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Abstract

A configuration (pq, nk) is a collection of p points and n straight lines in the
Euclidean plane so that every point has q straight lines passing through it and
every line has k points lying on it. A configuration is astral if it has precisely
b q+1

2 c symmetry classes (transitivity classes) of lines and bk+1
2 c symmetry classes of

points. An even astral configuration is an astral configuration configuration where
q and k are both even. This paper completes the classification of all even astral
configurations.

1 Introduction

A combinatorial configuration (pq, nk) is a collection of p “points” and n collections of
points, called “lines”, so that each “point” is contained in q of the “lines” and each “line”
contains k of the “points”. Combinatorial configurations have been studied since the mid-
1800s (see, e.g., [5]). Much of the study of configurations, both in the past (see [5]) and
recently ([4]), has focused on the question of enumerating all combinatorial configurations
and determining whether the combinatorial configurations have any geometric realization
(e.g., [13]). However, even when it has been determined that combinatorial configurations
do have a geometric realization, little investigation has been done as to how ‘nice’ such
a realization can be. For example, the Pappus configuration, a (93, 93) configuration
(usually denoted simply as (93)), admits geometric realizations that have no nontrivial
Euclidean symmetries, as well as realizations with quite a lot of symmetry (see Figure 2).

There are a few papers that focus on geometrically realizable configurations, as
opposed to (or in addition to) combinatorial configurations; for example, see [6], [8], [9],
and [5]. In [1], a particular kind of highly symmetric (n4) configurations, called astral
configurations, were classified; this paper will classify (p2s, q2t) astral configurations.
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Figure 1: An astral configuration with 24 points and 24 lines, with 4 points on each line
and 4 lines through each point.

Figure 2: Two embeddings of the Pappus configuration, one with nontrivial geometric
symmetries and one without.

2 Definitions and preliminary results

A (pq, nk) configuration is a collection of p points and n straight lines, in the Euclidean
plane, with the condition that every point has q lines passing through it and every line has
k points lying on it. Such a configuration is astral if the set of Euclidean isometries of the
plane that map the configuration to itself partitions the lines into b(q + 1)/2c symmetry
classes and the points into b(k + 1)/2c symmetry classes. This is the least number of
symmetry classes (i.e., the most symmetry) that a configuration can have. To see this,
note that if a straight line in the plane has k points on it, at most two of the points can
be in the same symmetry class (see Figure 3), so the configuration must have at least
b(k + 1)/2c symmetry classes of points, and similarly with the lines, since two lines can
intersect only at a single point. (Note that the symmetry classes being considered are
precisely the transitivity classes of the points or lines under the appropriate rotations and
reflections of the plane.)
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Figure 3: At most two points can be in the same symmetry class

Note that by counting incidences, pq = nk, so if p = n then q = k. An (nk, nk)
configuration is denoted (nk). For example, Figure 1 shows a configuration with 24 points
and 24 lines, with each point incident to four lines and each line incident with four points.
Moreover, it has precisely two symmetry classes of points and two symmetry classes
of lines. Hence, it is an astral configuration (244). In general, diagrams in this paper
will distinguish the symmetry classes by color. In Figure 1, the colors used for the two
symmetry classes of points are green and blue, and the colors used for the two symmetry
classes of lines are red and black.

Often, one is interested only in the number of points on a line and the number
of lines through a point, rather than in how many points and lines there are in the
configuration. A (pq, nk) configuration is called a configuration of class [q, k], or, usually,
a [q, k] configuration, when we are only interested in indicating the number of points on
each line and the number of lines passing through each point, rather than in the total
number of points and lines. An astral configuration of class [q, k] is called even if both q
and k are even; otherwise, the configuration is called odd.

In an astral configuration with q lines incident with each point, where q is odd, there
is one symmetry class of lines, called the special symmetry class of lines, with exactly
one of its members incident with each point, while in all the other symmetry classes of
lines, there are exactly two lines incident with each point. Similarly, in an astral [q, k]
configuration with k odd, the special symmetry class of points is the symmetry class of
points with exactly one point in this class incident with each line. It follows from the
definitions of astral and even that in an even astral configuration, no symmetry classes
are special. Astral configurations come in two varieties. An astral [q, k] configuration
of type 1 satisfies the condition that each of its symmetry classes of points forms the
vertices of a regular polygon, all of which are concentric; such a configuration is denoted
[q, k]1. In an astral type 2 configuration, there is some symmetry class of points which
does not form the vertices of a regular polygon; astral type 2 configurations are denoted
[q, k]2. The configuration in Figure 1 is a [4, 4]1 configuration, while Figure 4 shows a
[4, 4]2 configuration.

The size of a type 1 configuration is the cardinality of the largest symmetry class of
points that form the vertices of a regular polygon.

One method of constructing type 1 astral configurations is to consider one of the
symmetry classes of points as the vertices of a regular polygon; in a type 1 configuration,

the electronic journal of combinatorics 11 (2004), #R37 3



Figure 4: A [4, 4]2 astral configuration.

the lines will be diagonals of the polygon. Given a diagonal of a regular polygon, its span
is the (smaller, usually) number of sides of the polygon intercepted by the diagonal.

