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Abstract

A permutation π of an abelian group G (that is, a bijection from G to itself) will

be said to avoid arithmetic progressions if there does not exist any triple (a, b, c) of
elements of G, not all equal, such that c − b = b − a and π(c) − π(b) = π(b) − π(a).
The basic question is, which abelian groups possess such a permutation? This and

problems of a similar nature will be considered.

1 Notation and Introduction

Given a positive integer n, the set {1, ..., n} will be denoted by [n]. If G is a group then
Ωn(G) denotes the subset (subgroup when G is abelian) consisting of all elements of G of
order dividing n. The cyclic group of order n will be denoted Zn. The symmetric group
on n letters will be denoted Sn.

In additive and combinatorial number theory, one encounters problems like the following :

Let n, k be positive integers with k ≥ 3. How large can a subset A of [n] be which
does not contain any k numbers in arithmetic progression?

This well-known problem (and a closely related formulation where the set [n] is replaced
by the set of all natural numbers N) has a long and distinguished history. For references
covering the period up to 1995, see [GGL], Chapter 20. To these should be added the
more recent work of Gowers [G1], [G2].

Another much-studied condition is to demand that the set A is a so-called Sidon set,
that is, for every quadruple (a, b, c, d) of elements of A, whenever a+ b = c+d then either
a = c, b = d or a = d, b = c. Notice that a Sidon set avoids 3-term arithmetic progres-
sions. Note also that the rather similar notion of a so-called (perfect) di�erence set has
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been extensively studied in general �nite abelian (semi)groups, as these have applications
to the construction of combinatorial designs (see [CD]).

More ambitiously still, one might demand that A has distinct subset sums, that is,
given any two distinct subsets of A, the numbers in these two sets have di�erent sums.
Here there is the well-known conjecture of Erd®s that such a subset of [n] cannot have
size greater than log2 n + C, where C is an absolute constant.

Erd®s, among others, has also looked at multiplicative analogues of the above prob-
lems. Again, we refer the reader to [GGL], Chapter 20, for extensive discussion and
references.

Speaking informally, one is looking here at sets of integers (or elements in an abelian
(semi)group) which avoid a certain kind of ‘arithmetic pattern'. Now in the �eld of
enumerative combinatorics, the notion of ‘pattern avoidance' has a much more precise
meaning. Recall the basic idea -

Let n ≥ k > 0 be integers, π ∈ Sn, σ ∈ Sk. π is said to avoid σ if there does not exist
any k-tuple (a1, ..., ak) of integers such that

1 ≤ a1 < a2 < · · · < ak ≤ n,

π(ai) < π(aj) ⇔ σ(i) < σ(j).

Here, then, one is looking at permutations of sets of integers which avoid a certain
‘pattern', in the sense just de�ned. The basic problem is to count the number of such
permutations, as a function of n, for a �xed pattern σ. The seminal paper in this more
recent area of research is probably [SS].

In this paper we want to combine these two notions of ‘pattern avoidance' to pose new
problems. Since this obviously sounds pretty vague, in the next section we will state some
precise questions which, after a brief review of the rather sparse relevant literature, will
then be the object of study of the rest of the paper. We hope that the discussion above
will serve as su�cient motivation, and that the reader will also be inspired to think of a
multitude of similar questions which one might pose! In this spirit, the paper will include
a number of conjectures and open questions which we were unable to resolve, and will be
rounded o� with some general suggestions for future investigations.

2 Statements of results

Henceforth, the words ‘arithmetic progression' will be abbreviated to AP. We begin with
a de�nition :

Definition 2.1 : Let k ≥ 3 be an integer, (S, +) an abelian semigroup and T a subset
of S. A permutation π : T → T is said to avoid k-term APs if there does not exist any
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k-tuple (a1, ..., ak) of elements of T , not all equal, such that, for i = 1, ..., k − 2,

ai + ai+2 = ai+1 + ai+1,

and π(ai) + π(ai+2) = π(ai+1) + π(ai+1).

On the other hand if such a k-tuple exists, it will be called an AP of length k for π. If
k = 3 and the permutation π satis�es the requirement of De�nition 2.1, we simply say
that π avoids APs.

The basic question we will be concerned with in this paper is : given S, T and k, does
there exist a permutation of T avoiding k-term APs? When the set T is �nite, one would
naturally also like to ‘count' the number of such permutations, but this issue will not be
taken up here.

Similarly, we de�ne

Definition 2.2 : Let (S, +) be a semigroup and T a subset of S. A permutation
π : T → T is said to be a Sidon permutation if, whenver (a, b, c, d) is a quadruple of
elements of T such that

a + b = c + d,

and π(a) + π(b) = π(c) + π(d),

then either a = c, b = d or a = d, b = c.

It both these de�nitions, it is most natural to think of S as the set N of natural numbers
and T as either N itself or the �nite subset [n], for some n > 0 (indeed, see the survey
of the relevant literature below). However, most of our methods below apply in a more
general setting (c.f. classical di�erence sets), hence the more abstract de�nition.

Our scanning of the literature revealed two relevant sources of known results :

1. Take S = T = N. In [S], the author constructs a permutation of N avoiding APs. It
is very simple to describe. Let σ be the following permutation of the set {0, 1, 2, 3}

σ(0) := 0, σ(1) := 2, σ(2) := 1, σ(3) := 3.

Write every natural number n in base 4, say

n =

blog4nc∑
i=0

bi4
i, 0 ≤ bi ≤ 3.

