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Abstract

A positive list (list of positive integers) is protographic if its merger with all but
finitely many positive graphic lists is graphic. Define the family Ps of s-protogaphic
lists by letting P0 be the family of positive graphic lists and letting Ps for s > 0 be
the family of positive lists whose merger with all but finitely many lists in Ps−1 is
in Ps−1.

The main result is that X ∈ Ps if and only if t(X) ∈ Ps−1, where t(X) is the
list obtained from X by subtracting one from each term of X (deleting those that
become 0) and appending a 1 for each term of X. A corollary is that the maximum
number of iterations to reach a graphic list from an n-term even list with sum 2k is
k−n+1 (when k ≥ n), achieved by the unique such list having one term larger than 1.

1 Introduction

An integer list of length n is an n-tuple of integers. A graphic list is a list whose entries
are the degrees of the vertices in a simple graph. Whether a list is graphic is determined

by the multiset of entries; the order of the entries is irrelevant. Because entries equal to 0
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do not affect whether a list is graphic, we consider only lists of positive integers. (We use
“list” rather than “sequence” since a sequence is a function whose domain is infinite.)

Many characterizations of graphic lists are known: Sierksma and Hoogeveen [6] state
seven. A well-known explicit characterization due to Erdős and Gallai [2] is that, when

the entries d1, . . . , dn are written in nonincreasing order, the inequalities
∑k

i=1 di ≤ k(k +
1) +

∑n
i=k+1 min{k, di} hold for every k (see Aigner and Triesch [1] for an elegant proof).

This note introduces a measure of how far a list is from being graphic. Let a positive
list X be protographic if there are only finitely many positive graphic lists Y such that

the merger X ∪ Y is not graphic, where the merger of two lists is obtained by summing
the multiplicities of their elements.

More generally, define a sequence of families of lists recursively as follows. Let P0 be
the set of positive graphic lists. For s > 0, let Ps be the set of positive lists X such that

X ∪ Y ∈ Ps−1 for all but finitely many Y ∈ Ps−1. The lists in Ps are the s-protographic

lists. Thus the positive graphic lists are the 0-protographic lists, and the protographic
lists are the 1-protographic lists.

As might be expected, every s-protographic list is also (s + 1)-protographic. This
follows from the fact that X ∪ Y ∈ Ps when X ∈ Ps and Y ∈ Ps. To see this latter fact,

write (X ∪Y )∪Z as X ∪ (Y ∪Z) for Z ∈ Ps−1. We have Y ∪Z ∈ Ps−1 for all but finitely
many such Z. Excluding the finitely many Z such that Y ∪ Z /∈ Ps−1 and the finitely

many Z such that Y ∪Z ∈ Ps−1 but X∪(Y ∪Z) /∈ Ps−1, we have that (X∪Y )∪Z ∈ Ps−1

for all but finitely many Z ∈ Ps−1.

We use max(X) for the largest entry and `(X) for the length (number of terms) of
a list X. Our main result is the characterization of s-protographic lists using a special

operation on lists. Let t(X) denote the list obtained from X by subtracting 1 from each
element of X (discarding terms that reach 0) and then appending `(X) entries equal to 1.

We prove that X is protographic if and only if t(X) is graphic. This serves as the
basis step for an induction to prove the characterization in general:

Theorem 1 If X is a positive list of integers, and s is a positive integer, then X ∈ Ps if
and only if t(X) ∈ Ps−1.

The definition implies inductively that only lists with even sum can be s-protographic.
We define an even list to be a positive list with even sum. An even list with all entries

equal to 1 is graphic. Since max(t(X)) = max(X) − 1 when max(X) > 1, our theorem

thus proves inductively that every list with even sum belongs to Ps for some s.
For an even list X, we define the non-graphicality γ(X) to be the minimum s such that

X ∈ Ps. A corollary of our theorem shows that the maximum non-graphicality among
even lists with sum 2k is k, achieved by the list consisting of a single term equal to 2k.

More generally, the maximum non-graphicality among n-term even lists with sum 2k is
k − n + 1 (when k > n − 1), achieved by the unique such list having one term larger

than 1. The non-graphicality of n-term lists with unbounded sum is unbounded.

the electronic journal of combinatorics 11 (2004), #R4 2



2 The Proofs

Let n(G) denote the number of vertices of a graph G. The boundary ∂S of a set S of
vertices in a graph G is the set of vertices outside S whose neighborhoods intersect S. A

dominating set for G is a set S ⊆ V (G) such that ∂S = V (G) − S. Ore [5] observed that
every graph G without isolated vertices has a dominating set of size at most n(G)/2. A

simple proof is that for every minimal dominating set, the remaining vertices also form a
dominating set.

Lemma 2 If G is a simple graph without isolated vertices such that |∂S| < k for all
S ⊆ V (G), then n(G) ≤ 2k − 2.