Lemma 2.1. If no astral [2s, 2t] configuration exists, then no astral [2(s + x), 2(t + y)]
configuration exists either, where x, y = 0, 1, 2, . . ..

Proof. Suppose there exists an astral [2(s + x), 2(t + y)] configuration. Remove all but s
symmetry classes of lines and all but t symmetry classes of points from the [2(s+x), 2(t+y)]
configuration. The resulting configuration is a [2s, 2t] configuration.

2.1 Multiples of a configuration

Given a type 1 astral configuration of size m with the symmetries of a regular m-gon, then
additional type 1 configurations may be formed by adding r − 1 equally-spaced copies of
the original configuration—i.e., the new configuration will have the jth copy rotated by
2jπ
mr

radians. This new configuration is called an r-multiple, or, more simply, a multiple
of the original configuration; Figure 5 shows an example. Note that any [2s, 2t]1 astral
configuration of size m will have the symmetries of a regular m-gon.

In addition, taking two copies of a size m type 1 configuration, rotating one through
any angle α which is not an integer multiple of π

m
, and placing it concentrically on the

first one yields a type 2 astral configuration; that such a configuration is astral is shown
in Lemma 2.2. The type 2 configurations produced from this process are called ordinary
type 2 configurations; other type 2 configurations are called extraordinary. With this
terminology, the configuration in Figure 4 is an ordinary [4, 4]2 configuration formed from
two copies of the configuration in Figure 1.

Lemma 2.2. Ordinary [q, k]2 configurations are astral.
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Figure 5: A (964) configuration, formed from four evenly spaced multiples of the [4, 4]
configuration shown in Figure 1; one copy is shown with thicker lines.

Proof. The ordinary configuration (the ‘main configuration’) is constructed from two
smaller [q, k]1 configurations, called the subconfigurations. Suppose that the two sub-
configurations are colored red and black and that each subconfiguration is of size m. The
symmetries of the main configuration consist of rotations by multiples of 2π

m
and reflec-

tions through the mirrors that are at an angle halfway between corresponding points of
the red and black configurations. Any point in a symmetry class in a subconfiguration
can be rotated onto any other point in the same symmetry class of the same subconfigu-
ration. Reflection through a mirror sends black points to red points of the corresponding
symmetry class, so any point in a symmetry class of a subconfiguration may be mapped
to any other point in that symmetry class or in the corresponding symmetry class of the
other subconfiguration. Similarly, for the lines of the configuration, rotation maps any
line in a subconfiguration’s symmetry class to any other line in that class, and reflection
maps black lines to red lines.

2.2 Diametral points

If the vertices of an m-gon are consecutively labelled v0, . . . , vm−1, a diagonal has span
c if it connects vertices vi and vi+c, where indices are taken modulo m and in general,
2 ≤ c ≤ m/2. In Figure 1, the red lines may be viewed as diagonals of the dodecagon of
span 4 and the blue lines as diagonals of span 5. Given a regular polygon and a diagonal
of span c, label the intersection points of the diagonal with other span c diagonals as
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Figure 6: Examples of the symbols cd; in this case c = 4.

c1, c2, . . . , cbm
2
c, counted from the midpoint of the diagonal and travelling in one direction,

say, to the left. Note that considering the set of points with symbol ci, if i > c, the point
is outside the polygon, for i = c the point is a vertex of the polygon, and if i < c the
point is interior to the polygon; see Figure 6. Also, the point with symbol c−d is the d-th
intersection point along the span c diagonal counted to the right of the the midpoint.

A line is diametral with respect to a regular convex m-gon if it passes through the
center of the m-gon and one of the vertices of the polygon. Note that if m is even, diametral
lines correspond to the ordinary notion of diameters of a regular polygon, i.e, they pass
through two vertices and the center of the polygon and are lines of span m

2
. A line in

a type 1 configuration is diametral if it is diametral for the underlying regular polygon
formed by the ring of vertices which are farthest from the center of the configuration. A
line in a configuration is semidiametral if it passes through the center of the m-gon and
lies halfway between two diametral lines. A point is diametral if it lies on a diametral
line, and a point is semidiametral if it lies on a semidiametral line.

Lemma 2.3. Choose a span c diagonal of a regular, convex m-gon, and label the inter-
section points of the diagonal with other span c diagonals as c1, c2, . . . , cc, . . . , cbm

2
c. If m

is even, the intersection points ci which are diametral are precisely those for which the
parity of c and i is the same, and the other intersection points are semidiametral. If m is
odd, all points ci are diametral.

Proof. Note that the geometric object produced by taking all span c diagonals of an m-
gon has the dihedral symmetry group of an m-gon. Without loss of generality, we may
assume that the m-gon is centered at the origin in R

2 and that one vertex is located at
the point (1, 0). In this case, the lines of reflective symmetry (mirrors) are those that pass
through the origin and have an angle of qπ

m
for q = 0, 1, 2, . . . , m − 1. Every intersection

point ci lies on one of the lines of reflective symmetry of the figure.

Case 1: m is even.
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If q is also even, the corresponding mirrors are diametral lines, while if q is odd, the
mirrors are semidiametral lines; thus, the intersection points alternate between lying on
a diametral line and not lying on a diametral line. Finally, if c is even, the midpoint of a
span c diagonal lies on a diameter, while if c is odd, it does not.

