < k. Then we have a — k+ j(n+1) <0 <= j < 0 or equivalently we
have a —k+j(n+1) >0 <= j > 1. For j <0, we have

b > y—jn+1—-2k)—a+k—jn+1)

= yt+k—a—-2jn+1—-k).

Hence the necessary and sufficient condition for (a—k+j(n+1),b—yo+k+j(n+1-2k)) <
(0,0) (for some j < 0) is
b> Yo + k — a.

For 7 > 1, we have

b > yo—jn+1-2k)+a—k+jn+1)
= yYyo+a—k+2j5k.
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Hence the necessary and sufficient condition for (a —k+j(n+1),b—yo+j(n+1—2k)) <
(0,0) (for some j > 1) is
b> Yo + a.

Thus we have b > yg+ k —a. Assume k <a <n. Wehavea—k+jn+1)>0 <
j > 0 or equivalently a — k+ j(n+1) <0 <= j < —1. For j > 0 we have

b > yo+a—k.
For 7 < —1 we have
b > yw—a+2n+2—k.

On the other hand, we have yg—a+2n+2—k > yo+a— k. Thus we have b > yo+a — k.
We can prove for the case for )’ in a similar way. O

Let zg,yo € Z satisfying xy > yo. For v € N(I')(= [0,n]), we define y, by putting
Yo =y +k—vif0<v<Ekandy, =y +a—kif k <v<n. We define z, by putting
Ty =20+ k+vif0<v<n+l—-—Fkandz, =z0+2n+2—k—vifn+1—-Lk<v<n.
Then we have the following,

Proposition 8.8.

[(n+1—Fkxo+n+1-k),(kyo—k)]={(v,m) € Lyly, <m < x,}
Proof. 1t is obvious if we take @ N @’ in Lemma 8.7. O

Proposition 8.9. Let 2 < k < n —1 and let QQ be a finite subposet of Ly satisfying
supp @ = I'. Forv € N(I'), put b, := (v,x,) and t, := (v,y,), where t, (resp b,) is a
mazximal (resp. minimal) element of P,.

Q is a convex subset if and only if Q) satisfies the followings,

e Q, ={(v,m) € Lg|ly, <m < z,},
e t, 1,1, are a covering pair,
e b, 1,b, are a covering pair,

foreach1 <v<n+1.

Proof. Let @ be a convex subset. Since (H1-2) holds on Ly, we have Q, = {(v,m) €
Lk‘yv <m < xv}-

Assume that (v —1,m), (v,l) € @ for some 1 < v < n. If we have m < [ then
there exists a saturated chain (v,l) - (v—1,1—-1) —» (v, —=2) —» -+ = (vym—1) —
(v —1,m) on L. Since @) is a convex subset, this saturated chain is contained in ). This
implies that we have —1 < y,_1 —v,. Next we assume m > [. Then we have y,_1 —y, <1
by a similar argument. So we have —1 < y,_1 —y, < 1. This implies that ¢,_; and ¢, are
a covering pair. By a similar argument, b,_; and b, are a covering pair.
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(0,m) = (n+1,m — 2k +n + 1) implies that we have |y, —yo + 2k —n — 1| = |z, —
xo + 2k —n — 1| = 1. This implies that ¢y and ¢,, (or by and b,) are a covering pair.

Conversely let Q be a subset satisfying the condition. We claim that ) is ob-
tained from [(n+ 1 —k,z0 +n+1— k), (k,yo — k)] by deleting its maximal or minimal
elements. Thus it follows that P is a convex subset by Propositions 3.4, 3.5.

For 1 < v < n if we have t,_; «— t, and t, — t,;1 then we construct another
poset Q' = Q, U{(v,y, —2)}. We note that @' satisfies the condition. We regard @ as
Q' \ {(c,y, —2)}. We also note that Qo = Q). By repeating this operation, we obtain
a poset ) such that tg — t; — -+ — &, and tp «— tgy1 «— - — t, «— th,y1 = to.
For 1 < v < n if we have b,y — b, and b, < b,y; then we obtain another poset
Q' U {(v,z,+2)}. By repeating this operation, we obtain a poset @' such that by «—

by « -+« «— byy1-x and byy 1 — -+ — b, — b, 1 = by. By Prop. 8.8, we have
Q =[n+1—-kxg+n+1—-k), (k,yo— k)|]. In particular Q)" is a convex subset. Thus
() is a convex subset. O

9 Classification of Minuscule Heaps over ['(A)

In this section, we classify the minuscule heaps over I' = I'(A,,) (Theorem 9.8). In previous
sections, we classified some minuscule heaps. The remaining case is that of minuscule heap
P over I' such that n > 2, supp P =T, and its v-intervals are of type (V3).

