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Abstract

A construction supporting a conjecture that different ground state pairs exist in
the 2-dimensional Edwards-Anderson Ising spin glass is presented.

1 Introduction

A fundamental and extensively studied problem on the way towards understanding the ef-
fects of disorder and frustration is to determine the multiplicity of infinite volume ground-
states in finite-dimensional realistic models. One conjecture, in analogy with the mean-
field Sherrington-Kirkpatrick model, is that finite-dimensional short-ranged systems with
frustration have infinitely many groundstate pairs ([2], [3]). A different conjecture based
on droplet-scaling theories predicts that only one groundstate pair exists ([4], [5], [6]).

The simplest system used to study these questions is the Edwards-Anderson Ising
model ([1]) in dimension two. Here the hypothesis that only one groundstate pair exists
has received support from seminal analytic work of Newman and Stein ([8], [7]). The
purpose of this paper is to present a combinatorial construction supporting the competing
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hypothesis. In particular very intuitive Conjectures 4, 5 are formulated whose validity
implies that incongruent (finitely incongruent respectively) groundstate pairs exist. These
conjectures concern only finite sublattices of the square lattice and hence they may be
studied by many tools including computer simulations.

The Edwards-Anderson Ising model on a graph G = (V, E) is defined by coupling
constants Jij assigned to each edge {i, j} of G. We will assume that Jij’s are independently
chosen from a mean zero Gaussian distribution. A physical state of the system is given
by a spin assignment σ : V → {±1} which has the corresponding energy

E(σ) = −
∑

{i,j}∈E

Jijσiσj .

A state is groundstate if its energy cannot be lowered by changing an arbitrary finite set
of spins. Groundstates exist for the square lattice S and arbitrary coupling constants
Jij assigned to its edges by a compactness argument. Note that if we reverse all spins
in a groundstate we again get a groundstate. Let us call these pairs groundstate pairs,
or GSPs. Edge ij is satisfied by spin assignment σ if Jijσiσj > 0. Two GSPs are called
incongruent if the set of edges satisfied by exactly one of them has a positive density.
Note that the connectivity components of such a set in the dual lattice are sometimes
called ’domain walls’.

In 1D there is no frustration and only a single GSP exists. In other dimensions the
main incongruency problem may be formulated as follows:

Conjecture 1 Let the coupling constants Jij in the square lattice be chosen at random.
Then with probability strictly bigger than zero there are incongruent GSP’s.

In their strategy to prove that incongruent GSP’s do not exist in the 2-dimensional
square lattice, Newman and Stein ([8], [7]) approach the main problem by means of metas-
tates. A metastate has been introduced as a translation invariant measure constructed
as follows: for each finite sublattice SL of the square lattice Σ with periodic boundary
conditions consider the joint distribution of coupling constants and GSPs in SL. When L
goes to infinity, by compactness, there is a subsequence of L’s so that the joint distribu-
tions converge to translation-invariant (since periodic boundary conditions are imposed)
joint measure. The metastate induces a translation invariant measure on the sets of edges
satisfied by exactly one of two GSPs. In this setting Newman and Stein formulate their
conjecture as follows:

Conjecture 2 Two randomly chosen GSPs (from the same metastate) are not incongru-
ent.

Note an important fact (see Lemma 2 of [7]) which follows from the translation invari-
ance: if two randomly chosen GSPs from a metastate are distinct, then with probability
one they are incongruent. Newman and Stein give support to their conjecture in [7].
In particular they show that if two GSPs chosen at random from a metastate are dis-
tinct then there is exactly one domain wall between them and it is a both-ways-infinite
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path. Newman and Stein consider this situation unlikely and express belief that all the
metastates are the same.