Then the required permutation π : N→ N is given by

π
(∑

bi4
i
)

:=
∑

σ(bi)4
i.
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For future reference, the thing to notice about this construction is that the map σ is, in
the sense of De�nition 2.1, just an AP-avoiding permutation of the group Z4.

2. Take S = N, T = [n] for some n > 0. Sidon permutations of [n] have been stud-
ied. They have applications in electrical engineering and are referred to in the literature
as Costas arrays of order n. See [CD], Chapter IV.7 for a summary of the known results.

In Section 3 of this paper we shall prove

Theorem A (i) If G is a countably in�nite abelian group, then there exists a Sidon
permutation of G if and only if the factor group G/Ω2(G) is in�nite.

(ii) Let G be an in�nite abelian group. Then there exists an AP-avoiding permutation
of G if and only if G/Ω2(G) has the same cardinality as G.

The key to the proof of this theorem will be an alternative construction to that in [S] of
an AP-avoiding permutation of N (Theorems 3.1 and 3.3), which will then be suitably
generalised to countably in�nite abelian groups.

This leaves �nite groups and it is perhaps not surprising that these should be most inter-
esting. In Section 4, we shall prove the following theorem -

Theorem B Let n be a positive integer. Then there exists a permutation of Zn avoiding
4-term APs if and only if n 6= 2, 3

- and provide numerical evidence for the following

Conjecture C There exists an AP-avoiding permutation of Zn if and only if n 6= 2, 3, 5, 7.

Finally, in Section 5, we make some suggestions for future investigations.

We close this section with a couple of simple, preliminary observations

Proposition 2.3 (i) For no �nite abelian group G does there exist a Sidon permuta-
tion of G.

(ii) If, in De�nition 2.1, we take S = N and T = [n] for any n > 0, then there exists
an AP-avoiding permutation of T .

Proof : (i) Let π be a permutation of G. Let g 6= 0 be any non-identity element of
G and consider the map ζ : G → G given by

ζ(h) := π(g + h) − π(h), ∀ h ∈ G.

Since g 6= 0, if π were a Sidon permutation, then the map ζ would have to be 1-1. But
then there would have to be h ∈ G for which ζ(h) = 0. Since g 6= 0, this would contradict
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the fact that π itself is 1-1.

(ii) Let P (n) be the proposition that there exists an AP-avoiding permutation of [n].
Trivially P (1) holds. We will establish that

(i) P (n) ⇒ P (2n),
(ii) P (n) and P (n + 1) ⇒ P (2n + 1),

which will su�ce to prove the theorem, by use of induction on n.
For (i), we use the following construction : let πn be an AP-avoiding permutation of

[n]. Then the permutation π : [2n] → [2n] given by

π(i) :=

{
2πn(i), if k ≤ n,
2πn(i − n) − 1, if k > n,

is easily seen to avoid APs. A similar construction establishes (ii).

3 Proof of Theorem A

In what follows k always denotes a �xed integer greater than or equal to 3.

Given any n > 1 for which there exists a permutation of Zn avoiding k-term APs we
can use it in the manner described in the previous section to construct a permutation of
N also avoiding k-term APs. We now present an alternative method of constructing a
permutation π of N avoiding 3-term APs. π is constructed inductively by means of the
following ‘greedy algorithm' :

(i) π(1) := 1,
(ii) suppose π(1), ..., π(n − 1) have been chosen. Then choose π(n) to be the least posi-
tive integer t which has not already been chosen and such that, for each positive integer
i < n/2,

t − π(n − i) 6= π(n − i) − π(n − 2i).

The �rst few terms in the sequence (π(n))n>0 are

1, 2, 4, 3, 5, 6, 8, 7, 10, 9, 13, ...

It needs to be proven that -

Theorem 3.1 The map π is surjective.

Proof : First we prove that, for each n > 0,

π(n) < 3n/2. (1)
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The procedure for choosing π(n) implies that, for each positive integer m < π(n) either

(A) m ∈ {π(i) : 1 ≤ i < n},

or

(B) there exists a positive integer s ≤ n−1
2

such that

m − π(n − s) = π(n − s) − π(n − 2s). (2)

Since there are exactly n−1 numbers m satisfying (A) and at most n−1
2

numbers satisfying
(B), this establishes (1).

Fix n > 0. We now verify that π is surjective by showing that n appears among the
elements of the set X := {π(i) : 1 ≤ i ≤ 4n}. Let X0 denote the subset of X consisting
of those elements which are larger than n. Evidently, |X0| ≥ 3n + 1. Let x ∈ X0, say
x = π(ix). Since the greedy algorithm did not choose n instead of x, there must be a
positive integer s < ix/2 such that

n − π(ix − s) = π(ix − s) − π(ix − 2s). (3)

De�ne a map τ : X0 → N by τ(x) := π(ix − 2s), where s > 0 is the smallest integer for
which (3) holds.

The map τ is 1-1 and every element of τ(X0) is a positive integer di�ering from n by
an even integer. Since |X0| > 3n, it follows that there exists x ∈ X0 for which τ(x) > 6n.
But this means that there is a positive integer i such that i ≤ 4n and π(i) > 6n. This
contradicts (1), and so completes the proof of Theorem 3.1.

The permutation of N just described will be denoted πg (g for ‘greedy'). The last proof
implies that, for all n > 0,

1

4
≤ πg(n)

n
<

3

2
. (4)

Conjecture 3.2

lim
n→∞

πg(n)

n
= 1.