Case 2: m is odd.

If m is odd, all the lines of reflective symmetry (mirrors) are diametral lines as defined
above. Every point ci lies on one of the mirrors, so all the points ci are diametral.

2.3 Polars

In the study of combinatorial configurations and of (geometric) configurations in the
projective plane, if a [q, k] configuration exists, then a [k, q] configuration exists as well,
by duality. One may view the projective plane as the extended Euclidean plane, i.e.,
the Euclidean plane with the line at infinity appended, and define a configuration to
be astral if isometries of the Euclidean plane that send points at infinity to points at
infinity partition the points and lines (including those that may be at infinity) into the
required number of symmetry classes. Given an astral [q, k] configuration in the extended
Euclidean plane, a new astral [k, q] configuration may be constructed by taking the polar
of the configuration with respect to a circle that passes through one of the symmetry
classes of finite points. The resulting configuration is astral in the ordinary Euclidean
plane as long as the original configuration contained no lines passing through the center
of the configuration. In particular, since an even astral configuration must have two lines
from each symmetry class passing through each point, no members of a symmetry class of
lines are diametral lines, so the polar of an astral [2s, 2t] configuration is an astral [2t, 2s]
configuration.

2.4 Type 2 distributions of points

In a type 2 configuration, there is some symmetry class of points which does not form
the vertices of a regular polygon. The only other possible arrangement is that they are
dispersed ‘long-short’ equally around the circle (see Figure 7), since a finite set of points
either has only rotational symmetry or it has dihedral symmetry. This second distribution
is called a type 2 distribution of points. Note that this forces the number of points, say
n = 2m, in the symmetry class to be even. If every other point is considered to be colored
red, with the others black, the m red points are the vertices of a regular polygon, as are
the m black points, and the red points are formed by rotating the black points through
an arbitrary angle which is not an integer multiple of π/m, since rotation by any multiple
of π/m would yield equally-spaced points.

Lemma 2.4. Given a type 2 distribution of 2m points in a [2s, 2t] configuration with
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Figure 7: A type 2 distribution of points

every other point colored black or red as above, lines in a symmetry class must connect
points of the same color.

Proof. In a [2s, 2t] configuration, every symmetry class of lines has the property that two
lines in the class are incident with each point.

Choose a symmetry class, and suppose that the lines of that symmetry class connect
black vertices to red vertices. For convenience, assume that the type 2 distribution of
points is distributed on the unit circle, centered at (0, 0) in R

2. Label the points of the
type 2 distribution as v0b, v0r, v1b, v1r, . . . , v(m−1)b, v(m−1)r, where points with subscript b
are colored black and those with subscript r are colored red. Assume that v0b is the point
(1, 0). Since the black points are evenly spaced,

vib =

(
cos

(
2πi

m

)
, sin

(
2πi

m

))
.

In a type 2 distribution of points, the red points are obtained by rotating the black
points about the origin through an angle α where α is not an integer multiple of π

m
. If

Rα is rotation by α about the origin,

vir = Rα(vib) =

(
cos

(
2πi

m
+ α

)
, sin

(
2πi

m
+ α

))
.

Consider point v0b = (1, 0). Suppose that one of the lines of the symmetry class
passes through point v0b and point vir. Since there are two lines from the symmetry
class incident with every point, in particular, there are two lines from the symmetry class
incident with the point v0b. That is, there is a line in the symmetry class which passes
through v0b and some other red vertex vjr. Moreover, symmetry conditions imply that
the reflection through the horizontal axis (i.e., the mirror passing through (0, 0) and v0b)
must map the line 〈v0b, vir〉 to the line 〈v0b, vjr〉.

Since the reflection of vir over the horizontal axis is the point

(
cos

(
2πi

m
+ α

)
,− sin

(
2πi

m
+ α

))
,
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it follows that(
cos

(
2πi

m
+ α

)
,− sin

(
2πi

m
+ α

))
=

(
cos

(
2πj

m
+ α

)
, sin

(
2πj

m
+ α

))

for some j, and hence

−
(

2πi

m
+ α

)
=

2πj

m
+ α

so that α = − π
m

(i + j). This is a contradiction, since it was assumed that α is not an
integer multiple of π

m
.

3 [2s, 2] and [2, 2t] configurations

Note that the situation for [2s, 2] and [2, 2t] astral configurations is quite different from
that of [2s, 2t] configurations where s, t ≥ 2. For example, as will be shown below,(p2s, n2)
configurations exist whenever p greater than 2s, while if s, t ≥ 2, (p2s, n2t) configurations
may possibly exist only if p is divisible by 12. Thus, the treatment of [2s, 2] and [2, 2t]
configurations is separate from the other cases.

3.1 [2, 2] configurations

A [2, 2] configuration, i.e., a (n2) configration, has 2 points on each line and two lines
through each point. A type 1 astral (n2) configuration has a single symmetry class of
points and a single symmetry class of lines, and so may be viewed as a regular p-gon
(including the star polygons). If the lines of the configuration are viewed as diagonals of
span a, then the configuration may be denoted by n#a. Thus:

Theorem 3.1. Type 1 (n2) configurations exist for all integers n ≥ 3.

