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Abstract

We consider the asymptotic behavior of the following model: balls are sequen-
tially thrown into bins so that the probability that a bin with n balls obtains the
next ball is proportional to f(n) for some function f . A commonly studied case
where there are two bins and f(n) = np for p > 1. In this case, one of the two
bins eventually obtains a monopoly, in the sense that it obtains all balls thrown
past some point. This model is motivated by the phenomenon of positive feedback,
where the “rich get richer.” We derive a simple asymptotic expression for the prob-
ability that bin 1 obtains a monopoly when bin 1 starts with x balls and bin 2 starts
with y balls for the case f(n) = np. We then demonstrate the effectiveness of this
approximation with some examples and demonstrate how it generalizes to a wide
class of functions f .

1 Introduction

We consider the following balls and bins model: balls are sequentially thrown into bins so
that the probability that a bin with n balls obtains the next ball is proportional to f(n)
for some function f . For example, a common case to study is when f(n) = np for some
constant p > 1. Specifically, we consider the case of two bins, in which case the state
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(x, y) denotes that bin 1 has x balls and bin 2 has y balls. In this case, the probability
that the next ball lands in bin 1 is xp

xp+yp .
This model is motivated by the phenomenon of positive feedback. In economics, positive

feedback refers to a situation where a small number of companies compete in a market
until one obtains a non-negligible advantage in the market share, at which point its share
rapidly grows to a monopoly or near-monopoly. One loose explanation for this principle,
commonly referred to as Metcalfe’s Law, is that the inherent potential value of a system
grows super-linearly in the number of existing users. Positive feedback also occurs in
chemical and biological processes. For example, the above model is used in [4] to develop
a model for neuron growth. For further examples, see [1]. Here we consider positive
feedback between two competitors, with the strength of the feedback modeled by the
parameter p, although our methods can also easily be applied to similar problems with
more competitors.

It is known that for the model above that when p > 1 eventually one bin obtains a
monopoly in the following sense: with probability 1 there exists a time after which all
subsequent balls fall into just one of the bins [2, 7]. Given this limiting behavior, we
now ask what is the probability that bin 1 will eventually obtain the monopoly starting
from state (x, y). We provide an asymptotic analysis, based on examining the appropriate
scaling of the system. This approach is reminiscent of techniques used to study phase
transitions in random graphs, as well as other similar phenomena.

Our main result for the case where f(n) = np and p > 1 can be stated as follows. Let
a = (x + y)/2. We show that in the limit as a grows large, when x = a + λ√

4p−2

√
a, the

probability that x obtains the monopoly converges to Φ(λ), where Φ is the cumulative
distribution function for the normal distribution with mean 0 and variance 1. Throughout
the paper, we treat quantities such as x as integers, as adding a ceiling or a floor does not
change the asymptotic results.

The rest of the paper proceeds as follows. We first prove the theorem above for the
specific case of f(n) = np and p > 1. We show that the asymptotic approximation is
extremely accurate with a pair of numerical examples. We follow with a more general
statement that can be applied to a larger family of functions f . Related results and
possible extensions are discussed in final section.

2 The case of f(n) = np

This section is devoted to the following theorem:

Theorem 1 For the balls-and-bins process described above with f(n) = np and p > 1,
from the state (x, y) with a = x+y and x = a+ λ√

4p−2

√
a, the probability that bin 1 obtains

the eventual monopoly is Φ(λ) + O(1/
√

a).

Proof: The argument utilizes an interesting embedding of the throwing process into
time, apparently originally due to Rubin (as reported by Davis in [2]) and rediscovered by
Spencer and Wormald [7]. With this embedding, if bin 1 has z balls at time t, it receives
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its next ball at a time t + Tz, where Tz is a random variable exponentially distributed
with mean z−p. Similarly, if bin 2 has z balls at time t, it receives its next ball at a time
t+Uz , where Uz is a random variable exponentially distributed with mean z−p. From the
properties of the exponential distribution, we can deduce that this maintains the property
that in any state (x, y), the probability that the next ball lands in bin 1 is proportional
to xp. Specifically, the probability that the minimum of the two exponentially distributed
random variables Tx with mean x−p and Uy with mean y−p is Tx with probability xp

xp+yp .
Moreover, from the memorylessness of the exponential distribution, when a ball arrives
at state (x, y) to bin 1 (respectively, bin 2), the time Uy (Tx) until the next ball arrives
at bin 2 (bin 1) is still exponentially distributed with the same mean.