We have no idea how one might prove this - our only real evidence is numerical. The
interested reader will �nd a computer plot of the function πg(n)/n, for all n ≤ 560, 000,
at http://www.mdstud.chalmers.se/ ∼md0larur/HTMLFiles/greedyplot 2.gif.

The best improvement on (4) which we have managed is

Theorem 3.3 For all n > 0 we have

πg(n)

n
≥ 3

8
.
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Proof : The basic idea is the same as in the second half of the proof of Theorem 3.1,
but with a more careful (and more technical!) analysis.

Fix n > 0 and suppose n does not appear among the �rst b8n/3c positions π(i), 1 ≤
i ≤ b8n/3c. We will derive a contradiction from this.

Let l be the number of these positions containing numbers bigger than n. At the very
least, we have

l > 5n/3. (5)

We can then �nd l pairs of positions (ai, bi) such that

2yi − zi = n, (6)

where

yi = π(ai), zi = π(bi).

All of the zi (i = 1, ..., l) are distinct, as are all of the yi. Let

Y := {yi : i = 1, ..., l},
Z := {zi : i = 1, ..., l},

t := |Y ∩ Z|.
We claim that

t > 11n/12. (7)

To see this consider the relation

|Y ∩ Z| = |Y | + |Z| − |Y ∪ Z|.
On the one hand, |Y | = |Z| = l > 5n/3. On the other hand, all the numbers in Y ∪ Z
appear among the �rst b8n/3c positions. However, by (6), none of them can be a number
≤ n/2 of the same parity as n. The number of such numbers is at least bn/4c and, by
Theorem 3.1, all of them appear among the �rst b8n/3c positions. Hence,

|Y ∪ Z| ≤ b8n/3c − bn/4c,
from which we can deduce (7). Rearranging indices if necessary, we may assume that

Y ∩ Z = {y1, ..., yt}.
Then each of the numbers zi, i = 1, ..., t, di�ers from n by a multiple of 4. By (7), there
is thus at least one index j such that

zj > 11n/3.

the electronic journal of combinatorics 11 (2004), #R39 7



Now consider the following : by (6), every number in the set Z has the same parity as n.
Hence by (5), there are strictly less than n among the �rst b8n/3c positions which contain
a number of opposite parity to n. Call the set of numbers in these positions B. Let

C := {c ∈ N : c ≤ 11n/3 and c 6≡ n (mod 2)},
C1 := C\B.

Then

s := |C1| > 5n/6. (8)

Consider the position bj = π−1(zj). None of the numbers ci ∈ C1, i = 1, ..., s, was chosen
for the position bj . Thus there must be a collection of s pairs (αi, βi) of positions such
that

2ui − vi = ci,

where

ui = π(αi), vi = π(βi), i = 1, ..., s.

The important point is that : �rstly, each vi has the same parity as the corresponding ci,
and hence the opposite parity to n, that is,

{v1, ..., vs} ⊆ B, (9)

and secondly, that each βi has the same parity as bj , i.e.:

βi ≡ bj (mod 2), i = 1, ..., s. (10)

By (8) and (9) there are strictly less than n/6 elements in B other than the vi. By an
argument similar to the one just presented (note (10)), this implies that, for any position
ε such that π(ε) > 7n/3, we have

ε ≡ bj (mod 2). (11)

But how many such positions are there? Let's look at the set Z again. We have
|Z| > 5n/3. But each member of Z has the same parity as n. Hence there are strictly
more than n/2 elements in Z which are greater than 7n/3.

Let's summarise our �ndings! Put

Φ := {π−1(zj) : zj ∈ Z and zj > 7n/3},
Ψ := {β1, ..., βs}.

The sets Φ and Ψ are disjoint subsets of {1, ..., b8n/3c} such that

|Φ| > n/2, |Ψ| > 5n/6. (12)

the electronic journal of combinatorics 11 (2004), #R39 8



But, by (10) and (11), all the elements of Φ ∪ Ψ have the same parity, which forces

|Φ ∪ Ψ| ≤ 1

2

⌊8n

3

⌋
+

1

2
. (13)

Relations (12) and (13) contradict one another, which completes the proof of Theorem 3.3.

We turn next to the proof of Theorem A(i). We adopt the following terminology : if
(a, b, c, d) is an ordered quadruple of elements of the abelian group G such that a+b = c+d
but neither a = c, b = d nor a = d, b = c holds, we refer to it as a Sidon quadruple.

First note that the condition that G/Ω2(G) be in�nite is obviously necessary. Since
if a, b are any two distinct elements of order 2 in G then the quadruple (a, a, b, b) is Sidon,
so if the permutation π is Sidon then π(a), π(b) have to lie in di�erent cosets of Ω2(G).

So let G be an in�nite abelian group with G/Ω2(G) in�nite. The idea for construct-
ing a Sidon permutation of G is to apply a greedy algorithm to a suitable well-ordering
of the elements of G. More precsiely, let (xn)∞n=1 be a well-ordering of the elements of G.
Then an injective mapping πg : G → G can be described inductively as follows :

(i) πg(x1) := x1,
(ii) suppose πg(x1), ..., πg(xn−1) have been chosen. Then choose πg(xn) to be xt where
t is the least positive integer such that xt has not already been chosen and such that,
whenever (a, b, c, d) is a quadruple of positive integers such that

- not all of a, b, c, d are equal,
- all of a, b, c, d are less than or equal to n, and at least one of them equals n,
- the quadruple (xa, xb, xc, xd) is Sidon in G,

then the quadruple (ya, yb, yc, yd) is not Sidon in G, where ya = πg(xa) if a < n and
yn = xt.