In this paper we consider the finite sublattices with different than periodic boundary
conditions: we fix the spins along the boundary of the finite sublattice so that maximum
number of the edges of the boundary are satisfied. Note an important fact: a state of
minimum energy with these boundary conditions need not be a groundstate. We will
call it a c-groundstate. Apart of the traditional incongruency we also consider a weaker
notion: we say that two states are finitely incongruent if at least one of the domain
walls between them contains an infinite both ways unbounded path. This is certainly a
weaker notion of incongruency than the one of Newman and Stein but, also in view of
their results described above, the existence of finitely incongruent states would support a
conjecture that incongruent states exist. In our setting a weaker incongruency conjecture
than Conjecture 1 may be formulated as follows:

Conjecture 3 Let coupling constants Jij in the square lattice Σ be chosen at random.
Then with probability strictly bigger than zero there is a nested sequence Si, i = 1, 2, ... of
finite sublattices converging to the square lattice Σ so that if ej is a c-groundstate in S2j

and oj is a c-groundstate in S2j−1 then both sequences (oj), (ej) converge and their limits
o, e are finitely incongruent states of Σ.

Note that o, e are groundstates of Σ since the boundary conditions ’disappear to the
infinity’. Also note that the boundary conditions mean that all or all but one boundary
edges are to be satisfied depending on the parity of the number of edges with negative
coupling constants.

We start by considering the strip lattice Ck: the vertical coordinates of its vertices
are arbitrary integers, and its horisontal coordinates run through integers from −k to k.
As an introduction to our method we show in section 2 that the strip lattice satisfies
Conjecture 3. In section 3 we formulate two conjectures which imply Conjectures 3 and
1. The important feature of these new conjectures is that they concern finite sublattices
only, and hence allow direct study by discrete methods and simulations. In section 4 we
prove a (rather weak) consequence of Conjecture 4. The discrete aspect of Conjectures
4, 5 is supported in the last section 5 where we show that the dual formulations of the
two conjectures are statements about T -joins in finite square lattices; T -join belongs
to basic discrete optimization notions and as such it is heavily studied by discrete and
computational methods.

2 The strip Lattice

Let C(n, k) be the finite induced subgraph of Ck with the vertices (i, j) : |j| ≤ n. The basic
building blocks of strip and square lattices are unit squares called plaquettes. A plaquette
is frustrated if it has odd number of edges (out of 4) with negative coupling constants,
and happy otherwise. Observe that a plaquette is frustrated if and only if arbitrary spin
assignment satisfies an odd number of its edges. We define graph C(n, k)∗ to be the graph
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obtained by deletion of the vertex corresponding to the outer face of the geometric dual
of C(n, k). Hence the vertices of C(n, k)∗ are all the plaquettes of C(n, k) and the edges
are all edges e∗ such that e is an edge of C(n, k) not on the boundary; edge e∗ connects
two plaquettes p, q such that edge e lies on the boundary of p and q. If A is a subset of
edges of C(n, k) then let A∗ denote the set of ’dual’ edges: A∗ = {e∗; e ∈ A}. Let n > m,
and consider the graph D(n, m, k) = C(n, k)−C(m−1, k). Note that D(n, m, k) has two
connectivity components, each of them consists of n − m horizontal levels of plaquettes.
The two components of D(n, m, k) are naturally called upper and lower and denoted by
DU(n, m, k) and DL(n, m, k).

Definition 2.1 We say that C(n, k), C(m, k) is a regular pair if for each k′ ≤ k, both
C(n, k′) and C(m, k′) have an even number of boundary edges with negative coupling
constants and both DU(n, m, k) and DL(n, m, k) have exactly one frustrated plaquette,
located in the middle of the lowest (highest respectively) horizontal row.

We will use the following key observation:

Lemma 2.2 Let C(n, k), C(m, k) be a regular pair. Let c(i) be a c-groundstate of C(i, k)
and let DIS(c(i)) denote the set of edges dissatisfied by c(i), i = n, m.Then the symmetric
difference DIS(c(n))∗∆DIS(c(m))∗ contains a path from a plaquette of DU(n, m, k) to a
plaquette of DL(n, m, k).