Let P be a minuscule heap over I' which is not totally ordered. First we observe
the structure of P, U P,y 1, where P, = {p € P|é(p) = i}. By (H1-2), P, U P4, is a
totally ordered set. We denote the number of element of P, (resp. Pii1) by r; (resp.
rit1). Therefore there are (r; — 1) i-intervals in P; U P;,;. We note that each i-interval
contains one element of P, ;. Thus we have r;;; > r; — 1. By a similar argument, we
have r; > r;,1 — 1. Hence we have r; +1 > r;. 1 > r; — 1.

Let us assume 7;11 = r; — 1. Now there are r; — 1(= r;11) i-intervals. Each i-interval
contains one element of P, ;. Since an i-interval is a diamond, if we take an element of P,
and an element of P, which is contained in the interval then they are a covering pair.
Let p1,pa, ..., pr be the elements of P in the increasing order and let q1, ¢, ..., ¢, be
the elements of P;;; in the increasing order. By the argument above, we have

Pr =7 q1 — P2 — 42— " — dr; gy — Pry-
By a similar argument if we assume ;11 = r; + 1 then we have
g1 — P1— 42 = P2 Py 7 gy
Next let us assume r; = r; ;. By a similar argument, we have either
G —P1—q—= P2 =y < DPry

or

P1<qr—pP2—Qq — = qp; = Pr; = Qr; -
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In the former case, [p,,_1,pr,] is an i-interval. Thus we have ¢,,,, — p,,. In the latter
case, we have p; — ¢;. At this point, we have completed to determine the structure of
P; U P, 1. We record these results in the following corollaries 9.1, 9.2,

Corollary 9.1. Let P be a minuscule heap with supp P =T such that P is not a totally
ordered set. Then t;, t;y1 (bi,biy1) are a covering pair for each i € N(I).

Corollary 9.2. Forv € N(I'), put r, := #P,. Then we have,

o ‘ri1 = 1;7 is equivalent to either ‘t; — t;vq and b; — b7 or ‘t; «— t;11 and
by < bip1”,

o 7,1 = “r; + 17 is equivalent to “t; — t;1 1 and b; «— bi117,

43 )

o r, 1 = “r; — 17 is equivalent to “t; «— t; 1 and b; — b1 ”.

We call the number of covering pairs satisfying t, — t,41 (1 < v < n-+1) the gradient
of P.

Proposition 9.3. Let P be a minuscule heap over I' which is not totally ordered and
supp =1I". Let k be a gradient of k. Then we have 2 < k <n — 1.

Proof. 1If k = 1 then there is a unique covering pair t;_1,t; such that t,_; — ;. On the
other hand, we have t;, 1 — t;,_o — ...t;41 — ;. It contradicts that ¢;,_;, ¢; are a covering
pair.

We can prove, for the case k = n, by using a similar argument. O

Let P be a not totally ordered minuscule heap with supp P = I' and let k£ be the
gradient of P. Define a map v : P — L; by putting,

v(ty) := (0,0),

V(t) — V(tlfl)—i—(l,—l) lf ti*l _>ti7
v v(tic) +(1,1)  ift_y — ¢,

and if p is j-th largest element in P, then
v(p) :==v(t,) + (0,25 — 2).

We note that v is an injection.

Proposition 9.4. Let t, (resp. to) be the unique mazximal element of P, (resp. Py). If
t, — to then we have v(t,) — v(ty). If t, « to then we have v(t,) «— v(to).

Proof. Assume t,, — to. Now we have #{1 < i <nlt; 1 — t;} =k — 1. Thus,

v(t,) vite) + (k—1)(1,—1)+ (n—k+1)(1,1)
= v(to) + (n,n — 2k +2)
= v(to) +(=1,1)
— v(tp).
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Assume t,, < ty9. Now we have #{1 <i < nlt,_y — t;} = k. Thus we have

v(ta) = v(to) +k(1,~1)+ (n—k)(1,1)
= v(ty) + (n,n — 2k)
= I/(to) + ( L, _1)
— v(t).
O
We note that v preserves the cover-relations on tg, ¢y, ..., t,.

Proposition 9.5. Let P be a minuscule heap over I' which is not totally ordered and let

k be the gradient of P. Let v be a map defined as above. Then Im v is a convex subset in
Ly.