Proposition 3.2. All [2, 2]2 configurations are ordinary.

Proof. The single symmetry class of points in a [2, 2]2 configuration is a type 2 distribution.
If the points of the type 2 distribution are colored red and black as before, Lemma 2.4
implies that the single symmetry class of lines must connect black points to black points
and red points to red points. Thus, the collection of black points and their connecting lines
forms a [2, 2]1 subconfiguration, as does the collection of red points and their connecting
lines, so the [2, 2]2 configration is ordinary.

Theorem 3.3. Type 2 (n2) configurations exist for all even integers n ≥ 6.
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3.2 [2s, 2] configurations

A [2s, 2] astral configuration has 2s lines through each point, forming s symmetry classes.
Type 1 configurations may be denoted n#a1, a2, ..., as, where each of the symmetry
classes of lines is formed from diagonals of a regular n-gon of span ai (with the superscript
merely for indexing purposes, to distinguish a line of span ai from a line of span a with
intersection point i, denoted ai).

Theorem 3.4. Astral [2s, 2]1 configurations exist whenever p
2

> s.

Proof. For example, one way to construct such a configuration is p#1, 2, . . . s.

An example is shown in Figure 8, where p = 11 and s = 3.

Figure 8: An (116, 332) configuration, with symbol 11#1, 2, 3.

Theorem 3.5. All astral [2s, 2]2 configurations are ordinary.

Proof. Note that it follows from Lemma 2.4 that each symmetry class of lines connects
black points to black points and red points to red points. Thus, the subset consisting of
all black points and their connecting lines forms an astral [2s, 2]1 configuration, so astral
[2s, 2]2 configurations must be formed from two concentric copies of a [2s, 2]1 configuration
with one rotated arbitrarily with respect to the other.

Theorem 3.6. Astral [2s, 2]2 configurations exist for all even integers p > 2s.

3.3 [2, 2t] configurations

Note that the polar of a [2s, 2] configuration is a [2, 2s] configuration. For completeness
and for notation, the following results are presented.

A [2, 2t] astral configuration has a single symmetry class of lines and t symmetry
classes of points, which lie on concentric circles. Since each symmetry class of points has
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the same cardinality, either all symmetry classes of points form the vertices of regular
polygons or none of them do. In the latter case, as has been discussed previously, the
points in a single symmetry class must be distributed as in Figure 7.

In the case of an astral [2, 2t]1 configuration, the various symmetry classes of points
fall on intersection points of the single span of diagonals: these may be labelled
n#ab1 , ab2 , . . . , abt . Figure 9 is an example of a [2, 6] configuration denoted 10#31, 32, 33

or, more compactly, 10#31, 32, where the outside vertices with label 33 are understood to
be part of the configuration. In general, an astral [2, 2t]1 configuration may constructed
whenever n > 2t and p = nt; one way to do this is n#a1, a2, . . . , at, where a is any line of
span at least t.

Figure 9: An astral type 1 configuration (302, 106)

4 Astral [4, 4] configurations

Astral configurations of class [4, 4] — that is, astral (n4) configurations — have been
characterized completely, beginning in [8] and finishing in [1]. For clarity in the subsequent
discussion, I will summarize the main results.

Following the notation in [8], a [4, 4]1 configuration, where the vertices of each sym-
metry class of points forms an m-gon, will be notated as m#ab cd, where m is the number
of vertices of the outside m-gon and a and c are the spans of diagonals of the m-gon
corresponding to lines of the configuration. Note the difference in symbols from those in
the previous section. Since a [4, 4] configuration must have four lines passing through each
point, b and d must be chosen so that ab and cd are the same point of the configuration.

Theorem 4.1. All [4, 4]1 configurations are listed in the following: there are two infinite
families, (6k)#(3k − j)3k−2j (2k)j for j = 1, . . . , 2k − 1, k > 1, j 6= k and j 6= 3k

2
, and

(6k)#(3k − 2j)j (3k − j)2k, for k > 1, j = 1, . . . , k − 1. There are 27 connected sporadic
configurations, with m = 30, 42, and 60, listed in Table 1, where a configuration is sporadic
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if it is not a member of one of the infinite families. Finally, there are multiples of the
sporadic configurations.

m = 30

30#41 76 30#61 74 30#61 1110

30#62 86 30#72 1211 30#81 1312

30#101 116 30#106 1210 30#107 1312

30#112 127 30#116 1413 30#121 138

30#124 1412 30#127 1310 30#136 1411

m = 42

42#61 1312 42#116 1817 42#121 136

42#125 1918 42#176 1811 42#185 1912

m = 60

60#92 2221 60#125 2524 60#143 2726

60#212 229 60#245 2512 60#263 2714

Table 1: The sporadic astral [4, 4]1 configurations

In addition, [4, 4]2 configurations were classified in the following (slightly restated
from [1]):

Theorem 4.2. All type 2 (n4) configurations are ordinary.

The proof of Theorem 4.1 was the main content of [1].

5 Configurations of class [2s, 2t], for s, t ≥ 2

5.1 Some general results for even configurations

Lemma 5.1. Every [2s, 4]2 configuration is ordinary.