Proof. The subgraph formed by DIS(c(i))∗ induces odd degree in each frustrated plaque-
tte and even degree in each happy plaquette of C(i, k). Moreover for i = m, n, DIS(c(i))
contains no edge of the boundary of C(i, k). Hence DIS(c(n))∗∆DIS(c(m))∗ induces
odd degree in each frustrated plaquette of D(n, m, k), and even degree in arbitrary other
plaquette of C(n, k). This easily implies the Lemma. 2

Now we are ready to show that
Conjecture 3 holds for the strip lattice:
Let Si = C(i, k). Clearly, for almost all coupling constants assignments J in the whole

strip lattice there is a sequence (mj) so that for each j, C(mj , k), C(mj −1, k) is a regular
pair. Let oj be a c-groundstate in Smj

and let ej be a c-groundstate in Smj−1. Lemma 2.2
implies that for each j, DIS(oj)

∗∆DIS(ej)
∗ contains a path Pj of length at least 2j + 1.

Now it is easy to see that
Claim 1. There is a subsequence Pnj

that converges to both ways infinite path P .
By compactness there is a subsequence (pj) of (nj) so that both sequences (epj

) and
(opj

) converge. Let the respective limits be e and o. Then necessarily P is a subset of
a domain wall between e and o and so e, o are finitely incongruent. Hence Conjecture 3
holds for the strip lattice.

3 The Finite Conjectures

In this section we formulate Conjecture 4 and Conjecture 5. We show that Conjecture 4
implies Conjecture 3 and Conjecture 5 implies the main Conjecture 1.
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Definition 3.1 We first introduce some notation.

• We denote by A(n,k) the set of all coupling constants assignments in Σ so that there
is a c-groundstate r in C(n − 1, k) and a c-groundstate s in C(n, k) and a path P
in DIS(r)∗∆DIS(s)∗ from a frustrated plaquette of DU(n, n − 1, k) to a frustrated
plaquette of DL(n, n − 1, k) which contains an edge in distance at most 100 from
the origin. The distance here means the length of a shortest path in C(n, k) form
the origin to a plaquette which forms an end-vertex of the edge of P .

• A row R of plaquettes of C(n, k) is called isolation if the middle plaquette M is the
only frustrated one and for each horizontal edge e /∈ M , |Je| >

∑
e′ |Je′| where the

sum is over all edges e′ such that e′ ∈ M or e′ is a vertical edge incident to a vertex
of a plaquette of R. C(n, k) is called isolated if both boundary horizontal levels of
plaquettes are isolation.

• We denote by R(n,k) the set of all coupling constants assignments in Σ so that
C(n, k), C(n − 1, k) is a regular pair and C(n, k) is isolated.

• Finally we denote by R′(n,k) the set of all coupling constants assignments in Σ
which belong to R(n, k) and do not belong to R(n′, k) for k ≤ n′ < n.

In Figure 1 below path P is depicted. Dotted line corresponds to DIS(s)∗, solid line
corresponds to DIS(r)∗ and little squares lie in the frustrated plaquettes.

Figure 1.

We will show that the following conjecture implies Conjecture 3.

Conjecture 4 There is positive integer constant c and ε > 0 so that if n, k > c + 1 then
the probability of A(n, k), in the set of the coupling constants assignments J of Σ such that
J ∈ A(n, k′) for each c+1 < k′ < k and J ∈ R′(n, k), is at least 1−(k−c)−1(log(k−c)−1−ε.

How is it possible that for each k′ < k, A(n, k′) holds and A(n, k) does not hold?
There may be a block of heavy edges of width 2k − 1 encircling the origin. The domain
walls in C(n, k′), k′ < k, pass through it since they cannot escape elsewhere however the
domain wall in C(n, k) avoids it. If this is essentially the only possibility, Conjecture 4
should be true.