The trick is to choose the well-ordering so that the map πg is surjective. We need a lemma

Lemma 3.4 Let S be any countably in�nite semigroup. Let (sn)∞n=1 be a well-ordering of
the elements of S. For each N > 0, let AN denote the number of Sidon quadruples among
s1, ..., sN and suppose that there exists ε > 0 such that

AN < (1 − ε)N, for all N >> 0. (14)

Then the mapping πg : S → S described by the greedy algorithm is surjective..

Remark : Note that (14) is not satis�ed by the usual well-ordering of N. See Remark
3.7 below.

Proof of Lemma : Fix n > 0. We'll show that sn is in the image of πg. Let N0
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be an integer su�ciently large so that N0 − n > (1 − ε)N0 and (14) holds for N = N0. If
sn does not appear among {πg(i)}N0

i=1 then there are more than N0−n indices i ≤ N0 such
that sn was tested for π(si) but rejected each time. Each rejection implies the existence
of a Sidon quadruple among s1, ..., sN0 (it implies more of course, but we don't need that).
But by the choice of N0, this contradicts (14) and the lemma is proven.

So given the group G, we need to well-order its elements so that (14) holds. In fact,
we can always �nd a well-ordering such that AN = o(N). Henceforth, we shall assume
the reader is familiar with the theory of in�nite abelian groups as presented in [K], for
example.

Proof of Theorem A(i) : Let G be a countably in�nite abelian group such that
G/Ω2(G) is in�nite. By Kulikov's Theorem, at least one of the following three things
must hold :

(i) G contains an element of in�nite order,
(ii) G has a direct summand isomorphic to Cp∞ for some prime p,
(iii) G contains an in�nite sequence a1, a2, ... of elements, each of order 4 or an odd

prime, such that for any n, the subgroup of G generated by a1, ..., an is the direct sum of
the cyclic groups < ai >, i = 1, ..., n.

Depending on which property holds, we de�ne a subsequence (zn)∞1 of elements of G
as follows : If (i) holds, let g be any element of in�nite order and set zn = 2ng. If (ii)
holds, choose any quasicyclic p-subgroup A of G and let zn be any element of order pn in
A. If (iii) holds, put zn = an.

Let (yn)∞1 be any well-ordering of the elements of G\{zn} and now let (xn)∞1 be the
well-ordering of all elements of G given by the following :

If n is a 2-power, say n = 2t, set xn := yt. Otherwise, if 2t−1 < n < 2t, set xn := zn−t.

It is easy to check that, in the notation of (14), AN = o(N). Hence, by Lemma 3.4,
the proof of Theorem A(i) is complete.

We now turn to part (ii) of the theorem. We shall use the result of part (i), together
with the following lemma -

Lemma 3.5 Let G be an abelian group and H a subgroup. Suppose there exist k-term
AP-avoiding permutations π1, π2 of H and G/H respectively. Then there also exists a
k-term AP-avoiding permutation π of G. Moreover, π can be chosen so that π(H) = H
and π|H = π1.

Proof : Choose a set of representatives {gλ}λ∈Λ for the cosets of G/H with g0 = 0
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representing the identity coset H . Then π2 can be identi�ed with a permutation π̃2 of the
set {gλ}. The map π : G → G given by

π(h + gλ) := π1(h) + π̃2(gλ), ∀ h ∈ H, ∀ λ ∈ Λ,

is easily checked to be a k-term AP-avoiding permutation of G. Since any translation of a
k-term AP-avoiding permutation is also such, we may choose π2 so that π̃2(g0) = g0 = 0.
And then the permutation π has the property that π(H) = H and π|H = π1.

Proof of Theorem A(ii) : By the same argument as in the proof of part (i), the
condition that G/Ω2(G) have the same cardinality as G is obviously necessary. So let G
be a group satisfying this condition, which we henceforth denote by (*). Informally, the
idea of the proof is to show that G can be built up in countable pieces, each satisfying
(*), so that we may exploit Theorem A(i) and Lemma 3.5.

Case 1 : G is torsion-free.

Let ≤ be any well-ordering of the elements of G. Let Φ be the ordinal of this well-
ordering (so the elements of G are listed as xα for every ordinal α < Φ). For each α < Φ
let Sα be the pure subgroup of G generated by the elements xβ : β ≤ α. We shall prove,
using trans�nite induction, that there exists, for each ordinal α < Φ, an AP-avoiding
permutation πα of Sα such that, for all β < α, πα extends πβ. Denote this property of
the ordinal α by P (α).

If α is a successor ordinal, then either Sα = Sα−1, in which case we put πα := πα−1 or
Sα/Sα−1 is a torsion-free group of rank 1. In particular, such a group is countable, hence
has an AP-avoiding permutation by Theorem A(i). Hence, by Lemma 3.5, there exists an
AP-avoiding permutation πα of Sα extending πα−1.

If α is a limit ordinal, then πα is well-de�ned by setting

πα|Sβ
:= πβ , for all β < α.

By trans�nite induction, this completes the proof in Case 1.

Case 2 : G is a torsion group.

Then G is the direct sum of its p-primary components, for di�erent primes p. Using
Theorem A(i) and Lemma 3.5, it is easily seen that we can reduce the proof to one of the
following two subcases :

(a) G is an uncountable 2-group,
(b) G = P ⊕Q⊕X, where X is a �nite group, P and Q are uncountable of the same

cardinality, Q is a 2-group such that Q/Ω2(Q) has smaller cardinality than Q, and P is a
p-group for some odd prime p.