Proof. The proof proceeds by induction on the number of symmetry classes of lines
through each point. The base case, that all type 2 (n4) configurations are ordinary,
has been shown in Theorem 4.2.

Suppose there exists an astral [2s, 4]2 configuration, where s ≥ 3. Removing one
of the symmetry classes of lines yields an astral [2s − 2, 4]2 configuration. By induction,
this is an ordinary astral [2s − 2, 4]2 configuration, made up of two copies of an astral
[2s − 2, 4]1 configuration. For convenience, suppose that one of the subconfigurations is
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colored red and the other is colored black and that both subconfigurations are of size m.
Note that the red configuration is the black configuration rotated through an angle α,
where α 6= tπ

m
for any integer t.

By Lemma 2.4, the lines of the symmetry class which was removed connect black
vertices to black vertices and red vertices to red vertices. Hence, the black configuration
with no lines removed is an astral [2s, 4]1 configuration, as is the red configuration, so the
original astral [2s, 4]2 configuration is ordinary.

Corollary 5.2. Every [4, 2t]2 configuration is ordinary.

Proof. This follows from Lemma 5.1 and polarity.

Corollary 5.3. Every [2s, 2t]2 configuration is ordinary.

Proof. This follows by induction on the number of lines passing through a point; note that
s ≥ 2. Corollary 5.2 proves the base case. Given an extraordinary [2s, 2t]2 configuration
for s > 2, removal of one of the symmetry classes of lines yields a [2s − 2, 2t]2 configura-
tion which must be ordinary by the induction hypothesis. Color one of the [2s − 2, 2t]2

component configurations red and the other black; again, the additional class of lines
must be added connecting black vertices to black vertices and red vertices to red vertices.
The argument that these additions only produce ordinary type 2 configurations proceeds
identically as in Lemma 5.1, substituting the ordinary [2s − 2, 2t]2 configurations for the
[2s − 2, 4]2 configurations used in the proposition.

6 Astral [6, 4] configurations

An astral [6, 4]1 configuration has three symmetry classes of lines and two symmetry
classes of points. Consider the outer symmetry class of points to be the vertices of a
regular m-gon; then the three classes of lines may be viewed as diagonals of that m-gon.
The diagonals must have some spans associated with them, say a, c, and z. The remaining
symmetry class of points is interior to the m-gon by construction. Following the notation
introduced for astral (n4) configurations, an astral [6, 4]1 configuration may be denoted
m#ab cd zw, where ab, cd, and zw represent the same point of the configuration.

If one of the symmetry classes of lines is ignored, the result is a configuration with
four points on every line, four lines through every point, two symmetry classes of lines,
and two symmetry classes of points: that is, an astral [4, 4] configuration. Therefore,
every astral [6, 4] configuration must be made up of three astral [4, 4] configurations, one
corresponding to each way a symmetry class of lines can be ignored.

Proposition 6.1. The only astral [6, 4]1 configurations are the following:
30#81 107 1312, 30#61 74 1110, 30#112 127 1310, 30#93 106 1210, 30#101 116 1413, and
multiples of these.
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Figure 10: The astral [6, 4]1 configuration with symbol 30#81 107 1312

Proof. Three astral (n4) configurations will combine into an astral [6, 4]1 configuration
only if they are type 1 astral (n4) configurations with the following relationships between
the symbols:

{m#ab cd, m#ab zw, m#cd zw}.

To see this, note if only the span a and c lines are considered, then they form an
astral (n4) configuration with symbol m#ab cd. On the other hand, using the z-span
and a-span lines forms a configuration m#ab zw. Since the [6, 4] configuration has only
two symmetry classes of points, it follows that ab, cd and zw all represent the same point
(class) of the configuration. Thus, m#cd zw must also be a configuration.

Recall from Theorem 4.1 that there are two infinite families of astral (n4) config-
urations: family 1, consisting of configurations (6k)#(3k − j)3k−2j (2k)j for k > 1, j =
1, . . . , 2k − 1, j 6= k and j 6= 3k

2
, and family 2, consisting of configurations (6k)#(3k −

2j)j (3k − j)2k, for k > 1, j = 1, . . . , k − 1; and there are 27 sporadics plus multiples of
those sporadics.

Case 1: Inspection of the list of sporadics shows that there is no triple consisting
entirely of sporadics.

Case 2: Two (n4) configurations come from a single infinite family. By the previous
remarks, they must look either like (1) m#ab cd and m#abzw or (2) m#ab cd and m#zw ab,
in order — i.e., they agree in a span or they agree in the different span. In family 1, (1)
implies there exists j1 6= j2 with 3k − j1 = 3k − j2, since a = a, forcing j1 = j2, a
contradiction; in family 2, (1) implies a similar contradiction. In family 1, (2) implies
there exists a j such that 3k− j = 2k, since a = a, which implies that j = k, which is not
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Figure 11: The three [4, 4] configurations which together form the [6, 4]1 configuration in
Figure 10; from left to right, they are 30#107 1312, 30#81 107, and 30#81 1312.

a valid choice of j for family 1. A similar contradiction is reached with family 2 using (2)
by observing that since b = b, j = 2k, which is an invalid choice for family 2.