Proof. Put @ := Im v. For 0 < v < n, @), satisfies the condition in Prop. 8.9 by the
definition of v. Let ¢/ be a maximal element of @Q,.

Then ¢, and ¢, are a covering pair since v preserves the cover-relations on o, ty, . . ., t,.
Finally we show that b, and b/, are a covering pair, where b is a minimal element of
Q.. Assume t, — t,.1. By Corollary 9.2, b, — b, implies r, = r,.1. Thus we
have By = v(byss) = Vturt) + (0,2051 — 1) = vlta) + (L,—1) + 0,200 — 1)) =
v(b,) + (1,-1) « v(b,) = b,. b, < by implies r,,; = 7, + 1. Now we have
b;+1 v(byy1) = v(t,) + (0, Q(Tv—i—l — 1)) =v(ty1) +(0,2r,) = v(t,) + (1, -1)+(0,2r,) =
v(t,) + (1, 1) + (0. 2(r, — 1)) = v(by) + (1,1) — v(b,) =1,

We can prove in the case t, < t,; by a similar argument. O

Proposition 9.6. Let P be a minuscule heap over I' which is not totally ordered and let
k be the gradient of P. Then P is isomorphic to Im v as a I'-labeled poset.

Proof. Let p,q be elements of P which satisfy p — ¢. Then we show that v(p) < v(q).
Assume p € P, and ¢ € P,.;. (We can similarly argue in the case p € P,11,q € P,.)
And we assume t, — t,y1. If p is the r-th element in P, by an increasing order then
q is the r-th element in P,.; by an argument in the preceding Corollary 9.1. Thus we
have v(q) = v(tesr) + (0,200 — 1)) = v(t,) + (1, —1) + (0,20r — 1)) = v(p) + (1, —1) +
(0,2(r —1)) = v(p) + (1, —1) < v(p). Hence we have v(q) > v(p). Assume t, « t,41. If
p is the r-th element in P, then ¢ is the (r — 1)-th element in P,,;. Thus we have v(q) =
V(tyr1) + (0,2(r — 2)) = v(t,) + (1,1) + (0,2(r — 2)) = v(t,) + (1,—1) + (0,2(r — 1)) =
v(p) + (1,—1) < v(p). So we have v(q) > v(p).

The arguments above show that p < ¢ implies v(p) < v(q).

Conversely we assume v(p) — v(gq). Since Im v is a convex subset, we have either
v(q) = v(p) + (1,—1) or v(q) = v(p) + (—1,—1). Assume that p € P,,q € P,41. (We
can prove in the case p € P,.1,q € P, by a similar argument.) If t, — t,,1 then we have
V(Q) = l/(p) + (17 _1) - V(tv) + (072(T - 1)) + (17 _1) = V(tv) + (17 _1) + (072(T - 1)) =
V(tyr1) + (0,2(r —1)). Thus ¢ is the r-th element in P,;;. By an argument in the
preceding Corollary 9.1, we have p — ¢. If t, < t,41 then ¢ is the (r — 1)-th element
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in P,y; by a similar argument. Thus we have p — ¢. Now Im v is a convex subset.
Hence if v(p) < v(q) then we can take a saturated chain from v(p) to v(¢). Thus we have
p=q O

By Propositions 9.5, 9.6, it follows that

Corollary 9.7. Let P be a minuscule heap with gradient k (2 < k <n — 1) which is not
totally ordered. Then P is isomorphic to a convex subset of Ly.

Our main theorem gives the converse claim (Theorem 9.8).

In fact, a totally ordered minuscule heap is also isomorphic to a convex subset of Lj
for k = 1,n. Let @ be a totally ordered minuscule heap of type (T1) (resp. (T2)). Define
amap v : Q — L, by the following. If the label of a maximal element of () is ¢ then
vig)=(i—j5+1,i—j+1) (resp. (i+j—1,i— 7+ 1) where g is the j-th element in Q
by an increasing ordering. It is obvious that () is isomorphic to Im v as a I'-labeled poset.
Now Im @ is a convex subset of L,, (resp. L).

We note that a minuscule heap with supp P # I' can be identified with a minuscule
heap over a Dynkin diagram of type A. Then it is isomorphic to a convex subset of Ly
for some 1 < k <n.

Theorem 9.8. Let n > 2. Let ' be a Dynkin diagram of type A,. A minuscule heap
P over I' is isomorphic to a convexr subset of Lj, where 1 < k < n is determined by P.
Conversely a finite convex subset of Ly is a minuscule heap.

Remark 9.9. If a minuscule heap P satisfies supp P # I then k£ in Theorem 9.8 is not
unique.
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