Suppose (a) holds. For each n ≥ 0 let Gn := Ω2n(G). Since G is uncountable, that
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G/G1 has the same cardinality as G is equivalent to G1 and G2/G1 having the same
cardinality. Hence

G2 = (⊕λ∈ΛAλ)
⊕

(⊕φ∈ΦBφ) ,

where each Aλ
∼= Z4, each Bφ

∼= Z2, and card(Λ) ≥ card(Φ). But this means that G2

can be written as as a direct sum ⊕Cµ where each Cµ is a countably in�nite group of
exponent 4 satisfying (*). By Theorem A(i) and Lemma 3.5, we conclude that there exists
an AP-avoiding permutation of G2. By extending this argument, one sees that if G has
�nite exponent, then there exists an AP-avoiding permutation of G.

So we may assume that G has in�nite exponent. We have a direct decomposition

G4 = A ⊕ B,

where A is homocyclic of exponent 16 and B has exponent 8. Let

H = Ω4(A) ⊕ B.

Then H satis�es (*) and H has �nite exponent, so there exists an AP-avoiding permu-
tation of H . Let K := G/H. By construction, K satis�es (*). If K is countable, we're
done. Otherwise, we start all over again with K. If we iterate this procedure then the
worst that can happen is that we produce an in�nite sequence of subgroups of G,

0 = H0 ⊂ H1 ⊂ H2 ⊂ · · ·
such that G = ∪Hn and each quotient Hn/Hn−1 possesses an AP-avoiding permutation.
By Lemma 3.5, we can still conclude that G possesses such a permutation also, and this
completes Case 2(a).

Now suppose (b) holds. Let

H := Ωp(P ) ⊕ Q ⊕ X.

There is no loss of generality in assuming that G/H := K is an in�nite group. By Lemma
3.5, it su�ces to construct AP-avoiding permutations of H and K.

First we consider H . Since P is uncountable, so also is Ωp(P ), and we can write a
direct decomposition,

Ωp(P ) = ⊕∞
n=1Pn,

where each Pn has the same cardinality as P . We de�ne an increasing chain of subgroups
(Hn)∞0 of H as follows :

H0 := {0},
H1 := Ω2(Q) ⊕ P1 ⊕ X,

∀ n ≥ 2, Hn := Ω2n(Q)
⊕

(⊕n
i=1Pi) ⊕ X.
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Since G is the union of the Hn, it su�ces by Lemma 3.5 to �nd an AP-avoiding permu-
tation of each quotient Hn/Hn−1. But it is clear that, since G satis�es (*), each such
quotient can be decomposed as a direct sum of countable groups satisfying (*). Hence a
further application of Lemma 3.5 and Theorem A(i) gives us what we need.

Similarly, consider K. If it is countable, we're done. Otherwise, we can at least
decompose K1 := Ωp(K) as a direct sum of countably in�nite groups and construct an
AP-avoiding permutation of this subgroup in the usual way. We then consider K/K1 and,
by iterating this procedure, prove the existence of an AP-avoiding permutation of K.

This completes the proof in Case 2.

Case 3 : G is a mixed group.

Let T be the torsion subgroup of G and let F = G/T . By Lemma 3.5, it su�ces for
both T and F to possess AP-avoiding permutations. By Cases 1 and 2, we'd be done if
T satis�ed (*). Hence, we may assume it does not. But since G does so, this implies at
the very least that card(T ) ≤ card(F ). The argument now is only a slight modi�cation
of the one used in Case 1, so we only outline it. Let (Sα)α∈Φ be a (trans�nite) chain of
pure subgroups of F , as described in Case 1, whose union is F . By Zorn's Lemma, we
can pick a maximal subchain consisting of pairwise disjoint groups, which we can also
denote by (Sα)α∈Φ. Let (tλ)λ∈Λ be any well-ordering of the elements of T , where Λ ≤ Φ,
since card(T ) ≤ card (F ). We then consider the chain (Hα)α∈Φ of subgroups of G, where
Hα is the subgroup generated by {tλ : λ < α} and any chosen set of representatives
for the cosets of T in Sα. For every successor ordinal α, the quotient Hα/Hα−1 will be
a countable non-torsion group, hence possess an AP-avoiding permutation, by Theorem
A(i). The proof of Theorem A(ii) is then completed by trans�nite induction.

Remark 3.6 The proof of Lemma 3.5 will not work if we instead consider Sidon per-
mutations. Hence the question remains whether the condition (*) is su�cient for an
uncountable abelian group to possess a Sidon permutation.

Remark 3.7 Though N is not a group and hence not covered by Theorem A(i), it
should be clear from its' proof how one can �nd a well-ordering of N such that (14) is
satis�ed. Hence, there exists a Sidon permutation of N. However, If we adopt the usual
well-ordering of N and apply the greedy algorithm as on p.9, we don't know whether it
is the resulting ‘Sidon mapping' πg is surjective. Compare this with Theorem 3.1.

4 Permutations of �nite abelian groups

The �rst purpose of this section is to prove Theorem B.