The explosion time for a bin is the time under this framework when a bin receives an
infinite number of balls. If we begin at state (x, y) at time 0, the explosion time F1 for
bin 1 satisfies

F1 =
+∞∑
j=x

Tj =
+∞∑

j=a+λ
√

a/(4p−2)

Tj.

Similarly, the explosion time F2 for bin 2 is

F2 =
+∞∑
k=y

Uj =
+∞∑

k=a−λ
√

a/(4p−2)

Uk.

Note that E[F1] and E[F2] are finite; indeed, the explosion time for each bin is finite with
probability 1. Also, F1 and F2 are distinct with probability 1. This is easily seen by
noting that F1 = F2 if and only if

Tx =

+∞∑
k=y

Uk −
+∞∑

j=x+1

Tj ,

a probability 0 event. It is therefore evident that the bin with the smaller explosion time
at some point obtains all balls thrown past some point, as first noted by Rubin in [2].

We first demonstrate that for sufficiently large a, F1 and F2 are approximately normally
distributed. This would follow immediately from the Central Limit Theorem if the sum
of the variances of the random variables Tj grew to infinity. Unfortunately,

+∞∑
j=x

Var[Tj ] =
+∞∑
j=x

j−2p < +∞,

and hence standard forms of the Central Limit Theorem do not apply.
Fortunately, we may apply Esséen’s inequality, a variation of the Central Limit The-

orem, which can be found in, for example, [5][Theorem 5.4].
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Lemma 1 [Esséen’s inequality] Let X1, X2, . . . , Xn be independent random variables with
E[Xj ] = 0, Var[Xj ] = σ2

j , and E[|Xj |3] < +∞ for j = 1, . . . , n. Let Bn =
∑n

i=0 σ2
j ,

F (x) = Pr(B
−1/2
n

∑n
j=1 Xj < x), and L = B

−3/2
n

∑n
j=1 E[|Xj |3]. Then

sup
x

|F (x) − Φ(x)| ≤ cL

for some universal constant c.

In our setting, let Xj = Tx+j−1 − (x + j − 1)−p. We note that there are no problems
applying Esséen’s theorem to the infinite summations of our problem. Consider

F x(z) = Pr


∑+∞

j=x(Tj − j−p)√∑+∞
j=x j−2p

< z


 .

That is, F x(z) is the probability that F1, appropriately normalized to match a standard
normal of mean 0 and variance 1, is less than or equal to z. Then we have

sup
z

|F x(z) − Φ(z)| ≤ O(1/
√

x).

Hence F x(z) approaches a normal distribution as x grows large.
We also have

E[F1] =

+∞∑
j=x

E[Tj ] =

+∞∑
j=x

1

jp
=

x1−p

p − 1
+ O(x−p),

and

Var[F1] =
+∞∑
j=x

Var[Tj ] =
+∞∑
j=x

1

j2p
=

x1−2p

2p − 1
+ O(x−2p).

We wish to determine the probability that F1−F2 < 0. Now F1−F2 is (approximately)
normally distributed with mean µ where

µ = E[F1] − E[F2] = −2
λ√

4p − 2
a1/2−p + O(a−p)

and variance σ2 where

σ2 = Var[F1] + Var[F2] =
2

2p − 1
a1−2p + O(a−2p).

Hence the probability that F1 − F2 < 0 is Φ(λ + O(1/
√

a)) + O(1/
√

a), which is just
Φ(λ) + O(1/

√
a). 2
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3 Numerical Examples

We provide an example demonstrating the accuracy of Theorem 1 in Table 1. We consider
initial states with 200 balls in the system, with the first bin containing between 101 and
110 balls. We estimate the exact probability that the first bin achieves monopoly as
follows. We first calculate the exact distribution when there are 160,000 balls in the
system for the case p = 2, using the recursive equations described in [3]. With this data,
we make the very accurate approximation bin 1 eventually achieves monopoly if it has
53% of the balls at this point. We also apply symmetry for the remaining cases; if at this
point bin 1 has 80,000 ≤ k < 84,800 balls with probability p1 and bin 2 has k balls with
probability p2 < p1, then bin 1 reaches monopoly at least 1/2 out of this p1 + p2 fraction
of the time. This approach is sufficient to accurately determine the probability that the
first bin eventually reaches monopoly to four decimal places. Comparing these results
demonstrates the accuracy of the normal estimate. This accuracy is somewhat surprising,
as our bound for the error of the estimate is O(1/