If Conjecture 3 holds then it is natural to expect that for large k, a neighbourhood of
the origin behaves in a similar way as the origin itself. This leads to a bolder Conjecture
5 which we will show implies the main Conjecture 1.
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Definition 3.2 We denote by BA(n,k) the set of all coupling constants assignments
in Σ so that there is a c-groundstate r in C(n − 1, k) and a c-groundstate s in C(n, k)
and a path P in DIS(r)∗∆DIS(s)∗ from a frustrated plaquette of DU(n, n − 1, k) to a
frustrated plaquette of DL(n, n− 1, k) so that P contains an edge in distance at most 100
from the origin AND has density at least 1/100 in the square centered at the origin with
the side-length 100k1/100.

Conjecture 5 Conjecture 4 holds also with A(n, k′) replaced by BA(n, k′), k′ ≤ k.

Theorem 1 Conjecture 4 implies Conjecture 3.

Proof.
We prove this theorem in a series of observations.
Observation 1: Let C(n, k) ∈ R(n, k). Let r be a c-groundstate in C(n − 1, k), s be

a c-groundstate in C(n, k) and let P be a path in DIS(r)∗∆DIS(s)∗ from the frustrated
plaquette of DU(n, n − 1, k) to the frustrated plaquette of DL(n, n − 1, k). Moreover let
n′ > n, let C(n′, k), C(n′ − 1, k) be a regular pair and let r′, s′, P ′ be defined analogously
as r, s, P . Then P ′ contains P .

Let k > c+1 and let Ik denote the set of all coupling constants assignments in Σ so that
for each c+1 < k′ ≤ k there is n(k′) ≥ k′ so that C(n(k′), k′) ∈ R(n(k′), k′)∩A(n(k′), k′).

Observation 2: If k > c + 1 and Conjecture 4 holds then

Prob(Ik) = Prob(∩c+1<k′≤kIk′) ≥
k∏

j=c+2

(1 − (j − c)−1(log(j − c))−1−ε).

Proof.
First notice that for each k with probability one there is an infinite sequence (ni) such

that R(ni, k) holds for each i. In particular if we let Z(k) be the event ’There is no n ≥ k
with R(n, k)’, then Z(k) has probability zero.

We proceed by induction on k. The case k = c + 2 follows from the fact above and
Conjecture 4. For the induction step first note that event Z(k) has probability zero and
so it also has probability zero conditioned on Ik−1, if we use the induction assumption.
Hence for almost all elements of Ik−1 there is smallest n ≥ k such that R(n, k) holds.
Next note that Observation 1 implies that the set of instances satisfying R′(n, k) and Ik−1

is the same as the set of instances satisfying R′(n, k) and A(n, k′) for each c +1 < k′ < k.
Hence assuming validity of Conjecture 4 and the induction assumption we get

Prob(Ik) = Prob(Ik−1)Prob(Ik||Ik−1) =

Prob(Ik−1)
∑

m

Prob(R′(m, k)||Ik−1)Prob(Ik||R′(m, k), Ik−1) =

Prob(Ik−1)
∑

m

Prob(R′(m, k)||Ik−1)Prob(Ik||R′(m, k), A(m, k′), c + 1 < k′ < k) =
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Prob(Ik−1)
∑

m

Prob(R′(m, k)||Ik−1)Prob(A(m, k)||R′(m, k), A(m, k′), c + 1 < k′ < k) ≥

∑

m

Prob(R′(m, k)||Ik−1)

k∏

j=c+2

(1 − (j − c)−1(log(j − c))−1−ε) =

k∏

j=c+2

(1 − (j − c)−1(log(j − c))−1−ε).

This finishes the proof of Observation 2.
Hence assuming validity of Conjecture 4 the probability of the event ’For each k, Ik’ is

at least
∏

j≥2(1− j−1(log j)−1−ε > 0. This proves Theorem 1 in the same way as Claim 2
proves Conjecture 3 for the strip lattice. 2

Theorem 2 Conjecture 5 implies Conjecture 1.