Proof of Theorem B : One readily checks that there is no permutation of either
Z2 or Z3 avoiding 4-term APs. Lemma 3.5 thus reduces the proof of Theorem B to �nd-
ing 4-term AP-avoiding prmutations of Zn, where n is of the from p, 2p or 3p, for some
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odd prime p > 3, or one of the numbers 22 = 4, 2 ·3 = 6, 32 = 9, 22 ·3 = 12 and 2 ·32 = 18.
For each of these last �ve values of n, there in fact exists a 3-term AP-avoiding per-

mutation of Zn, as is seen from the table on p.19. For n = p > 3, we identify Zp with the
set [p], addition being modulo p. Then one readily checks that the map πp given by

πp(x) · x ≡ 1 (mod p), if x 6= p, (15)

πp(p) := p,

is a permutation of Zp avoiding 4-term APs.
For n = 2p or 3p one uses a similar construction, but the veri�cation that 4-term APs

are avoided requires more care. We now present the construction in detail for the case
n = 2p, and then brie�y indicate what one does for n = 3p, leaving it to the reader to �ll
in the blanks.

Let p > 3 be a prime. Let πp denote the permutation of [p] given by (15).

First suppose p ≡ 2 (mod 3). The map π de�ned by

π(2t − 1) = πp(t), 1 ≤ t ≤ p,

π(2t) = πp(t) + p, 1 ≤ t ≤ p,

will be shown to avoid APs of length 4. Denote

L := {1, ..., p},
H := {p + 1, ..., 2p}.

Suppose (a, b, c, d) is an AP of length 4 for π - we shall obtain a contradiction. If each of
π(a), π(b), π(c), π(d) ∈ L, then (a+1

2
, b+1

2
, c+1

2
, d+1

2
) would be an AP of length 4 for πp, a

contradiction. Similarly, we can't have π(a), π(b), π(c), π(d) ∈ H .
Hence, there is no loss of generality in assuming that π(a), π(c) ∈ L and π(b), π(d) ∈ H .

Henceforth in this proof, unless otherwise stated, all congruences are modulo p. Let
x, s ∈ [p] be such that a+1

2
≡ x and b

2
≡ x + s. Then c+1

2
≡ x + 2s + 1 and d

2
≡ x + 3s + 1,

so that

π(a) ≡ πp(x), π(b) ≡ πp(x + s),

π(c) ≡ πp(x + 2s + 1), π(d) ≡ πp(x + 3s + 1). (16)

We now divide the analysis into two cases.

Case I : None of π(a), π(b), π(c), π(d) is congruent to zero modulo p. Then

π(a) ≡ 1

x
, π(b) ≡ 1

x + s
, π(c) ≡ 1

x + 2s + 1
, π(d) ≡ 1

x + 3s + 1
. (17)
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The condition of being an AP of length 4 for π implies, in particular, that

2

x + s
≡ 1

x
+

1

x + 2s + 1
⇒ 2x(x + 2s + 1) ≡ (x + s)(2x + 2s + 1) (18)

and
2

x + 2s + 1
≡ 1

x + s
+

1

x + 3s + 1
⇒ 2(x + s)(x + 3s + 1) ≡ (x + 2s + 1)(2x + 4s + 1). (19)

The hypothesis of Case I implies that neither side of (18) is congruent to zero modulo p.
Hence, we may divide (19) by (18) to get

2(x + 3s + 1)

2x + 2s + 1
≡ 2x + 4s + 1

2x
.

Cross-multiplying and expanding then leads to the one-variable congruence

8s2 + 6s + 1 ≡ 0,

which has the two solutions s ≡ −1
4
and s ≡ −1

2
.

Say s ≡ −1
2
. Substituting into (18) leads to

2x2 ≡ 2x

(
x − 1

2

)
,

and hence either x ≡ 0, contradicting the hypotheses of Case I, or x ≡ x − 1
2
, which is

ridiculous.
So s ≡ −1

4
. Substituting into (18) and solving for x yields x ≡ −1

8
. Substituting back

into (17) we get

π(a) ≡ −8, π(b) ≡ −8

3
, π(c) ≡ 8

3
, π(d) ≡ 8. (20)

Note that these four numbers do indeed form an AP in Fp. For an element g of the �nite
�eld Fp, we now denote by r(g) the unique integer in [p] which represents g under the
natural identi�cation of Fp with [p].

Now, since π(a), π(c) ∈ L and π(b), π(d) ∈ H , we deduce from (20) that, as ordinary
integers,

π(a) = p − r(8), π(b) = 2p − r

(
8

3

)
,

π(c) = r

(
8

3

)
, π(d) = p + r(8). (21)

We have still to show that these four numbers do not form an AP modulo 2p. It's now
that we �nally make use of the assumption that p ≡ 2 (mod 3). If p = 5, then we can read
o� from the table on p.19 a permutation of [10] avoiding APs. So we may assume p > 5,
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in which case r(8) = 8. Let p = 3t+2. Then r(1
3
) = t+1, from which one calculates that

r(8
3
) = 2t + 4. Substituing into (21) we have

π(a) = 3t − 6, π(b) = 4t, π(c) = 2t + 4, π(d) = 3t + 10. (22)

But then, modulo 2p at last,

π(b) − π(a) = t + 6 6≡ 4 − 2t = π(c) − π(b),

so we don't after all have an AP of length 4 modulo 2p. This deals with Case I.

Case II : At least one of x, x + s, x + 2s + 1, x + 3s + 1 is congruent to zero modulo
p.

If at least two of them were ≡ 0 then, since 3 6≡ 0, all four would have to be so for
(π(a), π(b), π(c), π(d)) to form an AP (modulo p). But this is plainly ridiculous. Hence
exactly one of the four is ≡ 0.

Say x ≡ 0. Then

π(a) ≡ 0, π(b) ≡ 1

s
, π(c) ≡ 1

2s + 1
, π(d) ≡ 1

3s + 1
.