Therefore, any triple which forms an astral [6, 4]1 configuration must contain at least
one of the sporadic (n4) configurations or their multiples, and at least one configuration
which is not sporadic.

Suppose a triple contains a q-multiple of a sporadic configuration—i.e., it consists of
q copies of one of the sporadic (n4) configurations listed in Table 1. Then m = 30q, 42q,
or 60q. Hence, for the infinite families, m = 30q, 42q, or 60q as well, but since m = 6k,
it follows that k = 5q, 7q, or 10q.

Case 3: A triple contains one (n4) configuration from each infinite family and
one sporadic configuration. If the (n4) configurations are m#ab cd from family 1 and
m#ab zw from family 2, then easy algebra as in case 1 shows that using j1 with fam-
ily 1 and j2 with family 2 gives that j1 = 2j2 and j1 = 6k

5
. Since the triple must

contain a sporadic configuration or its multiple, using k = 5q yields the pair of configu-
rations {(30q)#(9q)(3q) (10q)(6q), (30q)#(9q)(3q) (12q)(10q)} which may be joined with the
q-multiple of the sporadic configuration 30#106 1210 to yield the astral [6, 4] configuration
(30q)#(9q)(3q)(10q)(6q)(12q)(10q). Using k = 10q yields a multiple of the [6, 4] configuration
found using k = 5q, and no configuration exists using k = 7q.

Case 4: a triple contains two sporadic configurations. It suffices to determine what
pairs of sporadic configurations exist of the form {m#ab cd, m#ab zw} where the order of
the pairs ab and zw is now irrelevant. Inspection yields the following pairs for the m = 30
sporadics: {30#811312, 30#1071312}; {30#6174, 30#611110}; {30#1271310, 30#112127};
{30#101 116, 30#116 1413}. No pairs were found using the m = 42 sporadics or the
combination of the m = 60 sporadics and twice the m = 30 sporadics (except those
already found). Each of these pairs combines with a member of one of the infinite families
to form the needed triple. These, together with the triple found in case 3, form the astral
[6, 4] configurations listed in the theorem.
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The type 1 astral (606, 904) configuration 30#811071312 has been exhibited in Figure
10. The other four type 1 (606, 904) astral configurations are listed in Figures 12 and 13.

Figure 12: Left: The astral [6, 4]1 configuration 30#61 74 1110. Right: The astral [6, 4]1

configuration 30#112 127 1310.

Figure 13: Left: The astral [6, 4]1 configuration 30#93 106 1210. Right: The astral [6, 4]1

configuration 30#101 116 1413.

Theorem 6.2. These are all the astral [6, 4] configurations: the type 1 configurations
30#81 107 1312, 30#61 74 1110, 30#112 127 1310, 30#93 106 1210, 30#101 116 1413, multiples
of these, and ordinary type 2 configurations formed from the already-listed configurations.

Proof. The type 1 configurations were determined in Proposition 6.1 and the fact that all
[6, 4]2 configurations are ordinary is a consequence of Lemma 5.1.

7 Astral [4, 6] configurations

None of the astral [6, 4]1 configurations listed above contains a diameter, so their polars
through a circle concentric with the configuration are astral [4, 6]1 configurations. No
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astral [4, 6]1 configuration may contain a diameter by reasons of symmetry, since each
point must have four lines passing through it, two from each symmetry class, and only
one diameter can pass through a given point. It follows that there are no other possible
astral [4, 6]1 configurations. As before, all [4, 6]2 configurations are ordinary.

Figure 14: The astral [4, 6]1 configuration 30#(102 1311)(107 1312).

In [7], Branko Grünbaum showed using elementary trigonometry that the dual of an
astral (n4) configuration with symbol m#ab cd is the configuration with symbol m#db ca

(assuming, without loss of generality, that c > a). Using this information and the facts
that three (n4) configurations combine to form the astral [6, 4]1 configuration and that
every astral [4, 6]1 configuration is the dual of an astral [6, 4]1 configuration, one can
easily devise symbols associated with the astral [4, 6]1 configurations. An astral [4, 6]1

configuration formed from three astral (n4) configurations m#ab cd, m#ae cf , m#bd ef

will be denoted m#(ab cd)(ae cf ), where the symbols enclosed in parentheses represent
one of the intersection points of the a and c diagonals.

The astral [4, 6] configurations are the following: 30#(121 138)(127 1310),
30#(104 117)(101 116), 30#(102 1311)(107 1312), 30#(103 129)(106 1210),
30#(131 1410)(136 1411), and their multiples, plus ordinary type 2 configurations formed
from these (by Lemma 5.1). They are listed here in the order which corresponds to that
of the list of [6, 4] configurations to which they are polar. The configuration
30#(102 1311)(107 1312) is shown in Figure 14.

8 Astral (n6) configurations

An astral (n6) configuration has three symmetry classes of points and three symmetry
classes of lines with six lines through every point (two of each class) and six points on
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every line (also two of each class). Removing a class of points leaves an astral [6, 4]
configuration, and removing a class of lines leaves an astral [4, 6] configuration.

Theorem 8.1. No astral (n6) configurations exist.