Proof. Let S be a smallest dominating set of G. By Ore’s observation [5], n(G) =

|S| + |∂S| ≤ n(G)/2 + k − 1. Thus n(G) ≤ 2k − 2. �

A list X with max(X) ≥ `(X) is not graphic. The Havel–Hakimi Theorem ([3, 4])
states that a positive list X is graphic if and only if the list obtained from X by deleting the

element max(X) and subtracting 1 from max(X) of the next largest elements is graphic.

Let X ′ denote the positive list obtained from a list X by doing this and also dropping
any elements that thus become 0. We use 1k to denote k entries equal to 1.

We will need an operation on simple graphs that also is used in inductive proofs of the
Havel–Hakimi Theorem. Given vertices w, x, y, z in a simple graph G such wx, yz ∈ E(G)

and xy, wz /∈ E(G), the operation of deleting wx, yz and adding xy, wz to E(G) is a
2-switch; it produces another simple graph with the same vertex degrees.

Theorem 3 When X is a positive list, X ∈ P1 if and only if t(X) is graphic.

Proof. Let k = `(X).

Necessity. Let Yn be the degree list of the star with n leaves. By the definition of
P1, the list X ∪ Yn is graphic for sufficiently large n, say n > n0. Take n such that

n > max{n0, max(X), k}. By the Havel–Hakimi Theorem, (X ∪ Yn)
′ is graphic. Since

n = max(X ∪ Yn), and the next k largest elements are those of X, and n > k, we have

(X ∪ Yn)′ = (x1 − 1, . . . , xk − 1, 1k) = t(X) (discarding terms such that xi − 1 = 0).
Sufficiency. Assume that t(X) is graphic. We claim that if Y is a positive graphic list

of length at least 2k − 1, then X ∪ Y is graphic. Since there are finitely many graphic

lists of length at most 2k − 2, this will yield X ∈ P1.
Among all graphs with degree list t(X), choose one whose set of vertices of degree 1

induces the fewest edges. Let H be the graph with 2k vertices obtained from it by adding
an isolated vertex for each 1 in X. Let w1, . . . , wk be k vertices of degree 1 in H that

induce the fewest edges among all sets of k vertices of degree 1. The remaining vertices are
u1, . . . , uk, indexed so that dH(ui) = xi − 1 (this includes all the added isolated vertices).

Let W = {w1, . . . , wk} and U = {u1, . . . , uk}. We reduce the problem to the case
where W is an independent set in H . If W induces an edge, then its endpoints have

degree 1, so if there is an edge induced by U we can perform a 2-switch to reduce the
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number of edges within W . Hence if W induces an edge, then we may assume that U is
an independent set in H . Now

∑
dH(ui) < k, because the only edges incident to U are

also incident to W , and fewer than k such edges are incident to W .
Thus X consists of k positive numbers summing to k + j, where j < k. In this case

we show that X is graphic, by induction on k. If all entries are 1, then X is realized by a
matching. Otherwise, the pigeonhole principle implies that X contains a 1. Form X ′ by

deleting this 1 and subtracting 1 from some larger element of X. Now X ′ has length k−1
and sum k − 1 + j − 1, with j − 1 < k − 1. By the induction hypothesis, X ′ is graphic,

and we add a pendant edge to a realization of it to obtain a realization of X. Since every
s-protographic list is (s + 1)-protographic, this yields X ∈ P1.

Hence we may assume that W is an independent set in H . Now let G be a graph
with degree list Y . By Lemma 2, there exists S ⊆ V (G) with |∂S| ≥ k; give the names

w1, . . . , wk to distinct vertices in ∂S. Let z1, . . . , zj (not necessarily distinct) be vertices

of S such that ziwi ∈ E(G) for each i.
Because W is an independent set in H , the union G∪H is a simple graph with k+`(Y )

vertices. In G ∪ H , replace the edge ziwi with the edge ziui for 1 ≤ i ≤ j. This increases
the degree of ui to xi and decreases the degree of wi to dG(wi). Hence the modified graph

F is a simple graph with degree list X ∪ Y . �

Let Bs,n denote the list of length n consisting of one entry equal to n − 1 + 2s and
n − 1 entries equal to 1. Note that B0,n is the degree list of a star with n vertices.

By construction, it is immediate that t(Bs,n) = Bs−1,n+1. The proof of the main result

(Theorem 1) involves a statement about Bs,n equivalent to the other two.
The application of 2-switches in the proof of the Havel–Hakimi Theorem is a statement

that we will need here: for every graphic list X, there is a simple graph G whose degree
list is X in which a vertex of highest degree is adjacent only to vertices of the highest

degrees among the remaining vertices. If w has maximum degree, and w is adjacent to
z but not to x among the highest-degree vertices, then there exists y ∈ N(x) − N(z)

since d(x) ≥ d(z), and the 2-switch that replaces wz and xy with wx and zy reduces the
number of missing desired neighbors of w.