√
a); we suspect tighter provable bounds

may be possible. Table 2 shows similar results for the case of p = 1.5. Here we calculate
exactly the distribution with 640,000 balls in the system, use a 52% cutoff to estimate
the probability of monopoly, and again use symmetry; the resulting numbers are correct
to four decimal places. Again, the normal estimate provides a great deal of accuracy.

x 101 102 103 104 105
Calc. 0.5955 0.6870 0.7682 0.8361 0.8896
Φ(λ) 0.5970 0.6883 0.7693 0.8370 0.8902

x 106 107 108 109 110
Calc. 0.9292 0.9569 0.9751 0.9863 0.9929
Φ(λ) 0.9297 0.9572 0.9753 0.9865 0.9930

Table 1: A calculation vs. the asymptotic estimate of our theorem when a = 100 and
p = 2.

x 101 102 103 104 105
Calc. 0.5794 0.6557 0.7261 0.7886 0.8419
Φ(λ) 0.5793 0.6554 0.7257 0.7881 0.8413

x 106 107 108 109 110
Calc. 0.8854 0.9197 0.9456 0.9644 0.9775
Φ(λ) 0.8849 0.9192 0.9452 0.9641 0.9772

Table 2: A calculation vs. the asymptotic estimate of our theorem when a = 100 and
p = 1.5.
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Feedback
(f = f(n))

Scale
(q = q(a))

np lnα n
√

a
4p−2

np ln n ln lnα n
√

a
4p−2

np+lnα n
√

a
4(α+1) lnα a

Table 3: Different feedback functions f and the asymptotic form of their corresponding scale
functions q. Here p and α can be any constants for which the corresponding feedback function
satisfies condition (1). The verification of the hypotheses of Theorem 2 is left to the reader.

4 A more general argument

We now prove a generalization of Theorem 1 to processes where the strength of feedback
is modeled by a positive non-decreasing function f : N → (0, +∞). More precisely, the
probability of bin 1 receiving the next ball when the current state of the system is (x, y)

is f(x)
f(x)+f(y)

. In this case we say that f is the feedback function of the process. It is known
that any such f that satisfies

+∞∑
n=1

1

f(n)
< +∞ (1)

gives rise to a process for which with probability 1 one of the bins will receive all balls
beyond a certain finite time [2, 7]. The aim of this Section is to characterize the asymptotic
behavior of the probability of bin 1 achieving monopoly in a way that is analogous to
Theorem 1.

Our main result is more easily expressed when f is defined over all the positive real
numbers and is continuously differentiable, in which case we say that q = q(a) is a scale

function if q(a) ∼
√

a
4a(ln f)′(a)−2

as a → +∞.1 Theorem 2 states that if the process starts

from initial state (x, y) with a = x+y
2

, x = a + λq(a), and a large, the probability of
monopoly by bin 1 is approximately Φ(λ). This is true whenever f satisfies certain tech-
nical conditions on its logarithmic growth rate. This result subsumes the f(n) = np case
treated in Theorem 1 (except for the error bounds), and although it is not completely gen-
eral, it characterizes the scaling behavior of the monopoly probability in most interesting
examples with sub-exponential growth, such as the ones given in Table 3 above.

The remainder of this Section is devoted to the proof of Theorem 2. We begin with
a probabilistic result (Lemma 2) that provides sufficient conditions under which scaling
behavior can be verified. The subsequent proof of Theorem 2 is analytic and consists
of showing that the conditions of Lemma 2 are satisfied whenever some easily verifiable
conditions on f hold.

1We shall sometimes speak of the scale function where in fact we are only referring to one of the many
possible scale functions, all of which are asymptotically equivalent.
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4.1 Sufficient conditions for scaling behavior

We generalize Theorem 1 with the following lemma.

Lemma 2 Let mon(x, y) be the probability that bin 1 achieves monopoly (i.e. receives
all balls beyond a certain time) in a balls-and-bins process started from state (x, y) whose
feedback function f : N → (0, +∞) satisfies condition (1). Let

Sr(n) =
∑
j≥n

1

f(j)r
(n ∈ N, r ∈ {1, 2, 3});

q0(n) =f(n)

√
S2(n)

2
(n ∈ N).