Proof. Suppose there exists a type 1 astral (n6) configuration. Choose one class of lines to
remove, say of span z; the remainder is an astral [4, 6]1 configuration, say m#(ab cd)(aecf),
which is formed from the three (n4) configurations m#ab cd, m#ae cf , and m#be df . The
span z lines which were removed must pass through precisely the points already identified,
which have symbols ab = cd and ae = cf . That is, there must be some intersection points
w and x so that ab = cd = zw and ae = cf = zx. This information yields two [6, 4]
configurations which must exist if the type 1 astral (n6) configuration exists: they are
{m#ab cd, m#ab zw, m#cd zw} = m#ab cd zw and {m#ae cf , m#ae zx, m#cf zx} =
m#ae cf zx. (The configuration m#bd ef wx also must exist; however, it suffices to consider
only the first two configurations.)

That is, for a type 1 astral (n6) configuration to exist, it must be possible to find two
astral [6, 4]1 configurations with the same set of three spans a, c, z but different intersection
points. But the spans of possible [6, 4]1 configurations are {8q, 10q, 13q}, {6q, 7q, 11q},
{11q, 12q, 13q}, {9q, 10q, 12q}, and {10q, 11q, 14q} for any positive number q (obtained
by taking q equally spaced copies of the corresponding astral [6, 4] configuration with
m = 30). Since the ratios of the spans are different, these do not combine as necessary to
form an astral (n6) configuration of type 1. Hence, there are no astral [6, 6]1 configurations.

Corollary 5.3 says that if any type 2 (n6) configurations exist, they must be formed
from two type 1 configurations. Since no type 1 configurations exist, it follows that no
type 2 configurations exist either.

Corollary 8.2. No astral configurations [2s, 2t] exist where s and t ≥ 3.

Proof. Combine Theorem 8.1 with Lemma 2.1.

9 Astral [q, k] configurations for q or k ≥ 8

In [11], Poonen and Rubinstein prove that it is impossible to have eight or more diagonals
of a regular polygon meeting at a point other than the center. Since the lines of an
astral type 1 configuration of size m may be viewed as diagonals of a regular m-gon,
it immediately follows that there are no astral [q, 8]1 configurations. The polar of a
[q, 8]1 configuration is a [8, q]1 configuration. Since in an [8, q] configuration there are an
even number of lines passing through each point, diameters cannot be lines of the [8, q]1

configuration. Hence any [8, q]1 configuration must occur as the polar of an astral [q, 8]1

configuration, so there are no [8, q]1 configurations either. Lemma 5.3 implies that there
are no [q, 8]2 or [8, q]2 configurations for even q ≥ 8 and in particular, there are no [4, 8]
and [8, 4] configurations.
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Theorem 9.1. For s ≥ 2 and t ≥ 4, the configurations [2s, 2t] and [2t, 2s] do not exist,
either of type 1 or of type 2.

Proof. This follows immediately from the preceeding discussion and Lemma 2.1.

10 A summary of known results about odd astral

configurations

There are several results known about the classification of odd astral configurations. For
completeness, they are summarized without proof here. They will be discussed more
thoroughly in a subsequent paper.

10.1 Astral [2s, 2t + 1]1 and [2t + 1, 2s]1 configurations

Lemma 10.1. If an astral [2s, 2t + 1]1 configuration exists, then an astral [2s, 2t + 2]1

configuration must also exist. Hence, if no astral [2s, 2t+2]1 configuration exists, then no
astral [2s, 2t + 1]1 configuration exists, either.

Corollary 10.2. If an astral [2t+1, 2s]1 configuration exists which does not use diameters,
then an astral [2t + 2, 2s]1 configuration must also exist. Hence, if no astral [2t + 2, 2s]1

configuration exists, then if an astral [2t+1, 2s]1 configuration exists, it must be constructed
by adding diameters to a [2t, 2s]1 astral configuration.

10.2 Astral [4, 5]1 and [5, 4]1 configurations

By m#(ab cd)(ae cf )* denote the [4, 5]1 configuration which has vertices with symbols
(aa)i = (cc)i, (ab)i = (cd)i for all i and (ae)i = (cf)i for i = 0, 2, 4, . . . , m−2 (so that every
other vertex in the ae ring is used).

Theorem 10.3. The only astral [4, 5]1 configurations are
(30q)#((10q)(6q) (12q)(10q))((10q)(3q) (12q)(9q))*, where q is odd.

Note that the polar of (30q)#((10q)(6q) (12q)(10q))((10q)(3q) (12q)(9q))* is an astral
[5, 4]1 configuration. However, many more [5, 4]1 configurations may be formed by adding
diameters appropriately:

Theorem 10.4. Diameters may be added to the following astral (n4) configurations to
yield astral [5, 4]1 configurations:

1. (2t) · m#ab cd for any astral configuration m#ab cd;
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Figure 15: The astral [4, 5]1 configuration 30#(106 1210)(103 129)*.

2. (6k)#(3k − j)(3k−2j) 2kj, if j is even and k is odd (the case where j and k are both
even is listed in (1));

3. (6k)#(3k − 2j)j 3k − j2k, if j and k are both odd (the case where j and k are both
even is listed in (1));

4. q · 30#62 86, q · 30#106 1210, q · 30#124 1412 for any (odd) q (the case q is even is
listed in (1)).