The analogues of (18) and (19) are, respectively,

1

2s + 1
≡ 2

s
, (23)

1

3s + 1
+

1

s
≡ 2

2s + 1
. (24)

Solving (23) gives s ≡ −2
3
which, substituted into (24) yields 7 ≡ 0 ; that is, p = 7, which

contradicts the assumption that p ≡ 2 (mod 3).

Next, say x + s ≡ 0. Then

π(a) ≡ −1

s
, π(b) ≡ 0, π(c) ≡ 1

s + 1
, π(d) ≡ 1

2s + 1
.

The analogues of (18) and (19) are now, respectively,

1

s + 1
≡ 1

s
, (25)

1

2s + 1
≡ 2

s + 1
. (26)

We simply need to note that (25) is unsatis�able.
Finally, assuming x + 2s + 1 ≡ 0 leads to the same two equations as (25) and (26),

whereas assuming x+3s+1 ≡ 0 leads to the same two equations as (23) and (24). Hence,
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Case II is fully dealt with, and with it the case p ≡ 2 (mod 3).

To deal with the case when p ≡ 1 (mod 3), we just have to adjust the permutation
π slightly. In this case we take

π(2t − 1) = r

(
1

2
πp(t)

)
, 1 ≤ t ≤ p, (27)

π(2t) = r

(
1

2
πp(t)

)
+ p, 1 ≤ t ≤ p.

The analysis is similar to before so we omit most of the details. In Case II, the prime
p = 7 arises as an exception in the same way as before, and we refer to p.19 for an explicit
AP-avoiding permutation of [14]. In Case I, the analogue of (21) is

π(a) = p − r(4), π(b) = 2p − r

(
4

3

)
,

π(c) = r

(
4

3

)
, π(d) = p + r(4). (28)

We then use the fact that p ≡ 1 (mod 3). Putting p = 3t + 1, we have r(1
3
) = 2t + 1 ⇒

r(4
3
) = 2t + 2 and hence

π(a) = 3t − 3, π(b) = 4t, π(c) = 2t + 2, π(d) = 3t + 5.

Finally, working modulo 2p,

π(b) − π(a) = t + 3 6≡ 2 − 2t = π(c) − π(b).

This contradiction completes the analysis of the case n = 2p.

When n = 3p, the map π : [3p] → [3p] given by

π(3t − 2) = πp(t), 1 ≤ t ≤ p,

π(3t − 1) = πp(t) + p, 1 ≤ t ≤ p,

π(3t) = πp(t) + 2p, 1 ≤ t ≤ p.

can be checked to avoid APs of length 4, when p ≡ 2 (mod 3). The prime p = 5 arises
as a special case, and then an AP-avoiding permutation of [15] can be read o� from the
table on p.19. When p ≡ 1 (mod 3), we adjust π as in (27). For the special case p = 7,
we may again refer to p.19 for an explicit AP-avoiding permutation of [21].

This completes the proof of Theorem B.

We now turn to Conjecture C. One may verify by hand that there is no AP-avoiding
permutation of Zn for n = 2, 3, 5, 7. On the other hand, Lemma 3.5 reduces the proof of
the conjecture to the construction of AP-avoiding permutations of Zn, for n = p, 2p, 3p, 5p
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or 7p, where p > 7 is a prime, together with a �nite number of integers involving only the
primes 2, 3, 5, 7, namely :

4,6,8,9,10,12,14,15,18,20,21,25,27,28,30,35,42,45,49,50,63,70,75,98,125,147, 175,245.

Beyond this however, we know nothing. Our evidence for the conjecture is purely nu-
merical. The table on p.19-20 summarises our computations for all n ≤ 32. The table is
divided into three parts :

The �rst part applies to n < 14. For each n 6= 2, 3, 5, 7, the example given is the mini-
mal AP-avoiding permutation with respect to the lexicographic ordering of Sn inherited
from the usual ordering of the positive integers. For this range of n, we have found all
AP-avoiding permutations of Zn, and their number is denoted by Cn. Notice that these
numbers are ‘large'. Otherwise, except for Remark 4.1 below, they are quite mysterious
to us.

The second part applies to the range 14 ≤ n ≤ 22. The examples are still the lexi-
cographically minimal AP-avoiding permutations.

The third part applies to n > 22. To reduce computing times, we searched at this point
randomly for AP-avoiding permutations, except for n = 24, 32 where we used Lemma 3.5.
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n Cn
Cn

n!
Example

1 1 1 (1)

2 0 0

3 0 0

4 16 = 24 2
3
≈ 0.667 (1, 3, 2, 4)

5 0 0

6 72 = 23 · 32 1
2·5 = 0.1 (1, 2, 4, 3, 6, 5)

7 0 0

8 768 = 28 · 3 2
3·5·7 ≈ 0.0190 (1, 2, 4, 8, 6, 5, 3, 7)

9 11664 = 24 · 36 32

23·5·7 ≈ 0.0321 (1, 2, 4, 3, 5, 8, 9, 6, 7)

10 15200 = 25 · 52 · 19 19
23·34·7 ≈ 0.0042 (1, 2, 4, 3, 5, 9, 8, 10, 6, 7)

11 258940 = 22 · 5 · 112 · 107 11·107
26·34·5·7 ≈ 0.0065 (1, 2, 4, 3, 5, 8, 9, 11, 6, 7, 10)