Proof. We proceed similarly as in the proof of the previous theorem. Let k > c + 1
and let BIk denote the set of all coupling constants assignments in Σ so that for each
c + 1 < k′ ≤ k there is n(k′) ≥ k′ so that C(n(k′), k′) ∈ R(n(k′), k′) ∩ BA(n(k′), k′). We
observe as before if k > c + 1 and Conjecture 5 holds then

Prob(BIk) = Prob(∩c+1<k′≤kBIk′) ≥
k∏

j=c+2

(1 − (j − c)−1(log(j − c))−1−ε).

Hence assuming validity of Conjecture 5 the probability of the event ’For each k, BIk’
is at least

∏
j≥2(1 − j−1(log j)−1−ε > 0. This proves Theorem 2: in the same way as

above we can grow a path in the symmetric difference, so that it goes near to origin AND
gradually ’fills’ the whole square grid. 2

4 The Pinning Lemma

In the rest of the paper we collect support for Conjecture 4. First we present the following
Pinning Lemma.

Lemma 4.1 There is a function g from positive integers to (0, 1) so that for each k and
n > k, if coupling constants in C(n, k) are chosen at random so that C(n, k), C(n − 1, k)
is a regular pair then the probability of A(n, k) is at least g(k).

We postpone the proof to the appendix. Anyway, the present proof is not satisfactory.
Although g may well be a constant, at present we are able to show only a very weak
inverse exponential lower bound for it. Next we prove a consequence of Conjecture 3,
using the Pinning Lemma.
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Theorem 3 Let (Si = C(li, pi), li > pi) be a nested sequence of finite sublattices mono-
tonically converging to the square lattice and such that for each k there are sufficiently
many lattices with width k. Let Ji be the distribution of the coupling constants in Si.
Then for almost all (Ji)i≥1 from (Ji)i≥1 there is a converging subsequence (Jmj

) with the
following property: if ej is a c-groundstate in Smj

and oj is a c-groundstate in Smj−1 (with
coupling constants given by Jmj

) then both sequences (oj), (ej) converge and their limits
o, e are weakly incongruent states.

Proof.
Theorem 3 follows from Claim 2 below in the same way as Conjecture 3 for the strip

lattices follows from Claim 1.
Claim 2. For almost all (Ji)i≥1 from (Ji)i≥1 there is a subsequence (C(ni, ki)) of (Si)

so that for each i, C(ni, ki) and C(ni − 1, ki) with the coupling constants given by Jni
is

a regular pair and there is a path Pi in DIS(oi)
∗∆DIS(ei)

∗ from a frustrated plaquette
of DU(ni, ni − 1, k) to a frustrated plaquette of DL(ni, ni − 1, k) which contains an edge
in distance at most 100 from the origin. Here oi is a c-groundstate in C(ni − 1, ki) and ei

is a c-groundstate in C(ni, ki).
Let k be an arbitrary positive integer. Since pi = k for sufficiently many i’s, we know

by the Pinning Lemma that the probability that one of C(li, k) satisfies the properties
of Claim 2 is very large. Hence the set of instances (Ji)i≥1 from (Ji)i≥1 for which the
propertiess of Claim 2 donot hold has measure zero. This finishes the proof of Claim 2
and Theorem 3. 2

Claim 2 is a consequence of the Pinning Lemma and the fact that in each Si we assign
the coupling constants independently. The remaining obstacle in proving the full Conjec-
ture 3 is that because of dependancies the Pinning Lemma cannot be used independently
in each Si. Conjecture 4 may be viewed as an attempt to make the dependencies work
for us.

5 The Dual Formulation

It seems very natural to formulate the Pinning Lemma as a property of the dual lattice.
In doing so we connect our considerations with the concept of T -joins extensively studied
in discrete optimization. This may be particularly useful for studying Conjectures 4, 5
computationally. In fact, the Pinning Lemma is proved in its dual form in the appendix.
We start by listing some simple properties of lattices C(n, k).

1. C(n, k) has an even number of negative coupling constants on the boundary if and
only if it has an even number of frustrated plaquettes.