Theorem 4 For a positive list X and nonnegative integer s, the following are equivalent:
A) X ∈ Ps+1;

B) X ∪ Bs,n ∈ Ps for sufficiently large n;
C) t(X) ∈ Ps.

Furthermore, Bs+1,n ∈ Ps+1, and there are finitely many lists in Ps+1 of a given length.

Proof. We prove all claims simultaneously by induction on s. Theorem 3 states the
equivalence of A and C for s = 0. The definition of P1 yields A ⇒ B for s = 0. Note that

B1,n ∈ P1, because t(B1,n) = B0,n+1 ∈ P0. For every X ∈ P1 of length k, the list t(X) has
length at most 2k. The finiteness of {X ∈ P1: `(X) = k} thus follows from the finiteness

of the set of graphic lists of length at most 2k.
To complete the basis step, it remains only to show B ⇒ C when s = 0. Choose some

n with n > `(X) such that X ∪B0,n is graphic. Note that n−1 is the largest value in this
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list. Choose a graph G with degree list X ∪ B0,n such that the vertex w of degree n − 1
is adjacent to vertices of the next highest degrees, as in the proof of the Havel–Hakimi

Theorem. Now G − w has degree list t(X).
For the induction step, consider s > 0.

A ⇒ B. This follows from the definition of Ps+1, since part of the final statement of
the induction hypothesis is that Bs,n ∈ Ps for all n.

B ⇒ C. For sufficiently large n, we are given X ∪ Bs,n ∈ Ps. By the induction
hypothesis, t(X ∪ Bs,n) ∈ Ps−1. Since t(X ∪ Y ) = t(X) ∪ t(Y ) for all X and Y , we have

t(X)∪ t(Bs,n) ∈ Ps−1. Thus t(X)∪Bs−1,n+1 ∈ Ps−1. Since this holds for sufficiently large
n, the induction hypothesis for B ⇒ A yields t(X) ∈ Ps.

C ⇒ A. Suppose that t(X) ∈ Ps. By the definition of Ps, there exists n0 such that
t(X) ∪ W ∈ Ps−1 whenever W ∈ Ps−1 and `(W ) > n0. Consider Z = X ∪ Y for Y ∈ Ps

with `(Y ) > n0. From the final statement of the induction hypothesis, `(Y ) > n0 excludes

only finitely many candidates for Y from Ps; thus X ∈ Ps+1 will follow from Z ∈ Ps.
We have t(Z) = t(X)∪ t(Y ). The induction hypothesis for A ⇒ C yields t(Y ) ∈ Ps−1.

Also, `(t(Y )) ≥ `(Y ) > n0. By the choice of n0, t(X) ∪ t(Y ) ∈ Ps−1, and hence t(Z) ∈
Ps−1. Now the induction hypothesis for C ⇒ A implies Z ∈ Ps.

Finally, consider the last statement. We have t(Bs+1,n) = Bs,n+1, which by the in-
duction hypothesis for this statement belongs to Ps. Since we have now proved C ⇒ A,

we conclude that Bs+1,n ∈ Ps+1. Also, A ⇒ C and the induction hypothesis for the last
statement implies that Ps+1 has finitely many lists of a given length. �

Recall that the non-graphicality γ(X) of an even list X is the least s with X ∈ Ps.

Corollary 5 If X is an even list, then γ(X) ≤ max{0, max(X)−`(X)+1
2

}, with equality for

non-graphic lists only when X has only one element larger than 1. In particular, for
k ≥ n − 1 the non-graphicality among n-term lists with sum 2k is maximized only by the

unique list having just one entry larger than 1, where it equals k − n + 1.

Proof. When X is graphic, max(X) ≤ `(X)− 1, so the claim holds when γ(X) = 0. We

proceed by induction on γ(X).
If X is not graphic, then max(X) > 1, and by Theorem 4 we have γ(X) = 1+γ(t(X)).

Also max(t(X)) = max(X) − 1 and `(t(X)) ≥ `(X) + 1, with equality only when X has
exactly one element larger than 1. By the induction hypothesis, γ(X) ≤ max{1, 1 +
max(X)−1−(`(X)+1)

2
}, with equality only when X and t(X) each have exactly one element

larger than 1. Since X is not graphic, this implies that max(X) > `(X) − 1, and hence

the desired bound and condition for equality follow.

When X has exactly one element larger than 1, the same is true of t(X) (unless the
largest element in X is 2), and by induction the bound on γ(X) holds with equality. In

this case max(X) = 2k − n + 1, so the bound max(X)−`(X)+1
2

equals k − n + 1. �
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