10.3 Mixed configurations

There is another way to construct astral [4, 2t+1]2 configurations. Given an astral [4, 2t]1

configuration of size m, with the two symmetry classes of lines of span a and span c,
there are many points of intersection of a single span a diagonal with a single span c
diagonal (i.e., not an intersection point that participates in a 4-diagonal intersection);
these points will be called embryonic. Choose one of them, called x; it is not on a mirror
of symmetry of the configuration. To see this, note that each point of intersection of a
span a diagonal with another span a diagonal lies on one of the lines of symmetry of
the [4, 2t]1 configuration, which has the symmetries of a regular m-gon. For the chosen
point of intersection to lie on a line of symmetry, it would also have to be part of an a-a
intersection, and symmetry would force it to be a 4-diagonal intersection point. But it
was chosen to be the intersection of precisely two diagonals, a span a-diagonal and a span
c-diagonal.
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Assume the [4, 2t]1 configuration is centered at the origin with one of its vertices
located at the point (1, 0). Let the angle formed by the ray 〈(0, 0),x〉 and horizontal be
called α. Take another copy of the [4, 2t]1 configuration and rotate it through 2α (about
the origin); color the original configuration black and the rotated configuration red. This
yields a configuration with four diagonals passing through point x: the black a and c
diagonals that passed through x originally and the red a and c diagonals from the rotated
configuration. If all of the points x formed in the same manner are taken as points of
the configuration as well, the result is an astral [4, 2t + 1]1 configuration. A configuration
constructed in this fashion will be called a mixed configuration. Figure 16 shows a mixed
[4, 5]2 configuration.

Figure 16: An astral [4, 5]2 configuration mixed from two 18#62 75 configurations, using
the third a-c intersection. Note that this configuration violates the usual coloring con-
vention, where elements in the same symmetry classes are colored the same color; in this
configuration, one of the [4, 4] subconfigurations is colored red and the other is colored
black, and the green points are formed from the corresponding embryonic points.

Lemma 10.5. Mixed [4, 2t + 1]2 configurations are astral.

Lemma 10.6. The only astral [2s, 2t + 1]2 configurations are ordinary and mixed.

10.4 Astral [6, 5] and [5, 6] configurations

Theorem 10.7. There are no astral [6, 5]1 configurations and no ordinary [6, 5]2 config-
urations.
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Theorem 10.8. The only mixed astral [6, 5]2 configurations whose special class of points
lie closer to the center of the configuration than one of the non-special classes of points
are formed from the astral [6, 4]1 configurations 30#81 107 1312 and 30#101 116 1413.

Theorem 10.9. Polars of mixed astral [6, 5]2 configurations are astral [5, 6]2 configura-
tions. The only astral [5, 6]1 configurations are those formed by adding diameters to any
even multiple of a [4, 6] configuration.

10.5 Astral [7, 4] and [4, 7] configurations

Theorem 10.10. The only astral [7, 4]1 configurations are those formed by adding diam-
eters to any even multiple of a [6, 4] configuration and to any multiple of the configuration
30#93 106 1210.

There are no astral [4, 7]1 configurations. Starting with a [4, 6]1 configuration, it
is easy to construct mixed [4, 7]2 configurations, using the same embryonic points and
construction methods which were used to construct mixed [4, 5]2 configurations. The
polars of these configurations will be [7, 4]2 configurations.

10.6 [5, 5], [5, 7], [7, 5] configurations

Proposition 10.11. There are no astral [5, 5]1 configurations.

Proposition 10.12. There are no astral [5, 5]2 configurations mixed from two [5, 4]1 con-
figurations.

Conjecture 1. There are no astral [5, 5] configurations.

Conjecture 2. There are no astral [7, 5] and [5, 7] configurations.

11 Conclusions and Open Questions

For [2, 2s] and [2t, 2] astral configurations, it is easy to construct configurations, but they
are rather uninteresting. Astral [4, 4] configurations are more constrained, but there are
still a variety of configurations. As things get more constrained, with the [6, 4] and [4, 6]
configurations, it is very hard to construct astral configurations, so much so that there
are really only five kinds of each configuration. If any additional constraints are added,
as in the [4, 8] or [6, 6] configurations, then no configurations exist.

The situation with odd configurations is much more complicated. Type 1, ordinary
type 2, and extraordinary type 2 [q, k] astral configurations all may exist, depending on
the choices for q and k. As discussed in section 10, a partial classification of odd astral
[q, k] configurations exists for q, k ≥ 4 (also see [2]; odd astral [q, k] configurations for
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q, k ≥ 4 are classified except for classes [5, 5], [5, 7] and [7, 5]). Behavior of astral (n3)
configurations is even stranger: it is known, for example, that there exist families of astral
(n3) configurations with several discrete parameters and one continuous parameter! This
is far removed from the case of even astral configurations, where to a choice of discrete
parameters (e.g., m, a, b, c, d to form a [4, 4] configuration m#ab cd) there exists at most
one corresponding configuration. Some [3, k] and [q, 3] configurations and results are
known for q, k ≥ 3, but a general theory does not yet exist.
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