2. A set R of edges of C(n, k) not on the boundary is the set DIS(r) of the dissatisfied
edges of a state r (not necessarily a groundstate) if and only if R has an odd number
of edges from each frustrated plaquette and an even number of edges from any other
plaquette.

the electronic journal of combinatorics 11 (2004), #R40 8



3. A state r is a c-groundstate if and only if it satisfies the boundary conditions and∑
(ij)∈DIS(r) |Jij| is as small as possible. Hence there is a natural bijection between

the c-groundstate pairs of C(n, k) and the sets A of edges not on the boundary and
satisfying: a plaquette has an odd number of edges of A if and only if it is frustrated,
and

∑
(ij)∈A |Jij| is as small as possible.

This means that regarding the Pinning Lemma we need only a subset of information
given by the coupling constants: we need to know the value |Jij | for each edge (ij) not
on the boundary, and we need to know which plaquette is frustrated. Each plaquette is
equally likely to be frustrated or happy. If J is our distribution of coupling constants then
we denote by |J | the distribution of their absolute values. We are interested only in those
C(n, k) that contain an even number of frustrated plaquettes. Hence instead of choosing
the coupling constants from J , we can choose them from |J | and choose uniformly at
random an even set of plaquettes which we want to be frustrated. This means that the
Pinning Lemma is about C(n, k)∗ rather than about C(n, k). C(n, k)∗ is also a square
grid, of width 2k and height 2n. We need one more definition.

Definition 5.1 Let G = (V, E) be a graph and let T be a subset of an even number of
vertices of G. We say that a set A of edges of G is a T -join if each vertex x of G is
incident with an even number of edges of A if and only if x /∈ T .

Taking these considerations into account, note that the following Lemma 5.4 implies
Pinning Lemma 4.1, and Conjectures 6, 7 are equivalent dual formulations of Conjectures
4. 5.

We denote by C ′(n, k) the graph obtained from C(n, k) by attaching two more vertices
[0, n + 1] and [0,−n − 1] by the corresponding two vertical edges. We say that C(n, k) is
dually isolated if each of its two boundary rows of vertices are dual isolation. A row R of
vertices is dual isolation if it has exactly one vertex r of T , located in the middle of R,
and the weight of each vertical edge incident to a vertex of R − r is bigger than the sum
of the weights of the horizontal edges in R and in the two rows adjacent to R, and the
edges adjacent to r.

Definition 5.2 Let D(n, k) denote the following property: there is a minimum T -join r
in C(n, k) and a minimum (T ∪ {[0, n + 1], [0,−n − 1]})-join s in C ′(n, k) so that a path
P from [0, n + 1] to [0,−n− 1] in r∆s contains an edge in distance at most 100 from the
origin.

Definition 5.3 Let BD(n, k) denote the following property: there is a minimum T -join
r in C(n, k) and a minimum (T ∪ {[0, n + 1], [0,−n − 1]})-join s in C ′(n, k) so that a
path P from [0, n+1] to [0,−n−1] in r∆s contains an edge in distance at most 100 from
the origin AND has density at least 1/100 in the square centered at the origin with the
side-length 100k1/100.

Conjecture 6 There is positive integer constant c and ε > 0 so that if n, k > c + 1, and
the absolute values of the coupling constants in C(n, k) are chosen at random from |J |,
and a subset T of vertices of C(n, k) be chosen uniformly at random so that:
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• for each k′ ≤ k, |T ∩ C(n, k′)| is even,

• if n′ ≤ n then C(n′, k) is not dually isolated,

• for each c + 1 < k′ < k, D(n, k′) holds,

then the probability of D(n, k) is at least 1 − (k − c)−1(log(k − c))−1−ε.

Conjecture 7 Conjecture 6 holds with D(n, k′) replaced by BD(n, k′), k′ ≤ k.

Lemma 5.4 There is a function g from positive integers to (0, 1) so that for each k and
n > k, if we choose absolute values of coupling constants of C(n, k) at random from |J |
and choose a subset T of even number of vertices of C(n, k) uniformly at random then
the probability of D(n, k) is at least g(k).