Choose some function q = q(n) and a fixed λ > 0. Assume that there is a function
0 ≤ er(n) � 1 as n → +∞ such that

0 ≤
∣∣∣∣ q(n)

q0(n)
− 1

∣∣∣∣ ≤ er(n); (2)

0 ≤
∣∣∣∣f(n ± λq(n))

f(n)
− 1

∣∣∣∣ ≤ er(n); (3)

0 ≤ S3(n)

S2(n)3/2
≤ er(n). (4)

Then
mon(a + λq(a), a − λq(a)) = Φ(λ) + O (er(n)) as a → +∞.

Proof: We essentially retrace the steps of the proof of Theorem 1. The exponential
embedding technique again applies. We now assume that if bin 1 has z balls at time t
receives its next ball at time t + Tz, where Tz is exponential with mean f(z)−1, and we
have similar random variables Uz for bin 2. As before, if we start from state (x, y), the
elementary properties of the exponential distribution imply that the probability of the
first arrival happening at bin 1 is

Pr(Tx = min{Tx, Uy}) =
f(x)

f(x) + f(y)
.

The memorylessness of the exponential implies that this same property holds for all sub-
sequent arrivals, which are therefore distributed as the original balls-and-bins process.
The explosion times F1 and F2 are again defined to be the times at which respectively bin
1 and bin 2 receive infinitely many balls in this modified framework. Hence

F1 =

+∞∑
j=x

Tj,
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and F1 is almost surely finite by condition (1):

E[F1] =
+∞∑
j=x

1

f(j)
< +∞.

Of course similar equations hold for F2. It is clear that with probability 1 F1 6= F2 and
that bin 1 receives all balls beyond a certain time if and only if F1 < F2. Hence

mon(x, y) = Pr(F1 < F2). (5)

We compute the asymptotics of mon(x, y) with x = a + λq(a) and y = a − λq(a)
as a → +∞, where λ > 0 is fixed, under assumptions (2), (3) and (4). As in the
previous proof, we use Esséen’s Inequality (Lemma 1) to prove that F1 and F2 can both
be approximated in distribution by Gaussian random variables with appropriate mean
and variance. For F1 this can be done by setting (using the notation of Lemma 1)

Xj = Tj − 1

f(x − 1 + j)
(j = 1, 2, 3, . . . )

and again noting that there are no problems in applying the Lemma to this infinite
sequence of random variables. Since

+∞∑
j=x

Var[Xj] =

+∞∑
n=x

1

f(n)2
= S2(x),

+∞∑
j=x

E[|Xj|3] = O

(
+∞∑
n=x

1

f(n)3

)
= O (S3(x))

and by assumption (3), for r = 2, 3,

Sr(x) = Sr(a + λq(a)) = (1 + O (er(a)))Sr(a),

the error term in Esséen’s inequality is of the order of

L =
S3(x)

S2(x)3/2
= (1 + O (er(a)))

S3(a)

S2(a)3/2
= O (er(a)) .

This implies that the distribution of F1 is O (er(a))-close to the distribution of a normal
random variable with mean and variance given by

E[F1] = S1(x) and Var[F1] = S2(x) = (1 + O (er(a)))S2(a). (6)

A analogous statement holds for F2. As a result, the distribution of F1 − F2 is O (er(a))
close to that of a normal random variable with mean and variance given by

µ = E[F1] − E[F2] = −
a+λq(a)−1∑
n=a−λq(a)

1

f(n)
= −(1 + O (er(a)))

2λq(a)

f(a)
,
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σ2 = Var[F1] + Var[F2] = (1 + O (er(a)))2S2(a).

It follows that

mon(x, y) = Pr(F1 − F2 < 0) = Φ
(
−µ

σ

)
+ O (er(a)) .

By (2) and the definition of q0

−µ

σ
= (1 + O (er(a)))

2λq0(a)

f(a)
√

2S2(a)
= (1 + O (er(a)))λ.

The above finally implies

mon(x, y) = Φ ((1 + O (er(a)))λ) + O (er(a)) = Φ(λ) + O (er(a)) ,

finishing the proof. 2

4.2 The general result

Let f : N → (0, +∞) be a a feedback function (i.e. positive and non-decreasing). Letting
g(n) = ln f(n), g can be easily extended to a piecewise affine function over all positive real
numbers by linear interpolation. As a result, all feedback functions f can be extended to
piecewise smooth functions on the positive real numbers. That is the class of functions
to which Theorem 2 applies.