12 1, 217, 664 151
23·33·52·11 (1, 2, 4, 3, 5, 6, 8, 11, 12, 7, 9, 10)

= 27 · 32 · 7 · 151 ≈ 0.0025
13 8, 927, 412 89·643

28·34·52·7·11 (1, 2, 4, 3, 5, 6, 8, 11, 7, 12, 13, 9, 10)
= 22 · 3 · 13 · 89 · 643 ≈ 0.0014

n Example
14 (1, 2, 4, 3, 5, 6, 8, 7, 12, 14, 13, 10, 9, 11)
15 (1, 2, 4, 3, 5, 6, 8, 7, 12, 14, 13, 15, 9, 11, 10)
16 (1, 2, 4, 3, 5, 6, 8, 7, 12, 14, 13, 15, 16, 10, 9, 11)
17 (1, 2, 4, 3, 5, 6, 8, 7, 10, 12, 15, 13, 17, 16, 9, 14, 11)
18 (1, 2, 4, 3, 5, 6, 8, 7, 10, 9, 13, 16, 14, 18, 17, 11, 12, 15)
19 (1, 2, 4, 3, 5, 6, 8, 7, 10, 9, 13, 12, 18, 11, 17, 19, 15, 14, 16)
20 (1, 2, 4, 3, 5, 6, 8, 7, 10, 9, 13, 16, 17, 20, 19, 14, 11, 15, 12, 18)
21 (1, 2, 4, 3, 5, 6, 8, 7, 10, 9, 13, 15, 20, 18, 19, 14, 11, 21, 12, 16, 17)
22 (1, 2, 4, 3, 5, 6, 8, 7, 10, 9, 13, 15, 12, 16, 19, 21, 20, 22, 14, 11, 17, 18)
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n Example
23 (14, 10, 16, 12, 4, 3, 9, 13, 19, 20, 8, 23, 7, 2, 17, 18, 11, 22, 15, 5, 21, 6, 1)
24 (1, 2, 4, 3, 6, 5, 13, 14, 16, 15, 18, 17, 7, 8, 10, 9, 12, 11, 19, 20, 22, 21, 24, 23)
25 (4, 24, 8, 2, 10, 23, 7, 13, 12, 18, 15, 6, 16, 5, 11, 22, 14, 9, 21, 25, 17, 3, 20, 1, 19)
26 (23, 9, 24, 19, 17, 13, 18, 5, 26, 11, 10, 25, 7, 20, 1, 2, 16, 12, 6, 8, 14, 22, 21, 4, 3, 15)
27 (25, 16, 19, 12, 11, 18, 7, 9, 8, 5, 23, 4, 1, 24, 21, 10, 3, 15, 20, 27,

6, 14, 13, 22, 26, 17, 2)
28 (8, 1, 13, 14, 5, 28, 4, 19, 20, 12, 10, 9, 6, 16, 18, 24, 23, 3, 22, 26, 25,

15, 17, 7, 2, 11, 21, 27)
29 (5, 21, 12, 28, 16, 1, 26, 2, 23, 7, 18, 17, 6, 4, 20, 11, 13, 14, 3, 19,

15, 22, 10, 29, 8, 27, 25, 24, 9)
30 (29, 8, 20, 21, 3, 11, 10, 7, 26, 1, 13, 18, 16, 2, 30, 19, 17, 9, 27, 24,

5, 4, 14, 6, 25, 12, 23, 15, 22, 28)
31 (4, 6, 29, 20, 8, 28, 24, 1, 7, 12, 22, 5, 25, 30, 26, 13, 11, 31, 23, 19,

16, 21, 15, 27, 17, 3, 2, 14, 10, 18, 9)
32 (1, 2, 4, 8, 6, 5, 3, 7, 17, 18, 20, 24, 22, 21, 19, 23, 9, 10, 12, 16,

14, 13, 11, 15, 25, 26, 28, 32, 30, 29, 27, 31)

Remark 4.1 Cn is always a multiple of nφ(n). One sees this as
follows : For each pair of integers a, b ∈ [n] such that gcd(a, n) = 1, the map τa,b : [n] → [n]
de�ned by

τa,b(i) ≡ ai + b (mod n),

is a permutation of [n]. The set Ln of such ‘linear' permutations of [n] is a non-normal
subgroup of Sn of order nφ(n). Then it is easily veri�ed that, if Xn denotes the set of
AP-avoiding permutations of Zn, then Xn = X−1

n = LnXnLn.

Remark 4.2 Theorem B and Conjecture C consider which �nite cyclic groups possess
k-term AP-avoiding permutations. Despite Lemma 3.5, it is not clear to us what happens
for non-cyclic groups. By the same argument used to prove necessity of the condition
of Theorem A, a necessary requirement for the �nite group G to possess a k-term AP-
avoiding permutation is that

|Ω2(G)| ≤
√

|G|.

The full classi�cation of those �nite groups which admit such permutations is an important
open question for us.

5 Concluding remarks

In addition to answering the questions posed in our earlier remarks and conjectures, there
are many directions in which one might pursue our ideas. Here are just two suggestions :

the electronic journal of combinatorics 11 (2004), #R39 20



1. We have mainly studied permutations avoiding the arithmetic patterns ‘AP' and
‘Sidon'. But, as outlined in the introduction, there are many other patterns one might
pro�tably study.

2. Instead of just studying pattern-avoiding permutations on a (subset of a) semigroup S,
one might study arbitrary (not necessarily injective or surjective) pattern-avoiding func-
tions π : S1 → S2 between two semigroups S1, S2.
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