Conclusion. In this paper we formulate Conjectures 4, 5 whose validity implies
that finitely incongruent and incongruent groundstate pairs exist in the 2-dimensional
Edwards-Anderson Ising spin glass. The conjectures deal with finite sublattices only and
may be naturally and effectively studied by computer simulations. We gather supporting
evidence, namely we prove a Pinning Lemma and as its consequence a weaker statement
in Theorem 3.

A Proof of the Dual Pinning Lemma 5.4

We will consider set K of configurations with joint distribution Uk. A configuration is a
pair (J, T ) where J consists of the coupling constants and T consists of an even number
of vertices of C(n, k). We show that there is a function F from K to itself such that

• Uk(F (K)) ≥ ck > 0, and

• Each L ∈ F (K) is positive, i.e. there is a minimum T -join r in C(n, k) and a
minimum (T ∪ {[0, n + 1], [0,−n − 1]})-join s in C ′(n, k) such that path P from
[0, n + 1] to [0,−n − 1] in r∆s contains an edge in distance at most 100 from the
origin.

Fix an arbitrary positive configuration K0. Let K = (J, T ) be a configuration. If
there is an edge e incident to a vertex [i, j] with |i| ≤ 4, |j| ≤ k and |Je| ≥ 1 then let
f(K) = K0, otherwise let P, r, s be as in the statement of Lemma 5.4. If P passes in
distance at most 100 from the origin then let f(K) = K. Otherwise let m be the smallest
positive integer such that P contains a vertical edge with the x-coordinate of its vertices
equal to m or −m and with the absolute value of both y-coordinates at most 4. Note
that P has no vertex [i, j] with |i| < m and |j| < 4. Let Z be the graph induced on the
vertices [i, j]; |i| ≤ m, |j| ≤ 4. We let K = K1, P = P1, r = r1, s = s1, Z = Z1, T = T1,
m = m1, let n1 be the number of vertical edges of P ∩Z and let p1 be the number of (all)
edges of P ∩ Z.
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Next we describe a procedure with input Ii = (Ki = (Ji, Ti, x, y), Pi, ri, si, Zi, mi, pi)
which produces F (K) or Ii+1.

The Procedure. If ri∆si contains a cycle then let F (K) = K0. Otherwise let Hi be the
segment of Pi∩Zi defined as follows: If Pi contains a vertical edge e = {[z, a], [z, b]} so that
|z| = mi and |a| < |b| < 4 then let Hi consist of e. If Pi contains no such vertical edge but
it does contain a horizontal edge e = {[a, z], [b, z]} so that |z| = 4 and |a| < |b| < mi then
again let Hi consist of e. Finally let there be only ’corner’ edges in Pi ∩Zi. Let e be such
vertical edge (it exists by the choice of mi), e = {[z, a], [z, b]}, |z| = mi and without loss
of generality z = −mi, a = 3, b = 4. Then we let Hi consist of e if {[z, 4], [z − 1, 4]} /∈ Pi,
and e together with {[z, 4], [z − 1, 4]} otherwise. Let Wi be the set of edges of a path in
Zi between the end-points of Hi such that it contains some edges in distance at most 100
from the origin, no vertical edge of the boundary of Zi, and as few horizontal edges of the
boundary of Zi as possible (i.e. at most two). Let Mi be an integer upper bound of the
coupling constants of the edges incident with a vertex of Zi. For instance M1 = 1. For
each edge e of Zi such that e /∈ Wi ∪ (Pi − Hi) we let (Ji+1)e = (Ji)e + 100kMi, and we
let (Ji+1)e = (Ji)e otherwise.