Theorem 2 Assume that a function f is a positive, non-decreasing2, piecewise smooth
function defined on the positive real numbers, and assume that it satisfies (1). Define
g(x) = ln f(x) and h(x) = xg′(x), where g′ is the right derivative of g. Assume that

lim inf
x→+∞

h(x) >
1

2
, lim

x→+∞
g′(x) = lim

x→+∞
h(x)

x
= 0, (7)

and also that there is a constant C > 0 such that for all 0 < ε < 1/2 and all x big enough

sup
x≤t≤x1+ε

∣∣∣∣ h(t)

h(x)
− 1

∣∣∣∣ ≤ Cε. (8)

It then holds that
√

a
4h(a)−2

is the scale function of the balls-and-bins process with feedback

function f . That is, if

q(a) ∼
√

a

4h(a) − 2
as a → +∞,

then for any fixed λ > 0 the probability of monopoly by bin 1 in such a process started
from state (x, y) = (a + λq(a), a − λq(a)) converges to Φ(λ) as a → +∞.

2Condition (7) implies that f = f(x) is in fact increasing in x for x big enough.
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Proof: We shall check that the conditions of Lemma 2 are satisfied. The crucial step
in checking these conditions is to estimate S2(n) and S3(n), which we accomplish by
evaluating corresponding integrals. Let r ≥ 2 and define

Ir(a) =

∫ +∞

a

dx

f(x)r
=

∫ +∞

a

dx

erg(x)
.

In what follows we will prove that

Sr(a) ∼ Ir(a) ∼ a

(rh(a) − 1)f(a)r
as a → +∞.

By integration by parts,

Ir(a) =
x

erg(x)

]x=+∞

x=a
+ r

∫ +∞

a

xg′(x) dx

erg(x)
= − a

f(a)r
+ r

∫ +∞

a

h(x) dx

erg(x)
.

Here we have used the fact that

f(x)r � x as x → +∞ for r ≥ 2, (9)

which can be deduced from the fact that lim infx→+∞ h(x) > 1
2
. We now make use of the

following claim, which we prove subsequently.

Claim 1 As a → +∞∫ +∞

a

h(x) dx

erg(x)
∼ h(a)

∫ +∞

a

dx

erg(x)
= h(a)Ir(a). (10)

2

Claim 1 implies that a → +∞

Ir(a) = − a

f(a)r
+ (1 + o(1))rh(a)

∫ +∞

a

dx

erg(x)
= − a

f(a)
+ (1 + o(1))rh(a)Ir(a).

Assumption (7) tells us that rh(a) > 1 for r ≥ 2 and a big enough. This permits us to
write

Ir(a) = (1 + o(1))
a

(rh(a) − 1)f(a)r
.

Since by (7), a � h(a), we have

Ir(a) � 1

f(a)r
.

Noting that |Sr(a) − Ir(a)| ≤ 1
f(a)r , we can finally conclude

Sr(a) ∼ Ir(a) ∼ a

(rh(a) − 1)f(a)r
as a → +∞ (r ≥ 2). (11)
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This gives us the asymptotic form of S2 and S3 as in Lemma 2. Moreover, we can compute

q0(n) = f(n)

√
S2(n)

2
∼
√

n

4h(n) − 2
.

All that remains to be shown is that the assumptions of Lemma 2 hold in this case.
For convenience we simply show that er(a) = o(1). To this end, we let

q(n) ∼
√

n

4h(n) − 2
as n → +∞,

and note that this guarantees the validity of (2). To finish the proof, we show that as
a → +∞,

S3(a) � S2(a)3/2; (12)

∀λ > 0 f(a ± λq(a)) ∼ f(a). (13)

The first of these equations follows from (11) and equation (7) ( a
h(a)

� 1).

S3(a) ∼ a

(3h(a) − 1)f(a)3
� S2(a)3/2 ∼ 1

f(a)3

(
a

2h(a) − 1

)3/2

.

To prove (13), fix an arbitrary λ > 0. By the definition of h,

|g(a ± λq(a)) − g(a)| ≤
∣∣∣∣∣
∫ a±λq(a)

a

h(t)
dt

t

∣∣∣∣∣ ≤ ln

(
a + λq(a)

a − λq(a)

){
sup

a−λq(a)≤t≤a+λq(a)

h(t)

}
.

Since q(a) = O (
√

a), (8) implies

sup
a−λq(a)≤t≤a+λq(a)

h(t) ∼ h(a).

We conclude (again using q(a) = O (
√

a)) that

|g(a ± λq(a)) − g(a)| ∼ h(a) ln

(
a + λq(a)

a − λq(a)

)
= O

(
h(a)

a
q(a)

)
= O

(√
h(a)

a

)
= o(1),

because a � h(a) by (7). Hence

f(a ± λq(a))

f(a)
= eg(a±λq(a))−g(a) = eo(1).

This proves (13) and finishes the proof. 2
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To conclude, we now prove Claim 1.
Proof: [of Claim 1] We first show that for any fixed 0 < ε < 1

2
, as a → +∞,

∫ a1+ε

a
h(x) dx

erg(x)∫ +∞
a

h(x) dx

erg(x)

∼ 1. (14)

A change of variables permits us to rewrite∫ +∞

a1+ε

h(x) dx

erg(x)
= (1 + ε)

∫ +∞

a

h(u1+ε)uε du

erg(u1+ε)
. (15)

Equation (8) implies that for all u big enough, h(u1+ε) ≤ (1 + Cε)h(u). Moreover, (7)
allows us to choose an a such that h(u) ≥ h0 > 1

2
for all u ≥ a, which implies

g(u1+ε) − g(u) =

∫ u1+ε

u

g′(u)du ≥ inf
t≥a

h(t)

∫ u1+ε

u

du

u
= h0ε lnu.

We therefore find
erg(u1+ε) ≥ urh0εerg(u). (16)

Also note rh0ε > ε.
Plugging this into (15) yields the following estimate as a → +∞:∫ +∞

a1+ε

h(x) dx

erg(x)
≤ (1 + ε)(1 + Cε)

∫ +∞

a

h(u)uε du

erg(u)urhoε
= O

(
aε−rh0ε

) ∫ +∞

a

h(u) du

erg(u)
.

By (16), this implies ∫ +∞

a

h(x) dx

erg(x)
∼
∫ a1+ε

a

h(x) dx

erg(x)

as stated. Now note that, by assumption (8) on h,

(1 − Cε)h(a)

∫ a1+ε

a

dx

erg(x)
≤
∫ a1+ε

a

h(x) dx

erg(x)
≤ (1 + Cε)h(a)

∫ a1+ε

a

dx

erg(x)

and by a similar reasoning as above

∫ a1+ε

a

dx

erg(x)
∼
∫ +∞

a

dx

erg(x)
.

Putting these facts together finishes the proof of the claim. 2
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5 Final remarks

We have provided a full description of scaling behavior of the probability of monopoly for
a broad class of feedback functions satisfying condition (1), which corresponds to p > 1 in
the f(n) = np case. One is tempted to ask whether similar results hold in the 0 < p ≤ 1
range; in particular, it seems especially intriguing that the scale function

q(a) =

√
a

4p − 2

for the p > 1 case can in fact be defined for all p > 1/2. It turns out [4] that any feedback
function f satisfying

+∞∑
n=1

1

f(n)2
< +∞ (17)

yields a process such that with probability 1, one of the bins has more balls than the
other at all sufficiently large times. In forthcoming work, Oliveira and Spencer [6] prove
that, if f(n) = np, p > 1/2, the probability a bin obtains eventual leadership has a

standard Gaussian limit precisely at the λ
√

a
4p−2

scale, and similar results hold in the

general context of Theorem 2 if assumption (1) is dropped. They also show that the limit
of the leadership probability, which is defined to be the probability that bin 1 has more
balls at all subsequent times, is 2Φ(λ) − 1 under the same scaling.

Many other natural questions remain open. For instance, are our methods applicable
to related non-linear models for Web graphs [3]? It seems likely that this problem requires
improvements on the error bounds for Gaussian approximation, and our numerical data
suggests that this is indeed possible. However, it is also conceivable that large deviation
bounds are enough for treating many related problems. Finally, direct combinatorial
proofs (i.e. without resort to the exponential random variables) of the current results
presented here would also be of great interest.
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