Ti+1 is defined as folows: let r′i be obtained from ri by deleting all the edges of ri ∩ si

which belong to Zi. Analogously define s′i. Let U b
i (U0

i respectively) be the set of vertices
of Zi−Ti (Zi∩Ti respectively) such that we deleted an odd number of edges of ri incident
with them. We let T ′

i+1 = (Ti−Uo
i )∪U b

i . Observe that T ′
i+1 has no vertices in the interior

of Zi and r′i is a T ′
i+1-join and s′i is a T ′

i+1 ∪ {x, y}-join. If Hi ⊂ r′i or Hi ⊂ s′i then
let Ti+1 = T ′

i+1 else necessarily Hi contains two edges incident to a ’corner vertex’ of Zi

and without loss of generality assume that the vertical edge of Hi belongs to r′i. In this
case Ti+1 is obtained from T ′

i+1 by changing the status of both vertices of the horisontal
edge of Hi. We also modify r′i and s′i so that we delete the horisontal edge of Hi from
s′i and add it to r′i. Observe that Ti+1 has no vertices in the interior of Zi and r′i is a
Ti+1-join and s′i is a Ti+1 ∪ {x, y}-join. Moreover Hi ⊂ r′i or Hi ⊂ s′i, r′i∆s′i = Pi and
r′i ∩ s′i has no edges in Zi. Without loss of generality assume Hi ⊂ r′i. Let r′′i be obtained
from r′i by exchanging Hi for Wi. Clearly r′′i is a Ti+1-join, r′′i ∆s′i is a path P ′

i obtained
from Pi by exchanging Hi for Wi and E(s′i) ≤ E(si) and E(r′′i ) ≤ E(ri) + 32Mik. Let
Ki+1 = (Ji+1, Ti+1, x, y), ri+1 be a minimum Ti+1-join, si+1 be a minimum Ti+1 ∪ {x, y}-
join, and let Pi+1 be the x, y-path in the symmetric difference of ri+1, si+1. If Pi+1 contains
an edge in distance at most 100 from the origin then let F (K) = Ki+1 otherwise we output
vector (Ki+1 = (Ji+1, Ti+1, x, y), Pi+1, ri+1, si+1, Si+1, mi+1, ni+1, pi+1). This finishes the
describtion of the Procedure.

Now observe that R = ri+1∆(ri∆r′i) is a Ti-join such that R and ri+1 differ only on the
edges of Zi. Hence ri+1 cannot contain an edge of Zi − (Wi ∪ (Pi − Hi)) since otherwise
E(ri+1) ≥ E(R) − 32kMi + 100kMi ≥ E(R) + 60kMi ≥ E(ri) + 60kMi > E(r′′i ). Hence
ri+1 contains all the edges of Wi of the interior of Zi or none of them, and its edges from
the boundary of Zi form a subset of Zi ∩ [(Pi − Hi) ∪ D], where D is non-empty only if
Hi has a vertical ’corner’ edge and then D consists of one or two horizontal edges (by
the definition of Wi). The same holds for si+1. If Hi has at least one vertical edge of Zi

then we have that mi < mi+1 or mi = mi+1, ni > ni+1. If Hi has no vertical edge then it
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consists of exactly one horizontal edge and all the edges of Wi belong to the interior of
Zi. Hence ri+1 contains all the edges of Wi or none of them and the edges of ri+1 from
the boundary of Zi belong of Pi−Hi. The same holds for si+1. Hence we have mi < mi+1

or mi = mi+1, ni = ni+1, pi > pi+1. Sumarising, mi < mi+1 or mi = mi+1, ni > ni+1, or
mi = mi+1, ni = ni+1, pi > pi+1.

Hence after at most (16k)2 repetitions of the Procedure we have F (K) defined. More-
over F (K) is defined only if the path with desired properties exists. Finally ck > 0
exists since the set Z of configurations with |Jij| < 1 for |i| ≤ 4, |j| ≤ k clearly satisfies
Uk(Z) ≥ c′k > 0 and with probability one L = F (K) from Z may be viewed as K + αK ,
where each component of αK is a bounded integer and the number of possible αK ’s is
bounded from above by the number of paths on vertices [i, j], |i| ≤ k, |j| ≤ 4 (which is a
modest function of k). This finishes the proof.
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